Résolvantes des Laplaciens magnétiques et opérateurs pseudodifférentiels semiclassiques de Heisenberg

Laurent Charles, Sorbonne Université

Outline

- Bochner Laplacien
 - a definition and the semiclassical limit.
 - b spectral asymptotics: the Weyl law and the clusters at smaller scale.
- 2. Twisted semiclassical pseudodifferential operators
- 3. Landau Hamiltonian, spectrum, resolvent and spectral projectors
- 4. Heisenberg pseudodifferential operators
 - a definitions, composition
 - b application to the resolvent and spectral projectors of the Bochner Laplacian

Bochner Laplacian

Consider

- (M,g) a compact Riemannian manifold with $\partial M = \emptyset$
- $L \rightarrow M$ a Hermitian line bundle with a connection ∇

The Bochner Laplacian, or Schrödinger operator with magnetic field $\omega = i \operatorname{courb}(\nabla)$, is

$$\Delta = \frac{1}{2} \nabla^* \nabla$$
 acting on $C^{\infty}(M, L)$

In a trivialisation on a coordinate chart U,

$$\Delta = -rac{1}{2\sqrt{g}}\sum_{i,j}
abla_i(g^{ij}\sqrt{g}
abla_j)$$
 acting on $\mathcal{C}^\infty(U)$

with
$$\nabla_i = \partial_{x_i} + \frac{1}{i}\beta_i$$
, $\beta_i \in \mathcal{C}^{\infty}(U, \mathbb{R})$, and $d(\sum_i \beta_i dx_i) = \omega$.

Elliptic positive operator, so discrete spectrum in $[0, \infty[$, eigenvalues with finite multiplicities, smooth eigensections.

Large magnetic field limit

take $k \in \mathbb{N}$ and replace L by $L^k = L^{\otimes k}$, ∇ by ∇^{L^k} and set

$$\Delta_k = \frac{1}{2} (\nabla^{L^k})^* \nabla^{L^k} : \mathcal{C}^{\infty}(M, L^k) \to \mathcal{C}^{\infty}(M, L^k).$$

What can we say on eigenvalues and eigensections in the limit $k \to \infty$?

A trivialisation $L|_U \simeq U \times \mathbb{C}$ induces trivialisations $L^k|_U \simeq U \times \mathbb{C}$ so that $\mathcal{C}^{\infty}(U, L^k) \simeq \mathcal{C}^{\infty}(U)$ and

$$\Delta_k = -rac{1}{2\sqrt{g}}\sum_{i,j}
abla_i^k (g^{ij}\sqrt{g}
abla_j^k)$$

where $\nabla_i^k = \partial_{x^i} + \frac{k}{i}\beta_i$.

Semiclassical result

Weyl law

One has in the limit $k \to \infty$

$$\sharp \left(\operatorname{sp}(k^{-2}\Delta_k)\cap [E,E']\right) \sim \left(\frac{k}{2\pi}\right)^n \left(\operatorname{vol}(\{E\leqslant \frac{1}{2}|\xi|^2\leqslant E'\},\Omega\right)$$

with $n = \dim M$ and $\Omega \in \Omega^2(T^*M)$ the twisted symplectic form $\Omega = \sum d\xi^i \wedge dx_i + \pi^*\omega \in \Omega^2(T^*M)$.

Smaller scale (Guillemin-Uribe 88, Faure-Tsuji 15)

If ω is non-degenerate and compatible with g, then

$$sp(k^{-1}\Delta_k) \cap [0, M] \subset (\frac{n}{4} + \mathbb{N}) + C_M k^{-\frac{1}{2}}[-1, 1]$$

and for any $m \in \mathbb{N}$,

$$\sharp \left(\operatorname{sp}(k^{-1}\Delta_k) \cap \left(\tfrac{n}{4} + m + \left[-\tfrac{1}{6}, \tfrac{1}{6}\right]\right) \sim \left(\frac{k}{2\pi}\right)^{\frac{n}{2}} \left(\tfrac{n}{2} + m - 1\right) \operatorname{Vol}(M, \omega)$$

Goal of this talk

Explain the smaller scale results and introduce the class $\Psi_{\mathsf{Heis}}(L)$ of semiclassical Heisenberg pseudodifferential operators which contains

- the Laplacian $k^{-1}\Delta_k$
- the resolvent $(z-k^{-1}\Delta_k)^{-1}$ for $z\in\mathbb{C}\setminus(rac{n}{4}+\mathbb{N})$
- the spectral projector $1_{\Sigma_m}(k^{-1}\Delta_k)$ for $m\in\mathbb{N}$, $\Sigma_m=\frac{n}{4}+m+[-\frac{1}{6},\frac{1}{6}].$

based on arxiv:2309.04.

Previous works on the clusters, including their exact dimensions, the Schwartz kernels of the spectral projectors, the associated Toeplitz operators by Boutet-Guillemin, Zelditch, Guillemin-Uribe, Borthwick-Uribe, Ma-Marinescu, Faure-Tsuji, Kordyukov and many other people including myself...

The road from Harmonic oscillator to secmiclassical magnetic Laplacian

- 1. describe resolvent and spectral projectors of Harmonic oscilator by using Weyl quantization $f^w(\frac{1}{i}\partial_x, x)$
- 2. pass from Harmonic oscillator to Landau Hamiltonian and from Weyl quantization $f^w(\frac{1}{i}\partial_x, x)$ to $f(\frac{1}{i}\nabla)$
- 3. rescale to semiclassical Landau Hamiltonian and introduce $f(\frac{k^{-\frac{1}{2}}}{i}\nabla^k)$
- 4. pass from semiclassical Landau Hamiltonian to semiclassical magnetic Laplacian, introduce Heisenberg semiclassical pseudodifferential operator $f(x, \frac{k^{-\frac{1}{2}}}{i} \nabla^k)$.

Landau Hamiltonian vs Harmonic Oscillator

The covariant derivatives $\nabla_1=\partial_{x_1}-\frac{i}{2}x_2$, $\nabla_2=\partial_{x_2}+\frac{i}{2}x_1$ satisfy

$$i\left[\frac{1}{i}\nabla_1, \frac{1}{i}\nabla_2\right] = 1, \qquad i\left[\frac{1}{i}\partial_x, x\right] = 1$$

Landau Hamiltonian and Harmonic oscillator are

$$\begin{split} \hat{H} &= \tfrac{1}{2}((\tfrac{1}{i}\nabla_1)^2) + (\tfrac{1}{i}\nabla_2)^2) \qquad \text{ acting on } \mathcal{S}(\mathbb{R}^2_{x_1,x_2}) \\ &H^w &= \tfrac{1}{2}((\tfrac{1}{i}\partial_x)^2 + x^2) \qquad \text{ acting on } \mathcal{S}(\mathbb{R}_x) \end{split}$$

Facts: There exists a unitary operator U of $L^2(\mathbb{R}^2)$ such that

$$U\hat{H}U^* = H^w \boxtimes id_{L^2(\mathbb{R}_y)}$$
.

Proof: U is metaplectic representation of the symplectomorphism $\Phi: \mathbb{R}^4_{\xi_1, x_1, \xi_2, x_2} \to \mathbb{R}^4_{\xi, x, \eta, y}$ given by

$$(\xi, x, \eta, y) = (\xi_1 - \frac{1}{2}x_2, \xi_2 + \frac{1}{2}x_1, \xi_2 - \frac{1}{2}x_1, \xi_1 + \frac{1}{2}x_2)$$

Consequence: Landau Hamiltonian spectrum

Landau Hamiltonian and Harmonic oscillator are

$$\begin{split} \hat{H} &= \tfrac{1}{2}((\tfrac{1}{i}\nabla_1)^2) + (\tfrac{1}{i}\nabla_2)^2) \qquad \text{ acting on } \mathcal{S}(\mathbb{R}^2_{x_1,x_2}) \\ H^w &= \tfrac{1}{2}((\tfrac{1}{i}\partial_x)^2 + x^2) \qquad \text{ acting on } \mathcal{S}(\mathbb{R}_x) \end{split}$$

Facts: There exists a unitary operator U of $L^2(\mathbb{R}^2)$ such that

$$U\hat{H}U^* = H^w \boxtimes id_{L^2(\mathbb{R}_y)}$$
.

Consequently,

- ► Spec(\hat{H}) = Spec(H^w) = $\frac{1}{2}$ + \mathbb{N}
- ▶ each eigenspaces of \hat{H} is $L^2(\mathbb{R})$.

Landau Hamiltonian vs Harmonic Oscillator

Using that metaplectic representation U of Φ conjugates Weyl quantization of $g(\xi, x, \eta, y)$ and $g \circ \Phi(\xi_1, x_1, \xi_2, x_2)$, we also have

$$U(f^w \boxtimes id)U^* = f(\frac{1}{i}\nabla), \quad \forall f \in \mathcal{S}'(\mathbb{R}^2)$$

where $f^w: \mathcal{S}(\mathbb{R}) \to \mathcal{S}'(\mathbb{R})$ is Weyl quantization of $f(\xi,x)$ with Schwartz kernel

$$(2\pi)^{-1}\int e^{i\xi(x-y)}f(\xi,\frac{x+y}{2})\,d\xi$$

and $f(\frac{1}{i}\nabla): \mathcal{S}(\mathbb{R}^2) \to \mathcal{S}'(\mathbb{R}^2)$ is Weyl quantization of $f(\xi_1 - \frac{1}{2}x_2, \xi_2 + \frac{1}{2}x_1)$ with Schwartz kernel

$$(2\pi)^{-2} \int e^{i\xi_1(x_1-y_1)+\xi_2(x_2-y_2)} f(\xi_1 - \frac{1}{2}x_2, \xi_2 + \frac{1}{2}x_1) d\xi_1 d\xi_2$$

In particular with $H = \frac{1}{2}(\xi^2 + x^2)$, Landau Hamiltonian is $\hat{H} = H(\frac{1}{2}\nabla)$, harmonic oscillator is H^w .

Landau Hamiltonian resolvent and spectral projectors

Since for any $f \in \mathcal{S}'(\mathbb{R}^2)$, one has $U(f^w \boxtimes id)U^* = f(\frac{1}{i}\nabla)$, there exists $R_z, \pi_E \in \mathcal{S}'(\mathbb{R}^2)$ such that

For any $z \in \mathbb{C} \setminus (\frac{1}{2} + \mathbb{N})$, the resolvent is $(\hat{H} - z)^{-1} = R_z(\frac{1}{2}\nabla) \qquad \text{where } R_z^w = (H^w - z)^{-1}$

$$(H-Z)^{-1}=R_Z(\frac{1}{i}V)$$
 where $R_Z^{**}=(H^**-Z)^{-1}$

▶ the spectral projector of $E \in \frac{1}{2} + \mathbb{N}$ are

$$1_E(\hat{H}) = \pi_E(\frac{1}{i}\nabla)$$
 where $\pi_E^w = 1_E(H^w)$

Explicit formula by Derezinski-Karczmarczyk (2017)

$$R_z = \int_0^1 (1 - \frac{1}{2}s)^{\frac{1}{2} - z - 1} (1 + \frac{1}{2}s)^{\frac{1}{2} + z - 1} e^{-sH} ds$$

when Re z < 1 and by Unterberger (2016)

$$\pi_E = 2(-1)^m e^{-2H} L_m^{-1}(4H),$$
 where $E = m + \frac{1}{2}$

where L_m is a Laguerre polynomial.

Semiclassical Landau Hamiltonian

With
$$k > 0$$
, consider $\nabla_1^k = \partial_{x_1} - \frac{ik}{2}x_2$, $\nabla_2^k = \partial_{x_2} + \frac{ik}{2}x_1$ and
$$\hat{H}_k = \frac{1}{2}((\frac{1}{i}\nabla_1^k)^2 + (\frac{1}{i}\nabla_1^k)^2) \quad \text{acting on } \mathcal{S}(\mathbb{R}^2)$$

Define the rescaling ρ_k of $L^2(\mathbb{R}^2)$ by $\rho_k u(x) = k^{-1} u(k^{-\frac{1}{2}}x)$, $x \in \mathbb{R}^2$. Then one has

$$\rho_k^* \hat{H} \rho_k = k^{-1} \hat{H}_k, \quad \text{so sp}(k^{-1} \hat{H}_k) = \frac{1}{2} + \mathbb{N}$$

Moreover, $\rho_k^* f(\frac{1}{i} \nabla) \rho_k = f(\frac{k^{-\frac{1}{2}}}{i} \nabla^k)$, the operator with Schwartz kernel

$$\left(\frac{k}{2\pi}\right)^2 \int e^{ik\xi(x-y)} f\left(k^{-\frac{1}{2}}(\xi-\beta(\frac{x+y}{2}))\right) d\xi, \quad x, y \in \mathbb{R}^2$$

here $\beta(x_1, x_2) = (\frac{1}{2}x_2, -\frac{1}{2}x_1)$.

Since $\rho_k^* f(\frac{1}{i} \nabla) \rho_k = f(\frac{k^{-\frac{1}{2}}}{i} \nabla^k)$, the resolvent and spectral projectors of $k^{-1}\hat{H}_{k}$ are

projectors of
$$k^{-1}\hat{H}_k$$
 are
$$(k^{-1}\hat{H}_k-z)^{-1}=R_z(\frac{k^{-\frac{1}{2}}}{i}\nabla^k), \qquad z\in\mathbb{C}\setminus(\frac{1}{2}+\mathbb{N})$$

 $1_{\{F\}}(k^{-1}\hat{H}_k) = \pi_E(\frac{k^{-\frac{1}{2}}}{i}\nabla^k), \qquad E \in \frac{1}{2} + \mathbb{N}$

From Landau Hamiltonian to Bochner Laplacian

Consider now a metric g on an open set U of \mathbb{R}^2 and consider the Bochner Laplacian

$$\Delta_k = -rac{1}{2\sqrt{g}}\sum_{i,j}
abla_i^k (g^{ij}\sqrt{g}
abla_j^k)$$

with ∇_1^k , ∇_2^k as in the definition for \hat{H}_k .

To construct resolvent and spectral projectors of $k^{-1}\Delta_k$, we define $f(x,\frac{k^{-\frac{1}{2}}}{i}\nabla^k)$ for symbols $f\in S(U_x,\mathbb{R}^2_\xi)$ as the operator with Schwartz kernel

$$\left(\frac{k}{2\pi}\right)^2 \int e^{ik\xi(x-y)} f\left(\frac{x+y}{2}, k^{-\frac{1}{2}}\left(\xi - \beta\left(\frac{x+y}{2}\right)\right)\right) d\xi, \quad x, y \in \mathbb{R}^2$$

Semiclassical Heisenberg pseudodifferential operator

A family $(P_k: \mathcal{C}^{\infty}(M, L^k) \to \mathcal{C}^{\infty}(M, L^k)$, $k \in \mathbb{N}$) belongs to $\Psi^m_{\mathsf{Heis}}(L, \nabla)$ if locally its Schwartz kernel has the form

$$(2\pi h)^{-n}\int_{\mathbb{R}^n}e^{ih^{-1}\xi(x-y)}f\left(h^{\frac{1}{2}},\frac{x+y}{2},h^{-\frac{1}{2}}(\xi-\beta(\frac{x+y}{2}))\right)d\xi$$

with $h=k^{-1}$, $f(h,x,\xi)=f_0(x,\xi)+hf_1(x,\xi)+\ldots$ where the coefficients satisfy $\partial_x^{\alpha}\partial_{\xi}^{\beta}f_{\ell}=\mathcal{O}(\langle\xi\rangle^{m-\ell-|\beta|})$.

Facts:

- the class $\Psi^m_{\mathsf{Heis}}(L,\nabla)$ is well-defined
- the symbol principal of (P_k) is $f_0 \in \mathcal{C}^{\infty}(T^*M)$.
- for any vector field X of M, $(\frac{k^{-\frac{1}{2}}}{i}\nabla_X^k) \in \Psi^1_{\mathsf{Heis}}(L, \nabla)$, its principal symbol is $(x, \xi) \to \xi(X(x))$.
- $(k^{-1}\Delta_k) \in \Psi^2_{\mathsf{Heis}}(L, \nabla)$, its principal symbol is $\frac{1}{2}|\xi|^2$.

Heisenberg composition

Theorem

If
$$(P_k) \in \Psi^m_{\mathsf{Heis}}(L, \nabla)$$
 and $(Q_k) \in \Psi^\ell_{\mathsf{Heis}}(L, \nabla)$, then $(P_k \circ Q_k) \in \Psi^{m+\ell}_{\mathsf{Heis}}(L, \nabla)$.

The corresponding product \sharp of principal symbols is

$$(f\sharp g)(x,\zeta)=e^{rac{i}{2}\omega_x(\partial_\xi,\partial_\eta)}f(x,\xi)g(x,\eta)|_{\xi=\eta=\zeta}$$

The product \sharp is fibered. Its restriction to T_x^*M is the usual multiplication when $\omega_x=0$, the Weyl product when ω_x is non-degenerate. So it is non-commutative in general.

Resolvent and spectral projector of the Bochner Laplacian

Assume that ω is non-degenerate and compatible with g. Let $d=\frac{n}{2}\in\mathbb{N}$ with $n=\dim M$.

Theorem

For any $z \in \mathbb{C} \setminus (\frac{d}{2} + \mathbb{N})$, there exists $(Q_k(z)) \in \Psi^{-2}_{\mathsf{Heis}}(L, \nabla)$ such that

- $(k^{-1}\Delta_k z)Q_k(z) \equiv \text{id}$, $Q_k(z)(k^{-1}\Delta_k z) \equiv \text{id}$ modulo smoothing operators,
- $Q_k(z) = (k^{-1}\Delta_k z)^{-1}$ when k is large,
- the principal symbol of $(Q_k(z))$ is $R_{d,z}(\xi)$.

For any $E \in \frac{d}{2} + \mathbb{N}$, $(1_{[E-\frac{1}{6},E+\frac{1}{6}]}(k^{-1}\Delta_k)) \in \Psi^{-\infty}_{Heis}(L,\nabla)$ and its symbol is $\pi_{d,E}(\xi)$.

Resolvent and Spectral projectors of the Harmonic oscillator in dimension *d*

For any $f \in \mathcal{S}'(\mathbb{R}^{2d})$, let f^w be its Weyl quantization, so the operator with Schwartz kernel $(2\pi)^{-d} \int e^{i\xi(x-y)} f(\frac{x+y}{2},\xi) d\xi$.

The *d*-dimensional quantum harmonic oscillator is H^w with $H(\xi) = \frac{1}{2}|\xi|^2$, $\xi \in \mathbb{R}^{2d}$. Its spectrum is $\frac{d}{2} + \mathbb{N}$.

Define $R_{d,z}$ and $\pi_{d,E}$ in $\mathcal{S}'(\mathbb{R}^{2d})$ by

-
$$R_{d,z}^w = (H^w - z)^{-1}$$
 for any $z \in \mathbb{C} \setminus (\frac{d}{2} + \mathbb{N})$
- $\pi_{d,E}^w = \mathbb{1}_{\{E\}}(H^w)$ for any $E \in \frac{d}{2} + \mathbb{N}$.

By the Weyl calculus, $R_{d,z} \in S^{-2}(\mathbb{R}^{2d})$ and $\pi_{d,E} \in \mathcal{S}(\mathbb{R}^{2d})$.

Actually, by Derezinski-Karczmarczyk (2017)

$$R_{d,z} = \int_0^1 (1 - \frac{1}{2}s)^{\frac{d}{2} - z - 1} (1 + \frac{1}{2}s)^{\frac{d}{2} + z - 1} e^{-sH} ds$$

when Re z < d and by Unterberger (2016)

$$\pi_{d,E}(\xi) = 2^d (-1)^m e^{-|\xi|^2} L_m^{d-1}(2|\xi|^2),$$
 where $m = E - \frac{d}{2}$

where L_m is a Laguerre polynomial.