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Bochner Laplacian

Consider

- (M, g) a compact Riemannian manifold with ∂M = ∅
- L → M a Hermitian line bundle with a connection ∇

The Bochner Laplacian, or Schrödinger operator with magnetic
field ω = i courb(∇), is

∆ = 1
2∇

∗∇ acting on C∞(M, L)

In a trivialisation on a coordinate chart U,

∆ = − 1
2
√
g

∑
i ,j

∇i (g
ij√g∇j) acting on C∞(U)

with ∇i = ∂xi +
1
i βi , βi ∈ C∞(U,R), and d(

∑
i βidxi ) = ω.

Elliptic positive operator, so discrete spectrum in [0,∞[,
eigenvalues with finite multiplicities, smooth eigensections.



Large magnetic field limit

take k ∈ N and replace L by Lk = L⊗k , ∇ by ∇Lk and set

∆k = 1
2(∇

Lk )∗∇Lk : C∞(M, Lk) → C∞(M, Lk).

What can we say on eigenvalues and eigensections in the limit
k → ∞ ?
A trivialisation L|U ≃ U × C induces trivialisations Lk |U ≃ U × C
so that C∞(U, Lk) ≃ C∞(U) and

∆k = − 1
2
√
g

∑
i ,j

∇k
i (g

ij√g∇k
j )

where ∇k
i = ∂x i +

k
i βi .



Semiclassical result

Weyl law

One has in the limit k → ∞

♯
(
sp(k−2∆k) ∩ [E ,E ′]

)
∼

( k

2π

)n
(vol({E ⩽ 1

2 |ξ|
2 ⩽ E ′},Ω)

with n = dimM and Ω ∈ Ω2(T ∗M) the twisted symplectic form
Ω =

∑
dξi ∧ dxi + π∗ω ∈ Ω2(T ∗M).

Smaller scale (Guillemin-Uribe 88, Faure-Tsuji 15)

If ω is non-degenerate and compatible with g , then

sp(k−1∆k) ∩ [0,M] ⊂ (n4 + N) + CMk−
1
2 [−1, 1]

and for any m ∈ N,

♯
(
sp(k−1∆k) ∩ (n4 +m + [−1

6 ,
1
6 ]) ∼

( k

2π

) n
2 ( n

2
+m−1
m

)
Vol(M, ω)



Goal of this talk

Explain the smaller scale results and introduce the class ΨHeis(L)
of semiclassical Heisenberg pseudodifferential operators which
contains

- the Laplacian k−1∆k

- the resolvent (z − k−1∆k)
−1 for z ∈ C \ (n4 + N)

- the spectral projector 1Σm(k
−1∆k) for m ∈ N,

Σm = n
4 +m + [−1

6 ,
1
6 ].

based on arxiv:2309.04.

Previous works on the clusters, including their exact dimensions,
the Schwartz kernels of the spectral projectors, the associated
Toeplitz operators by Boutet-Guillemin, Zelditch, Guillemin-Uribe,
Borthwick-Uribe, Ma-Marinescu, Faure-Tsuji, Kordyukov and many
other people including myself...



The road from Harmonic oscillator to secmiclassical
magnetic Laplacian

1. describe resolvent and spectral projectors of Harmonic
oscilator by using Weyl quantization f w (1i ∂x , x)

2. pass from Harmonic oscillator to Landau Hamiltonian and
from Weyl quantization f w (1i ∂x , x) to f (1i ∇)

3. rescale to semiclassical Landau Hamiltonian and introduce

f (k
− 1

2

i ∇k)

4. pass from semiclassical Landau Hamiltonian to semiclassical
magnetic Laplacian,
introduce Heisenberg semiclassical pseudodifferential operator

f (x , k
− 1

2

i ∇k).



Landau Hamiltonian vs Harmonic Oscillator

The covariant derivatives ∇1 = ∂x1 − i
2x2, ∇2 = ∂x2 +

i
2x1 satisfy

i
[
1
i ∇1,

1
i ∇2

]
= 1, i

[
1
i ∂x , x

]
= 1

Landau Hamiltonian and Harmonic oscillator are

Ĥ = 1
2((

1
i ∇1)

2) + (1i ∇2)
2) acting on S(R2

x1,x2)

Hw = 1
2((

1
i ∂x)

2 + x2) acting on S(Rx)

Facts: There exists a unitary operator U of L2(R2) such that

UĤU∗ = Hw ⊠ idL2(Ry ) .

Proof: U is metaplectic representation of the symplectomorphism
Φ : R4

ξ1,x1,ξ2,x2
→ R4

ξ,x ,η,y given by

(ξ, x , η, y) = (ξ1 − 1
2x2, ξ2 +

1
2x1, ξ2 −

1
2x1, ξ1 +

1
2x2)



Consequence: Landau Hamiltonian spectrum

Landau Hamiltonian and Harmonic oscillator are

Ĥ = 1
2((

1
i ∇1)

2) + (1i ∇2)
2) acting on S(R2

x1,x2)

Hw = 1
2((

1
i ∂x)

2 + x2) acting on S(Rx)

Facts: There exists a unitary operator U of L2(R2) such that

UĤU∗ = Hw ⊠ idL2(Ry ) .

Consequently,

▶ Spec(Ĥ) = Spec(Hw ) = 1
2 + N

▶ each eigenspaces of Ĥ is L2(R).



Landau Hamiltonian vs Harmonic Oscillator
Using that metaplectic representation U of Φ conjugates Weyl
quantization of g(ξ, x , η, y) and g ◦ Φ(ξ1, x1, ξ2, x2), we also have

U(f w ⊠ id)U∗ = f (1i ∇), ∀f ∈ S ′(R2)

where f w : S(R) → S ′(R) is Weyl quantization of f (ξ, x) with
Schwartz kernel

(2π)−1

∫
e iξ(x−y)f (ξ, x+y

2 ) dξ

and f (1i ∇) : S(R2) → S ′(R2) is Weyl quantization of
f (ξ1 − 1

2x2, ξ2 +
1
2x1) with Schwartz kernel

(2π)−2

∫
e iξ1(x1−y1)+ξ2(x2−y2)f (ξ1 − 1

2x2, ξ2 +
1
2x1) dξ1dξ2

In particular with H = 1
2(ξ

2 + x2), Landau Hamiltonian is

Ĥ = H(1i ∇), harmonic oscillator is Hw .



Landau Hamiltonian resolvent and spectral projectors
Since for any f ∈ S ′(R2), one has U(f w ⊠ id)U∗ = f (1i ∇), there
exists Rz , πE ∈ S ′(R2) such that

▶ For any z ∈ C \ (12 + N), the resolvent is

(Ĥ − z)−1 = Rz(
1
i ∇) where Rw

z = (Hw − z)−1

▶ the spectral projector of E ∈ 1
2 + N are

1E (Ĥ) = πE (
1
i ∇) where πw

E = 1E (H
w )

Explicit formula by Derezinski-Karczmarczyk (2017)

Rz =

∫ 1

0
(1− 1

2s)
1
2
−z−1(1 + 1

2s)
1
2
+z−1e−sHds

when Re z < 1 and by Unterberger (2016)

πE = 2(−1)me−2HL−1
m (4H), where E = m + 1

2

where Lm is a Laguerre polynomial.



Semiclassical Landau Hamiltonian

With k > 0, consider ∇k
1 = ∂x1 − ik

2 x2, ∇
k
2 = ∂x2 +

ik
2 x1 and

Ĥk = 1
2((

1
i ∇

k
1)

2 + (1i ∇
k
1)

2) acting on S(R2)

Define the rescaling ρk of L2(R2) by ρku(x) = k−1u(k−
1
2 x),

x ∈ R2. Then one has

ρ∗kĤρk = k−1Ĥk , so sp(k−1Ĥk) =
1
2 + N

Moreover, ρ∗k f (
1
i ∇)ρk = f (k

− 1
2

i ∇k), the operator with Schwartz
kernel

( k
2π )

2

∫
e ikξ(x−y)f (k−

1
2 (ξ − β( x+y

2 )))dξ, x , y ∈ R2

here β(x1, x2) = (12x2,−
1
2x1).



Since ρ∗k f (
1
i ∇)ρk = f (k

− 1
2

i ∇k), the resolvent and spectral

projectors of k−1Ĥk are

(k−1Ĥk − z)−1 = Rz(
k− 1

2

i ∇k), z ∈ C \ (12 + N)

1{E}(k
−1Ĥk) = πE (

k− 1
2

i ∇k), E ∈ 1
2 + N



From Landau Hamiltonian to Bochner Laplacian

Consider now a metric g on an open set U of R2 and consider the
Bochner Laplacian

∆k = − 1
2
√
g

∑
i ,j

∇k
i (g

ij√g∇k
j )

with ∇k
1 , ∇k

2 as in the definition for Ĥk .

To construct resolvent and spectral projectors of k−1∆k , we define

f (x , k
− 1

2

i ∇k) for symbols f ∈ S(Ux ,R2
ξ) as the operator with

Schwartz kernel

( k
2π )

2

∫
e ikξ(x−y)f ( x+y

2 , k−
1
2 (ξ − β( x+y

2 )))dξ, x , y ∈ R2



Semiclassical Heisenberg pseudodifferential operator

A family (Pk : C∞(M, Lk) → C∞(M, Lk), k ∈ N) belongs to
Ψm

Heis(L,∇) if locally its Schwartz kernel has the form

(2πh)−n

∫
Rn

e ih
−1ξ(x−y)f

(
h

1
2 , x+y

2 , h−
1
2 (ξ − β( x+y

2 ))
)
dξ

with h = k−1, f (h, x , ξ) = f0(x , ξ) + hf1(x , ξ) + . . . where the

coefficients satisfy ∂α
x ∂

β
ξ fℓ = O(⟨ξ⟩m−ℓ−|β|).

Facts:

- the class Ψm
Heis(L,∇) is well-defined

- the symbol principal of (Pk) is f0 ∈ C∞(T ∗M).

- for any vector field X of M, (k
− 1

2

i ∇k
X ) ∈ Ψ1

Heis(L,∇), its
principal symbol is (x , ξ) → ξ(X (x)).

- (k−1∆k) ∈ Ψ2
Heis(L,∇), its principal symbol is 1

2 |ξ|
2.



Heisenberg composition

Theorem
If (Pk) ∈ Ψm

Heis(L,∇) and (Qk) ∈ Ψℓ
Heis(L,∇), then

(Pk ◦ Qk) ∈ Ψm+ℓ
Heis (L,∇).

The corresponding product ♯ of principal symbols is

(f ♯g)(x , ζ) = e
i
2
ωx (∂ξ,∂η)f (x , ξ)g(x , η)|ξ=η=ζ

The product ♯ is fibered. Its restriction to T ∗
xM is the usual

multiplication when ωx = 0, the Weyl product when ωx is
non-degenerate. So it is non-commutative in general.



Resolvent and spectral projector of the Bochner Laplacian

Assume that ω is non-degenerate and compatible with g .
Let d = n

2 ∈ N with n = dimM.

Theorem
For any z ∈ C \ (d2 + N), there exists (Qk(z)) ∈ Ψ−2

Heis(L,∇) such
that

- (k−1∆k − z)Qk(z) ≡ id, Qk(z)(k
−1∆k − z) ≡ id modulo

smoothing operators,

- Qk(z) = (k−1∆k − z)−1 when k is large,

- the principal symbol of (Qk(z)) is Rd ,z(ξ).

For any E ∈ d
2 + N, (1[E− 1

6
,E+ 1

6
](k

−1∆k)) ∈ Ψ−∞
Heis(L,∇) and its

symbol is πd ,E (ξ).



Resolvent and Spectral projectors of the Harmonic
oscillator in dimension d

For any f ∈ S ′(R2d), let f w be its Weyl quantization, so the
operator with Schwartz kernel (2π)−d

∫
e iξ(x−y)f ( x+y

2 , ξ)dξ.

The d-dimensional quantum harmonic oscillator is Hw with
H(ξ) = 1

2 |ξ|
2, ξ ∈ R2d . Its spectrum is d

2 + N.
Define Rd ,z and πd ,E in S ′(R2d) by

- Rw
d ,z = (Hw − z)−1 for any z ∈ C \ (d2 + N)

- πw
d ,E = 1{E}(H

w ) for any E ∈ d
2 + N.

By the Weyl calculus, Rd ,z ∈ S−2(R2d) and πd ,E ∈ S(R2d).

Actually, by Derezinski-Karczmarczyk (2017)

Rd ,z =

∫ 1

0
(1− 1

2s)
d
2
−z−1(1 + 1

2s)
d
2
+z−1e−sHds

when Re z < d and by Unterberger (2016)

πd ,E (ξ) = 2d(−1)me−|ξ|2Ld−1
m (2|ξ|2), where m = E − d

2

where Lm is a Laguerre polynomial.


