
Chapter 2

Holonomy and Chern classes

2.1 Cheeger-Simons character

Before we define the Cheeger-Simons characters, we recall the definition of singular
homology and cohomology. We give more details in degree 0, 1 and 2 since these
are the only cases we need in the sequel.

Singular homology

Let M be a manifold. For any non negative integer k, we denote by ∆k the standard
k-dimensional simplex. So

∆0 = {0}, ∆1 = [0, 1] and ∆2 = {(s, t) ∈ R2/ s > 0, t > 0, s+ t 6 1}.

Let ∆k(M) be the space of smooth maps from ∆k to M . In particular ∆0(M) = M
and ∆1(M) is the space of paths of M . The group of k-chains Ck(M) of M is
defined as the free Z-module with basis ∆k(M). For k > 0, the boundary map

∂k : Ck(M)→ Ck−1(M)

is the morphism given by ∂kc =
∑k
i=0(−1)ic ◦ fi,k where fi,k : ∆k−1 → ∆k is the

i-th face of ∆k. In particular,

∂1γ = γ(1)− γ(0), ∂2S = S ◦ e1 − S ◦ e2 + S ◦ e3

for any path γ : [0, 1] → M and smooth map S : ∆2 → M . Here ek : [0, 1] → ∆2,
for k = 1, 2, 3 is given by

e1(s) = (s, 0), e2(s) = (s, 1− s) and e3(s) = (0, 1− s).

For k = 0, we define ∂0 as the morphism C0(M) → {0}. The group of k-cycles
Zk(M) is the kernel of ∂k, the group of k-boundaries Bk(M) is the image of ∂k+1.
Since ∂k ◦ ∂k+1 = 0, Bk(M) ⊂ Zk(M). The k-th homology group of M is Hk(M) =
Zk(M)/Bk(M).

Singular cohomology

For any abelian group G, let Ck(M,G) = Mor(Ck(M), G) be the group of G-valued
cochain. The differential

dk : Ck(M,G)→ Ck+1(M,G)

is defined by dkα = α ◦ ∂k. The k-th cohomology group Hk(M,G) is by definition
ker dk/ Im dk−1. For G = Z, we denote Ck(M,G) and Hk(M,G) by Ck(M) and
Hk(M).
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De Rham Theorem

When G = R, Ck(M,G) and Hk(M,G) are real vector spaces. We have a one-to-
one linear map Ωk(M,R) → Ck(M,R) sending ω into the cochain c →

∫
c
ω. By

Stokes Theorem, this morphism commutes with the differential, so that it induces
a morphism from Hk

dR(M,R) to Hk(M,R).

Theorem 2.1.1. The morphism Hk
dR(M,R)→ Hk(M,R) is an isomorphism.

In the sequel we identify these cohomology spaces. We also view Ωk(M,R) as a
subspace of Ck(M,R).

Cheeger-Simons character

For any α ∈ Ωk(M,R), we denote by α̃ ∈ Ck(M,T) the cochain given by

α̃(c) =
∫
c

α mod Z, ∀ c ∈ Ck(M).

Observe that the map sending α to α̃ is injective. Furthermore dα̃ = d̃α, by Stokes
Theorem.

A Cheeger-Simons character of M with degree k is by definition a group mor-
phism A : Zk(M)→ T such that there exists ω ∈ Ωk+1(M) satisfying

A(∂c) =
∫
c

ω mod Z

for any smooth map c : ∆k+1 → M . Since Ck+1(M) is generated by ∆k+1(M),
this last equation is equivalent to A ◦ ∂ = ω̃. So ω is determined by A. Since
d̃ω = dω̃ = A ◦∂2 = 0, ω is closed. We call ω the differential of A. zz We denote by
Ĥk(M,T) the group of degree k Cheeger-Simons characters. For k = 0, Ĥ0(M,T)
identifies with the space of smooth maps from M to T.

2.2 Holonomy

Let π : P →M be a T-principal bundle and α ∈ Ω1(P ) be a connection. Introduce
a smooth path γ : [0, 1]→M . An horizontal lift of γ is a smooth path γ̃ : [0, 1]→ P
such that

π(γ̃(t)) = γ(t) and α(γ̃′(t)) = 0, ∀t ∈ [0, 1].

Lemme 2.2.1. For any v ∈ Pγ(0), there exists a unique horizontal lift γ̃ of γ such
that γ̃(0) = v. Furthermore, for any θ ∈ T, the horizontal lift of γ starting at θ.v is
the path t→ θ.γ̃(t).

Proof. We can work in a local trivialisation U×T with connection form β+dθ. Then
a lift γ̃(t) = (γ(t), τ(t)) is horizontal if it satisfies β(γ′(t)) + τ ′(t) = 0. Equivalently,
we have

τ(t) = τ(0)−
∫ t

0

β(γ′(s))ds mod Z (2.1)

which proves the result.

The parallel transport along γ is the map Tγ : Pγ(0) → Pγ(1) such that for any
horizontal lift γ̃ of γ, we have Tγ(γ̃(0)) = γ̃(1). Observe that Tγ is equivariant and
does not depend on the parametrisation of the path. Furthermore, if γ is a constant
loop, Tγ is the identity of the corresponding fiber. If γ1∗γ2 is the concatenation of γ1
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and γ2, then Tγ1∗γ2 = Tγ1 ◦Tγ2 . If γop is the opposite of γ, that is γop(t) = γ(1− t),
then Tγop is the inverse of Tγ .

If γ is a loop, that is γ(0) = γ(1), then the holonomy of γ is defined as the angle
θ ∈ T such that Tγ is the translation by θ. The holonomy does not depend on the
choice of the base point.

Let us define the holonomy of the 1-cycles of M . Choose a map ϕ : P → T
such that ϕ(θ.y) = θ + ϕ(y) for any θ ∈ T and y ∈ P . We do not require that ϕ is
smooth, actually in the case P is not isomorphic to the trivial bundle, such a map
can not be continuous. For any 1-chain c =

∑
niγi, we set

hol(c) =
∑

ni(ϕ(γ̃i(1))− ϕ(γ̃i(0)))

where the γ̃i are horizontal lifts of the γi. Then hol(c) does not depend on the
choice of the lifts. If furthermore c is a cycle, hol(c) does not depend on the choice
of ϕ.

Proposition 2.2.2. The holonomy map hol : Z1(M) → T is a group morphism.
Furthermore, for any smooth map S : ∆2 →M , we have

hol(∂S) =
∫
S

ω mod Z

where ω is the curvature of α.

Proof. The holonomy map is clearly a group morphism. If the image of S is con-
tained in the domain of a trivialisation of P , the formula for the holonomy of ∂S
follows from Stokes theorem and Equation (2.1). We can deduce the general case
by introducing a sufficiently fine subdivision of ∆2.

The holonomy of a Hermitian line bundle with connection is defined as the holon-
omy of the corresponding T-principal bundle. If hol and hol′ are the holonomies
of L → M and L′ → M , then one easily check that the holonomy of L ⊗ L′ is
the sum hol + hol′ and that the holonomy of L−1 is −hol. If furthermore f is a
map from a manifold N to M , the holonomy of f∗L is hol ◦f∗, where f∗ is the map
Z1(N)→ Z1(M) sending c into c ◦ f .

2.3 A characterization

By proposition 2.2.2, for any T-principal bundle with connection (P, α), the asso-
ciated holonomy map is a Cheeger-Simons character. We say that two T-principal
bundles with connection (P, α) and (P ′, α′) are isomorphic if there exists a T-
principal bundle isomorphism ϕ : P → P ′ such that ϕ∗α′ = α.

Theorem 2.3.1. The application which sends a T-principal bundle with connection
to its holonomy map induces a bijection from the set of isomorphism classes of T-
principal bundles with connection, to Ĥ1(M,T).

Recall that the flat connections are characterized by the condition that the
holonomies of the boundaries vanish. Since H1(M) = Z1(M)/B1(M), we obtain
the

Corollary 2.3.2. The map which sends a flat T-principal bundle to its holonomy
map induces a bijection from the set of isomorphism classes of flat T-principal
bundles to Mor(H1(M), T ).
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Proof of theorem 2.3.1, injectivity. We may assume that M is connected. Consider
two T-principal bundles endowed with a connection (P, α) and (P ′, α′). Assume
that the holonomies of α and α′ are the same and let us define an isomorphism
ϕ : P → P ′ of T-principal bundle. First choose x0 ∈ M and define ϕ : Px0 → P ′x0

as any T-equivariant map. Then for any x1 ∈M choose a path γ from x0 to x1 and
define ϕ : Px1 → P ′x1

so that

T ′γ ◦ ϕ = ϕ ◦ Tγ : Px0 → P ′x1

where Tγ : Px0 → Px1 and T ′γ : P ′x0
→ P ′x1

denote the parallel transport along γ
in P and P ′ respectively. Because the holonomies of α and α′ are the same, this
definition does not depend on the choice of γ. Observe also that ϕ commute with
parallel transport along any path of M .

We have to prove that ϕ is smooth and ϕ∗α′ = α. One way to do that is to
choose local trivialisations of P and P ′ such that the push-forward of α and α′

are the same. This is possible by Lemma 1.1.5 because α and α′ have the same
curvature. Then using that ϕ commute with parallel transport, one checks that
ϕ in these trivialisations has the following form (x, θ) → (x, θ + τ(x)), where τ is
locally constant.

We will need the following elementary lemma.

Lemme 2.3.3. For any abelian group G, any group morphism χ : Z1(M)→ G can
be extended to a group morphism C1(M)→ G.

Proof. We may assume that M is connected. Let x0 ∈ M and let (γx : [0, 1] →
M, x ∈M) be a family of paths with endpoints γx(0) = x0, γx(1) = x. Let f be the
group morphism C0(M) → C1(M) such that f(x) = γx. Let g : C1(M) → C1(M)
be given by g = id−f ◦ ∂, that is for any path σ

g(σ) = σ − γσ(1) + γσ(0).

Clearly ∂g(σ) = 0 so that ∂ ◦ g = 0, that is Im g ⊂ Z1(M). Furthermore, for any
1-cycle c, g(c) = c. So we can extend χ to χ ◦ g.

Proof of theorem 2.3.1, surjectivity. For any character χ, we have to construct a
T-principal bundle π : P → M with a connection α whose holonomy is χ. We will
consider P = M × T endowed with a topology and differential structure D which
may be different of the product manifold. These structures will be given by a choice
of convenient trivialisations.

Lemme 2.3.4. Let (Ui)i∈I be an open cover of M . Let (fi : Ui → T) be a family of
maps (not necessarily continuous). Assume that for any i, j ∈ I, the map fi − fj :
Ui∩Uj → T is smooth. Then M×T has a unique Hausdorff topology and differential
structure D such that for any i ∈ I,

• Ui × T is an open set of (M × T,D),

• the map ϕi : (Ui × T,D) → Ui × T sending (x, θ) into (x, θ + fi(x)) is a
diffeomorphism. Here the image Ui × T of ϕi is the product manifold.

Proof. We define the open sets of D as the subsets V of M × T such that for any
i, ϕi(V ∩ (Ui × T)) is an open set of Ui × T. The proof that these are the open
sets of an Hausdorf topology is left to the reader. Then we endow M × T with the
maximal atlas containing the ϕi’s. This is possible because the maps ϕi ◦ ϕ−1

j are
smooth by assumption.
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Observe that a map f : (M × T,D) → R is smooth if and only if for any i,
f ◦ ϕ−1

i is smooth. Furthermore P = (M ×T,D) is a T-principal bundle where the
projection is the projection M×T→M onto the first factor and the action is given
by multiplication in the second factor.

Remark 2.3.5. If the maps fi−fj : Ui∩Uj → T are locally constant, then P has a
natural flat structure. If more generally, there exist a family of 1-forms βi ∈ Ω1(Ui),
i ∈ I such that βi − βj + d(fi − fj) = 0 for any i, j, then P inherits a connection α
determined by ϕ∗i (βi + dθ) = α for any i.

Let χ be a Cheeger-Simons character. By Lemma 2.3.3, we can extend χ to a
morphism C1(M) → G. Assume first that χ vanishes on B1(M). We will apply
Lemma 2.3.4 to the familly (U, f), where U is any open set of M and f ∈ ΓU defined
by

ΓU = {f ∈ C0(U,T); df + χ = 0}.

Here C0(U,T) is not the space of continuous map from U to T, but the space of
0-cochains of U which are T-valued. Since C0(M) is free with basis ∆0(M) = M ,
C0(U,T) naturally identifies with the space of maps from U to T.

We have to check the hypothesis of Lemma 2.3.4.

Lemme 2.3.6. If U ⊂ V and f ∈ ΓV , the restriction of f to U belongs to ΓU . For
any f, f ′ ∈ ΓU , f − f ′ is locally constant. Furthermore, if U is contractible, then
ΓU 6= ∅.

Proof. The first assertion is clear. The second one follows from d(f − f ′) = 0. Let
us prove the third one. Let ϕ : [0, 1] ×M → M be a contraction, i.e. ϕ(0, ·) = x0

and ϕ(1, ·) = id. Let us define f ∈ C0(U, T ) by f(x) = χ(γx) where γx is the path

γx(t) = ϕ(t, x).

We have to show that df = χ, that is for any path σ, χ(σ) = f(σ(1))− f(σ(0)). To
do that, observe that since χ vanishes on B1(M), χ vanishes on the constant paths,
and consequently χ(γ−) = −χ(γ) for any path γ. This implies that χ(∂S) = 0 for
any S : [0, 1]2 →M , because we can divide the square into two triangles. Since the
boundary of [0, 1]2 →M , (s, t) = ϕ(s, σ(t)) is γσ(0) + σ − γσ(1) − x0, we have

χ(σ) = χ(γσ(1))− χ(γσ(0)) = f(σ(1))− f(σ(0))

as was to be proved.

So we obtain a flat T-principal bundle P . Let us prove that its holonomy map
is χ. Let h : C1(M)→ T be the group morphism defined on the paths by

h(γ) = ϕ(γ̃(1))− ϕ(γ̃(0)) (2.2)

where γ̃ is any horizontal lift of γ and ϕ is the projection from M × T onto the
second factor. The restriction of h to Z1(M) is the holonomy.

Lemme 2.3.7 (flat case). We have h = χ.

Proof. If the image of γ is contained of U and f ∈ ΓU , then γ̃(t) = (γ(t), f(γ(t)))
is an horizontal lift of γ. So

h(γ) = f(γ(1))− f(γ(0)) = χ(γ).

If a path γ is the concatenation of two path γ1 and γ2, we have h(γ) = h(γ1)+h(γ2)
and also χ(γ) = χ(γ1) + χ(γ2) because χ vanishes on the boundaries. Now, any
path can be subdivided into paths, each of them being contained in a contractible
open set.
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This concludes the proof for flat bundle. Observe that ΓU is actually the space
of flat sections of P defined on U . Let us consider now the general case, so that χ
does not necessarily vanish on B1(M). For any open set U of M , we set

ΓU = {(f, β); f ∈ C0(U,T), β ∈ Ω1(U,R) such that χ+ df + β̃ = 0}

Lemme 2.3.8. If U ⊂ V and (f, β) ∈ ΓV , then (f |U , β|U ) belongs to ΓU . If (f, β)
and (f ′, β′) belong to ΓU , then f−f ′ is smooth with differential β−β′. Furthermore
if U is contractible, ΓU is not empty.

Proof. Let ω ∈ Ω2(M,R) be the differential of the character χ, that is dχ = ω̃. If
(f, β) ∈ ΓU , then dβ̃ + ω̃ = 0 which implies that dβ + ω = 0. Consequently, if
(f ′, β′) also belongs to ΓU , then β − β′ is closed. So on a neighborhood of each
point of U , we can write β − β′ = dg where g is smooth. We obtain df − df ′ = dg,
so that f − f ′ ≡ g̃ up to some locally constant function, which shows that f − f ′ is
smooth.

Assume now that U is contractible. By Poincaré Lemma there exists β ∈
Ω1(M,R) such that dβ + ω = 0. So d(χ + β̃) = 0. By Lemma 2.3.6, there ex-
ists f ∈ C0(U,T) such that χ+ β̃ + df = 0. Then (f, β) ∈ ΓU .

By Lemma 2.3.4 and Remark 2.3.5, we obtain a T-principal bundle endowed
with a connection α. As in the flat case, consider the morphism h : C1(M) → T
defined by (2.2) whose restriction to Z1(M) is the holonomy map.

Lemme 2.3.9 (general case). We have h = χ.

Proof. If the image of γ is contained of U and (f, β) ∈ ΓU , then by Equation (2.1)
a parallel lift of γ is (γ(t), θ(t)) where

θ(t) + f(γ(t)) = −
∫ t

0

β(γ′(s))ds mod Z.

So h(γ) + df(γ) = −β̃(γ), hence h(γ) = χ(γ). We conclude as in the the flat case,
using that if γ is the concatenation of γ1 and γ2, then h(γ) = h(γ1) + h(γ2) and
χ(γ) = χ(γ1) + χ(γ2). To prove this last equality, we can not use that χ vanishes
on the boundaries. Instead, observe that dχ = ω̃ implies that χ(∂S) = 0 if S is
contained in a one dimensional manifold.

This concludes the proof of Theorem 2.3.1. As in the flat case, observe that
ΓU consists actually in the pairs (f, β) where f is a smooth section U → P and
β = f∗α.

2.4 Chern classes

As a corollary of Theorem 2.3.1, we can determine which closed 2-forms of a given
manifold are the curvature of the connection of a Hermitian line bundle. We denote
by

j : Hk(M,Z)→ Hk(M,R)

the map induced by the inclusion Ck(M,Z) ⊂ Ck(M,R).

Proposition 2.4.1. Let ω be closed form in Ω2(M,R). Then the following asser-
tions are equivalent

1. the cohomology class of ω is in the image of j : H2(M,Z)→ H2(M,R)

2. there exists a Cheegers-Simons character χ ∈ Ĥ1(M,T) with differential ω.
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3. there exists a Hermitian line bundle with a connection of curvature 2π
i ω.

Proof. Item 1 is equivalent to the existence of f ∈ C1(M,R) such that ω − df ∈
C2(M,Z). If this is satisfied, then χ := f̃ |Z1(M) verifies χ ◦ ∂ = ω̃. So 1 implies 2.
Conversely, let χ ∈ Ĥ1(M,T). By Lemma 2.3.3, we can extend χ to C1(M). Since
C1(M) is free, there exists h ∈ C1(M,R) such that h̃ = χ. Then ω−dh ∈ C2(M,Z)
which proves that 2 implies 1. By Theorem 2.3.1, 2 and 3 are equivalent.

In the proof of Proposition 2.4.1, we showed that for any character χ ∈ Ĥ1(M,T),
there exists f ∈ C1(M,R) lifting χ and µ ∈ C2(M,Z), such that

µ = ω − df.

Let us denote by δ(χ) ∈ H2(M,Z) the cohomology class of µ.

Proposition 2.4.2. The map δ : Ĥ1(M,T) → H2(M,Z) is well-defined. Further-
more, for any Cheeger-Simons character χ, j(δ(χ)) = [ω] where ω ∈ Ω2(M,R) is
the differential of χ.

Proof. Let us check that [ω − df ] ∈ H2(M,Z) does not depend on the choice of f .
Let f ′ ∈ C1(M,R) lifting χ so that ω−df ′ ∈ C2(M,Z). The restriction of f − f ′ to
Z1(M) takes its values in Z. By Lemma 2.3.3, there exists g ∈ C1(M,Z) such that
f − f ′ = g on Z1(M). So d(f − f ′) = dg and [ω − df ] = [ω − df ′] in H2(M,Z).

Proposition 2.4.3. We have an exact sequence

0→ Ω1(M,R)/Ω1
Z(M) i−→ Ĥ1(M,T) δ−→ H2(M,Z)→ 0

where i(α) = α̃ and Ω1
Z(M) is the subspace of Ω1(M,R) consisting of the forms with

periods in Z.

The periods of a form α ∈ Ωk(M,R) are the reals
∫
c
α, where c runs over the

cycles of M .

Proof. Let us prove that δ is onto. Let [c] ∈ H2(M,Z). By de Rham Theorem,
there exists ω ∈ Ω2(M,R) such that [ω] = [c] in H2(M,R). So ω − c = df with
f ∈ C1(M,R). Define χ as the restriction of f̃ to Z1(M). It is a Cheeger-Simons
character with differential ω and δ(χ) = [ω − df ] = [c].

Assume now that δ(χ) = 0. So ω − df = dg with g ∈ C1(M,Z). Hence [ω] = 0
in H2(M,R). By de Rham Theorem, there exists α ∈ Ω1(M,R) such that ω = dα.
Then f + g − α ∈ C1(M,R) and is closed. Applying again de Rham Theorem,
there exists β ∈ Ω1(M,R) such that f + g − α − β is exact. This implies that
f + g − α− β = 0 on Z1(M). So χ = f̃ = α̃+ β̃ on Z1(M).

Corollary 2.4.4. Let (L,∇) and (L′,∇) be two Hermitian line bundles with con-
nection over the same base. Denote by hol and hol′ the two holonomy maps. Then
δ(hol) = δ(hol′) if and only if L and L′ are isomorphic.

Recall that two line bundles L and L′ with the same base M are isomorphic if
there exists a diffeomorphism ϕ : L → L′ such that for any x ∈ M , ϕx restricts to
an isomorphism from Lx to L′x.

Proof. Assume that hol′ = hol +β̃ for some β ∈ Ω1(M,R). Since the holonomy of
∇+ 2π

i β is hol +β̃, by theorem 2.3.1, (L′,∇′) is isomorphic to (L,∇+ 2π
i β). In par-

ticular L and L′ are isomorphic. Conversely assume that L and L′ are isomorphic.
Then there exists an isomorphism ϕ : L→ L′ such that ϕx : Lx → Lx is unitary for
any x. So we can assume that L = L′, as Hermitian line bundles. By proposition
1.1.3, ∇′ = ∇+ 2π

i β for some β ∈ Ω1(M,R) so that hol′ = hol +β̃
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This proves that the class δ(hol) does not depend on the choice of the connection,
nor on the choice of the Hermtitian metric. It depends only on the line bundle L.

Definition 2.4.5. The Chern class c(L) of a line bundle is the cohomology class
δ(hol) ∈ H2(M,Z) defined from any Hermitian metric and compatible connection
of L.

The map sending a Hermitian line bundle to its Chern class induces a bijection
from the isomorphism classes of Hermitian line bundles to the elements of H2(M,Z).
Addition in H2(M,Z) corresponds to tensor product.

Exercice 2.4.6. Show that a class of H2(M,Z) is the Chern class of a flat Hermi-
tian line bundle iff it is in the kernel of j : H2(M,Z)→ H2(M,R).

2.5 Consequences and examples

To understand better what the cohomology groups H2(M,R) and H2(M,Z) are,
let us recall a particular case of the universal coefficient theorem.

Theorem 2.5.1. Let G be any abelian group, k be an integer and Φ be the map from
Hk(M,G) to Mor(Hk(M), G) sending [ω] to the morphism [c] → ω(c). Then Φ is
onto and its kernel is isomorphic to Ext(Hk−1(M), G). Furthermore, if Hk−1(M)
is finitely generated, then

Ext(Hk−1(G), G) '

{
0 if G = R or T
Tor(Hk−1(M)) if G = Z.

Observe that the periods of a cohomology class Ω ∈ Hk(M,G) are the elements
in the image of Φ(Ω) : Hk(M)→ G.

Assume that H1(M) is finitely generated. Then by Theorem 2.5.1, we have the
following commuting diagram

H2(M,R) ∼−−−−→ Mor(H2(M),R)

j

x x
0 −−−−→ Tor(H1(M)) −−−−→ H2(M,Z) −−−−→ Mor(H2(M),Z) −−−−→ 0

The top horizontal arrow is an isomorphism, the second line is exact and the second
vertical arrow is into. This has the following consequence

Proposition 2.5.2. Assume that H1(M) is finitely generated. Then

• A class of H2(M,R) is in the image of j iff its periods are integral.

• A class of H2(M,Z) is in the kernel of j iff its periods vanish iff it is a torsion
element of H2(M,Z).

The periods of [ω] ∈ Hk(M,R) are the reals ω(c), where c ∈ Zk(M). Observe
that also under the assumption that H2(M) is finitely generated so that H2(M) '
Tor(H2(M)) ⊕ Zr, the group Mor(H2(M),R) is a real n-dimensional vector space
and Mor(H2(M),Z) is a lattice of it.

In many examples, we know explicitely the group H2(M) and the previous
conditions become very concrete. Recall that for any compact oriented submanifold
N of M with dimension k, we define a homology class [N ] ∈ Hk(M) through a
triangulation of N . It satisfies Φ([ω])([N ]) =

∫
N
ω for any ω ∈ Ω(M,R).
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Example 2.5.3. • Consider an oriented compact connected surface Σ so that
H2(Σ) = Z[Σ]. Then a closed 2-form ω of Σ is the curvature of a connection
of a Hermitian line bundle iff

∫
Σ
ω is an integer.

• As another example, let M = CPn and let j : CP1 → CPn be the embedding
sending [z0 : z1] to [z0 : z1 : 0 : . . . : 0]. Then H2(M) = Z[j(CP1)]. So a 2-form
ω of CPn is the curvature of a connection of a Hermitian line bundle iff

∫
CP1 j

∗ω
is an integer. Recall that in section 1.4, we endowed the tautological bundle
T → CPn with a connection ∇ and computed that

∫
CP1 j

∗ curv(∇) = −1. So
the Chern class of T satisfies c(T )[j(CP1)] = −1. Since there is no torsion,
we obtain H2(M,Z) = Zc(T ).

• As a more involved example, consider a toric symplectic manifold (M,ω). So
the torus Rn/Zn acts on M2n with momentum µ : M → Rn and µ(M) is a
a convex polytope satisfying Delzant’s condition. Then the symplectic form
ω is the curvature of a T-principal bundle iff there exists c ∈ Rn such that
c + µ(M) has integral vertices. One may prove this as follows. H2(M) is
generated by the [µ−1(e)] where e runs over the edges of of ∆. Furthermore
for any edge,

∫
µ−1(e)

ω is the real r such that e = rv with v a primitive vector
of Zn. So a necessary and sufficient condition is that the r(e)’s are integer.
This is easily seen to be equivalent to the above condition.

Recall that Mor(H1(M),T) parametrizes the isomorphism classes of flat Hermi-
tian line bundle. If H1(M) is finitely generated, so that H1(M) = Tor(H1(M))⊕Zr,
then we have an isomorphism (not canonical)

Mor(H1(M),T) = Tr ⊕ Tor(H1(M)).

For instance, if Σ is a compact oriented connected surface, Mor(H1(Σ),Z) ' T2g

where g is the genus. As a consequence, for any closed ω ∈ Ω2(Σ,R), a Hermitian
line bundle with connection with curvature ω, if it exists, is unique up to T2g.

Example 2.5.4. Let us consider the case of the symplectic torus. Consider a
2-dimensional symplectic vector space (V, ω). Let β be the primitive of ω given by

β|x(y) =
1
2
ω(x, y).

More concretely, if p, q are linear Darboux coordinates of V so that ω = dp ∧ dq,
then β = 1

2 (pdq − qdp). Endow the trivial T-principal bundle P = V × T with the
connection α = −β + dθ. Let G be the group of automorphisms of (P, α) which
lift the translations of V . So a diffeomorphism ϕ : P → P belongs to G if it is
T-equivariant, ϕ∗α = α and there exists u ∈ V , such that for any x ∈ V , ϕ sends
Px into Px+u.

Introduce the reduced Heisenberg group V × T with product

(u, t).(v, s) = (u+ v, t+ s+ 1
2ω(u, v)).

Lemme 2.5.5. G is isomorphic to the reduced Heisenberg group V × T, through
the map sending (u, t) to the automorphism

ϕ(u,t)(x, θ) = (x+ u, θ + t+ 1
2ω(u, x))

Proof. An automorphism ϕ lifting the translation by u is necessarily of the form
ϕ(x, θ) = (x+ u, θ + τ(x)). Furthermore ϕ∗α = α if and only if

−T ∗uβ + dθ + dτ = −β + dθ,

where Tu(x) = x+u. This is equivalent to dxτ(y) = 1
2ω(u, y), that is τ(x) = 1

2ω(u, x)
up to some constant.
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So G is an extension of V by T, but the exact sequence

0→ T→ G→ V → 0, t→ ϕ(0,t), ϕ(u,t) → u,

does not split.
Consider a lattice Λ of V so that M = V/Λ is a torus. The form ω being Λ-

invariant it descends to a symplectic form ωM ofM . Observe that two elements (u, t)
and (v, s) of the reduced Heisenberg group commute iff ω(u, v) is integer. Applying
this to a basis (u, v) of Λ, we obtain that there exists a morphism j : Λ→ G lifting
the injection of Λ into V iff the volume

∫
M
ωM is integer. Furthermore, if it is the

case, the possible lifts are parametrized by (t, s) ∈ T2.
For any lift j : Λ→ G, we get an action of Λ on P . Then the quotient PM = P/Λ

is a T-principal bundle with base M , the projection sending [x, θ] into [x] and the
action of T being given by t.[x, θ] = [x, t.θ]. Since the projection p from P to PM
is a local diffeomorphism and α is Λ-invariant, there exists a unique αM ∈ Ω1(P )
such that p∗αM = α. We claim that this form is a connection and its curvature is
ωM . Furthermore, for any u ∈ Λ, the holonomy of the cycle τ ∈ [0, 1] → [τu] ∈ M
is the angle θ such that j(u) = (u, θ). So the various lifts correspond to the various
T-principal bundles with connection over M .


