Chapter 2

Holonomy and Chern classes

2.1 Cheeger-Simons character

Before we define the Cheeger-Simons characters, we recall the definition of singular homology and cohomology. We give more details in degree 0, 1 and 2 since these are the only cases we need in the sequel.

Singular homology

Let M be a manifold. For any non negative integer k, we denote by Δ_k the standard k-dimensional simplex. So

$$\Delta_0 = \{0\}, \quad \Delta_1 = [0, 1] \quad \text{and} \quad \Delta_2 = \{(s, t) \in \mathbb{R}^2 / s \ge 0, \ t \ge 0, \ s + t \le 1\}.$$

Let $\Delta_k(M)$ be the space of smooth maps from Δ_k to M. In particular $\Delta_0(M) = M$ and $\Delta_1(M)$ is the space of paths of M. The group of k-chains $C_k(M)$ of M is defined as the free \mathbb{Z} -module with basis $\Delta_k(M)$. For k > 0, the boundary map

$$\partial_k : C_k(M) \to C_{k-1}(M)$$

is the morphism given by $\partial_k c = \sum_{i=0}^k (-1)^i c \circ f_{i,k}$ where $f_{i,k} : \Delta_{k-1} \to \Delta_k$ is the *i*-th face of Δ_k . In particular,

$$\partial_1 \gamma = \gamma(1) - \gamma(0), \qquad \partial_2 S = S \circ e_1 - S \circ e_2 + S \circ e_3$$

for any path $\gamma : [0,1] \to M$ and smooth map $S : \Delta_2 \to M$. Here $e_k : [0,1] \to \Delta_2$, for k = 1, 2, 3 is given by

$$e_1(s) = (s, 0), \quad e_2(s) = (s, 1-s) \quad \text{and} \quad e_3(s) = (0, 1-s).$$

For k = 0, we define ∂_0 as the morphism $C_0(M) \to \{0\}$. The group of k-cycles $Z_k(M)$ is the kernel of ∂_k , the group of k-boundaries $B_k(M)$ is the image of ∂_{k+1} . Since $\partial_k \circ \partial_{k+1} = 0$, $B_k(M) \subset Z_k(M)$. The k-th homology group of M is $H_k(M) = Z_k(M)/B_k(M)$.

Singular cohomology

For any abelian group G, let $C^k(M, G) = Mor(C_k(M), G)$ be the group of G-valued cochain. The differential

$$d_k: C^k(M,G) \to C^{k+1}(M,G)$$

is defined by $d_k \alpha = \alpha \circ \partial_k$. The k-th cohomology group $H^k(M, G)$ is by definition $\ker d_k / \operatorname{Im} d_{k-1}$. For $G = \mathbb{Z}$, we denote $C^k(M, G)$ and $H^k(M, G)$ by $C^k(M)$ and $H^k(M)$.

De Rham Theorem

When $G = \mathbb{R}$, $C^k(M, G)$ and $H^k(M, G)$ are real vector spaces. We have a one-toone linear map $\Omega^k(M, \mathbb{R}) \to C^k(M, \mathbb{R})$ sending ω into the cochain $c \to \int_c \omega$. By Stokes Theorem, this morphism commutes with the differential, so that it induces a morphism from $H^k_{dR}(M, \mathbb{R})$ to $H^k(M, \mathbb{R})$.

Theorem 2.1.1. The morphism $H^k_{dR}(M, \mathbb{R}) \to H^k(M, \mathbb{R})$ is an isomorphism.

In the sequel we identify these cohomology spaces. We also view $\Omega^k(M,\mathbb{R})$ as a subspace of $C^k(M,\mathbb{R})$.

Cheeger-Simons character

For any $\alpha \in \Omega^k(M, \mathbb{R})$, we denote by $\tilde{\alpha} \in C^k(M, \mathbb{T})$ the cochain given by

$$\tilde{\alpha}(c) = \int_c \alpha \mod \mathbb{Z}, \qquad \forall \ c \in C_k(M).$$

Observe that the map sending α to $\tilde{\alpha}$ is injective. Furthermore $d\tilde{\alpha} = \widetilde{d\alpha}$, by Stokes Theorem.

A Cheeger-Simons character of M with degree k is by definition a group morphism $A: Z_k(M) \to \mathbb{T}$ such that there exists $\omega \in \Omega^{k+1}(M)$ satisfying

$$A(\partial c) = \int_c \omega \mod \mathbb{Z}$$

for any smooth map $c: \Delta_{k+1} \to M$. Since $C_{k+1}(M)$ is generated by $\Delta_{k+1}(M)$, this last equation is equivalent to $A \circ \partial = \tilde{\omega}$. So ω is determined by A. Since $\widetilde{d\omega} = d\tilde{\omega} = A \circ \partial^2 = 0$, ω is closed. We call ω the differential of A. zz We denote by $\hat{H}^k(M, \mathbb{T})$ the group of degree k Cheeger-Simons characters. For k = 0, $\hat{H}^0(M, \mathbb{T})$ identifies with the space of smooth maps from M to \mathbb{T} .

2.2 Holonomy

Let $\pi : P \to M$ be a \mathbb{T} -principal bundle and $\alpha \in \Omega^1(P)$ be a connection. Introduce a smooth path $\gamma : [0,1] \to M$. An *horizontal lift* of γ is a smooth path $\tilde{\gamma} : [0,1] \to P$ such that

$$\pi(\tilde{\gamma}(t)) = \gamma(t)$$
 and $\alpha(\tilde{\gamma}'(t)) = 0, \quad \forall t \in [0, 1].$

Lemme 2.2.1. For any $v \in P_{\gamma(0)}$, there exists a unique horizontal lift $\tilde{\gamma}$ of γ such that $\tilde{\gamma}(0) = v$. Furthermore, for any $\theta \in \mathbb{T}$, the horizontal lift of γ starting at $\theta.v$ is the path $t \to \theta.\tilde{\gamma}(t)$.

Proof. We can work in a local trivialisation $U \times \mathbb{T}$ with connection form $\beta + d\theta$. Then a lift $\tilde{\gamma}(t) = (\gamma(t), \tau(t))$ is horizontal if it satisfies $\beta(\gamma'(t)) + \tau'(t) = 0$. Equivalently, we have

$$\tau(t) = \tau(0) - \int_0^t \beta(\gamma'(s)) ds \mod \mathbb{Z}$$
(2.1)

which proves the result.

The parallel transport along γ is the map $T_{\gamma} : P_{\gamma(0)} \to P_{\gamma(1)}$ such that for any horizontal lift $\tilde{\gamma}$ of γ , we have $T_{\gamma}(\tilde{\gamma}(0)) = \tilde{\gamma}(1)$. Observe that T_{γ} is equivariant and does not depend on the parametrisation of the path. Furthermore, if γ is a constant loop, T_{γ} is the identity of the corresponding fiber. If $\gamma_1 * \gamma_2$ is the concatenation of γ_1

2.3. A CHARACTERIZATION

and γ_2 , then $T_{\gamma_1*\gamma_2} = T_{\gamma_1} \circ T_{\gamma_2}$. If γ^{op} is the opposite of γ , that is $\gamma^{op}(t) = \gamma(1-t)$, then $T_{\gamma^{op}}$ is the inverse of T_{γ} .

If γ is a loop, that is $\gamma(0) = \gamma(1)$, then the *holonomy* of γ is defined as the angle $\theta \in \mathbb{T}$ such that T_{γ} is the translation by θ . The holonomy does not depend on the choice of the base point.

Let us define the holonomy of the 1-cycles of M. Choose a map $\varphi : P \to \mathbb{T}$ such that $\varphi(\theta.y) = \theta + \varphi(y)$ for any $\theta \in \mathbb{T}$ and $y \in P$. We do not require that φ is smooth, actually in the case P is not isomorphic to the trivial bundle, such a map can not be continuous. For any 1-chain $c = \sum n_i \gamma_i$, we set

$$\operatorname{hol}(c) = \sum n_i(\varphi(\tilde{\gamma}_i(1)) - \varphi(\tilde{\gamma}_i(0)))$$

where the $\tilde{\gamma}_i$ are horizontal lifts of the γ_i . Then hol(c) does not depend on the choice of the lifts. If furthermore c is a cycle, hol(c) does not depend on the choice of φ .

Proposition 2.2.2. The holonomy map hol : $Z_1(M) \to \mathbb{T}$ is a group morphism. Furthermore, for any smooth map $S : \Delta_2 \to M$, we have

$$\operatorname{hol}(\partial S) = \int_S \omega \mod \mathbb{Z}$$

where ω is the curvature of α .

Proof. The holonomy map is clearly a group morphism. If the image of S is contained in the domain of a trivialisation of P, the formula for the holonomy of ∂S follows from Stokes theorem and Equation (2.1). We can deduce the general case by introducing a sufficiently fine subdivision of Δ_2 .

The holonomy of a Hermitian line bundle with connection is defined as the holonomy of the corresponding T-principal bundle. If hol and hol' are the holonomies of $L \to M$ and $L' \to M$, then one easily check that the holonomy of $L \otimes L'$ is the sum hol + hol' and that the holonomy of L^{-1} is - hol. If furthermore f is a map from a manifold N to M, the holonomy of f^*L is hol $\circ f_*$, where f_* is the map $Z_1(N) \to Z_1(M)$ sending c into $c \circ f$.

2.3 A characterization

By proposition 2.2.2, for any \mathbb{T} -principal bundle with connection (P, α) , the associated holonomy map is a Cheeger-Simons character. We say that two \mathbb{T} -principal bundles with connection (P, α) and (P', α') are isomorphic if there exists a \mathbb{T} principal bundle isomorphism $\varphi: P \to P'$ such that $\varphi^* \alpha' = \alpha$.

Theorem 2.3.1. The application which sends a \mathbb{T} -principal bundle with connection to its holonomy map induces a bijection from the set of isomorphism classes of \mathbb{T} -principal bundles with connection, to $\hat{H}_1(M, \mathbb{T})$.

Recall that the flat connections are characterized by the condition that the holonomies of the boundaries vanish. Since $H_1(M) = Z_1(M)/B_1(M)$, we obtain the

Corollary 2.3.2. The map which sends a flat \mathbb{T} -principal bundle to its holonomy map induces a bijection from the set of isomorphism classes of flat \mathbb{T} -principal bundles to $\operatorname{Mor}(H_1(M), T)$.

Proof of theorem 2.3.1, injectivity. We may assume that M is connected. Consider two T-principal bundles endowed with a connection (P, α) and (P', α') . Assume that the holonomies of α and α' are the same and let us define an isomorphism $\varphi: P \to P'$ of T-principal bundle. First choose $x_0 \in M$ and define $\varphi: P_{x_0} \to P'_{x_0}$ as any T-equivariant map. Then for any $x_1 \in M$ choose a path γ from x_0 to x_1 and define $\varphi: P_{x_1} \to P'_{x_1}$ so that

$$T'_{\gamma} \circ \varphi = \varphi \circ T_{\gamma} : P_{x_0} \to P'_{x_1}$$

where $T_{\gamma}: P_{x_0} \to P_{x_1}$ and $T'_{\gamma}: P'_{x_0} \to P'_{x_1}$ denote the parallel transport along γ in P and P' respectively. Because the holonomies of α and α' are the same, this definition does not depend on the choice of γ . Observe also that φ commute with parallel transport along any path of M.

We have to prove that φ is smooth and $\varphi^* \alpha' = \alpha$. One way to do that is to choose local trivialisations of P and P' such that the push-forward of α and α' are the same. This is possible by Lemma 1.1.5 because α and α' have the same curvature. Then using that φ commute with parallel transport, one checks that φ in these trivialisations has the following form $(x, \theta) \to (x, \theta + \tau(x))$, where τ is locally constant.

We will need the following elementary lemma.

Lemme 2.3.3. For any abelian group G, any group morphism $\chi : Z_1(M) \to G$ can be extended to a group morphism $C_1(M) \to G$.

Proof. We may assume that M is connected. Let $x_0 \in M$ and let $(\gamma_x : [0,1] \to M, x \in M)$ be a family of paths with endpoints $\gamma_x(0) = x_0, \gamma_x(1) = x$. Let f be the group morphism $C_0(M) \to C_1(M)$ such that $f(x) = \gamma_x$. Let $g : C_1(M) \to C_1(M)$ be given by $g = \operatorname{id} - f \circ \partial$, that is for any path σ

$$g(\sigma) = \sigma - \gamma_{\sigma(1)} + \gamma_{\sigma(0)}.$$

Clearly $\partial g(\sigma) = 0$ so that $\partial \circ g = 0$, that is $\operatorname{Im} g \subset Z_1(M)$. Furthermore, for any 1-cycle c, g(c) = c. So we can extend χ to $\chi \circ g$.

Proof of theorem 2.3.1, surjectivity. For any character χ , we have to construct a \mathbb{T} -principal bundle $\pi : P \to M$ with a connection α whose holonomy is χ . We will consider $P = M \times \mathbb{T}$ endowed with a topology and differential structure \mathcal{D} which may be different of the product manifold. These structures will be given by a choice of convenient trivialisations.

Lemme 2.3.4. Let $(U_i)_{i \in I}$ be an open cover of M. Let $(f_i : U_i \to \mathbb{T})$ be a family of maps (not necessarily continuous). Assume that for any $i, j \in I$, the map $f_i - f_j : U_i \cap U_j \to \mathbb{T}$ is smooth. Then $M \times \mathbb{T}$ has a unique Hausdorff topology and differential structure \mathcal{D} such that for any $i \in I$,

- $U_i \times \mathbb{T}$ is an open set of $(M \times \mathbb{T}, \mathcal{D})$,
- the map $\varphi_i : (U_i \times \mathbb{T}, \mathcal{D}) \to U_i \times \mathbb{T}$ sending (x, θ) into $(x, \theta + f_i(x))$ is a diffeomorphism. Here the image $U_i \times \mathbb{T}$ of φ_i is the product manifold.

Proof. We define the open sets of \mathcal{D} as the subsets V of $M \times \mathbb{T}$ such that for any $i, \varphi_i(V \cap (U_i \times \mathbb{T}))$ is an open set of $U_i \times \mathbb{T}$. The proof that these are the open sets of an Hausdorf topology is left to the reader. Then we endow $M \times \mathbb{T}$ with the maximal atlas containing the φ_i 's. This is possible because the maps $\varphi_i \circ \varphi_j^{-1}$ are smooth by assumption.

2.3. A CHARACTERIZATION

Observe that a map $f : (M \times \mathbb{T}, \mathcal{D}) \to \mathbb{R}$ is smooth if and only if for any i, $f \circ \varphi_i^{-1}$ is smooth. Furthermore $P = (M \times \mathbb{T}, \mathcal{D})$ is a \mathbb{T} -principal bundle where the projection is the projection $M \times \mathbb{T} \to M$ onto the first factor and the action is given by multiplication in the second factor.

Remark 2.3.5. If the maps $f_i - f_j : U_i \cap U_j \to \mathbb{T}$ are locally constant, then P has a natural flat structure. If more generally, there exist a family of 1-forms $\beta_i \in \Omega^1(U_i)$, $i \in I$ such that $\beta_i - \beta_j + d(f_i - f_j) = 0$ for any i, j, then P inherits a connection α determined by $\varphi_i^*(\beta_i + d\theta) = \alpha$ for any i.

Let χ be a Cheeger-Simons character. By Lemma 2.3.3, we can extend χ to a morphism $C_1(M) \to G$. Assume first that χ vanishes on $B_1(M)$. We will apply Lemma 2.3.4 to the family (U, f), where U is any open set of M and $f \in \Gamma_U$ defined by

$$\Gamma_U = \{ f \in C^0(U, \mathbb{T}); \, df + \chi = 0 \}.$$

Here $C^0(U, \mathbb{T})$ is not the space of continuous map from U to \mathbb{T} , but the space of 0-cochains of U which are \mathbb{T} -valued. Since $C_0(M)$ is free with basis $\Delta_0(M) = M$, $C^0(U, \mathbb{T})$ naturally identifies with the space of maps from U to \mathbb{T} .

We have to check the hypothesis of Lemma 2.3.4.

Lemme 2.3.6. If $U \subset V$ and $f \in \Gamma_V$, the restriction of f to U belongs to Γ_U . For any $f, f' \in \Gamma_U$, f - f' is locally constant. Furthermore, if U is contractible, then $\Gamma_U \neq \emptyset$.

Proof. The first assertion is clear. The second one follows from d(f - f') = 0. Let us prove the third one. Let $\varphi : [0,1] \times M \to M$ be a contraction, i.e. $\varphi(0,\cdot) = x_0$ and $\varphi(1,\cdot) = id$. Let us define $f \in C^0(U,T)$ by $f(x) = \chi(\gamma_x)$ where γ_x is the path

$$\gamma_x(t) = \varphi(t, x).$$

We have to show that $df = \chi$, that is for any path σ , $\chi(\sigma) = f(\sigma(1)) - f(\sigma(0))$. To do that, observe that since χ vanishes on $B_1(M)$, χ vanishes on the constant paths, and consequently $\chi(\gamma^-) = -\chi(\gamma)$ for any path γ . This implies that $\chi(\partial S) = 0$ for any $S : [0,1]^2 \to M$, because we can divide the square into two triangles. Since the boundary of $[0,1]^2 \to M$, $(s,t) = \varphi(s,\sigma(t))$ is $\gamma_{\sigma(0)} + \sigma - \gamma_{\sigma(1)} - x_0$, we have

$$\chi(\sigma) = \chi(\gamma_{\sigma(1)}) - \chi(\gamma_{\sigma(0)}) = f(\sigma(1)) - f(\sigma(0))$$

as was to be proved.

So we obtain a flat \mathbb{T} -principal bundle P. Let us prove that its holonomy map is χ . Let $h: C_1(M) \to \mathbb{T}$ be the group morphism defined on the paths by

$$h(\gamma) = \varphi(\tilde{\gamma}(1)) - \varphi(\tilde{\gamma}(0)) \tag{2.2}$$

where $\tilde{\gamma}$ is any horizontal lift of γ and φ is the projection from $M \times \mathbb{T}$ onto the second factor. The restriction of h to $Z_1(M)$ is the holonomy.

Lemme 2.3.7 (flat case). We have $h = \chi$.

Proof. If the image of γ is contained of U and $f \in \Gamma_U$, then $\tilde{\gamma}(t) = (\gamma(t), f(\gamma(t)))$ is an horizontal lift of γ . So

$$h(\gamma) = f(\gamma(1)) - f(\gamma(0)) = \chi(\gamma).$$

If a path γ is the concatenation of two path γ_1 and γ_2 , we have $h(\gamma) = h(\gamma_1) + h(\gamma_2)$ and also $\chi(\gamma) = \chi(\gamma_1) + \chi(\gamma_2)$ because χ vanishes on the boundaries. Now, any path can be subdivided into paths, each of them being contained in a contractible open set.

This concludes the proof for flat bundle. Observe that Γ_U is actually the space of flat sections of P defined on U. Let us consider now the general case, so that χ does not necessarily vanish on $B_1(M)$. For any open set U of M, we set

$$\Gamma_U = \{(f,\beta); f \in C^0(U,\mathbb{T}), \beta \in \Omega^1(U,\mathbb{R}) \text{ such that } \chi + df + \beta = 0\}$$

Lemme 2.3.8. If $U \subset V$ and $(f, \beta) \in \Gamma_V$, then $(f|_U, \beta|_U)$ belongs to Γ_U . If (f, β) and (f', β') belong to Γ_U , then f - f' is smooth with differential $\beta - \beta'$. Furthermore if U is contractible, Γ_U is not empty.

Proof. Let $\omega \in \Omega^2(M, \mathbb{R})$ be the differential of the character χ , that is $d\chi = \tilde{\omega}$. If $(f, \beta) \in \Gamma_U$, then $d\tilde{\beta} + \tilde{\omega} = 0$ which implies that $d\beta + \omega = 0$. Consequently, if (f', β') also belongs to Γ_U , then $\beta - \beta'$ is closed. So on a neighborhood of each point of U, we can write $\beta - \beta' = dg$ where g is smooth. We obtain df - df' = dg, so that $f - f' \equiv \tilde{g}$ up to some locally constant function, which shows that f - f' is smooth.

Assume now that U is contractible. By Poincaré Lemma there exists $\beta \in \Omega^1(M, \mathbb{R})$ such that $d\beta + \omega = 0$. So $d(\chi + \tilde{\beta}) = 0$. By Lemma 2.3.6, there exists $f \in C^0(U, \mathbb{T})$ such that $\chi + \tilde{\beta} + df = 0$. Then $(f, \beta) \in \Gamma_U$.

By Lemma 2.3.4 and Remark 2.3.5, we obtain a \mathbb{T} -principal bundle endowed with a connection α . As in the flat case, consider the morphism $h: C_1(M) \to \mathbb{T}$ defined by (2.2) whose restriction to $Z_1(M)$ is the holonomy map.

Lemme 2.3.9 (general case). We have $h = \chi$.

Proof. If the image of γ is contained of U and $(f, \beta) \in \Gamma_U$, then by Equation (2.1) a parallel lift of γ is $(\gamma(t), \theta(t))$ where

$$\theta(t) + f(\gamma(t)) = -\int_0^t \beta(\gamma'(s)) ds \mod \mathbb{Z}.$$

So $h(\gamma) + df(\gamma) = -\tilde{\beta}(\gamma)$, hence $h(\gamma) = \chi(\gamma)$. We conclude as in the the flat case, using that if γ is the concatenation of γ_1 and γ_2 , then $h(\gamma) = h(\gamma_1) + h(\gamma_2)$ and $\chi(\gamma) = \chi(\gamma_1) + \chi(\gamma_2)$. To prove this last equality, we can not use that χ vanishes on the boundaries. Instead, observe that $d\chi = \tilde{\omega}$ implies that $\chi(\partial S) = 0$ if S is contained in a one dimensional manifold. \Box

This concludes the proof of Theorem 2.3.1. As in the flat case, observe that Γ_U consists actually in the pairs (f,β) where f is a smooth section $U \to P$ and $\beta = f^* \alpha$.

2.4 Chern classes

As a corollary of Theorem 2.3.1, we can determine which closed 2-forms of a given manifold are the curvature of the connection of a Hermitian line bundle. We denote by

$$j: H^k(M, \mathbb{Z}) \to H^k(M, \mathbb{R})$$

the map induced by the inclusion $C^k(M,\mathbb{Z}) \subset C^k(M,\mathbb{R})$.

Proposition 2.4.1. Let ω be closed form in $\Omega^2(M, \mathbb{R})$. Then the following assertions are equivalent

- 1. the cohomology class of ω is in the image of $j: H^2(M, \mathbb{Z}) \to H^2(M, \mathbb{R})$
- 2. there exists a Cheegers-Simons character $\chi \in \hat{H}^1(M, \mathbb{T})$ with differential ω .

2.4. CHERN CLASSES

3. there exists a Hermitian line bundle with a connection of curvature $\frac{2\pi}{i}\omega$.

Proof. Item 1 is equivalent to the existence of $f \in C^1(M, \mathbb{R})$ such that $\omega - df \in C^2(M, \mathbb{Z})$. If this is satisfied, then $\chi := \tilde{f}|_{Z_1(M)}$ verifies $\chi \circ \partial = \tilde{\omega}$. So 1 implies 2. Conversely, let $\chi \in \hat{H}^1(M, \mathbb{T})$. By Lemma 2.3.3, we can extend χ to $C_1(M)$. Since $C_1(M)$ is free, there exists $h \in C^1(M, \mathbb{R})$ such that $\tilde{h} = \chi$. Then $\omega - dh \in C^2(M, \mathbb{Z})$ which proves that 2 implies 1. By Theorem 2.3.1, 2 and 3 are equivalent. \Box

In the proof of Proposition 2.4.1, we showed that for any character $\chi \in \dot{H}^1(M, \mathbb{T})$, there exists $f \in C_1(M, \mathbb{R})$ lifting χ and $\mu \in C^2(M, \mathbb{Z})$, such that

$$\mu = \omega - df.$$

Let us denote by $\delta(\chi) \in H^2(M, \mathbb{Z})$ the cohomology class of μ .

Proposition 2.4.2. The map $\delta : \hat{H}^1(M, \mathbb{T}) \to H^2(M, \mathbb{Z})$ is well-defined. Furthermore, for any Cheeger-Simons character χ , $j(\delta(\chi)) = [\omega]$ where $\omega \in \Omega^2(M, \mathbb{R})$ is the differential of χ .

Proof. Let us check that $[\omega - df] \in H^2(M, \mathbb{Z})$ does not depend on the choice of f. Let $f' \in C^1(M, \mathbb{R})$ lifting χ so that $\omega - df' \in C^2(M, \mathbb{Z})$. The restriction of f - f' to $Z_1(M)$ takes its values in \mathbb{Z} . By Lemma 2.3.3, there exists $g \in C^1(M, \mathbb{Z})$ such that f - f' = g on $Z_1(M)$. So d(f - f') = dg and $[\omega - df] = [\omega - df']$ in $H^2(M, \mathbb{Z})$. \Box

Proposition 2.4.3. We have an exact sequence

$$0 \to \Omega^1(M, \mathbb{R}) / \Omega^1_{\mathbb{Z}}(M) \xrightarrow{i} \hat{H}^1(M, \mathbb{T}) \xrightarrow{\delta} H^2(M, \mathbb{Z}) \to 0$$

where $i(\alpha) = \tilde{\alpha}$ and $\Omega^1_{\mathbb{Z}}(M)$ is the subspace of $\Omega^1(M, \mathbb{R})$ consisting of the forms with periods in \mathbb{Z} .

The periods of a form $\alpha \in \Omega^k(M, \mathbb{R})$ are the reals $\int_c \alpha$, where c runs over the cycles of M.

Proof. Let us prove that δ is onto. Let $[c] \in H^2(M, \mathbb{Z})$. By de Rham Theorem, there exists $\omega \in \Omega^2(M, \mathbb{R})$ such that $[\omega] = [c]$ in $H^2(M, \mathbb{R})$. So $\omega - c = df$ with $f \in C^1(M, \mathbb{R})$. Define χ as the restriction of \tilde{f} to $Z_1(M)$. It is a Cheeger-Simons character with differential ω and $\delta(\chi) = [\omega - df] = [c]$.

Assume now that $\delta(\chi) = 0$. So $\omega - d\tilde{f} = dg$ with $g \in C^1(M, \mathbb{Z})$. Hence $[\omega] = 0$ in $H^2(M, \mathbb{R})$. By de Rham Theorem, there exists $\alpha \in \Omega^1(M, \mathbb{R})$ such that $\omega = d\alpha$. Then $f + g - \alpha \in C^1(M, \mathbb{R})$ and is closed. Applying again de Rham Theorem, there exists $\beta \in \Omega^1(M, \mathbb{R})$ such that $f + g - \alpha - \beta$ is exact. This implies that $f + g - \alpha - \beta = 0$ on $Z_1(M)$. So $\chi = \tilde{f} = \tilde{\alpha} + \tilde{\beta}$ on $Z_1(M)$.

Corollary 2.4.4. Let (L, ∇) and (L', ∇) be two Hermitian line bundles with connection over the same base. Denote by hol and hol' the two holonomy maps. Then $\delta(\text{hol}) = \delta(\text{hol}')$ if and only if L and L' are isomorphic.

Recall that two line bundles L and L' with the same base M are isomorphic if there exists a diffeomorphism $\varphi: L \to L'$ such that for any $x \in M$, φ_x restricts to an isomorphism from L_x to L'_x .

Proof. Assume that $\operatorname{hol}' = \operatorname{hol} + \tilde{\beta}$ for some $\beta \in \Omega^1(M, \mathbb{R})$. Since the holonomy of $\nabla + \frac{2\pi}{i}\beta$ is $\operatorname{hol} + \tilde{\beta}$, by theorem 2.3.1, (L', ∇') is isomorphic to $(L, \nabla + \frac{2\pi}{i}\beta)$. In particular L and L' are isomorphic. Conversely assume that L and L' are isomorphic. Then there exists an isomorphism $\varphi : L \to L'$ such that $\varphi_x : L_x \to L_x$ is unitary for any x. So we can assume that L = L', as Hermitian line bundles. By proposition 1.1.3, $\nabla' = \nabla + \frac{2\pi}{i}\beta$ for some $\beta \in \Omega^1(M, \mathbb{R})$ so that $\operatorname{hol}' = \operatorname{hol} + \tilde{\beta}$

This proves that the class $\delta(hol)$ does not depend on the choice of the connection, nor on the choice of the Hermitian metric. It depends only on the line bundle L.

Definition 2.4.5. The Chern class c(L) of a line bundle is the cohomology class $\delta(hol) \in H^2(M,\mathbb{Z})$ defined from any Hermitian metric and compatible connection of L.

The map sending a Hermitian line bundle to its Chern class induces a bijection from the isomorphism classes of Hermitian line bundles to the elements of $H^2(M,\mathbb{Z})$. Addition in $H^2(M,\mathbb{Z})$ corresponds to tensor product.

Exercice 2.4.6. Show that a class of $H^2(M, \mathbb{Z})$ is the Chern class of a flat Hermitian line bundle iff it is in the kernel of $j : H^2(M, \mathbb{Z}) \to H^2(M, \mathbb{R})$.

2.5 Consequences and examples

To understand better what the cohomology groups $H^2(M, \mathbb{R})$ and $H^2(M, \mathbb{Z})$ are, let us recall a particular case of the universal coefficient theorem.

Theorem 2.5.1. Let G be any abelian group, k be an integer and Φ be the map from $H^k(M,G)$ to $Mor(H_k(M),G)$ sending $[\omega]$ to the morphism $[c] \to \omega(c)$. Then Φ is onto and its kernel is isomorphic to $Ext(H_{k-1}(M),G)$. Furthermore, if $H_{k-1}(M)$ is finitely generated, then

$$\operatorname{Ext}(H_{k-1}(G), G) \simeq \begin{cases} 0 & \text{if } G = \mathbb{R} & \text{or } \mathbb{T} \\ \operatorname{Tor}(H_{k-1}(M)) & \text{if } G = \mathbb{Z}. \end{cases}$$

Observe that the periods of a cohomology class $\Omega \in H^k(M, G)$ are the elements in the image of $\Phi(\Omega) : H_k(M) \to G$.

Assume that $H_1(M)$ is finitely generated. Then by Theorem 2.5.1, we have the following commuting diagram

$$\begin{array}{cccc} H^2(M,\mathbb{R}) & \stackrel{\sim}{\longrightarrow} & \operatorname{Mor}(H_2(M),\mathbb{R}) \\ & & & & & \uparrow & & \uparrow \\ 0 & \longrightarrow & \operatorname{Tor}(H_1(M)) & \longrightarrow & H^2(M,\mathbb{Z}) & \longrightarrow & \operatorname{Mor}(H_2(M),\mathbb{Z}) & \longrightarrow & 0 \end{array}$$

The top horizontal arrow is an isomorphism, the second line is exact and the second vertical arrow is into. This has the following consequence

Proposition 2.5.2. Assume that $H_1(M)$ is finitely generated. Then

- A class of $H^2(M, \mathbb{R})$ is in the image of j iff its periods are integral.
- A class of H²(M, ℤ) is in the kernel of j iff its periods vanish iff it is a torsion element of H²(M, ℤ).

The periods of $[\omega] \in H^k(M, \mathbb{R})$ are the reals $\omega(c)$, where $c \in Z_k(M)$. Observe that also under the assumption that $H_2(M)$ is finitely generated so that $H_2(M) \simeq$ $\operatorname{Tor}(H_2(M)) \oplus \mathbb{Z}^r$, the group $\operatorname{Mor}(H_2(M), \mathbb{R})$ is a real *n*-dimensional vector space and $\operatorname{Mor}(H_2(M), \mathbb{Z})$ is a lattice of it.

In many examples, we know explicitly the group $H_2(M)$ and the previous conditions become very concrete. Recall that for any compact oriented submanifold N of M with dimension k, we define a homology class $[N] \in H_k(M)$ through a triangulation of N. It satisfies $\Phi([\omega])([N]) = \int_N \omega$ for any $\omega \in \Omega(M, \mathbb{R})$.

- **Example 2.5.3.** Consider an oriented compact connected surface Σ so that $H_2(\Sigma) = \mathbb{Z}[\Sigma]$. Then a closed 2-form ω of Σ is the curvature of a connection of a Hermitian line bundle iff $\int_{\Sigma} \omega$ is an integer.
 - As another example, let $M = \mathbb{CP}^n$ and let $j : \mathbb{CP}^1 \to \mathbb{CP}^n$ be the embedding sending $[z_0 : z_1]$ to $[z_0 : z_1 : 0 : ... : 0]$. Then $H_2(M) = \mathbb{Z}[j(\mathbb{CP}^1)]$. So a 2-form ω of \mathbb{CP}^n is the curvature of a connection of a Hermitian line bundle iff $\int_{\mathbb{CP}^1} j^* \omega$ is an integer. Recall that in section 1.4, we endowed the tautological bundle $T \to \mathbb{CP}^n$ with a connection ∇ and computed that $\int_{\mathbb{CP}^1} j^* \operatorname{curv}(\nabla) = -1$. So the Chern class of T satisfies $c(T)[j(\mathbb{CP}^1)] = -1$. Since there is no torsion, we obtain $H^2(M, \mathbb{Z}) = \mathbb{Z}c(T)$.
 - As a more involved example, consider a toric symplectic manifold (M, ω) . So the torus $\mathbb{R}^n/\mathbb{Z}^n$ acts on M^{2n} with momentum $\mu: M \to \mathbb{R}^n$ and $\mu(M)$ is a a convex polytope satisfying Delzant's condition. Then the symplectic form ω is the curvature of a T-principal bundle iff there exists $c \in \mathbb{R}^n$ such that $c + \mu(M)$ has integral vertices. One may prove this as follows. $H_2(M)$ is generated by the $[\mu^{-1}(e)]$ where e runs over the edges of of Δ . Furthermore for any edge, $\int_{\mu^{-1}(e)} \omega$ is the real r such that e = rv with v a primitive vector of \mathbb{Z}^n . So a necessary and sufficient condition is that the r(e)'s are integer. This is easily seen to be equivalent to the above condition.

Recall that $Mor(H_1(M), \mathbb{T})$ parametrizes the isomorphism classes of flat Hermitian line bundle. If $H_1(M)$ is finitely generated, so that $H_1(M) = Tor(H_1(M)) \oplus \mathbb{Z}^r$, then we have an isomorphism (not canonical)

$$Mor(H_1(M), \mathbb{T}) = \mathbb{T}^r \oplus Tor(H_1(M)).$$

For instance, if Σ is a compact oriented connected surface, $\operatorname{Mor}(H^1(\Sigma), \mathbb{Z}) \simeq \mathbb{T}^{2g}$ where g is the genus. As a consequence, for any closed $\omega \in \Omega^2(\Sigma, \mathbb{R})$, a Hermitian line bundle with connection with curvature ω , if it exists, is unique up to \mathbb{T}^{2g} .

Example 2.5.4. Let us consider the case of the symplectic torus. Consider a 2-dimensional symplectic vector space (V, ω) . Let β be the primitive of ω given by

$$\beta|_x(y) = \frac{1}{2}\omega(x,y).$$

More concretely, if p, q are linear Darboux coordinates of V so that $\omega = dp \wedge dq$, then $\beta = \frac{1}{2}(pdq - qdp)$. Endow the trivial T-principal bundle $P = V \times \mathbb{T}$ with the connection $\alpha = -\beta + d\theta$. Let G be the group of automorphisms of (P, α) which lift the translations of V. So a diffeomorphism $\varphi : P \to P$ belongs to G if it is T-equivariant, $\varphi^* \alpha = \alpha$ and there exists $u \in V$, such that for any $x \in V$, φ sends P_x into P_{x+u} .

Introduce the reduced Heisenberg group $V \times \mathbb{T}$ with product

$$(u, t).(v, s) = (u + v, t + s + \frac{1}{2}\omega(u, v)).$$

Lemme 2.5.5. *G* is isomorphic to the reduced Heisenberg group $V \times \mathbb{T}$, through the map sending (u, t) to the automorphism

$$\varphi_{(u,t)}(x,\theta) = (x+u,\theta+t+\frac{1}{2}\omega(u,x))$$

Proof. An automorphism φ lifting the translation by u is necessarily of the form $\varphi(x,\theta) = (x+u,\theta+\tau(x))$. Furthermore $\varphi^*\alpha = \alpha$ if and only if

$$-T_u^*\beta + d\theta + d\tau = -\beta + d\theta,$$

where $T_u(x) = x + u$. This is equivalent to $d_x \tau(y) = \frac{1}{2}\omega(u, y)$, that is $\tau(x) = \frac{1}{2}\omega(u, x)$ up to some constant. So G is an extension of V by \mathbb{T} , but the exact sequence

$$0 \to \mathbb{T} \to G \to V \to 0, \qquad t \to \varphi_{(0,t)}, \quad \varphi_{(u,t)} \to u,$$

does not split.

Consider a lattice Λ of V so that $M = V/\Lambda$ is a torus. The form ω being Λ -invariant it descends to a symplectic form ω_M of M. Observe that two elements (u, t) and (v, s) of the reduced Heisenberg group commute iff $\omega(u, v)$ is integer. Applying this to a basis (u, v) of Λ , we obtain that there exists a morphism $j : \Lambda \to G$ lifting the injection of Λ into V iff the volume $\int_M \omega_M$ is integer. Furthermore, if it is the case, the possible lifts are parametrized by $(t, s) \in \mathbb{T}^2$.

For any lift $j : \Lambda \to G$, we get an action of Λ on P. Then the quotient $P_M = P/\Lambda$ is a \mathbb{T} -principal bundle with base M, the projection sending $[x, \theta]$ into [x] and the action of \mathbb{T} being given by $t.[x, \theta] = [x, t.\theta]$. Since the projection p from P to P_M is a local diffeomorphism and α is Λ -invariant, there exists a unique $\alpha_M \in \Omega^1(P)$ such that $p^*\alpha_M = \alpha$. We claim that this form is a connection and its curvature is ω_M . Furthermore, for any $u \in \Lambda$, the holonomy of the cycle $\tau \in [0, 1] \to [\tau u] \in M$ is the angle θ such that $j(u) = (u, \theta)$. So the various lifts correspond to the various \mathbb{T} -principal bundles with connection over M.