
Chapter 3

Symplectic geometry

From now on, we call a pair (P, α) consisting of a T-principal bundle and a
connection α of P a prequantum bundle. The first chapter is devoted to the au-
tomorphism group of prequantum bundles, that is the group of diffeomorphisms
ϕ of P which are T-equivariant and satisfy ϕ∗α = α.

3.1 Automorphisms of prequantum bundle

3.1.1 Linear case

Let V be a finite dimensional vector space and ω ∈ ∧2V ∗. Let β ∈ Ω1(V ) be
defined by

βx(y) =
1

2
ω(x, y), ∀x, y ∈ V.

Then the differential of β is the constant form equal to ω. Let P be the trivial
T-principal principal bundle with base V . Endow P with the connection α =
−β + dθ.

It is easily seen that the automorphisms of (P, α) are the applications ϕ :
P → P of the form

ϕ(x, θ) = (ϕV (x), θ + f(x))

where ϕV is a diffeomorphism of V and f a map from V to T such that ϕ∗V β =
df + β.

Let Gl(V, ω) be the group of linear isomorphisms ϕV of V such that

ω(ϕV (x), ϕV (y)) = ω(x, y), ∀x, y ∈ V.

Observe that such an isomorphism satisfies ϕ∗V β = β. So the subgroup of
Aut(P, α) consisting of the automorphisms lifting an element of Gl(V, ω) is iso-
morphic to the direct product Gl(V, ω)×T through the map sending (ϕV , t) to
the automorphism ϕ(x, θ) = (ϕV (x), t+ θ).

27
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Replacing the linear automorphism by the translations, we obtain a more
interesting group as was already explained in Example 2.5.5. Indeed, the sub-
group of Aut(P, α) consisting of the automorphisms lifting a translations of V
is in bijection with the direct product V × T through the map sending (u, t) to
the automorphism ϕ(u,t)(x, θ) = (u + x, t + θ + 1

2ω(u, x)). The composition is
given by

ϕu,t ◦ ϕv,s = ϕ(u+v,t+s+ω(u,v)/2).

So we have an exact sequence

0→ T→ G→ V → 0, t→ ϕ(0,t), ϕ(u,t) → u

When ω does not vanish, this sequence does not split, and we obtain a non
trivial extension by T of the group of translations of V .

3.1.2 Preliminaries on infinitesimal automorphims

Before we study the automorphisms of a prequantum bundle (P, α), let us start
with the infinitesimal automorphism of (P, α), that is the vector fields Y of P
which are T-invariant and satisfy LY α = 0. The space aut(P, α) of infinitesimal
automorphisms has to be viewed as the Lie algebra of Aut(P, α). To under-
stand the meaning of this assertion and which relations we can expect between
Aut(P, α) and aut(P, α), let us first consider the group Diff(M) of diffeomor-
phisms of a manifold M .

As explained by Milnor in [], Diff(M) can be given the structure of an
infinite dimensional manifold, its tangent space at the identity element being
C∞(M,TM). Define the smooth curves of Diff(M) as the 1-parameter families
t → ϕt such that the map (t, x) → ϕt(x) is smooth. If (ϕt) is a smooth curve
such that ϕ0 is the identity element, its tangent vector at t = 0 is the vector
field X given by

X(p) =
d

dt

∣∣∣
t=0

ϕt(p), p ∈M.

Recall that for a genuine Lie group G with Lie algebra g, the exponential map
g→ G is defined in such a way that for any X ∈ g, exp(tX) is the one-parameter
subgroup of G such that d

dt (exp(tX)) = X at t = 0. Since the one-parameter
subgroups (ϕt) of Diff(M) are the flows of the complete vector fields of M , we
define the exponential of a complete vector field X of M as the flow at time 1
of X. That the exponential map is not defined for all the vector fields is a first
difference with the finite dimensional case. When M is compact, any vector
field is complete. But even in that case, there are still differences with the finite
dimensional case. For instantce, it is not true that any diffeomorphism close
to the identity belongs to a one-parameter subgroup, cf [] for a simple example
with M = S1.

In the case M is connected, let us show that the appropriate bracket in the
Lie algebra of Diff(M) is the usual bracket of vector fields, up to sign. Recall
first the definition for a Lie group G. For any g ∈ G, let Cg : G → G be the
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morphism sending h to ghg−1, and let Adg : g → g be the differential of Cg.
Then

[X,Y ] :=
d

dt

∣∣∣
t=0

Adexp(tX) Y, X, Y ∈ g.

So if Φ ∈ Diff(M) and (Ψt) is the flow of a vector field of Y of M , then
Z = AdΦ Y is the vector field given by

Z(p) =
d

dt

∣∣∣
t=0

Φ(Ψt(Φ
−1(p)))

=TΦ−1(p)Φ(Y (Φ−1(p)))

Assume now (Φt) is the flow of X, then

[X,Y ](p) =
d

dt

∣∣∣
t=0

TΦ−1
t (p)Φt(Y (Φ−1

t (p)))

=
d

dt

∣∣∣
t=0

(TpΦ−t)
−1(Y (Φ−t(p)))

=− LXY (p)

as was to be proved.

Let us return to prequantum bundles. Observe that aut(P, α) is a Lie sub-
algebra of C∞(P, TP ), and correspondingly Aut(P, α) is a subgroup of Diff(P ).
Furthermore let I be an open interval, (ϕt, t ∈ I) be a smooth curve of Diff(P )
of Aut(P, α) and (Yt ∈ C∞(P, TP ), t ∈ I) be its infinitesimal generator

Yt(ϕt(p)) =
d

dt
(ϕt(p)).

Assume that for some t0 ∈ I, ϕt0 ∈ Aut(P, α). Then it is easily seen that
ϕt ∈ Aut(P, α) for any t ∈ I if and only if Yt ∈ aut(P, α) for any t ∈ I. Because
of this property, we may view aut(P, α) as the Lie algebra of Aut(P, α).

3.1.3 Infinitesimal automorphisms of prequantum bundles

Consider a prequantum bundle (P, α) with curvature ω ∈ Ω2(M,R). Recall that
any T-invariant vector field of P writes uniquely as Xhor + (π∗f)∂θ, where X
and f are respectively a vector field and a function of M .

Proposition 3.1.1. The space aut(P, α) consists of the vector fields of the form
Xhor − (π∗f)∂θ, where X ∈ C∞(M,TM) and f ∈ C∞(M,R) are such that

ω(X, ·) + df = 0.

Furthermore, the Lie bracket is given in terms of this decomposition by

[Xhor
1 − (π∗f1)∂θ, X

hor
2 − (π∗f2)∂θ] = [X1, X2]hor − (π∗ω(X1, X2))∂θ. (3.1)
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So aut(P, α) is isomorphic to the Lie algebra consisting of the pairs (X, f)
such that ω(X, ·) + df = 0, the bracket being given by[

(X1, f1), (X2, f2)
]

= ([X1, X2], ω(X1, X2)).

(3.1). Observe that this latter algebra may be defined for any closed 2-form ω
of M and does not depend on the choice of the prequantum bundle.

In a pair (X, f) satisfying ω(X, ·) + df = 0, f is determined by X up to
some locally constant function. When ω is non-degenerate, X is determined by
f . In that case, we call X the Hamiltonian vector field of f . Furthermore, if
ω(Xi, ·) + dfi = 0 for i = 1, 2, the function

{f1, f2} = ω(X1, X2)

is the Poisson bracket of f1, f2. So when ω is symplectic, aut(P, α) is isomorphic
to (C∞(M), {·, ·}).

Proof. The T-invariant horizontal vector fields of P are the horizontal lifts of
the vector fields of M . The T-invariant vertical vector fields have the form
(π∗f)∂θ, with f a function on M . So any T-invariant vector field of P can be
decomposed uniquely as

Y = Xhor − (π∗f)∂θ,

for some X ∈ C∞(M,TM) and f ∈ C∞(M,R). We have by Cartan formula

LY α = ιY dα+ dα(Y ) = −ιY π∗ω − dπ∗f = −π∗(ω(X, ·) + f)

so that LY α = 0 if and only if ω(X, ·) + df = 0.
Let us compute the Lie bracket. Assume that ω(Xi, ·) + dfi = 0 for i = 1, 2.

Since Xhor
i and π∗fi are T-invariant,

[Xhor
1 − (π∗f1)∂θ, X

hor
2 − (π∗f2)∂θ] =[Xhor

1 , Xhor
2 ]− (Xhor

1 .(π∗f2)−Xhor
2 .(π∗f1)

)
∂θ

=[Xhor
1 , Xhor

2 ]− π∗(X1.f2 −X2.f1)
)
∂θ

=[Xhor
1 , Xhor

2 ]− 2π∗ω(X1, X2)∂θ.

because ω(X1, X2) = X1.f2 = −X2.f1. We conclude with Proposition 1.2.4.

Introduce the Hermitian line bundle L = P × C/T associated to P as in
section 1.3. Recall that the space of sections of L identifies naturally with a
subspace of functions on P . The derivation with respect to a vector field in
aut(P, α) preserves this latter space. We obtain a representation of aut(P, α)
on C∞(M,L).

Proposition 3.1.2. The map from aut(P, α) to End(C∞(M,L)), sending Xhor−
(π∗f)∂θ to the endomorphism

s→ ∇Xs+ 2iπfs,

is a Lie algebra morphism
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Proof. Let E be the isomorphism identifying C∞(M,L) with the subspace of
C∞(P ) consisting in the functions f satifying f(θ.y) = e−2iπθf(y). Then recall
that

Xhor.E(s) = E(∇Xs)

and observe that ∂θE(s) = −2iπE(s) for any section s of L.

In the case ω is symplectic, we have a representation of the Poisson algebra
of M , which was first introduced by Kostant and Souriau.

An infinitesimal automorphism of (M,ω) is a vector field X of M such that
LXω = 0, equivalently such that ω(X, ·) is closed. The space aut(M,ω) of
infinitesimal automorphisms of (M,ω) is a Lie subalgebra of the Lie algebra of
vector fields of M .

Proposition 3.1.3. Assume M is connected. Then we have a Lie algebra exact
sequence

0→ R Φ1−−→ aut(P, α)
Φ2−−→ aut(M,ω)

Φ3−−→ H1(M,R)

where R and H1(M,T) are commutative Lie algebras, and the Lie algebra mor-
phisms Φ1, Φ2 and Φ3 are defined by

Φ1(c) = c∂θ, Φ2

(
Xhor − (π∗f)∂θ

)
= X, Φ3(X) = [ω(X, ·)].

Furthermore, if ω is non-degenerate, Φ3 is onto.

The proof is easy and a good exercice. Introduce the Lie subalgebra of
aut(M,ω)

ham(M,ω) = Im Φ2 = ker Φ3 =
{
X ∈ Γ(M,TM); ω(X, ·) is exact

}
In the case, ω is non degenerate, the elements of aut(M,ω) and ham(M,ω) are
called respectively the symplectic and the Hamiltonian vector fields.

3.1.4 Automorphisms

Consider again a prequantum bundle (P, α) with curvature ω ∈ Ω2(M,R). In
this section, we establish the group properties corresponding to the Lie algebra
properties given in the previous section. The flow of any infinitesimal automor-
phism of (P, α) is a one-parameter group of Aut(P, α). The following proposition
describes this flow in terms of the decomposition Y = Xhor − (π∗f)∂θ given in
proposition 3.1.1.

Proposition 3.1.4. Let X be a complete vector field of M and f ∈ C∞(M,R)
be such that ω(X, ·) + df = 0. Then Y = Xhor − (π∗f)∂θ is complete and its
flow ϕt lifts the flow ϕtM of X. Furthermore

ϕt(y) = θt(π(y)).Tt(y)

where
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• Tt is the T-equivariant diffeomorphism of P lifting ϕMt and such that for
any x ∈ M , Tt : Px → PϕMt (x) is the parallel transport along the path

s ∈ [0, t]→ ϕMs (x).

• for any x ∈M , θt(x) = −tf(x) modulo Z.

Proof. We first prove that the flow of Xhor is Tt. Since t→ Tt(y) is an horizontal
lift, α(Ṫ (y)) = 0. Since π(Tt(y)) = ϕMt (π(y)), Ṫt(y) projects to X(ϕt(π(y))).
This shows that

Ṫt(y) = Xhor(Tt(y)).

Because ω(X, ·) + df = 0, f is constant on the trajectories of X, so that

θ̇t(x) = −f(x) = −f(ϕt(x)).

This implies with x = π(y) that

d

dt

(
θt(x).Tt(y)

)
=− f(ϕt(x))∂θ + Ty`θt(x)(X

hor(Tt(y))

=− f(ϕt(x))∂θ +Xhor(θt(x).Tt(y))

=Y (θt(x).Tt(y))

which ends the proof.

Let Aut(M,ω) be the group of diffeomorphism of M preserving ω. Any
automorphism ϕ of (P, α) lifts an element ϕM of Aut(M,ω). Introduce the sub-
group Ham(M,ω) of Aut(M,ω) consisting of the diffeomorphisms of M which
are the flow at time 1 of a time dependent vector field Xt of M satisfying
ω(Xt, ·) + dft = 0 for some smooth familly ft of C∞(M,R). In the case ω = 0,
Ham(M,ω) is the group of diffeomorphisms of M isotopic to the identity. In
the case ω is symplectic, Ham is the Hamiltonian group of symplectic geometry.

Denote by Aut0(M,ω) the subgroup of Aut(M,ω) consisting of the elements
isotopic to the identity through a smooth curve of Aut(P, α).

Proposition 3.1.5. Ham(M,ω) consists in the diffeomorphisms of M which
are lifted by an element in Aut0(P, α)

Proof. We can adapt the proof of proposition 3.1.4, working with a time depen-
dent vector field Yt = Xhor

t − (π∗ft)∂θ. To integrate Yt, we consider as before
the parallel transport along the integral curves of X, and we multiply by the
function θt given by

θt(x) = −
∫ t

0

f(ϕMs (x)) ds

where ϕMt is the smooth curve of Diff(M) generated by Xt.

Let us consider the exact sequence exponentiating the Lie algebra exact
sequence of Proposition 3.1.3.
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Proposition 3.1.6. Let (P, α) be a prequantum bundle with a connected base
M and curvature ω. Then we have a group exact sequence

0→ T Φ1−−→ Aut0(P, α)
Φ2−−→ Aut0(M,ω)

Φ3−−→ Mor0(H1(M),T)

where

• Φ1(θ) is the action of θ on P ,

• Φ2(ϕ) = ϕM if ϕ lifts ϕM ,

• Φ3(ϕM ) is the morphism H1(M)→ T sending [γ] into hol(ϕM◦γ)−hol(γ).

Furthermore, if ω is non-degenerate and M compact, Φ3 is onto.

The morphism Φ3 may be called a flux morphism. By Proposition 3.1.5, the
kernel of Φ3 is Ham(M,ω).

Proof. Exactness at Aut0(P, α): an equivariant diffeomorphism ϕ of P lifting
the identity, has the form y → f(π(y)).y with f a smooth function on M .
Furthermore, ϕ∗α = α+π∗df , so that ϕ preserves the connection iff df = 0. M
being connected, f is constant.

Φ3 is well-defined: if γ = ∂D, then

hol(ϕM (γ)) =

∫
D

ϕ∗Mω =

∫
D

ω = hol(γ),

because ϕM ∈ Aut(M,ω). So the morphism sending γ ∈ Z1(M) to hol(ϕM (γ))−
hol(γ) factors through a morphism from H1(M) to T.

Φ3 is a group morphism: Let ψM and ϕM in Aut(M,ω). Since ϕM is isotopic
to the identity of M , for any γ ∈ Z1(M), ϕM (γ) is homologue to γ. So

hol(ψM (γ))− hol(γ) = hol(ψM (ϕM (γ)))− hol(ϕM (γ))

which implies that

hol(ψM (ϕM (γ)))− hol(γ) = hol(ψM (γ))− hol(γ) + hol(ϕM (γ))− hol(γ)

showing that Φ3(ψM ◦ ϕM ) = Φ3(ψM ) + Φ3(ϕM ).
Exactness at Aut0(M,ω): for any diffeomorphism ϕM of M , the holonomy

of γ in the prequantum bundle (ϕ∗MP,ϕ
∗
Mα) is hol(ϕM (γ)). So if Φ3(ϕM ) = 0,

(P, α) and (ϕ∗MP,ϕ
∗
Mα) have the same holonomy. By Theorem 2.3.1, (P, α) and

(ϕ∗MP,ϕ
∗
Mα) are isomorphic, through an isomorphism P → ϕ∗MP lifting the

identity of M . Composing this isomorphism with the natural map ϕ∗MP → P ,
we obtain an automorphim of (P, α) lifting ϕM .

Φ3 is onto if ω is symplectic and M compact: first, we define the connected
component of Mor(H1(M),T) as the set of morphisms χ such that there exists
a continuous familly (χt, t ∈ [0, 1]) with χ0 = 0 and χ1 = χ. Here continuous
means that for any [γ] ∈ H1(M), χt([γ]) depends continuously on t.
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We claim that Mor0(H1(M),T) consists in the morphisms which lift from
H1(M) to R. Indeed, lifting continuously χt([γ]) ∈ T to χ̃t([γ]) ∈ R, for any
cycle γ, we obtain a morphism χ̃t. Conversely, if χ̃ ∈ Mor(H1(M),R) and p is
the projection from R to T, then the familly p◦ (tχ̃) connects continuously p◦ χ̃
with 0.

So let χ ∈ Mor(H1(M),R). By the universal coefficient theorem,

Mor(H1(M),R) = H1(M,R).

Then by de Rham theorem, there exists a closed 1-form β on M such that
χ = [β]. Since ω is non-degenerate, there exists a vector field X of M such that
ω(X, ·) = β. Let ϕtM be the flow of X, which is well-defined since M is compact.
Let us prove that Φ3(ϕ1

M ) = p ◦ χ, where p is the projection R→ T.
By Proposition 2.2.2, for any loop γ : S1 →M ,

hol(ϕtM (γ))− hol(γ) =

∫
[0,t]×S1

ξ∗ω mod Z

with ξ : R × S1 → M the map sending (t, x) into ϕtM (γ(x)). Derivating with
respect to t the right-hand side, we get∫

S1

(ξ∗ω)(∂t, ·) =

∫
γ

(ϕtM )∗ω(X, ·) =

∫
γ

ω(X, ·) = χ([γ])

because ϕtM leaves ω invariant. Consequently, integrating from 0 to 1, we obtain

hol(ϕ1
M (γ))− hol(γ) = χ([γ])

which concludes the proof.

Let (L,∇) be the Hermitian line bundle associated to P . An automorphism
of (L,∇) is a line bundle automorphism of L preserving the metric and the
connection∇ in the sense that ϕ∗∇s = ∇ϕ∗s for any smooth section s of M . We
have a natural isomorphism between Aut(M,ω) and the group of automorphism
of (L,∇). To see this, identify P with U(L) and extend any automorphism ϕ of
(P, α) to L in such a way that for any x ∈M , ϕ restricts to a linear map from
Lx into LϕM (x).

We obtain a representation of Aut(P, α) on the space of sections of L, where
we let ϕ ∈ Aut(P, α) act by pull-back

(ϕ∗s)(x) = ϕ−1(s(ϕM (x))), ∀s ∈ C∞(M,L)

Here ϕM is the diffeomorphism ofM lifted by ϕ. The corresponding infinitesimal
representation is the Kostant-Souriau Lie algebra representation of Proposition
3.1.2, in the sense that if (ϕt) is the flow of Xhor − (π∗f)∂θ, then

d

dt

∣∣∣
t=0

(ϕ∗t s)(p) = ∇Xs(p) + 2iπf(p)s(p). (3.2)

This follows from the identification between sections of L and functions of P
satisfying f(θ.y) = e−2iπyf(y).
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3.2 Lie group action and reduction

3.2.1 Preliminaries

Let us first recall some basic facts on Lie group action. Let M be a manifold
and G be a Lie group acting on M . We will always assume that the action is
smooth, meaning that the map G×M →M sending (g, x) into g.x is smooth.
For any g ∈ G, we denote by `g the action of g on M . For any ξ in the Lie
algebra g of M , introduce the vector field of M

ξM (p) =
d

dt

∣∣∣
t=0

etξ.p, ∀p ∈M,

called the infinitesimal representation of ξ. The flow at time t of ξM is `exp(tξ).
Denote by Ad the adjoint representation of G.

Lemme 3.2.1. For any ξ, η ∈ g and g ∈ G, we have

Tx`g(ξM (x)) = (Adg ξ)M (g.x) and [ξM , ηM ] = −[ξ, η]M .

Proof. First, Tx`g(ξM (x)) is the derivative at t = 0 of t→ `g(e
tξ.x). Since

`g(e
tξ.x) = getξg−1.gx = etAdg ξ.gx,

we obtain Tx`g(ξM (x)) = (Adg ξ)M (gx).

Since the flow of ξM at times t is `etξ , we have

[ξM , ηM ](x) =
d

dt

∣∣∣
t=0

(Tx`etξ)
−1(ηM (etξx))

By the first part of the proposition,

(Tx`etξ)
−1(ηM (etξx)) = (Ade−tξ η)M (x)

Taking the derivative, we obtain [ξM , ηM ] = −[ξ, η]M .

So the linear map from g to C∞(M,TM) sending ξ into ξM is a Lie algebra
anti-morphism. This map may be viewed as the differential of the group mor-
phism from G into Diff(M) sending g into `g. If G is simply connected and H is
another Lie group, it is a well-known result that any Lie algebra morphism from
h to the Lie algebra of H is the differential of a Lie group morphism from H to
G. The extension of this result to the case H is the group of diffeomorphisms
of M is the Palais’ theorem.

Theorem 3.2.2. Let G be a simply connected Lie group with Lie algebra g. Let
ρ be a Lie algebra anti-morphism from g to the Lie algebra of vector fields of a
manifold M . Assume that ρ(ξ) is complete for any ξ ∈ g. Then there exist a
unique left action of G on M with infinitesimal representation ρ.
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Consider again a Lie group G acting on a manifold M . Let ω be a G-invariant
2-form and µ be an equivariant map from M to g∗. Here the equivariance is
with respect to the coadjoint action, that is

µ(g.x) = Ad∗g−1 µ(x), ∀x ∈M, g ∈ G

Equivalently, for any ξ ∈ g,

〈µ(g.x), ξ〉 = 〈µ(x),Adg−1 ξ〉.

We call (ω, µ) an equivariant 2-form. We say that (ω, µ) is closed if the following
equations hold

dω = 0, ω(ξM , ·) + dµ(ξ) = 0, ∀ξ ∈ g. (3.3)

As the name suggest it, the closed equivariant 2-forms are the closed 2-cochains
of the complex of equivariant differential forms, defined as

ΩkG(M) =
∑

2i+j=k

(
Sig∗ ⊗ Ωj(M)

)G
, dG = d+ ιξM

In the sequel we will only consider Ω2
G(M). In symplectic geometry, a map µ

satisfying the second equation of (3.3) is called a momentum of the action. An
action that admits a momentum is called a Hamiltonian action. Here we will
use this terminology even when ω is degenerate.

Lemme 3.2.3. Let (ω, µ) be a closed equivariant 2-form. Then for any ξ, η ∈ g,
〈µ, [ξ, η]〉+ ω(ξM , ηM ) = 0

Proof. By the momentum equation, we have that ω(ξM , ηM ) = ξM .〈µ, η〉. By
definition of the infinitesimal action corresponding to ξ,

(ξM .〈µ, η〉)(p) =
d

dt

∣∣∣
t=0
〈µ, η〉(etξ.p)

µ being equivariant, we have

〈µ(etξ.p), η〉 = 〈µ(p),Ade−tξ η〉

and the derivative with respect to t at t = 0 is equal to 〈µ(p),−[ξ, η]〉.

3.2.2 Action on prequantum bundle

We call a prequantum bundle endowed with an action of a Lie group G by
prequantum bundle automorphisms, a G-prequantum bundle. Next proposition
shows that the actions on prequantum bundles lift Hamiltonian actions.

Proposition 3.2.4. Let (P, α) be a G-prequantum bundle with projection π,
base M and curvature ω. Then the map µ : M → g∗, defined by

π∗µ(ξ) + α(ξP ) = 0, ∀ξ ∈ g,

is a momentum of the induced action on (M,ω). Furthermore ω is G-invariant.
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Proof. Since G acts by prequantum bundle automorphisms, the infinitesimal
action of any ξ ∈ g is an infinitesimal automorphism of (P, α). By Proposition
3.1.1, we have that

ξP = ξhor
M − (π∗µξ)∂θ

for a unique function µξ satisfying ω(ξM , ·) +dµξ = 0. This defines the momen-
tum µ. Let us check the equivariance condition. By lemma 3.2.1, the tangent
linear map to the action of g on P sends ξP into (Adg ξ)P . So

〈α|gx, ξP (gx)〉 =〈α|gx, Tx`g((Adg−1 ξ)P (x))〉
=〈α|x, (Adg−1 ξ)P (x)〉

because the action of G preserves α.

Let us adress the converse question. Let us start with a closed equivariant
2-form (ω, µ). Assume that ω is the curvature of a prequantum bundle (P, α).
Then the momentum defines a linear map from g to aut(P, α)

ξ ∈ g→ ξhor
M − π∗µξ∂θ ∈ aut(P, α)

By Proposition 3.1.1 and Lemma 3.2.3, this map is Lie algebra anti-morphism.
Can we integrate this in a G-action ? A necessary condition is that these vector
fields are complete. This is guaranted by Proposition 3.1.4. When G is simply
connected, we deduce from Theorem 3.2.2 the following

Proposition 3.2.5. Let (P, α) be a prequantum bundle with base M and cur-
vature ω. Assume G is a connected and simply connected Lie group acting on
(M,ω) with an equivariant momentum µ. Then there exists a unique lift to
Aut(P, α) of the action on M such that the corresponding momentum is µ.

More generally, assume G is connected but not necessarily simply connected.
Recall that the universal covering group of G is a connected Lie group G̃, to-
gether with a surjective homomorphism p : G̃→ G, such that ker p is a discrete
subgroup of G̃ which is canonically isomorphic to the fundamental group π1(G).
Since the differential of π is an isomorphism, we identify the Lie algebra of G̃
with g.

Assume G acts on (M,ω) with an equivariant momentum, then the same
holds for G̃ and by Proposition 3.2.5, the action of G̃ lifts to Aut(P, α). Then
by Proposition 3.1.6, π1(G) acts by T, in the sense that for each g ∈ π1(G),
there exists θg ∈ T such that the action of g is the multiplication by θg. In the

case π1(G) acts trivially, the action G̃→ Aut(P, α) factors to an action of G.

Example 3.2.6. Let S2 be the unit sphere of R3 equipped the SO(3)-invariant
volume form ω such that

∫
S2 ω = V . Consider the circle action by rotations

around the z-axis. Then, the function µ = V z/2 is a momentum of this action.
Here we identify with R the dual of the Lie algebra R of R/Z.

Assume that V is an integer and introduce a prequantum bundle (P, α)
over M with curvature ω. Then by proposition 3.2.5, we obtain an action ρ :
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subsequence if necessary, we deduce from the properness assumption that (gn)
converges. Its limit g satisfies g.p = p, and the action being free, g = 1. This
contradicts the fact that ϕ is into on a neighborhood of (1, p).

Using Proposition 3.2.1, we deduce from the first condition that ϕ is a local
diffeomorphism. So its image is open. Since it is into, it is a diffeomorphism
onto its image.

Such a submanifold is called a slice at p. This lemma has many consequences.
First, observe that the orbit are closed submanifolds of M , diffeomorphic to
G. Furthermore the quotient M/G, endowed with the quotient topology, is
Hausdorff. Also the orbit space M/G inherits a manifold structure as explained
in the next proposition. Denote by pM the projection from M onto M/G.

Proposition 3.2.8. If the action is free and proper, then M/G, endowed with
the quotient topology, has a unique differential structure such that for any slice
S, the map from S to pM (S) sending x to pM (x) is a diffeomorphism.

Proof. For any slice S, pM (S) is an open set of M/G and the restriction of pM
to S is a homeomorphism from S to pM (S). So we have a chart

CS = (pM (S), (pM |S)−1 : pM (S)→ S).

One checks easily that these charts are compatible. Then we endow M/G with
the maximal atlas containing these charts.

Observe that the projection pM is a smooth submersion and for any x ∈M ,
the kernel of the tangent linear map to pM is given by

ker(TxpM ) = Tx(G.x) = {ξM (x)/ ξ ∈ g}.

A form on M which is the pull-back of a form on M is called a basic form. The
following characterization of the basic form is proved exactly as Lemma 1.2.2.

Proposition 3.2.9. Assume the action is free and proper so that M/G is a
manifold. Then the pull-back p∗ : Ω(M/G) → Ω(M) is into and its image
consists in the forms ω ∈ Ω(M) which are G-invariant and such that ιξMω = 0
for any ξ ∈ g.

3.2.4 Quotient of prequantum bundles

Let π : B →M be a T-principal bundle equipped with a G-action by automor-
phisms, that is an action of G commuting with the T-action. This action lifts
an action of G on the base M . Assume this latter action is free and proper.
Then we have the following

Lemme 3.2.10. The quotient B/G is the total space of a T-principal bundle
with base M/G. The projection is the map sending the class of y ∈ P to the
class of π(y). The action of θ ∈ T sends [y] into [θ.y].
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R→ Aut(P, α) with momentum µ. The subgroup Z acts through T. This latter
action is easy to compute at fixed points of S2, for instance at the north pole, by
using Proposition 3.1.4. We obtain that ρ(n) = V n/2 mod Z. So ρ factors to a
morphisms from R/Z to Aut(P, α) if and only if V is even. Observe that we can
shift the momentum by a constant without changing the action. Furthermore
the action lifts to the prequantum bundle with corresponding momentum V z/2+
C if and only if V/2 + C is integer.

Consider now the SO(3) action on S2. Identify the Lie algebra of SO(3)
with R3 so that the vector (x, y, z) corresponds to the matrix

2π

 0 −z y
z 0 −x
−y x 0


Then the action has the momentum µ(u) = (V/2).u. By proposition 3.2.5, this
action lifts to a morphism SU(2) → Aut(P, α). This latter action descends to
a morphism SO(3)→ Aut(P, α) if and only if V is even.

3.2.3 Quotient by a free and proper action

Consider a Lie group G acting on a manifold M . Recall that the action is said
to be proper if the map from G×M to M ×M sending (g,m) into (m, g.m) is
proper.

Lemme 3.2.7. Assume that the action is free and proper. Then for any point
p ∈ M , there exists a submanifold S of M containing p such that G.S is open
in M and the map

G× S → G.S, (g, x)→ g.x

is a diffeomorphism.

Proof. Since the action is free, it is locally free, meaning that for any x ∈ M ,
the linear map

g→ TxM, ξ → ξM (x)

is into. So the subset D of TM consisting of the ξM (x), ξ ∈ g, x ∈ M is a
subbundle of TM , with rank the dimension of G. Consider any submanifold S
of M containig x and such that Dp⊕TpS = TpM . Replacing S by S ∩V , where
V is a neighborhood of p, we have that

1. for any x ∈ S, Dx ⊕ TxS = TxM

2. the map ϕ : S ×G→M sending (x, g) into g.x is into.

Let us prove the second condition by contradiction. Observe first that the map
is into on a neighborhood of (p, 1) by the local inversion theorem. Assume that
there exists sequences (xn), (x′n), (gn) and (g′n) of S and G respectively such
that x′n 6= xn, gnxn = g′nx

′
n and (xn), (x′n) converge to p. Then replacing gn

by (g′n)−1gn we may assume that g′n = 1 for any n. Next, replacing (gn) by a
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Proof. Since the G-action on M is free and proper, the same holds for the G-
action on B, so the quotient B/G has a natural manifold structure. Since the
projection from B to M is G-equivariant, it descends to a smooth map from
B/G to M/G. The T-action commuting with the G-action, it descends to a
smooth T-action on B/G.

Since the G-action on M is free, for any x ∈ M , the projection pB from B
to B/G restricts to a T-equivariant bijection

pB,x : Bx → (B/G)[x].

This has the first consequence that the T-orbits of B/G are the fibers of the
projection B/G→ M/G. Let us contruct local trivialisations. Consider a slice
S of the G action on M , such that B|S is isomorphic to S × T. Then B|S is a
slice of the G-action on B. We then have the T-principal bundle isomorphisms

(B/G)|pM (S) ' B|S ' S × T ' pM (S)× T,

which ends the proof.

Assume now B has a connection α and that the G-action preserves it.

Lemme 3.2.11. There exists αB/G ∈ Ω1(B/G) such that p∗Bα
B/G = α if and

only if the momentum associated to the G-action is identically null. In the case
it exists, αB/G is unique and is a connection of B/G.

Proof. By Proposition 3.2.9, α is basic if and only if the momentum vanishes
identically.

To summarize we have proved the following result.

Proposition 3.2.12. Let G be a Lie group acting on a prequantum bundle
(P, α) by prequantum bundle automorphisms. Assume that the corresponding
action on the base M is free, proper and its momentum vanishes. Then P/G
is the total space of a prequantum bundle with base M/G and connection form
αB/G such that

p∗Bα
B/G = α,

with pB the projection from B to B/G. Furthermore the curvature ωB/G of
αB/G satisfies p∗Bω

B/G where ω is the curvature of α.

Observe that the pull-back of a G-prequantum bundle by a G-equivariant
map is a G-prequantum bundle. In particular the restriction of a G-prequantum
bundle to a G-invariant submanifold is a G-prequantum bundle.

3.2.5 Symplectic reduction

Proposition 3.2.13. Let (M,ω) be a symplectic manifold. Let G be a Lie group
acting on M in a Hamiltonian way with momentum µ : M → g∗. Assume that
the restriction of the action to µ−1(0) is free and proper. Then
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• µ is a submersion onto 0, so that µ−1(0) is a submanifold of M .

• the quotient M//G of µ−1(0) by G has a natural symplectic form ωM//G

satisfying

p∗ωM//G = j∗ω

where j is the embedding of µ−1(0) into M and p is the projection from
µ−1(0) to µ−1(0)/G

The quotient µ−1(0)/G is called the symplectic reduction of M by G and is
denoted by M//G.

Proof. For any x ∈M , let gx = {ξ ∈ g/ ξM (x) = 0} and Dx = {ξM (x)/ ξ ∈ g}.
gx is the Lie algebra of the isotropy group Gx of x. But for the proof, we only
need to know that gx = {0} if Gx = (0). Because of the momentum equation,
the adjoint of the linear map

g→ T ∗xM, ξ → ω(ξM (x), ·)

is the tangent linear map Txµ : TxM → g∗. So the kernel of Txµ is the symplectic
orthogonal of Dx and the image of Txµ is the orthogonal of gx. Since the action
on µ−1(0) is free, for any x ∈ µ−1(0), gx = 0 so that Txµ is onto. This shows
that µ−1(0) is a submanifold of M , its tangent space at x being the kernel of
Txµ.

The action on µ−1(0) being free and proper, the quotient of µ−1(0) has
a natural differential structure. Furthermore, the tangent linear map to the
projection p : µ−1(0)→ µ−1(0)/G induces an isomorphism

Tp(x)(µ
−1(0)/G) ' Tx(µ−1(0))/Dx

As we have seen, the symplectic orthogonal of Tx(µ−1(0)) = ker(Txµ) is Dx. The
inclusion Dx ⊂ (Tx(µ−1(0)))⊥ω has the consequence that the restriction of ω to
µ−1(0) is basic. So it descends to ωM//G ∈ Ω2(M/G). ω being closed, ωM//G is
closed. Furthermore, since (Tx(µ−1(0)))⊥ω ⊂ Dx, ωM//G is non-degenerate.

The quotient M///G is called the symplectic reduction of M by G. As a
consequence of the results of the previous section, we can consider symplectic
reduction of prequantum bundle.

Proposition 3.2.14. Let (P, α) be a G-prequantum bundle with curvature a
non-degenerate form and with corresponding momentum µ : M → g∗. Assume
that the restriction of the action to µ−1(0) is free and proper, so that µ−1(0)
is a submanifold of M . Denote by j the injection of µ−1(0) into M . Then the
quotient by G of the restriction of (P, α) to µ−1(0) is a prequantum bundle with
base M//G and curvature ωM//G.

To end this section, we revisit the example of the dual of the the tautological
bundle of CP(n).
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Example 3.2.15. Consider as in Section 1.4 the dual of the tautological bundle
of CP(n). The associated circle prequantum bundle is S2n+1 → CPn with action
and connection given by

θ.y = (e−2iπθy0, . . . , e
−2iπθyn), α =

i

4π

∑
j=0,...,n

(yjdȳj − ȳjdyj).

We will show that this prequantum bundle can be obtained by a symplectic
reduction from M = Cn+1. Let P be the trivial T-principal bundle with base
Cn+1 and connection αP given by

αP = dθ − i

4π

∑
j

(yjdȳj − ȳjdyj).

Consider the group T acting on Cn+1 by

ρM (θ)(y) = e2iπθy = (e2iπθy0, . . . , e
2iπθyn)

This action has the momentum µ = |y|2 − 1. The corresponding lift to P is the
action

ρP (θ)(y, t) = (e2iπθy, t+ θ).

Observe that µ−1(0) = S2n+1 and so P |µ−1(0) = S2n+1×T. The diffeomorphism

P |µ−1(0) → S2n+1 × T, (y, t)→ (ye−2iπt, t)

intertwins the ρP action with the action given by θ.(y, t) = (y, t + θ). So the
map

p : P |µ−1(0) → S2n+1, (y, t)→ ye−2iπt

induces a diffeomorphism from the quotient of P |µ−1(0) by ρP to S2n+1. Fur-
thermore,

p(y, θ + t) = e−2iπθp(y, t), p∗α = αP

which shows that we recover the T-action on S2n+1 and the connection α.


