Chapter 3

Symplectic geometry

From now on, we call a pair (P, α) consisting of a T-principal bundle and a connection α of P a *prequantum bundle*. The first chapter is devoted to the automorphism group of prequantum bundles, that is the group of diffeomorphisms φ of P which are T-equivariant and satisfy $\varphi^* \alpha = \alpha$.

3.1 Automorphisms of prequantum bundle

3.1.1 Linear case

Let V be a finite dimensional vector space and $\omega \in \wedge^2 V^*$. Let $\beta \in \Omega^1(V)$ be defined by

$$\beta_x(y) = \frac{1}{2}\omega(x,y), \quad \forall x, y \in V.$$

Then the differential of β is the constant form equal to ω . Let P be the trivial \mathbb{T} -principal principal bundle with base V. Endow P with the connection $\alpha = -\beta + d\theta$.

It is easily seen that the automorphisms of (P,α) are the applications $\varphi:P\to P$ of the form

$$\varphi(x,\theta) = (\varphi_V(x), \theta + f(x))$$

where φ_V is a diffeomorphism of V and f a map from V to \mathbb{T} such that $\varphi_V^*\beta = df + \beta$.

Let $Gl(V, \omega)$ be the group of linear isomorphisms φ_V of V such that

$$\omega(\varphi_V(x),\varphi_V(y)) = \omega(x,y), \qquad \forall x, y \in V.$$

Observe that such an isomorphism satisfies $\varphi_V^*\beta = \beta$. So the subgroup of Aut (P, α) consisting of the automorphisms lifting an element of Gl (V, ω) is isomorphic to the direct product Gl $(V, \omega) \times \mathbb{T}$ through the map sending (φ_V, t) to the automorphism $\varphi(x, \theta) = (\varphi_V(x), t + \theta)$.

Replacing the linear automorphism by the translations, we obtain a more interesting group as was already explained in Example 2.5.5. Indeed, the subgroup of Aut(P, α) consisting of the automorphisms lifting a translations of Vis in bijection with the direct product $V \times \mathbb{T}$ through the map sending (u, t) to the automorphism $\varphi_{(u,t)}(x, \theta) = (u + x, t + \theta + \frac{1}{2}\omega(u, x))$. The composition is given by

$$\varphi_{u,t} \circ \varphi_{v,s} = \varphi_{(u+v,t+s+\omega(u,v)/2)}.$$

So we have an exact sequence

$$0 \to \mathbb{T} \to G \to V \to 0, \qquad t \to \varphi_{(0,t)}, \quad \varphi_{(u,t)} \to u$$

When ω does not vanish, this sequence does not split, and we obtain a non trivial extension by \mathbb{T} of the group of translations of V.

3.1.2 Preliminaries on infinitesimal automorphims

Before we study the automorphisms of a prequantum bundle (P, α) , let us start with the *infinitesimal automorphism* of (P, α) , that is the vector fields Y of P which are T-invariant and satisfy $\mathcal{L}_Y \alpha = 0$. The space $\operatorname{aut}(P, \alpha)$ of infinitesimal automorphisms has to be viewed as the Lie algebra of $\operatorname{Aut}(P, \alpha)$. To understand the meaning of this assertion and which relations we can expect between $\operatorname{Aut}(P, \alpha)$ and $\operatorname{aut}(P, \alpha)$, let us first consider the group $\operatorname{Diff}(M)$ of diffeomorphisms of a manifold M.

As explained by Milnor in [], Diff(M) can be given the structure of an infinite dimensional manifold, its tangent space at the identity element being $\mathcal{C}^{\infty}(M, TM)$. Define the smooth curves of Diff(M) as the 1-parameter families $t \to \varphi_t$ such that the map $(t, x) \to \varphi_t(x)$ is smooth. If (φ_t) is a smooth curve such that φ_0 is the identity element, its tangent vector at t = 0 is the vector field X given by

$$X(p) = \frac{d}{dt}\Big|_{t=0}\varphi_t(p), \qquad p \in M.$$

Recall that for a genuine Lie group G with Lie algebra \mathfrak{g} , the exponential map $\mathfrak{g} \to G$ is defined in such a way that for any $X \in \mathfrak{g}$, $\exp(tX)$ is the one-parameter subgroup of G such that $\frac{d}{dt}(\exp(tX)) = X$ at t = 0. Since the one-parameter subgroups (φ_t) of Diff(M) are the flows of the complete vector fields of M, we define the exponential of a complete vector field X of M as the flow at time 1 of X. That the exponential map is not defined for all the vector fields is a first difference with the finite dimensional case. When M is compact, any vector field is complete. But even in that case, there are still differences with the finite dimensional case to the identity belongs to a one-parameter subgroup, cf [] for a simple example with $M = S^1$.

In the case M is connected, let us show that the appropriate bracket in the Lie algebra of Diff(M) is the usual bracket of vector fields, up to sign. Recall first the definition for a Lie group G. For any $g \in G$, let $C_q : G \to G$ be the

morphism sending h to ghg^{-1} , and let $\operatorname{Ad}_g : \mathfrak{g} \to \mathfrak{g}$ be the differential of C_g . Then

$$[X,Y] := \frac{d}{dt}\Big|_{t=0} \operatorname{Ad}_{\exp(tX)} Y, \qquad X,Y \in \mathfrak{g}.$$

So if $\Phi \in \text{Diff}(M)$ and (Ψ_t) is the flow of a vector field of Y of M, then $Z = \text{Ad}_{\Phi} Y$ is the vector field given by

$$Z(p) = \frac{d}{dt}\Big|_{t=0} \Phi(\Psi_t(\Phi^{-1}(p)))$$

= $T_{\Phi^{-1}(p)} \Phi(Y(\Phi^{-1}(p)))$

Assume now (Φ_t) is the flow of X, then

$$[X,Y](p) = \frac{d}{dt} \Big|_{t=0} T_{\Phi_t^{-1}(p)} \Phi_t(Y(\Phi_t^{-1}(p)))$$
$$= \frac{d}{dt} \Big|_{t=0} (T_p \Phi_{-t})^{-1}(Y(\Phi_{-t}(p)))$$
$$= -\mathcal{L}_X Y(p)$$

as was to be proved.

Let us return to prequantum bundles. Observe that $\operatorname{aut}(P, \alpha)$ is a Lie subalgebra of $\mathcal{C}^{\infty}(P, TP)$, and correspondingly $\operatorname{Aut}(P, \alpha)$ is a subgroup of $\operatorname{Diff}(P)$. Furthermore let I be an open interval, $(\varphi_t, t \in I)$ be a smooth curve of $\operatorname{Diff}(P)$ of $\operatorname{Aut}(P, \alpha)$ and $(Y_t \in \mathcal{C}^{\infty}(P, TP), t \in I)$ be its infinitesimal generator

$$Y_t(\varphi_t(p)) = \frac{d}{dt}(\varphi_t(p)).$$

Assume that for some $t_0 \in I$, $\varphi_{t_0} \in \operatorname{Aut}(P, \alpha)$. Then it is easily seen that $\varphi_t \in \operatorname{Aut}(P, \alpha)$ for any $t \in I$ if and only if $Y_t \in \operatorname{Aut}(P, \alpha)$ for any $t \in I$. Because of this property, we may view $\operatorname{aut}(P, \alpha)$ as the Lie algebra of $\operatorname{Aut}(P, \alpha)$.

3.1.3 Infinitesimal automorphisms of prequantum bundles

Consider a prequantum bundle (P, α) with curvature $\omega \in \Omega^2(M, \mathbb{R})$. Recall that any T-invariant vector field of P writes uniquely as $X^{\text{hor}} + (\pi^* f)\partial_{\theta}$, where Xand f are respectively a vector field and a function of M.

Proposition 3.1.1. The space $\operatorname{aut}(P, \alpha)$ consists of the vector fields of the form $X^{\operatorname{hor}} - (\pi^* f)\partial_{\theta}$, where $X \in \mathcal{C}^{\infty}(M, TM)$ and $f \in \mathcal{C}^{\infty}(M, \mathbb{R})$ are such that

$$\omega(X, \cdot) + df = 0.$$

Furthermore, the Lie bracket is given in terms of this decomposition by

$$[X_1^{\text{hor}} - (\pi^* f_1)\partial_\theta, X_2^{\text{hor}} - (\pi^* f_2)\partial_\theta] = [X_1, X_2]^{\text{hor}} - (\pi^* \omega(X_1, X_2))\partial_\theta.$$
(3.1)

So aut (P, α) is isomorphic to the Lie algebra consisting of the pairs (X, f) such that $\omega(X, \cdot) + df = 0$, the bracket being given by

$$[(X_1, f_1), (X_2, f_2)] = ([X_1, X_2], \omega(X_1, X_2)).$$

(3.1). Observe that this latter algebra may be defined for any closed 2-form ω of M and does not depend on the choice of the prequantum bundle.

In a pair (X, f) satisfying $\omega(X, \cdot) + df = 0$, f is determined by X up to some locally constant function. When ω is non-degenerate, X is determined by f. In that case, we call X the Hamiltonian vector field of f. Furthermore, if $\omega(X_i, \cdot) + df_i = 0$ for i = 1, 2, the function

$$\{f_1, f_2\} = \omega(X_1, X_2)$$

is the Poisson bracket of f_1 , f_2 . So when ω is symplectic, $\operatorname{aut}(P, \alpha)$ is isomorphic to $(\mathcal{C}^{\infty}(M), \{\cdot, \cdot\})$.

Proof. The T-invariant horizontal vector fields of P are the horizontal lifts of the vector fields of M. The T-invariant vertical vector fields have the form $(\pi^* f)\partial_{\theta}$, with f a function on M. So any T-invariant vector field of P can be decomposed uniquely as

$$Y = X^{\text{hor}} - (\pi^* f)\partial_\theta,$$

for some $X \in \mathcal{C}^{\infty}(M, TM)$ and $f \in \mathcal{C}^{\infty}(M, \mathbb{R})$. We have by Cartan formula

$$\mathcal{L}_Y \alpha = \iota_Y d\alpha + d\alpha(Y) = -\iota_Y \pi^* \omega - d\pi^* f = -\pi^* (\omega(X, \cdot) + f)$$

so that $\mathcal{L}_Y \alpha = 0$ if and only if $\omega(X, \cdot) + df = 0$.

Let us compute the Lie bracket. Assume that $\omega(X_i, \cdot) + df_i = 0$ for i = 1, 2. Since X_i^{hor} and $\pi^* f_i$ are T-invariant,

$$\begin{split} [X_1^{\text{hor}} - (\pi^* f_1)\partial_\theta, X_2^{\text{hor}} - (\pi^* f_2)\partial_\theta] = & [X_1^{\text{hor}}, X_2^{\text{hor}}] - (X_1^{\text{hor}}.(\pi^* f_2) - X_2^{\text{hor}}.(\pi^* f_1))\partial_\theta \\ = & [X_1^{\text{hor}}, X_2^{\text{hor}}] - \pi^* (X_1.f_2 - X_2.f_1))\partial_\theta \\ = & [X_1^{\text{hor}}, X_2^{\text{hor}}] - 2\pi^* \omega (X_1, X_2)\partial_\theta. \end{split}$$

because $\omega(X_1, X_2) = X_1 \cdot f_2 = -X_2 \cdot f_1$. We conclude with Proposition 1.2.4. \Box

Introduce the Hermitian line bundle $L = P \times \mathbb{C}/\mathbb{T}$ associated to P as in section 1.3. Recall that the space of sections of L identifies naturally with a subspace of functions on P. The derivation with respect to a vector field in $\operatorname{aut}(P, \alpha)$ preserves this latter space. We obtain a representation of $\operatorname{aut}(P, \alpha)$ on $\mathcal{C}^{\infty}(M, L)$.

Proposition 3.1.2. The map from $\operatorname{aut}(P, \alpha)$ to $\operatorname{End}(\mathcal{C}^{\infty}(M, L))$, sending $X^{\operatorname{hor}} - (\pi^* f)\partial_{\theta}$ to the endomorphism

$$s \to \nabla_X s + 2i\pi f s$$
,

is a Lie algebra morphism

Proof. Let E be the isomorphism identifying $C^{\infty}(M, L)$ with the subspace of $C^{\infty}(P)$ consisting in the functions f satisfying $f(\theta.y) = e^{-2i\pi\theta}f(y)$. Then recall that

$$X^{\text{hor}}.E(s) = E(\nabla_X s)$$

and observe that $\partial_{\theta} E(s) = -2i\pi E(s)$ for any section s of L.

In the case ω is symplectic, we have a representation of the Poisson algebra of M, which was first introduced by Kostant and Souriau.

An infinitesimal automorphism of (M, ω) is a vector field X of M such that $\mathcal{L}_X \omega = 0$, equivalently such that $\omega(X, \cdot)$ is closed. The space $\operatorname{aut}(M, \omega)$ of infinitesimal automorphisms of (M, ω) is a Lie subalgebra of the Lie algebra of vector fields of M.

Proposition 3.1.3. Assume M is connected. Then we have a Lie algebra exact sequence

$$0 \to \mathbb{R} \xrightarrow{\Phi_1} \operatorname{aut}(P, \alpha) \xrightarrow{\Phi_2} \operatorname{aut}(M, \omega) \xrightarrow{\Phi_3} H^1(M, \mathbb{R})$$

where \mathbb{R} and $H^1(M, \mathbb{T})$ are commutative Lie algebras, and the Lie algebra morphisms Φ_1, Φ_2 and Φ_3 are defined by

$$\Phi_1(c) = c\partial_\theta, \quad \Phi_2(X^{\text{hor}} - (\pi^* f)\partial_\theta) = X, \quad \Phi_3(X) = [\omega(X, \cdot)].$$

Furthermore, if ω is non-degenerate, Φ_3 is onto.

The proof is easy and a good exercice. Introduce the Lie subalgebra of $\operatorname{aut}(M,\omega)$

$$\operatorname{ham}(M,\omega) = \operatorname{Im} \Phi_2 = \ker \Phi_3 = \left\{ X \in \Gamma(M, TM); \ \omega(X, \cdot) \text{ is exact } \right\}$$

In the case, ω is non degenerate, the elements of $\operatorname{aut}(M, \omega)$ and $\operatorname{ham}(M, \omega)$ are called respectively the *symplectic* and the *Hamiltonian vector fields*.

3.1.4 Automorphisms

Consider again a prequantum bundle (P, α) with curvature $\omega \in \Omega^2(M, \mathbb{R})$. In this section, we establish the group properties corresponding to the Lie algebra properties given in the previous section. The flow of any infinitesimal automorphism of (P, α) is a one-parameter group of $\operatorname{Aut}(P, \alpha)$. The following proposition describes this flow in terms of the decomposition $Y = X^{\operatorname{hor}} - (\pi^* f)\partial_{\theta}$ given in proposition 3.1.1.

Proposition 3.1.4. Let X be a complete vector field of M and $f \in C^{\infty}(M, \mathbb{R})$ be such that $\omega(X, \cdot) + df = 0$. Then $Y = X^{\text{hor}} - (\pi^* f)\partial_{\theta}$ is complete and its flow φ_t lifts the flow φ_M^t of X. Furthermore

$$\varphi_t(y) = \theta_t(\pi(y)).\mathcal{T}_t(y)$$

where

- \mathcal{T}_t is the \mathbb{T} -equivariant diffeomorphism of P lifting φ_t^M and such that for any $x \in M$, $\mathcal{T}_t : P_x \to P_{\varphi_t^M(x)}$ is the parallel transport along the path $s \in [0,t] \to \varphi_s^M(x).$
- for any $x \in M$, $\theta_t(x) = -tf(x)$ modulo \mathbb{Z} .

Proof. We first prove that the flow of X^{hor} is \mathcal{T}_t . Since $t \to \mathcal{T}_t(y)$ is an horizontal lift, $\alpha(\dot{\mathcal{T}}(y)) = 0$. Since $\pi(\mathcal{T}_t(y)) = \varphi_t^M(\pi(y))$, $\dot{\mathcal{T}}_t(y)$ projects to $X(\varphi_t(\pi(y)))$. This shows that

$$\dot{\mathcal{T}}_t(y) = X^{\mathrm{hor}}(\mathcal{T}_t(y)).$$

Because $\omega(X, \cdot) + df = 0$, f is constant on the trajectories of X, so that

$$\dot{\theta}_t(x) = -f(x) = -f(\varphi_t(x)).$$

This implies with $x = \pi(y)$ that

$$\frac{d}{dt} (\theta_t(x) \cdot \mathcal{T}_t(y)) = -f(\varphi_t(x))\partial_\theta + T_y \ell_{\theta_t(x)}(X^{\text{hor}}(\mathcal{T}_t(y)))$$
$$= -f(\varphi_t(x))\partial_\theta + X^{\text{hor}}(\theta_t(x) \cdot \mathcal{T}_t(y))$$
$$= Y(\theta_t(x) \cdot \mathcal{T}_t(y))$$

which ends the proof.

Let $\operatorname{Aut}(M, \omega)$ be the group of diffeomorphism of M preserving ω . Any automorphism φ of (P, α) lifts an element φ_M of $\operatorname{Aut}(M, \omega)$. Introduce the subgroup $\operatorname{Ham}(M, \omega)$ of $\operatorname{Aut}(M, \omega)$ consisting of the diffeomorphisms of M which are the flow at time 1 of a time dependent vector field X_t of M satisfying $\omega(X_t, \cdot) + df_t = 0$ for some smooth familly f_t of $\mathcal{C}^{\infty}(M, \mathbb{R})$. In the case $\omega = 0$, $\operatorname{Ham}(M, \omega)$ is the group of diffeomorphisms of M isotopic to the identity. In the case ω is symplectic, Ham is the Hamiltonian group of symplectic geometry.

Denote by $\operatorname{Aut}^{0}(M, \omega)$ the subgroup of $\operatorname{Aut}(M, \omega)$ consisting of the elements isotopic to the identity through a smooth curve of $\operatorname{Aut}(P, \alpha)$.

Proposition 3.1.5. Ham (M, ω) consists in the diffeomorphisms of M which are lifted by an element in Aut⁰ (P, α)

Proof. We can adapt the proof of proposition 3.1.4, working with a time dependent vector field $Y_t = X_t^{\text{hor}} - (\pi^* f_t)\partial_{\theta}$. To integrate Y_t , we consider as before the parallel transport along the integral curves of X, and we multiply by the function θ_t given by

$$\theta_t(x) = -\int_0^t f(\varphi_s^M(x)) \, ds$$

where φ_t^M is the smooth curve of Diff(M) generated by X_t .

Let us consider the exact sequence exponentiating the Lie algebra exact sequence of Proposition 3.1.3.

Proposition 3.1.6. Let (P, α) be a prequantum bundle with a connected base M and curvature ω . Then we have a group exact sequence

$$0 \to \mathbb{T} \xrightarrow{\Phi_1} \operatorname{Aut}^0(P, \alpha) \xrightarrow{\Phi_2} \operatorname{Aut}^0(M, \omega) \xrightarrow{\Phi_3} \operatorname{Mor}^0(H_1(M), \mathbb{T})$$

where

- $\Phi_1(\theta)$ is the action of θ on P,
- $\Phi_2(\varphi) = \varphi_M$ if φ lifts φ_M ,
- $\Phi_3(\varphi_M)$ is the morphism $H_1(M) \to \mathbb{T}$ sending $[\gamma]$ into $\operatorname{hol}(\varphi_M \circ \gamma) \operatorname{hol}(\gamma)$.

Furthermore, if ω is non-degenerate and M compact, Φ_3 is onto.

The morphism Φ_3 may be called a flux morphism. By Proposition 3.1.5, the kernel of Φ_3 is Ham (M, ω) .

Proof. Exactness at Aut⁰(P, α): an equivariant diffeomorphism φ of P lifting the identity, has the form $y \to f(\pi(y)).y$ with f a smooth function on M. Furthermore, $\varphi^* \alpha = \alpha + \pi^* df$, so that φ preserves the connection iff df = 0. M being connected, f is constant.

 Φ_3 is well-defined: if $\gamma = \partial D$, then

$$\operatorname{hol}(\varphi_M(\gamma)) = \int_D \varphi_M^* \omega = \int_D \omega = \operatorname{hol}(\gamma),$$

because $\varphi_M \in \operatorname{Aut}(M, \omega)$. So the morphism sending $\gamma \in Z_1(M)$ to $\operatorname{hol}(\varphi_M(\gamma)) - \operatorname{hol}(\gamma)$ factors through a morphism from $H_1(M)$ to \mathbb{T} .

 Φ_3 is a group morphism: Let ψ_M and φ_M in Aut (M, ω) . Since φ_M is isotopic to the identity of M, for any $\gamma \in Z_1(M)$, $\varphi_M(\gamma)$ is homologue to γ . So

$$\operatorname{hol}(\psi_M(\gamma)) - \operatorname{hol}(\gamma) = \operatorname{hol}(\psi_M(\varphi_M(\gamma))) - \operatorname{hol}(\varphi_M(\gamma))$$

which implies that

$$\operatorname{hol}(\psi_M(\varphi_M(\gamma))) - \operatorname{hol}(\gamma) = \operatorname{hol}(\psi_M(\gamma)) - \operatorname{hol}(\gamma) + \operatorname{hol}(\varphi_M(\gamma)) - \operatorname{hol}(\gamma)$$

showing that $\Phi_3(\psi_M \circ \varphi_M) = \Phi_3(\psi_M) + \Phi_3(\varphi_M).$

Exactness at $\operatorname{Aut}^0(M,\omega)$: for any diffeomorphism φ_M of M, the holonomy of γ in the prequantum bundle $(\varphi_M^* P, \varphi_M^* \alpha)$ is $\operatorname{hol}(\varphi_M(\gamma))$. So if $\Phi_3(\varphi_M) = 0$, (P, α) and $(\varphi_M^* P, \varphi_M^* \alpha)$ have the same holonomy. By Theorem 2.3.1, (P, α) and $(\varphi_M^* P, \varphi_M^* \alpha)$ are isomorphic, through an isomorphism $P \to \varphi_M^* P$ lifting the identity of M. Composing this isomorphism with the natural map $\varphi_M^* P \to P$, we obtain an automorphim of (P, α) lifting φ_M .

 Φ_3 is onto if ω is symplectic and M compact: first, we define the connected component of $\operatorname{Mor}(H_1(M), \mathbb{T})$ as the set of morphisms χ such that there exists a continuous family $(\chi_t, t \in [0, 1])$ with $\chi_0 = 0$ and $\chi_1 = \chi$. Here continuous means that for any $[\gamma] \in H_1(M), \chi_t([\gamma])$ depends continuously on t.

We claim that $\operatorname{Mor}^{0}(H_{1}(M), \mathbb{T})$ consists in the morphisms which lift from $H_{1}(M)$ to \mathbb{R} . Indeed, lifting continuously $\chi_{t}([\gamma]) \in \mathbb{T}$ to $\tilde{\chi}_{t}([\gamma]) \in \mathbb{R}$, for any cycle γ , we obtain a morphism $\tilde{\chi}_{t}$. Conversely, if $\tilde{\chi} \in \operatorname{Mor}(H_{1}(M), \mathbb{R})$ and p is the projection from \mathbb{R} to \mathbb{T} , then the family $p \circ (t\tilde{\chi})$ connects continuously $p \circ \tilde{\chi}$ with 0.

So let $\chi \in Mor(H_1(M), \mathbb{R})$. By the universal coefficient theorem,

$$\operatorname{Mor}(H_1(M),\mathbb{R}) = H^1(M,\mathbb{R}).$$

Then by de Rham theorem, there exists a closed 1-form β on M such that $\chi = [\beta]$. Since ω is non-degenerate, there exists a vector field X of M such that $\omega(X, \cdot) = \beta$. Let φ_M^t be the flow of X, which is well-defined since M is compact. Let us prove that $\Phi_3(\varphi_M^1) = p \circ \chi$, where p is the projection $\mathbb{R} \to \mathbb{T}$.

By Proposition 2.2.2, for any loop $\gamma: S^1 \to M$,

$$\operatorname{hol}(\varphi_M^t(\gamma)) - \operatorname{hol}(\gamma) = \int_{[0,t] \times S^1} \xi^* \omega \mod \mathbb{Z}$$

with $\xi : \mathbb{R} \times S^1 \to M$ the map sending (t, x) into $\varphi_M^t(\gamma(x))$. Derivating with respect to t the right-hand side, we get

$$\int_{S^1} (\xi^* \omega)(\partial_t, \cdot) = \int_{\gamma} (\varphi_M^t)^* \omega(X, \cdot) = \int_{\gamma} \omega(X, \cdot) = \chi([\gamma])$$

because φ_M^t leaves ω invariant. Consequently, integrating from 0 to 1, we obtain

$$\operatorname{hol}(\varphi_M^1(\gamma)) - \operatorname{hol}(\gamma) = \chi([\gamma])$$

which concludes the proof.

Let (L, ∇) be the Hermitian line bundle associated to P. An automorphism of (L, ∇) is a line bundle automorphism of L preserving the metric and the connection ∇ in the sense that $\varphi^* \nabla s = \nabla \varphi^* s$ for any smooth section s of M. We have a natural isomorphism between $\operatorname{Aut}(M, \omega)$ and the group of automorphism of (L, ∇) . To see this, identify P with U(L) and extend any automorphism φ of (P, α) to L in such a way that for any $x \in M$, φ restricts to a linear map from L_x into $L_{\varphi^M(x)}$.

We obtain a representation of $\operatorname{Aut}(P, \alpha)$ on the space of sections of L, where we let $\varphi \in \operatorname{Aut}(P, \alpha)$ act by pull-back

$$(\varphi^*s)(x) = \varphi^{-1}(s(\varphi_M(x))), \quad \forall s \in \mathcal{C}^{\infty}(M,L)$$

Here φ_M is the diffeomorphism of M lifted by φ . The corresponding infinitesimal representation is the Kostant-Souriau Lie algebra representation of Proposition 3.1.2, in the sense that if (φ_t) is the flow of $X^{\text{hor}} - (\pi^* f)\partial_{\theta}$, then

$$\frac{d}{dt}\Big|_{t=0}(\varphi_t^*s)(p) = \nabla_X s(p) + 2i\pi f(p)s(p).$$
(3.2)

This follows from the identification between sections of L and functions of P satisfying $f(\theta . y) = e^{-2i\pi y} f(y)$.

3.2 Lie group action and reduction

3.2.1 Preliminaries

Let us first recall some basic facts on Lie group action. Let M be a manifold and G be a Lie group acting on M. We will always assume that the action is smooth, meaning that the map $G \times M \to M$ sending (g, x) into g.x is smooth. For any $g \in G$, we denote by ℓ_g the action of g on M. For any ξ in the Lie algebra \mathfrak{g} of M, introduce the vector field of M

$$\xi_M(p) = \frac{d}{dt}\Big|_{t=0} e^{t\xi} . p, \qquad \forall p \in M,$$

called the infinitesimal representation of ξ . The flow at time t of ξ_M is $\ell_{\exp(t\xi)}$. Denote by Ad the adjoint representation of G.

Lemme 3.2.1. For any $\xi, \eta \in \mathfrak{g}$ and $g \in G$, we have

$$T_x \ell_g(\xi_M(x)) = (\operatorname{Ad}_g \xi)_M(g.x) \quad and \quad [\xi_M, \eta_M] = -[\xi, \eta]_M$$

Proof. First, $T_x \ell_g(\xi_M(x))$ is the derivative at t = 0 of $t \to \ell_g(e^{t\xi}.x)$. Since

$$\ell_g(e^{t\xi}.x) = ge^{t\xi}g^{-1}.gx = e^{t\operatorname{Ad}_g\xi}.gx,$$

we obtain $T_x \ell_g(\xi_M(x)) = (\operatorname{Ad}_g \xi)_M(gx).$

Since the flow of ξ_M at times t is $\ell_{e^{t\xi}}$, we have

$$[\xi_M, \eta_M](x) = \frac{d}{dt}\Big|_{t=0} (T_x \ell_{e^{t\xi}})^{-1} (\eta_M(e^{t\xi}x))$$

By the first part of the proposition,

$$(T_x \ell_{e^{t\xi}})^{-1} (\eta_M(e^{t\xi}x)) = (\operatorname{Ad}_{e^{-t\xi}} \eta)_M(x)$$

Taking the derivative, we obtain $[\xi_M, \eta_M] = -[\xi, \eta]_M$.

So the linear map from \mathfrak{g} to $\mathcal{C}^{\infty}(M, TM)$ sending ξ into ξ_M is a Lie algebra anti-morphism. This map may be viewed as the differential of the group morphism from G into $\operatorname{Diff}(M)$ sending g into ℓ_g . If G is simply connected and H is another Lie group, it is a well-known result that any Lie algebra morphism from \mathfrak{h} to the Lie algebra of H is the differential of a Lie group morphism from H to G. The extension of this result to the case H is the group of diffeomorphisms of M is the Palais' theorem.

Theorem 3.2.2. Let G be a simply connected Lie group with Lie algebra \mathfrak{g} . Let ρ be a Lie algebra anti-morphism from \mathfrak{g} to the Lie algebra of vector fields of a manifold M. Assume that $\rho(\xi)$ is complete for any $\xi \in \mathfrak{g}$. Then there exist a unique left action of G on M with infinitesimal representation ρ .

Consider again a Lie group G acting on a manifold M. Let ω be a G-invariant 2-form and μ be an equivariant map from M to \mathfrak{g}^* . Here the equivariance is with respect to the coadjoint action, that is

$$\mu(g.x) = \operatorname{Ad}_{g^{-1}}^* \mu(x), \qquad \forall x \in M, g \in G$$

Equivalently, for any $\xi \in \mathfrak{g}$,

$$\langle \mu(g.x), \xi \rangle = \langle \mu(x), \operatorname{Ad}_{g^{-1}} \xi \rangle.$$

We call (ω, μ) an *equivariant 2-form*. We say that (ω, μ) is closed if the following equations hold

$$d\omega = 0, \qquad \omega(\xi_M, \cdot) + d\mu(\xi) = 0, \quad \forall \xi \in \mathfrak{g}.$$
(3.3)

As the name suggest it, the closed equivariant 2-forms are the closed 2-cochains of the complex of equivariant differential forms, defined as

$$\Omega^k_G(M) = \sum_{2i+j=k} \left(S^i \mathfrak{g}^* \otimes \Omega^j(M) \right)^G, \qquad d_G = d + \iota_{\xi_M}$$

In the sequel we will only consider $\Omega_G^2(M)$. In symplectic geometry, a map μ satisfying the second equation of (3.3) is called a *momentum* of the action. An action that admits a momentum is called a *Hamiltonian* action. Here we will use this terminology even when ω is degenerate.

Lemme 3.2.3. Let (ω, μ) be a closed equivariant 2-form. Then for any $\xi, \eta \in \mathfrak{g}$, $\langle \mu, [\xi, \eta] \rangle + \omega(\xi_M, \eta_M) = 0$

Proof. By the momentum equation, we have that $\omega(\xi_M, \eta_M) = \xi_M . \langle \mu, \eta \rangle$. By definition of the infinitesimal action corresponding to ξ ,

$$(\xi_M.\langle\mu,\eta\rangle)(p) = \frac{d}{dt}\Big|_{t=0} \langle\mu,\eta\rangle(e^{t\xi}.p)$$

 μ being equivariant, we have

$$\langle \mu(e^{t\xi}.p),\eta\rangle = \langle \mu(p), \mathrm{Ad}_{e^{-t\xi}}\eta\rangle$$

and the derivative with respect to t at t = 0 is equal to $\langle \mu(p), -[\xi, \eta] \rangle$.

3.2.2 Action on prequantum bundle

We call a prequantum bundle endowed with an action of a Lie group G by prequantum bundle automorphisms, a *G*-prequantum bundle. Next proposition shows that the actions on prequantum bundles lift Hamiltonian actions.

Proposition 3.2.4. Let (P, α) be a *G*-prequantum bundle with projection π , base *M* and curvature ω . Then the map $\mu : M \to \mathfrak{g}^*$, defined by

$$\pi^*\mu(\xi) + \alpha(\xi_P) = 0, \qquad \forall \xi \in \mathfrak{g},$$

is a momentum of the induced action on (M, ω) . Furthermore ω is G-invariant.

Proof. Since G acts by prequantum bundle automorphisms, the infinitesimal action of any $\xi \in \mathfrak{g}$ is an infinitesimal automorphism of (P, α) . By Proposition 3.1.1, we have that

$$\xi_P = \xi_M^{\text{hor}} - (\pi^* \mu^\xi) \partial_\theta$$

for a unique function μ^{ξ} satisfying $\omega(\xi_M, \cdot) + d\mu^{\xi} = 0$. This defines the momentum μ . Let us check the equivariance condition. By lemma 3.2.1, the tangent linear map to the action of g on P sends ξ_P into $(\operatorname{Ad}_q \xi)_P$. So

$$\begin{aligned} \langle \alpha |_{gx}, \xi_P(gx) \rangle &= \langle \alpha |_{gx}, T_x \ell_g((\mathrm{Ad}_{g^{-1}} \xi)_P(x)) \rangle \\ &= \langle \alpha |_x, (\mathrm{Ad}_{g^{-1}} \xi)_P(x) \rangle \end{aligned}$$

because the action of G preserves α .

Let us address the converse question. Let us start with a closed equivariant 2-form (ω, μ) . Assume that ω is the curvature of a prequantum bundle (P, α) . Then the momentum defines a linear map from \mathfrak{g} to $\operatorname{aut}(P, \alpha)$

$$\xi \in \mathfrak{g} \to \xi_M^{\mathrm{hor}} - \pi^* \mu^{\xi} \partial_{\theta} \in \mathrm{aut}(P, \alpha)$$

By Proposition 3.1.1 and Lemma 3.2.3, this map is Lie algebra anti-morphism. Can we integrate this in a G-action ? A necessary condition is that these vector fields are complete. This is guaranted by Proposition 3.1.4. When G is simply connected, we deduce from Theorem 3.2.2 the following

Proposition 3.2.5. Let (P, α) be a prequantum bundle with base M and curvature ω . Assume G is a connected and simply connected Lie group acting on (M, ω) with an equivariant momentum μ . Then there exists a unique lift to $\operatorname{Aut}(P, \alpha)$ of the action on M such that the corresponding momentum is μ .

More generally, assume G is connected but not necessarily simply connected. Recall that the universal covering group of G is a connected Lie group \tilde{G} , together with a surjective homomorphism $p: \tilde{G} \to G$, such that ker p is a discrete subgroup of \tilde{G} which is canonically isomorphic to the fundamental group $\pi_1(G)$. Since the differential of π is an isomorphism, we identify the Lie algebra of \tilde{G} with \mathfrak{g} .

Assume G acts on (M, ω) with an equivariant momentum, then the same holds for \tilde{G} and by Proposition 3.2.5, the action of \tilde{G} lifts to $\operatorname{Aut}(P, \alpha)$. Then by Proposition 3.1.6, $\pi_1(G)$ acts by \mathbb{T} , in the sense that for each $g \in \pi_1(G)$, there exists $\theta_g \in \mathbb{T}$ such that the action of g is the multiplication by θ_g . In the case $\pi_1(G)$ acts trivially, the action $\tilde{G} \to \operatorname{Aut}(P, \alpha)$ factors to an action of G.

Example 3.2.6. Let S^2 be the unit sphere of \mathbb{R}^3 equipped the SO(3)-invariant volume form ω such that $\int_{S^2} \omega = V$. Consider the circle action by rotations around the z-axis. Then, the function $\mu = Vz/2$ is a momentum of this action. Here we identify with \mathbb{R} the dual of the Lie algebra \mathbb{R} of \mathbb{R}/\mathbb{Z} .

Assume that V is an integer and introduce a prequantum bundle (P, α) over M with curvature ω . Then by proposition 3.2.5, we obtain an action ρ :

subsequence if necessary, we deduce from the properness assumption that (g_n) converges. Its limit g satisfies g.p = p, and the action being free, g = 1. This contradicts the fact that φ is into on a neighborhood of (1, p).

Using Proposition 3.2.1, we deduce from the first condition that φ is a local diffeomorphism. So its image is open. Since it is into, it is a diffeomorphism onto its image.

Such a submanifold is called a *slice* at p. This lemma has many consequences. First, observe that the orbit are closed submanifolds of M, diffeomorphic to G. Furthermore the quotient M/G, endowed with the quotient topology, is Hausdorff. Also the orbit space M/G inherits a manifold structure as explained in the next proposition. Denote by p_M the projection from M onto M/G.

Proposition 3.2.8. If the action is free and proper, then M/G, endowed with the quotient topology, has a unique differential structure such that for any slice S, the map from S to $p_M(S)$ sending x to $p_M(x)$ is a diffeomorphism.

Proof. For any slice S, $p_M(S)$ is an open set of M/G and the restriction of p_M to S is a homeomorphism from S to $p_M(S)$. So we have a chart

$$C_S = (p_M(S), (p_M|_S)^{-1} : p_M(S) \to S).$$

One checks easily that these charts are compatible. Then we endow M/G with the maximal atlas containing these charts.

Observe that the projection p_M is a smooth submersion and for any $x \in M$, the kernel of the tangent linear map to p_M is given by

$$\ker(T_x p_M) = T_x(G.x) = \{\xi_M(x) / \xi \in \mathfrak{g}\}.$$

A form on M which is the pull-back of a form on M is called a basic form. The following characterization of the basic form is proved exactly as Lemma 1.2.2.

Proposition 3.2.9. Assume the action is free and proper so that M/G is a manifold. Then the pull-back $p^* : \Omega(M/G) \to \Omega(M)$ is into and its image consists in the forms $\omega \in \Omega(M)$ which are G-invariant and such that $\iota_{\xi_M} \omega = 0$ for any $\xi \in \mathfrak{g}$.

3.2.4 Quotient of prequantum bundles

Let $\pi: B \to M$ be a T-principal bundle equipped with a *G*-action by automorphisms, that is an action of *G* commuting with the T-action. This action lifts an action of *G* on the base *M*. Assume this latter action is free and proper. Then we have the following

Lemme 3.2.10. The quotient B/G is the total space of a \mathbb{T} -principal bundle with base M/G. The projection is the map sending the class of $y \in P$ to the class of $\pi(y)$. The action of $\theta \in \mathbb{T}$ sends [y] into $[\theta.y]$.

 $\mathbb{R} \to \operatorname{Aut}(P, \alpha)$ with momentum μ . The subgroup \mathbb{Z} acts through \mathbb{T} . This latter action is easy to compute at fixed points of S^2 , for instance at the north pole, by using Proposition 3.1.4. We obtain that $\rho(n) = Vn/2 \mod \mathbb{Z}$. So ρ factors to a morphisms from \mathbb{R}/\mathbb{Z} to $\operatorname{Aut}(P, \alpha)$ if and only if V is even. Observe that we can shift the momentum by a constant without changing the action. Furthermore the action lifts to the prequantum bundle with corresponding momentum Vz/2+C if and only if V/2 + C is integer.

Consider now the SO(3) action on S^2 . Identify the Lie algebra of SO(3) with \mathbb{R}^3 so that the vector (x, y, z) corresponds to the matrix

$$2\pi \left[\begin{array}{ccc} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{array} \right]$$

Then the action has the momentum $\mu(u) = (V/2).u$. By proposition 3.2.5, this action lifts to a morphism $SU(2) \to \operatorname{Aut}(P, \alpha)$. This latter action descends to a morphism $SO(3) \to \operatorname{Aut}(P, \alpha)$ if and only if V is even.

3.2.3 Quotient by a free and proper action

Consider a Lie group G acting on a manifold M. Recall that the action is said to be *proper* if the map from $G \times M$ to $M \times M$ sending (g, m) into (m, g.m) is proper.

Lemme 3.2.7. Assume that the action is free and proper. Then for any point $p \in M$, there exists a submanifold S of M containing p such that G.S is open in M and the map

$$G \times S \to G.S, \qquad (g, x) \to g.x$$

is a diffeomorphism.

Proof. Since the action is free, it is locally free, meaning that for any $x \in M$, the linear map

$$\mathfrak{g} \to T_x M, \qquad \xi \to \xi_M(x)$$

is into. So the subset \mathcal{D} of TM consisting of the $\xi_M(x), \xi \in \mathfrak{g}, x \in M$ is a subbundle of TM, with rank the dimension of G. Consider any submanifold S of M containing x and such that $\mathcal{D}_p \oplus T_p S = T_p M$. Replacing S by $S \cap V$, where V is a neighborhood of p, we have that

- 1. for any $x \in S$, $\mathcal{D}_x \oplus T_x S = T_x M$
- 2. the map $\varphi: S \times G \to M$ sending (x, g) into g.x is into.

Let us prove the second condition by contradiction. Observe first that the map is into on a neighborhood of (p, 1) by the local inversion theorem. Assume that there exists sequences (x_n) , (x'_n) , (g_n) and (g'_n) of S and G respectively such that $x'_n \neq x_n$, $g_n x_n = g'_n x'_n$ and (x_n) , (x'_n) converge to p. Then replacing g_n by $(g'_n)^{-1}g_n$ we may assume that $g'_n = 1$ for any n. Next, replacing (g_n) by a

Proof. Since the *G*-action on *M* is free and proper, the same holds for the *G*-action on *B*, so the quotient B/G has a natural manifold structure. Since the projection from *B* to *M* is *G*-equivariant, it descends to a smooth map from B/G to M/G. The T-action commuting with the *G*-action, it descends to a smooth T-action on B/G.

Since the G-action on M is free, for any $x \in M$, the projection p_B from B to B/G restricts to a T-equivariant bijection

$$p_{B,x}: B_x \to (B/G)_{[x]}.$$

This has the first consequence that the T-orbits of B/G are the fibers of the projection $B/G \to M/G$. Let us contruct local trivialisations. Consider a slice S of the G action on M, such that $B|_S$ is isomorphic to $S \times \mathbb{T}$. Then $B|_S$ is a slice of the G-action on B. We then have the T-principal bundle isomorphisms

$$(B/G)|_{p_M(S)} \simeq B|_S \simeq S \times \mathbb{T} \simeq p_M(S) \times \mathbb{T},$$

which ends the proof.

Assume now B has a connection α and that the G-action preserves it.

Lemme 3.2.11. There exists $\alpha^{B/G} \in \Omega^1(B/G)$ such that $p_B^* \alpha^{B/G} = \alpha$ if and only if the momentum associated to the G-action is identically null. In the case it exists, $\alpha^{B/G}$ is unique and is a connection of B/G.

Proof. By Proposition 3.2.9, α is basic if and only if the momentum vanishes identically.

To summarize we have proved the following result.

Proposition 3.2.12. Let G be a Lie group acting on a prequantum bundle (P, α) by prequantum bundle automorphisms. Assume that the corresponding action on the base M is free, proper and its momentum vanishes. Then P/G is the total space of a prequantum bundle with base M/G and connection form $\alpha^{B/G}$ such that

$$p_B^* \alpha^{B/G} = \alpha,$$

with p_B the projection from B to B/G. Furthermore the curvature $\omega^{B/G}$ of $\alpha^{B/G}$ satisfies $p_B^* \omega^{B/G}$ where ω is the curvature of α .

Observe that the pull-back of a G-prequantum bundle by a G-equivariant map is a G-prequantum bundle. In particular the restriction of a G-prequantum bundle to a G-invariant submanifold is a G-prequantum bundle.

3.2.5 Symplectic reduction

Proposition 3.2.13. Let (M, ω) be a symplectic manifold. Let G be a Lie group acting on M in a Hamiltonian way with momentum $\mu : M \to \mathfrak{g}^*$. Assume that the restriction of the action to $\mu^{-1}(0)$ is free and proper. Then

3.2. LIE GROUP ACTION AND REDUCTION

- μ is a submersion onto 0, so that $\mu^{-1}(0)$ is a submanifold of M.
- the quotient M//G of μ⁻¹(0) by G has a natural symplectic form ω^{M//G} satisfying

$$p^*\omega^{M/\!\!/G} = j^*\omega$$

where j is the embedding of $\mu^{-1}(0)$ into M and p is the projection from $\mu^{-1}(0)$ to $\mu^{-1}(0)/G$

The quotient $\mu^{-1}(0)/G$ is called the *symplectic reduction* of M by G and is denoted by $M/\!\!/G$.

Proof. For any $x \in M$, let $\mathfrak{g}_x = \{\xi \in \mathfrak{g} | \xi_M(x) = 0\}$ and $\mathcal{D}_x = \{\xi_M(x) | \xi \in \mathfrak{g}\}$. \mathfrak{g}_x is the Lie algebra of the isotropy group G_x of x. But for the proof, we only need to know that $\mathfrak{g}_x = \{0\}$ if $G_x = (0)$. Because of the momentum equation, the adjoint of the linear map

$$\mathfrak{g} \to T_x^*M, \qquad \xi \to \omega(\xi_M(x), \cdot)$$

is the tangent linear map $T_x\mu: T_xM \to \mathfrak{g}^*$. So the kernel of $T_x\mu$ is the symplectic orthogonal of \mathcal{D}_x and the image of $T_x\mu$ is the orthogonal of \mathfrak{g}_x . Since the action on $\mu^{-1}(0)$ is free, for any $x \in \mu^{-1}(0)$, $\mathfrak{g}_x = 0$ so that $T_x\mu$ is onto. This shows that $\mu^{-1}(0)$ is a submanifold of M, its tangent space at x being the kernel of $T_x\mu$.

The action on $\mu^{-1}(0)$ being free and proper, the quotient of $\mu^{-1}(0)$ has a natural differential structure. Furthermore, the tangent linear map to the projection $p: \mu^{-1}(0) \to \mu^{-1}(0)/G$ induces an isomorphism

$$T_{p(x)}(\mu^{-1}(0)/G) \simeq T_x(\mu^{-1}(0))/\mathcal{D}_x$$

As we have seen, the symplectic orthogonal of $T_x(\mu^{-1}(0)) = \ker(T_x\mu)$ is \mathcal{D}_x . The inclusion $\mathcal{D}_x \subset (T_x(\mu^{-1}(0)))^{\perp_{\omega}}$ has the consequence that the restriction of ω to $\mu^{-1}(0)$ is basic. So it descends to $\omega^{M/\!/G} \in \Omega^2(M/G)$. ω being closed, $\omega^{M/\!/G}$ is closed. Furthermore, since $(T_x(\mu^{-1}(0)))^{\perp_{\omega}} \subset \mathcal{D}_x, \omega^{M/\!/G}$ is non-degenerate. \Box

The quotient M///G is called the *symplectic reduction* of M by G. As a consequence of the results of the previous section, we can consider symplectic reduction of prequantum bundle.

Proposition 3.2.14. Let (P, α) be a *G*-prequantum bundle with curvature a non-degenerate form and with corresponding momentum $\mu : M \to \mathfrak{g}^*$. Assume that the restriction of the action to $\mu^{-1}(0)$ is free and proper, so that $\mu^{-1}(0)$ is a submanifold of *M*. Denote by *j* the injection of $\mu^{-1}(0)$ into *M*. Then the quotient by *G* of the restriction of (P, α) to $\mu^{-1}(0)$ is a prequantum bundle with base $M/\!\!/ G$ and curvature $\omega^{M/\!\!/ G}$.

To end this section, we revisit the example of the dual of the tautological bundle of $\mathbb{CP}(n)$.

Example 3.2.15. Consider as in Section 1.4 the dual of the tautological bundle of $\mathbb{CP}(n)$. The associated circle prequantum bundle is $S^{2n+1} \to \mathbb{CP}^n$ with action and connection given by

$$\theta.y = (e^{-2i\pi\theta}y_0, \dots, e^{-2i\pi\theta}y_n), \qquad \alpha = \frac{i}{4\pi} \sum_{j=0,\dots,n} (y_j d\bar{y}_j - \bar{y}_j dy_j).$$

We will show that this prequantum bundle can be obtained by a symplectic reduction from $M = \mathbb{C}^{n+1}$. Let P be the trivial \mathbb{T} -principal bundle with base \mathbb{C}^{n+1} and connection α^P given by

$$\alpha^P = d\theta - \frac{i}{4\pi} \sum_j (y_j d\bar{y}_j - \bar{y}_j dy_j).$$

Consider the group \mathbb{T} acting on \mathbb{C}^{n+1} by

$$\rho_M(\theta)(y) = e^{2i\pi\theta}y = (e^{2i\pi\theta}y_0, \dots, e^{2i\pi\theta}y_n)$$

This action has the momentum $\mu = |y|^2 - 1$. The corresponding lift to P is the action

$$\rho_P(\theta)(y,t) = (e^{2i\pi\theta}y, t+\theta).$$

Observe that $\mu^{-1}(0) = S^{2n+1}$ and so $P|_{\mu^{-1}(0)} = S^{2n+1} \times \mathbb{T}$. The diffeomorphism

$$P|_{\mu^{-1}(0)} \to S^{2n+1} \times \mathbb{T}, \qquad (y,t) \to (ye^{-2i\pi t},t)$$

intertwins the ρ_P action with the action given by $\theta(y,t) = (y,t+\theta)$. So the map

$$p: P|_{\mu^{-1}(0)} \to S^{2n+1}, \qquad (y,t) \to ye^{-2i\pi t}$$

induces a diffeomorphism from the quotient of $P|_{\mu^{-1}(0)}$ by ρ_P to S^{2n+1} . Furthermore,

$$p(y, \theta + t) = e^{-2i\pi\theta}p(y, t), \quad p^*\alpha = \alpha^F$$

which shows that we recover the \mathbb{T} -action on S^{2n+1} and the connection α .