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Chapitre 1

First lecture - Sept 12

1. The local Langlands correspondence

1.1. Notations. Fix a prime number p. We need the following datum
— E is a finite degree extension of Qp with residue field Fq and uniformizer π

— We fix an algebraic closure E of E and let

ΓE = Gal(E|E)

and

WE ⊂ ΓE

be the associated Weil group of elements of ΓE acting as Frobnq for some n ∈ Z ⊂ Ẑ
on the residue field.

— G is a reductive group over E
— We fix some ℓ ̸= p and consider Qℓ an algebraic closure of Qℓ

We let
LG = “G⋊ ΓE

be the associated L-group over Z (seen as a pro-algebraic group). Here “G is a split reductive
group over Z equipped with an action of ΓE factorizing through an open subgroup of ΓE .

Example 1.1. (1) If G = T is a torus then T̂ = X∗(T ) ⊗Z Gm with the ΓE action
deduced from the one on X∗(T )

(2) If G = GLn/E then “G = GLn with trivial ΓE action

(3) If G = SLn/E then “G = PGLn with trivial ΓE action

(4) If K|E is a quadratic extension with Galois group {Id, ∗}, A ∈Mn(K) is hermitian
non-degenerate, i.e. satisfies tA∗ = A and det(A) ̸= 0, the associated unitary group

G such that G(E) = {B ∈ GLn(K) | BA tB∗ = A} satisfies “G = GLn with the action
of ΓE factorizing through Gal(K|E) and where the non-trivial element of the Galois

group acts as g 7→ w tg−1w where w =

á
1

−1
1

. .
.

ë
1.2. The local Langlands correspondence.
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1.2.1. Smooth representations. Let Λ be a Z
[
1
p

]
-algebra. Recall the following definition.

Definition 1.2. A smooth representation of G(E) with coefficients in Λ is a Λ-module
M equipped with a linear action of G(E) such that the stabilizer of any vector is open
in G(E). We note

RepΛ(G(E))

for the category of smooth representations with coefficients in Λ.

Let

C (G(E),Λ)

be the Λ-module of locally constant with compact support functions on G(E) with coefficients
in Λ. Let

HΛ(G(E)) = HomΛ(C (G(E),Λ),Λ)

be the Hecke convolution algebra of distributions on G(E) with coefficients in Λ that are
smooth with compact support. The choice of a Haar measure µ on G(E) with values in Z

[
1
p

]
defines an isomorphism

C (G(E),Λ)
∼−−→ HΛ(G(E))

f 7−→ fµ

where the ring structure on C (G(E)) is now given by (f ∗ g)(x) =
∫
G(E) f(xy

−1)g(y)dµ(y).

For each K ⊂ G(E) an open pro-p subgroup there is associated an idempotent

eK ∈HΛ(G(E))

given by ⟨eK , φ⟩ =
∫
K φ where, in this formula, the integration on K is with respect to the

Haar measure with volume 1. In other words, eK = 1
µ(K)1K ∈ C (G(E)) via the preceding

identification. Then, one has eK ∗ eK′ = eK if K ⊂ K ′ and

HΛ(G(E)) =
⋃
K

eK ∗H (G(E),Λ) ∗ eK︸ ︷︷ ︸
HΛ(K\G(E)/K)

where H (K\G(E)/K) is the Hecke algebra of K-bi-invariant distributions on G(E) with
compact support.

To any π ∈ RepΛ(G(E)) with associated Λ-module Mπ, one can associate a module over
H (G(E),Λ) by setting for m ∈Mπ and T ∈H (G(E),Λ),

T.m =

∫
G(E)

π(g).m dT (g).

One then has

eK .Mπ =MK
π

as an H (K\G(E)/K,Λ)-module. This induces an equivalence

{smooth rep. of G(E) wt. coeff. in Λ} ∼−−→ {HΛ(G(E))-modules M s.t. M = ∪KeK .M}.
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One verifies that if Λ is a field and K is compact open with order invertible in Λ this
induces an equivalence

{π ∈ RepΛ(G(E)) irreducible s.t. πK ̸= 0} ∼−−→ {irreducible HΛ(K\G(E)/K)-modules }.

1.2.2. Langlands parameters. The local Langlands correspondence seeks to attach to any
irreducible π ∈ RepQℓ

(G(E)) a Langlands parameter

φπ :WE −→ LG(Qℓ).

Here the terminology “Langlands parameter” means
— that the composite of φπ with the projection to ΓE is the canonical inclusionWE ⊂ ΓE

i.e. φπ is given by a 1-cocycle WE → “G(Qℓ),

— that moreover this cocycle takes values in “G(L) where L is a finite degree extension of
Qℓ,

— that this cocycle with values in “G(L) is continuous.
Remark 1.3. There’s a way to make this notion of Langlands parameter independent of

the choice of the ℓ-adic topology. In fact, Grothendieck’s ℓ-adic monodromy theorem (“any
ℓ-adic representation is potentially semi-stable”) applies in this context and a Langlands pa-
rameter φ :WE → LG(Qℓ) as before is in fact the same as a couple (ρ,N) where

— ρ : WE → LG(Qℓ) is a Langlands parameter that is trivial on an open sub-group of
WE,

— N ∈ gQℓ
(−1) is nilpotent and satisfies : ∀τ ∈ WE , Ad ρ(τ).N = qv(τ)N where τ acts

as Frob
v(τ)
q on the residue field.

The couples
(ρ,N)

are the so-called Weil-Deligne parameters. There is a 1-cocycle tℓ : WE → Zℓ(1) sending

τ to
(
τ(π1/ℓ

n
)/π1/ℓ

n)
n≥1

. The correspondence sends (ρ,N) to the parameter φ such that for

τ ∈WE,
φ(τ) = ρ(τ) exp(tℓ(τ)N)⋊ τ.

Nevertheless, since we fix a prime number ℓ in our work with Scholze we prefer to give
a formulation using the ℓ-adic topology. This is justified by the fact that we construct such
parameters over Fℓ too and our correspondence is compatible with mod ℓ reduction.

One last remark : φπ is only defined up to “G(Qℓ)-conjugation i.e. we see it as an element

of H1(WE , “G(Qℓ)). Up to now the local Langlands correspondence is a map

IrrQℓ
(G(E))/ ∼ −→ {φ :WE → LG(Qℓ)}/“G(Qℓ)

i.e. a map between isomorphism classes of object. We will later see this correspondence
has some categorical flavors (and this is quite important since at the end we formulate a real
categorical local Langlands correspondence with Scholze) but up to now we deal with objects
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up to isomorphisms

1.2.3. What to expect from the local Langlands correspondence. Here is what we expect
from the local Langlands correspondence.

(1) Frobenius semi-simplicity First, there is one condition on φπ : this has to be
Frobenius semi-simple in the sense that the associated couple (ρ,N) has to be such
that for all τ , ρ(τ) is semi-simple (i.e. ρ(τ) is semi-simple for a τ satisfying v(τ) = 1).

(2) Finiteness of the L-packets The fibers of {π} 7→ {φπ} are finite : those are the
so-called L-packets

(3) Description of the image When G is quasi-split the correspondence {π} 7→ {φπ}
should be surjective. For other G, there is so-called relevance condition so that a
parameter φ : WE → LG(Qℓ) is isomorphic to some φπ if and only if as soon as φ

factorizes (up to “G(Qℓ)-conjugacy) through some parabolic subgroup LP (Qℓ) where
P is a parabolic subgroup of G∗ then P transfers to G.

For example : if G = D× where D is a central division algebra over E with

[D : E] = n2 then a Langlands parameter φ : WE −→ GLn(Qℓ) = “G(Qℓ) is relevant
if and only if φ, as a linear representation of WE , is indecomposable.

(4) Compatibility with local class field theory If G = T is a torus class field theory
gives an isomorphism of groups

Hom(T (E),Q×
ℓ )

∼−−→ H1(WE ,
LT (Qℓ))

this has to be the cloal Langlands correspondence for tori. Typically, when T is a
spli torus, there is an Artin reciprocity isomorphism

T (E)
∼−−→W ab

E ⊗Z X∗(T )

deduced from
ArtE : E× ∼−−→W ab

E ,

and this isomorphism induces the local Langlands correspondence for T .

(5) Compatibility with the unramified local Langlands correspondence (Sa-
take isomorphism) If G is unramified, K is hyperspecial, after the choice of a
square root of q in Qℓ, there is a Satake isomorphism given by a constant term map

H (K\G(E)/K)
∼−−→H (T (OE)\T (E)/T (OE))

W

where T is an unramified torus coming from an integral model associated to the
choice of K. If A ⊂ T is the maximal split torus inside T then

H (T (OE)\T (E)/T (OE))
W = H (A(OE)\A(E)/A(OE))

W

that is identified with

Qℓ[X∗(A)]
W = Qℓ

[
X∗(Â )

]W
.

If π is such that πK ̸= 0 then the irreducible module πK over the spherical Hecke
algebra thus defines a character

Qℓ

[
X∗(Â)

]W −→ Qℓ
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that is to say an element of Â(Qℓ)/W . One can prove that this is the same as an
element of

{unramified (semi-simple) φ :WE/IE → LG(Qℓ)} / “G(Qℓ)

(6) Compatibility with Kazhdan-Lusztig depth 0 local Langlands

If G is split and I is an Iwahori subgroup of G(E) then the category

RepIQℓ
(G(E))

of π ∈ RepQℓ
(G(E)) generated by πI form a block in RepQℓ

(G(E)) in the sense that

there is an indecomposable idempotent e in the Bernstein center of RepQℓ
(G(E))

such that

e.RepQℓ
(G(E)) = RepIQℓ

(G(E)).

This is the so-called central block. This category is then identified with the category
of modules over the Iwahori-Hecke algebra

H (I\G(E)/I).

The identification of this Iwahori-Hecke algebra with the equivariant K-theory of
the Steinberg variety has allowed Kazhdan and Lusztig to give a parametrization of

irreducible H (I\G(E)/I)-modules as couples (s,N) where s ∈ “G(Qℓ) is semi-simple
and N ∈ ĝQℓ

is nilpotent and satisfies Ad(s).N = qN . We ask that this is the local

Langlands correspondence in this case.

(7) Compatibility up to semi-simplification with parabolic induction

We say a parameter φ is semi-simple if the associated Weil-Deligne Langlands
parameter (ρ,N) is such that N = 0. Equivalently, φ|IE is trivial on an open sub-
group. For a parameter φ we can define φss its semi-simplification. Then, if P is a
parabolic subgroup with Levi subgroupM we ask the following : for π an irreducible
smooth representation ofM(E), if π′ is an irreducible subquotient of the finite length
representation

Ind
G(E)
P (E) π

(normalized parabolic induction), then

φss
π′

is the composite of φss
π with the inclusion LM(Qℓ) ↪→ LG(Qℓ).

Let us remark that, of course, this is false without the semi-simplification since
the Steinberg representation of GLn(E) and the trivial one do not have the same
Langlands parameters.

(8) Categorical flavor : description of supercuspdial L-packets

We are now introducing some categorical flavor inside the Langlands parameters :
we are not looking at the set quotient

{φ :WE → LG(Qℓ)}/“G(Qℓ)

but the quotient as a groupoid
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[
{φ :WE → LG(Qℓ)}/“G(Qℓ)

]
,

and thus

{φ :WE → LG(Qℓ)}/“G(Qℓ) = π0
[
{φ :WE → LG(Qℓ)}/“G(Qℓ)

]
.

Suppose G is quasi-split (we will see later, following the work of Vogan, Kottwitz
and Kaletha what to do in the non-quasi-split case). For a parameter φ we define

Sφ = {g ∈ “G(Qℓ) | gφg−1 = φ}.

This is the automorphism group of φ in the preceding groupoid. There is always an
inclusion

Z(“G)(Qℓ)
ΓE ⊂ Sφ.

We say that φ is cuspidal if it is semi-simple and Sφ/Z(“G)(Qℓ)
ΓE is finite. We say a

packet is supercuspidal if all of its elements are supercuspidal. Then

{supercuspidal L-packets} ∼−−→ {φ :WE → LG(Qℓ) cuspidal }/“G(Qℓ).

Moreover, the choice of a Whittaker datum defines a bijection for φ a cuspidal
parameter

Irr(Sφ/Z(“G)(Qℓ)
ΓE︸ ︷︷ ︸

finite group

)
∼−−→ L-packet associated to φ

where the trivial representation should correspond to the unique generic (with
respect to the choice of the Whittaker datum) representation of the L-packet.

(9) Local global compatibility

Let K be a number field and Π be an algebraic automorphic representation of
G where now G is a reductive group over K. Conjecturally, Πf is defined over a
number field as a smooth representation of G(Af ). Let us fix an embedding of this

number field inside Qℓ. Then one should be able to attach to Π an ℓ-adic Langlands
parameter

φΠ : Gal(K|K) −→ LG(Qℓ).

For a place v of K dividing p ̸= ℓ,

φΠ |WKv

depends only on Πv and is given up to conjugation by

φΠv .
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2. Background on the global Langlands correspondence and global Langlands
parameters

Let G be a reductive group over a number fieldK. Let Π be an automorphic representation
of G i.e. an irreducible sub-quotient of the space of automorphic forms on G. As an abstract
representation

Π ≃
⊗
v

Πv

where v goes through the places of K. If v|∞, the local Langlands correspondence is known
for Πv is known and we can define

φΠv :WKv −→L GC.

There is a natural morphism

C× −→WKv

that is an isomorphism if Kv ≃ C and fits into a non-split exact sequence

1 −→ C× −→WKv −→ Gal(C|R) −→ 1

if Kv ≃ R.

Definition 2.1. An automorphic representation Π of G is algebraic if for all v|∞,

φΠv |C× : C× −→ “G(C) is algebraic i.e. is given by an algebraic morphism SC → “GC
where S is Deligne’s torus ResC|RGm via the inclusion C× = S(R) ↪→ S(C).

It is the same as to ask that for all v|∞, Πv has the same infinitesimal character as the
one of an algebraic irreducible finite dimension representation of the algebraic group GKv

with coefficients in C.

Conjecturally there exists a global Langlands group

LK

that is a locally compact topological group sitting in an exact sequence

1 −→ L ◦
K −→ LK −→ Gal(K|K) −→ 1

and with an identification

LK/(L
◦
K)′ =WK

the global Weil group. Moreover, on expects the following.
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Conjecture 2.2. The following is expected :

(1) To each automorphic representation Π of G one can associate a Langlands
parameter

φΠ : LK −→L GC

compatibly with the local Langlands correspondence at archimedean places and
the unramified one at almost all finite places

(2) If Π is algebraic then Πf is defined over a number field inside C and to the

choice of an embedding of such a number field inside Qℓ is associated an ℓ-adic
Langlands parameter

φΠ,ℓ : Gal(K|K) −→L GQℓ

(3) The Tannakian category of continuous representations of LK on finite di-
mensional C-vector spaces that are algebraic is identified with the category of
Grothendieck motives for numerical equivalence with C coefficients.

This is known for tori when we consider the category of CM-motives for absolute Hodge
cycles.

The construction of the ℓ-adic Langlands parameters is know for cohomological automor-
phic representations of GLn. Other cases are known using the cohomology of Shimura varieties.

For example, if f =
∑

n≥1 anq
n is a normalized weight k ≥ 1 holomorphic modular form

for Γ0(N) that is new and an Hecke eigenvector of the Hecke operators (Tp)p ̸ |N then one can
associate (Shimura, Deligne, Deligne-Serre) a Galois representation

ρf : Gal(Q|Q) −→ GL2(Qℓ)

such that for p ̸ | N , that characteristic polynomial of ρf (Frobp) is X
2 − apX + pk−1.

3. What we do with Scholze

We prove the following theorem.

Theorem 3.1 (F.-Scholze). For ℓ a good prime with respect to G (any ℓ if G = GLn,
ℓ ̸= 2 for classical groups) there exists a monoidal action of the category of perfect
complexes

Perf(LocSys“G/Zℓ
)

on
Dlis(BunG,Zℓ)

where LocSys“G → Spec(Z
[
1
p

]
) is the moduli space of Langlands parameter, an algebraic

stack locally complete intersection of dimension 0 over Spec(Z
[
1
p

]
).

As a consequence we can construct the semi-simple local Langlands correspondence

π 7→ φss
π
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for any reductive group over E, over Fℓ and Qℓ (and compatibly with mod ℓ reduction).

As for now the statement of the local Langlands conjecture is the following.

Conjecture 3.2 (Categorical local Langlands). Suppose G is quasi-split and fix a
Whittaker datum (B,ψ). Suppose ℓ is a good prime. There exists an equivalence of
stable ∞-categories

Db
coh(LocSys“G/Zℓ

)nilp.ss.supp
∼−−→ Dlis(BunG,Zℓ)

ω

compatible with the preceding spectral action and sending the structural sheaf O to the
Whittaker sheaf.

The goal of those lectures is to explain how after 20 years of work, starting from the
classical local Langlands correspondence in terms of parameters of smooth irreducible re-
presentations as in the work of Harris-Taylor, we arrived at such a statement and what are
those geometric objects showing up in the preceding statement, starting with the so-called
Lubin-Tate spaces continuing with Rapoport-Zink spaces, Hodge-Tate periods, the curve and
so on.





Chapitre 2

Second lecture - Sept 19

Problem : construct the local Langlands correspondence for a given group using local-
global compatibility + some known cases of the global construction of ℓ-adic parameters via
the cohomology of Shimura varieties.

More precisely, if Π ≃
⊗

v Πv is a cohomological automorphic representation of G defined
over a number field Q and

Π 7−→ rµ ◦ φΠ|Gal(Q|L)

via the cohomology of Shimura varieties where
— φΠ : Gal(Q|Q)→ LG(Qℓ) is the expected global ℓ-adic parameter,
— L is the reflex field associated to the Shimura variety, a number field inside C,
— rµ ∈ RepQℓ

(“G ⋊ Gal(Q|L)) is an algebraic representation associated to our Shimura

datum
one expects that for p ̸= ℓ,

φΠ|WQp
= φΠp

and thus, if v|p is a place of L associated to the choice of an embedding f L inside Qp,

rµ ◦ φΠ|WLv
= rµ ◦ φΠp|WLv

Remark 0.1. (1) By definition, a cohomological automorphic representation is a
particular type of algebraic automorphic representation that shows up in the coho-
mology of locally symmetric spaces. For example, for GL2, the automorphic repre-
sentation associated to an holomorphic modular form of weight k ≥ 1 is algebraic
but cohomological only when k ≥ 2. The ℓ-adic Langlands parameter associated to a
weight ≥ 2 holomorphic modular forms is obtained inside the intersection cohomo-
logy cohomology of modular curves with coefficients in some local systems (Shimura,
Deligne).

For weight 1 holomorphic modular forms this ℓ-adic Langlands parameter is ob-
tained by ℓ-adic interpolation from the weight ≥ 2 case (Deligne-Serre).

There is another class of automorphic representation of GL2/Q that are algebraic
but not cohomological : the one associated to non-holomorphic Maass forms f that

satisfy ∆f = 1
4f where ∆ = −y2( ∂2

∂x2 + ∂2

∂y2
) is the hyperbolic Laplacian. We do not

know how to construct their ℓ-adic Langlands parameter.

(2) Suppose that GR has discrete series, that is to say Gad,R is an inner form of its
compact form. This is for example the case if G can be enhanced to a Shimura datum.
One can prove that one can globalize any supercuspdial representation of G(Qp) to

15
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an automorphic representation Π such that Π∞ is a discrete series representation.
Those are cohomological and show up in middle degree in the cohomology of locally
symmetric spaces.

(3) One of the difficulties of the preceding approach is that we can not construct φΠ

but its composition with rµ where rµ is a very particular type representation of the
Laglands dual since µ is minuscule. This difficulty is removed over function fields
over Fq using general Shtuka moduli spaces but we don’t know, even for GL2, how to
define Shimura varieties for non-minuscule µ. We will see later how to remove this
difficulty for local Shimura varieties at p.

We would like to use this type of formula to define φΠv after choosing suitable Shimura
data giving rise to different representations rµ, This leads to the question : why, after com-
posing with rµ, would φΠ|WKv

depend only on Πv ? This is the problem of local-global
compatibility. The answer is that there are local Shimura varieties linked to the global
one via a process of p-adic uniformization.

1. Shimura varieties

1.1. Hermitian symmetric spaces. Let S = ResC|RGm be Deligne’s torus. Recall the
the Tannakian category of real Hodge structures is equivalent to RepR(S).

Datum : a couple

(G, {h})

where

(1) G reductive group over R.

(2) h : S→ G with G(R)-conjugacy class {h}

This is the same as the datum of G together with a ⊗-functor

Rep(G) −→ R-Hodge structures,

i.e. a G-R-Hodge structure , such that the composite

Rep(G)→ R-Hodge structures
can−−→ VectR

is isomorphic to the canonical fiber functor on RepG.

We note µh : Gm/C → GC for the composite of hC with z 7→ (z, 1) from Gm/C → SC =
Gm/C ×Gm/C. This defines the Hodge filtration.
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Hypothesis :

(1) (Weight 0 adjoint Hodge structure) wh : Gm → G, obtained by compo-
sing h with the morphism Gm → S inducing R× ↪→ C× on the R-points, is
central that is to say the Hodge structure (g,Ad ◦h) is pure of weight 0.

(2) (Polarization) Conjugation by h(i) is a Cartan involution on Gad that is
to say the Killing form on gad defines a polarization of the weight 0 Hodge
structure (gad,Ad ◦h)

(3) (Griffiths transversality) µh : Gm/C → GC is minuscule that is to say the
weights of Ad ◦µh on gC are in {−1, 0, 1} that is to say the Hodge structure
(gR,Ad ◦h) is of type (−1, 1), (1,−1), (0, 0)

Under those hypothesis, if K∞ is the centralizer of h(i) in G(R), a sub-group of G(R)
that is compact modulo the center,

X = G(R)/K∞.

More precisely, if F is the flag manifold defined by µh, the map

X −→ F

that sends some h′ that is G(R)-conjugate to h to the class of µh′ is an open embedding,

X ⊂
open
F .

Then, X is a moduli space of rigidified variation of Hodge structures equipped with a
G-structure.

More precisely, if S is a smooth complex analytic space then X(S) is the set of equivalence
classes of (F ,Fil•F ⊗R OS , η) where

— F : Rep G→ {R local systems on S} is a ⊗-functor,
— Fil•F ⊗R OS is a finite decreasing filtration of the ⊗-functor

F ⊗R OS : Rep G→ {vector bundles on S}

satisfying Griffiths transversality : if ∇ = Id⊗d then ∇Filk ⊂ Filk−1 ⊗ Ω1
S

— for each R-linear representation (V, ρ) of G and s ∈ S, the complex conjugate of the
associated filtration of VC is ρ ◦ wh-opposite to the filtration of VC and thus defines a
weight ρ ◦ wh Hodge structure,

— η is an isomorphism between tensor functors between F and the canonical functor
(V, ρ) 7→ V ,

— We ask that for each s ∈ S, the associated morphism S → G defined by taking the
stalk at s of the preceding variation is G(R)-conjugated to h.

Thus, X = moduli of Hodge structures. We will see later that we can define moduli
of p-adic Hodge structures using the curve. But we are first going to treat a particular case :
Lubin-Tate spaces.
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1.2. Shimura variety.

Datum :

(1) G is a reductive group over Q
(2) h : S→ GR

Hypothesis :

(1) (Weight 0 adjoint Hodge structure) wh : Gm → GR, obtained by com-
posing h with the morphism Gm → S inducing R× ↪→ C× on the R-points, is
central that is to say the Hodge structure (gR,Ad ◦h) is pure of weight 0.

(2) (Polarization) Conjugation by h(i) is a Cartan involution on GR,ad that is
to say the Killing form on gad defines a polarization of the weight 0 Hodge
structure (gR,ad,Ad ◦h)

(3) (Griffiths transversality) µh is minuscule that is to say the Hodge structure
(gR,Ad ◦h) is of type (−1, 1), (1,−1), (0, 0)

(4) (Density of CM points) For any Q-factor H of Gad, H(R) is not compact.

Example 1.1. (1) G = GL2 and h(a+ ib) =

Å
a b
−b a

ã
. Modular curves case.

(2) Same as before but G = D× with D a quaternion division algebra over Q

(3) G = Gsp2n associated with the symplectic form

Å
0 In
−In 0

ã
. Set h(a+ib) =

Å
aIn bIn
−bIn aIn

ã
.

Siegel varieties (modular curves for n = 1)

(4) Let K be a CM field and B be a central simple algebra over K equipped with an
involution ∗ inducing complex conjugation on K. Let G = GU(D, ∗) be the asso-
ciated similitude unitary group. Let Fix an isomorphism GR ≃ G(

∏
τ∈Φ U(pτ , qτ ))

where (pτ , qτ )τ∈Φ is a set of signatures index by a CM type Φ of K. Then if h(z) =
(hτ (z))τ∈Π with hτ (z) = diag(z, . . . , z︸ ︷︷ ︸

pτ

, z, . . . , z︸ ︷︷ ︸
qτ

) this defines aunitary type Shimura

variety.

Shimura variety
ShK = G(Q)\(X ×G(Af )/K)

for K ⊂ G(Af ) compact open “sufficiently small”. Writing G(Af ) =
∐

i∈I G(Q)giK with I
finite (finiteness of the class number), one has

ShK =
∐
i∈I

Γi\X

where Γi = G(Q) ∩ giKg−1
i is an arithmetic subgroup of G(R).

The smooth complex analytic space ShK has an interpretation as a moduli of variations
of G-Q-Hodge structures. Well, in fact the natural moduli space is not ShK but∐

ker1(Q,G)

ShK
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a finite disjoint union of copies ShK . More precisely, if S is a smooth complex analytic space
then

∐
ker1(Q,G) ShK(S) is the set of equivalence classes of (F ,Fil• ⊗Q OS , η) where

— F : Rep G→ {Q− local systems on S} is a ⊗-functor,
— Fil•F ⊗Q OS is a finite filtration of the ⊗-functor

F ⊗R OS : Rep G→ {vector bundles on S}

satisfying Griffiths transversality : if ∇ = Id⊗d then ∇Filk ⊂ Filk−1 ⊗ Ω1
S ,

— for each R-linear representation (V, ρ) of G and s ∈ S, the complex conjugate of the
associated filtration of VC is ρ ◦ wh-opposite to the filtration of VC and thus defines a
weight ρ ◦ wh Hodge structure,

— for each s ∈ S, the associated functor RepGR → VectR obtained by taking the stalk
at s is trivial and the associated GR-Hodge structure is in the G(R)-conjugacy class
of h,

— η̄ is a Kp-orbit of trivialization η : can⊗QAf
∼−−→ F ⊗Q Af .

Recall the following. We note L for the reflex field of the Shimura datum (G,X). This is
the field of definition of the conjugacy class of µh.

Theorem 1.2. The tower of complex analytic spaces (ShK)K is a tower of smooth
quasi-projective algebraic varieties defined over L. When G is anisotropic modulo its
center those are projective smooth algebraic varieties over L.

Algebraicity as a C-analytic space is due due Baily and Borel where they prove that
if one adds a boundary to X by forming X∗, a generalization of H∗ = H ∪ P1(Q), whose
boundary components are parametrized by conjugacy classes of maximal parabolic subgroups
of G, equipped with the so-called Satake topology then Γi\X∗ is a compact normal C-analytic
space. The quasi-projectivity assertion is then done by proving that the dualizing sheaf ω on
those spaces is ample. This is donne via the construction of Eisentein-Poincaré series that are
automorphic forms sections of ω⊗n for n≫ 0. The co-compact case, i.e. when G is anisotropic
modulo its center, was done before by Cartan and is much more simple via the construction
of Poincaré series and the realization of X as a bounded domain.

The descent datum from C to L is first constructed on CM-points via the theory of Shi-
mura and Taniyama and the proof that it extends to an effective descent datum to the entire
Shimura variety is “easy” in the Hodge type and more generally abelian type case and deli-
cate, essentially due to Deligne, in the general case.

This is equipped with an action of G(Af ) when K varies. We can look at

lim−→
K

H•
ét(ShK ⊗LL,Qℓ)

as a smooth representation ofG(Af ) equipped with a continuous commuting action of Gal(L|L).

Let us now recall the following.
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Theorem 1.3 (Mastushima, Borel, Franke). For G a reductive group over Q, K∞ ⊂
G(R) compact whose neutral connected component is the neutral connected component
of a maximal compact subgroup, and K ⊂ G(Af ) compact open “sufficiently small”, if

XK = G(Q)\(G(R)/K∞AG(R)+ ×G(Af )/K)

as a locally symmetric space, where AG is the maximal split torus in ZG, then

(1) If G is anisotropic modulo its center then, as a module over the Hecke algebra
H (K\G(Af/K),

H•(XK ,C) =
⊕
Π

mΠ.dimCH
•(g∞,K∞; Π∞).ΠK

f

where
— Π goes through the set of automorphic representations of G with trivial

central character when restricted to AG(R)+,
— mΠ is the multiplicity of Π in the space of automorphic forms,
— H•(g∞,K∞,Π∞) is a finite dimensional cohomology C-vector space asso-

ciated to Π∞.
In particular this cohomology space is semi-simple as a module over the Hecke
algebra H (K\G(Af )/K).

(2) For any G, any constituent of H•(XK ,C) as a module over the Hecke alge-
bra is automorphic in the sense that is is isomorphic to ΠK

f where Π is a
cohomological automorphic representation of G.

2. Harris-Taylor Shimura varieties

2.1. Generic fiber. Let E be a given p-adic field. We are looking to define the local
Langlands correspondence for G = GLn/E .

Harris and Taylor have exhibited some PEL-type Shimura datum (G,X) such that

GR ≃ G(U(1, n− 1)× U(n)× · · · × U(n))

and
GQp ≃ GLn/E ×Gm.

Moreover, one has “G = GLn×GLn× · · · ×GLn×Gm

with rµ the standard representation of dimension n on the first GLn-factor, trivial on the
other GLn factors and all of this is twisted by the standard representation of Gm. We can
moreover suppose that G is anisotropic modulo its center.

In fact, G is a similitude unitary group attached to to a division algebra over a CM field
equipped with an involution inducing complex conjugation on the CM field.
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We get

ShK

Spec(L)

a proper smooth algebraic variety that is in fact a moduli of abelian varieties
equipped with additional structures like a polarization and an action of a division alge-
bra. Set Lv = E our p-adic field where v is a place of L dividing p.

We are going to analyze the cohomology of (ShK)K ⊗L Lv by making a degeneration
from p ̸= 0 to p = 0.

2.2. Integral models. If Kp ⊂ G(E) is compact hyperspecial, Kp = GLn(OE) × Z×
p

(”minimal level at p”), then ShKpKp degenerates smoothly for any Kp compact open inside
G(Ap

f ) there exists a smooth projective model

SKp ShKpKp ⊗LLv

Spec(OE) Spec(E)

with SKp ⊗OE
E = ShKpKp ⊗LLv. This is a moduli space of abelian schemes with additional

structures.

Main point Let

A

SKp

be the universal abelian scheme. The fact is that the p-divisible group A[p∞] splits as

A[p∞] = G ⊕ GD

where G is equipped, as an extra additional structure, with an action of Mn(OE). The ad-
ditional structure that is the polarization on A[p∞] is the canonical polarization on G ⊕ GD.

Let e =

Å
1
ã

as an idempotent of Mn(OE). Then (Morita equivalence), a p-divisible group

such as G equipped with an action of Mn(OE) is the same as a p-divisible group equipped
with an action of OE ,

H := e.G
in our case. The fact now is that the signature at ∞ of our unitary group

(1, n− 1)× (0, n)× · · · × (0, n)

transfers at p as the condition that
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(1) H is a 1-dimensional p-divisible group with an action of OE

(2) The action of OE on LieH is the canonical one via SKp → OE .

We call such an object a 1-dimensional π-divisible OE-module.

2.3. Newton stratification. Let

SKp = SKp ⊗OE
Fq

be the reduction modulo π of our Shimura variety. This again forms a tower of Ã©tale
coverings equipped with an action of G(Ap

f ) when K
p varies. Let

H

SKp

be our 1-dimensional π-divisible OE-modules. Geometrically fiberwise on SKp this has a
Newton polygon that is of the following shape in red :

•

1 • •

• • • • •

0 i n− 1 n

for an integer i ∈ {0, . . . , n− 1}. In the preceding picture the Hodge polygon has slope 0 with
multiplicity n − 1 and 1 with multiplicity 1. The basic polygon has slope 1/n. The integer i
is the OE-height of the étale part. More precisely, there is a stratification by locally closed
subsets

S
(i)
Kp , 0 ≤ i ≤ n− 1

where a geometric point x of SKp lies in S
(i)
Kp if an only if

0 −→ H
◦
x︸︷︷︸

1-dim.formal
of OE-height n−i

−→ Hx −→ H
ét
x︸︷︷︸

OE-height i

−→ 0.

(1) The closed stratum is S
(0)
Kp that is a finite set of closed points, the so-called basic

locus,

(2) The open stratum is S
(n−1)
Kp that is the so-called µ-ordinary locus.
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2.4. Level structures at p. We worked before with a level structure at p for whichKp =
GLn(OE)×Z×

p . In this case the integral models are smooth. Drinfeld defined a “good” notion

of level structures at p for the principal congruence subgroups Kp = Id+πmMn(OE) × Z×
p

when m ≥ 1. This is very particular to 1-dimensional p-divisible groups. By “good” we mean
that the associated integral models

Sm,Kp

are regular and the change of level morphism

Sm,Kp regular

SKp smooth/OE

finite flat

is finite flat. Moreover those morphisms are totally ramified over the points of the basic
locus. We obtain a tower

(Sm,Kp)m≥1

that is equipped at the limit when m→ +∞ with an action of G(Qp) and commuting Hecke
correspondences associated to elements of Kp\G(Ap

f )/K
p.

2.5. Analysis of the ℓ-adic cohomology at p via nearby cycles.

2.5.1. Background on nearby cycles. Nearby cycles are a construction that allows us to
analyze the cohomology of an algebraic variety via the cohomology of the special fiber of a
“1-parameter degeneration” of this algebraic variety i.e. a degeneration parametrized by what
we call a trait (the spectrum of a rank 1 valuation ring).

Let
X

Spec(V )

be finite presentation morphism of schemes where V is an Henselian rank 1 valuation ring.
Let K = Frac(V ) and k be the residual field of V . Fix an algebraic closure K of K and let
k be the associated algebraic closure of k. We note Spec(k), s = Spec(k), η = Spec(K) and
η̄ = Spec(K).

There is a diagram

Xs X Xη

s Spec(V ) η

Let F ∈ Db
c(Xη,Qℓ) with ℓ invertible in V . We want to understand

H•(Xη̄,Qℓ)

with its Gal(K|K) action in terms of the special fiber Xs of our degeneration. There is a
“nearby cycle fiber functor”
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Db
c(Xη,Qℓ)

RΨη̄−−−−→
{
objects in Db

c(Xs̄,Qℓ)+action of Gal(K|K)

compatible with the one of Gal(k|k)

}
such that for any geometric point x̄ of Xs̄,

RΨη̄(F )x̄ = RΓ
(

Spec(Osh
X,x̄

[ 1ϖ ])︸ ︷︷ ︸
schematical Milnor fiber

over x̄

,F
)

where ϖ is a pseudo-uniformizer in V and X = X ⊗V V with V the integral closure of V in
K.

Remark 2.1. The fiber at geometric points of RΨη̄(F ) is thus identified with the coho-
mology complex of those schematical Milnor fibers. Grothendieck’s construction of the
functor RΨη̄ is a way to take all those cohomology complexes of the different
“classical” Milnor fibers and build a sheaf out of it. Deligne’s theorem says that this
complex has constructible cohomology and thus the cohomology of those Milnor fibers “varies
constructibly”.

Proper base change then says that if X → Spec(V ) is proper then

RΓ(Xs̄, RΨη̄(F ))
∼−−→ RΓ(Xη̄,F ).

We will now use the following very important result that says that the nearby cycles
depend only on the formal completion and not the henselelinzation. Suppose that k is perfect.

Theorem 2.2 (Berkovich,Huber). Let x be a closed point of Xs̄ and Xx be the formal
completion of X ⊗V V un at x where V un is the integral closure of V in the maximal

unramified extension Kun of K. This is a formal scheme over Spf (‘V un). Let Xad
x be

its generic fiber as an adic space over Spa(‘Kun). There is then an isomorphism

RΨη̄(F )x︸ ︷︷ ︸
cohomology of the

schematical Milnor fiber

∼−−→ RΓét

(
Xx,η⊗̂’Kun

“K,F ad
)︸ ︷︷ ︸

cohomology of the
rigid analytic Milnor fiber

2.6. A localization phenomenon. The geometry of non-basic Newton strata implies
the following result. For m ≥ 1 we note

RΨη̄(Qℓ)m,Kp ∈ Db
c(Sm,Kp ⊗ Fq,Qℓ).

If m′ ≥ m and Πm′,m : Sm′,Kp → Sm,Kp then

RΨη̄(Qℓ)m,Kp = Πm′,m∗RΨη̄(Qℓ)m′,Kp .

Moreover if Hm = H (G(E)// Id+πmMn(OE)),

RΨη̄(Qℓ)m,Kp
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is equipped with an action of Hm ⊗H (Kp\G(Ap
f )/K

p).

Theorem 2.3 (Harris-Taylor). For any m ≥ 1,[
RΨη̄(Qℓ)m,Kp

]
supercuspdial at p

∼−−→
⊕

x∈S(0)
m,Kp (Fq)

ix∗
[
RΨη̄(Qℓ)m,Kp

]
x,supercuspdial at p

that is to say the supercuspidal at p-part of the complex of nearby cycles localizes on
supersingular points.

3. Lubin-Tate spaces

Definition 3.1. Let H be a one dimensional formal p-divisible group over Fq equipped
with an action of OE such that the action of OE on Lie H is the canonical one. We
note

LT −→ Spf(OĔ)

for the deformation space of H.

This is a formal scheme (non-canonically) isomorphic to

Spf(OĔJx1, . . . , xn−1K).

We note

LT η ≃ B̊n−1

Ĕ

for its generic fiber as a locally of finite type adic space over Spa(Ĕ).

On this open ball the Tate module of the universal deformation is an OE–étale local
system of rank n. The moduli of its trivializations defines a tower of rigid analytic spaces
with finite étale transition morphisms

(LT η,K)K⊂GLn(OE) −→ LT η

equipped with an action of GLn(E)1 at the limit. There is another group that shows up :
the group of automorphisms by quasi-isogenies of H, End(H)×Q, that is identified with

D×

where D is a division algebra with invariant 1
n over E. At the end the tower (LT η,K)K has

a commuting action of (D× × GLn(E))1, the subgroup of D × GLn(E) formed by elements
(d, g) such that v(Nrd(d)) + v(det(g)) = 0 where Nrd is the reduced norm.

In fact we prefer to work with

MK = LT η,K

O×
D

× D×
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that is a
∐

Z of copies of the Lubin-Tate space. The tower (MK)K has an action of D× ×
GLn(E) and a (non-effective since this shifts everything by +1 in the components

∐
Z) descent

datumM(σ)
K

∼−−→MK from Ĕ to E. We now define

RΓ(MK⊗̂Ĕ
“E,Qℓ) :=

⊕
α∈π0(MK)

RΓ(Mα
K⊗̂Ĕ

“E,Qℓ).

This has an action of D× ×WE where the action of D× is smooth and a commuting action
of HQℓ

(K\GLn(E)/K).

Remark 3.2. As for Harris-Taylor Shimura varieties, the notion of Drinfeld level struc-
ture allows us to define some regular integral models of LT η,K when K = Id+πmMn(OE),
a principal congruence subgroup. Those are formal spectrum of complete regular Noetherian
rings that are finite free over OĔJx1, . . . , xn−1K.

3.1. The basic locus as a zero dimensional locally symmetric space. Let I be the
algebraic reductive group over Q that is the endomorphism by quasi-isogenies of an abelian

variety over Fq equipped with its additional structures defining an Fq-point of S
(0)
Kp . This

satisfies

(1) I(R) is compact modulo its center,

(2) I(Qp) = D× × Z×
p via the action of an automorphism on the Dieudonné module,

(3) I(Ap
f ) = G(Ap

f ) via the action of an automorphism on the étale cohomology outside
p.

In fact I is an inner form of G that is isomorphic to G outside p∞.

The fact is, like for modular curves, that all basic points are in an unique isogeny class.
From this we deduce that, after fixing a base point,

I(Q)\(I(Qp)/O×
D × I(A

p
f )/K

p)
∼−−→ S

(0)
Kp(Fq).

3.2. Harris-Taylor theorem. From the preceding we obtain that

lim−→
K

RΓ(ShK ⊗LL,Qℓ)|WE ,cusp at p︸ ︷︷ ︸
expressed in terms of aut. rep. of G

∼−−→ A(I)︸ ︷︷ ︸
expressed in
terms of

aut.rep. of I

⊗L
HQℓ

(D×) lim−→
K

RΓ(MK⊗̂Ĕ
“E,Qℓ)cusp at p

Via a comparison between automorphic representations on the two inner forms I and G
(global Jacquet-Langlands) obtained via a comparison of Arthur trace formulas Harris and
Taylor prove the following result. This result is obtained via global methods using the fact
that any supercuspdial representation globalizes to an automorphic representation that is a
discrete series at ∞.
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Theorem 3.3. The cuspidal part of the middle degree cohomology

lim−→
K

Hn−1(MK⊗̂Ĕ
“E,Qℓ)

is, up to a Tate twist, of the form⊕
π

supercuspidal

JL−1(π)⊗ π ⊗ φπ

where φπ is an n-dimensional Qℓ-representation of WE. The correspondence π 7→ φπ

defines a local Langlands correspondence for GLn/E.
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We are now dealing with period morphisms for p-divisible groups.

1. Some general thoughts on period morphisms

For p =∞ there is only on period morphism and this is a G(R)-equivariant embedding

X Fµh
G(R)

open
G(C)

where G is a reductive group over R, X is an hermitian symmetric space defined by the
G(R)-conjugacy class of h : S→ G, and Fµh

is the complex flag manifold defined by µh. This
embedding is nothing else than the map that sends a Hodge structure to the Hodge filtration.

Moreover, the image of this embedding is easy to describe. In fact, the complex
conjugate of µh is µch = wh.µ

−1
h with wh : Gm → G central and thus complex conjugation

defines (−) : Fµh

∼−−→ Fµ−1
h
, and

X ⊂
open/closed

{z ∈ Fµh
| z and z are opposite parabolic subgroups}

= {z ∈ Fµh
| inv(z, z) = 1}︸ ︷︷ ︸

Deligne-Luztig variety at ∞

where here Pµ−1
h

is opposite to Pµh
and

inv : GC/Pµh
×GC/Pµ−1

h
−→ Pµ−1

h
\GC/Pµh

.

Here the open/closed condition defining X is that for z satisfying inv(x, z) = 1, one has an
associated hz : Gm → G and we ask this is G(R)-conjugated to h.

Example 1.1. (1) Consider G = Gsp2n. Then, Fµh
is the variety of Lagrangians

in C2n equipped with the standard symplectic structure. Moreover, for a Lagrangian
subspace L ⊂ C2n, the condition defining our open subset is that L ∩ L = (0). It is
clear that if L∩

(
Cn⊕ (0)

)
̸= (0) then L is not in our open subset. The subset of Fµh

formed by Lagrangian subspace L satisfying L∩
(
Cn ⊕ (0)

)
= ∅ is identified with the

affine space of symmetric matrices A ∈ Mn(C), tA = A. To such a matrix A one

associated the image of Cn⊕(0) by
Å
I 0
A I

ã
. Now, the associated Lagrangian subspace

L satisfies L∩L = (0) iff Im(A) (imaginary part) is invertible. Our open subset has

29
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thus n connected components given by the signature of the symmetric non-singular
matrix Im(A).

The open/closed subspace X is the union of the two connected components that
correspond to the signatures (n, 0) and (0, n) that is to say Im(A) or − Im(A) is
positive definite. This is ±Hn where Hn is Siegel upper half space.

(2) Let G = GU(1, n − 1) with h(z) = diag(z, z, . . . , z). One has Fµh
= Pn−1(C) and

our open subset is
{
[z1 : . . . : zn] | |z1|2 −

∑n
i=2 |zi|2 ̸= 0

}
. This has two connected

components : the first one is an open ball {[1 : z2 : . . . : zn] |
∑n

i=2 |zi|2 < 1} ⊂ Cn−1

and the other one is {[1 : z2 : . . . : zn] |
∑n

i=2 |zi|2 > 1} ∪ {[0 : z2 : . . . : zn] ∈
Pn−2(C)}. The space X is the first connected component identified with an open ball.

For p ̸=∞ the story is different :

(1) There are two period maps and two groups acting

(2) Those are linked to the two cohomology theories : crystalline cohomology and
p-adic étale cohomology. For p =∞ we only have Betti cohomology.

(3) Those two period maps correspond to the two spectral sequences : the Hodge
to de Rham spectral sequence and the Hodge-Tate spectral sequence

(4) The period maps aren’t embeddings in general.

2. The case of Lubin-Tate spaces

2.1. The Lubin-Tate tower. Take E = Qp to simplify. Let

H

be a one dimensional 1-dimensional formal p-divisible group over Fp (such an H is unique up

to a non-unique isomorphism). This can be seen, after fixing a coordinate Spf(FpJT K) ∼−−→ H as

a one dimensional formal group law F ∈ FpJX,Y K that gives the addition : X+
F
Y = F(X,Y ).

Let n be the height of H that is to say [p]F = aT pn + . . . with a ̸= 0.

Definition 2.1. The moduli space of deformations of H over complete local W (Fp)-
algebras is the Lubin-Tate space

LT

Spf(W (Fp)).

This is non-canonically isomorphic to

Spf
(
W (Fp)Jx1, . . . , xn−1K

)
.

Let D be a division algebra with invariant 1
n over Qp, D = Qpn [Π] where Qpn is the degree n

unramified extension of Qp, Π
n = p and if σ is the Frobenius of Qpn |Qp then ΠxΠ−1 = xσ.
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One has an identification

OD = End(H)

where OD is the maximal order in D, OD = Zpn [Π].

There is an evident action of O×
D on LT

LT

O×
D

Definition 2.2. Let LT η be the generic fiber of LT as a locally of finite type adic

space over Spa(Q̆p).

After fixing some formal coordinates

LT η ≃ B̊n−1

Q̆p

that is again equipped with an action of O×
D. The Tate module of the universal deformation

defines an étale Zp-local system T of rank n on LT η.

Definition 2.3. For K ⊂ GLn(Zp) we note

LT η,K

the moduli space of trivializations mod K of the Zp-local system T .

→ we force the monodromy of our local system to leave in K. This means

LT η,K = (K/ Id+pmMn(Zp))\Isom
(
(Z/pmZ)n, T/pmT

)
for m≫ 0.

We obtain a tower

(
LT η,K

)
K

GLn(Qp)1

O×
D

where
— the action of O×

D is horizontal,

— the action of GLn(Q1
p is vertical : for g ∈ GLn(Qp)

1, g : LT η,K
∼−−→ LT η,gKg−1 ,

— both actions commute.
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Here the action of GLn(Zp) is the evident one. To extend it to an action of GLn(E)1 we
have to go back to some integral models of LT η,K for K a principal congruence subgroup,
K = Id+pmMn(Zp), m ≥ 1. This is given by this notions of Drinfeld level structure that

defines a an integral model Spf(Rm) where Rm is a complete regular W (Fp)-algebra. We now
use the following two elementary results ;

(1) if S is a formal scheme over Spf(Zp) and H a one dimensional height n formal p-
divisible group over S equipped with a level m Drinfel structure

η : (Z/pm)n −→ H[pm]

then any subgroup M of (Z/pmZ)n defines a finite flat closed subgroup scheme
G ⊂ H[pm] such that η|M :M → G.

(2) if S is a reduced Fp-scheme and f : H → H ′ is a height 0 quasi-isogeny between one
dimensional formal p-divisible groups then f is an isomorphism.

At the end we obtain an action of (GLn(Qp)×D×)1 on our tower.

2.2. The de Rham period morphism. Let

D = D(H)

be the covariant rational Dieudonné module of H. This is an n-dimensional Q̆p-vector space
equipped with a crystalline Frobenius φ,

D φ .

The matrix of the associated Verschiebung pφ−1 is given in a suitable basis by

pφ−1 =

â
0 0 · · · 0 p
1 0 · · · 0 0
0 1 · · · 0 0

. . .

0 0 · · · 1 0

ì
σ−1

We now use the following property. Recall that a quasi-isogeny between p-divisible groups
H and H ′ over a quasi-compact scheme S is an element of f ∈ Hom(H,H ′)

[
1
p

]
such that

there exists g ∈ Hom(H ′, H)
[
1
p

]
satisfying g ◦ f = Id and f ◦ g = Id.

Lemma 2.4 (rigidity of quasi-isogenies). Let S0 ↪→ S be a nilpotent closed immersion of
schemes and H,H ′ be p-divisible groups over S. Then, reduction to S0 induces an isomorphism

Qisog(H,H ′)
∼−−→ Qisog(H ×S S0, H

′ ×S S0).

We now use the crystalline nature of the Dieudonné crystal of a p-divisible
group. Let R be a p-adic ring, H a p-divisible group over Spf(R) and H0 be a p-divisible
group over Spec(R/pR). Suppose given a quasi-isogeny

ρ : H0 → H ⊗R R/pR.

Let E be the covariant Dieudonné crystal of H on (Spec(R)/Spec(Zp))crys and E0 be the one
of H0 on (Spec(R/pR)/Spec(Zp))crys. This gives rise to an isomorphism

ρ∗ : E0,R↠R/pR

[
1
p

] ∼−−→ ER↠R

[
1
p

]
.

From this and the rigidity of quasi-isogenies we decue the following result.
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Proposition 2.5. Let (E ,∇) be the convergent isorcystal on LT η associated to the
universal deformation as an O×

D-equivariant vector bundle equipped with an integrable

connexion. There is a canonical O×
D-equivariant isomorphism(

D ⊗Q̆p
OLT η , Id⊗d

) ∼−−→
(
E ,∇

)
and thus (E ,∇) is generated by its horizontal sections that are identified with D,

D
∼−−→ E ∇=0.

The rank n vector bundle E can be though of as being the (H1
dR)

∨ of the universal
deformation. There is an Hodge filtration

FilE ⊂ E

that is identified with ωHD

[
1
p

]
where H is the universal deformation and fits into the Hodge

exact sequence
0 −→ ωHD

[
1
p

]︸ ︷︷ ︸
rk. n−1

−→ E −→ ωH

[
1
p

]︸ ︷︷ ︸
rk. 1

−→ 0

Definition 2.6 (de Rham period morphism for Lubin-Tate spaces). We note

πdR : LT η −→ P(D) ≃ Pn−1

for the O×
D-equivariant morphism defined by the Hodge filtration and Proposition 2.5.

Grothendieck-Messing theory says that to deform a p-divisible group is the same as to
deform its Hodge filtration. From this the following basic result is elementary.

Proposition 2.7. The de Rham period morphism πdR satisfies the following :

(1) It is (partially proper) étale,

(2) Its geometric fibers are the Hecke orbits

The following result is quite deep and will be later reinterpreted in terms of the curve.

Theorem 2.8 (Gross-Hopkins). The de Rham period morphism

πdR : LT η −→ Pn−1

Q̆p

is surjective.

At the end we thus have an étale cover

B̊n−1

Q̆p
−→ Pn−1

Q̆p

with infinite discrete fibers.

The following result can be verified in an elementary way. We note Qcyc
p := ¤�∪n≥1Qp(ζn).
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Proposition 2.9. The projective limit

LT η,∞ := lim←−
K

LT η,K

makes sense as a Qcyc
p -perfectoid space.

At the end we obtain the following picture.

LT η,∞

LT η

Pn−1

Q̆p

GLn(Qp)1

GLn(Zp)

πdR

where the torsors are pro-étale torsors.

2.3. The Hodge-Tate period morphism. We now come to the other period mor-
phism in the game.

Recall that if G is a (commutative) finite locally free group scheme over a scheme there
is a morphism of fppf sheaves

G = H om(GD,Gm) −→ ωGD

f 7−→ f∗
dT

T
.

from G toward the fppf sheaf associated to the coherent sheaf ωGD .

Let now H be a p-divisible group over Spec(R) where R is a p-torsion free p-adic ring.
Suppose moreover that R is integrally closed in R

[
1
p

]
. The preceding construction applied to

the collection (H[pn])h≥1 defines a Zp-linear morphism

αH : Hom(Qp/Zp, Hη)︸ ︷︷ ︸
Zp-module

=︸︷︷︸
R int. closed

in R
[
1
p

] Hom(Qp/Zp, H) −→ ωHD︸︷︷︸
projective of
finite type
R-module

of rk. ht(H)−dim(H)

where Hη is the étale p-divisible group H ⊗R R
[
1
p

]
. We note αH ⊗ 1 for its linearization

αH ⊗ 1 : Hom(Qp/Zp, Hη)⊗Zp R −→ ωHD .

The key result is now the following.
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Proposition 2.10 (Faltings, F.). If R = OC with C|Qp a complete algebraically closed
extension of Qp then the preceding induces a complex

0 −→ ω∨
H(1)

(α
HD⊗1)∨(1)

−−−−−−−−−−→ Tp(H)⊗Zp OC
αH⊗1−−−−−→ ωHD −→ 0

whose cohomology is killed by p
1

p−1 if p ̸= 2 and 4 if p = 2. In particular one has an
Hodge-Tate exact sequence

0 −→ ω∨
H(1)

[
1
p

] (α
HD⊗1)∨(1)

−−−−−−−−−−→ Vp(H)⊗Qp C
αH⊗1−−−−−→ ωHD

[
1
p

]
−→ 0

Let us remark that 1
p−1 = vp(2iπ) in the preceding proposition. Using this result we can

construct a morphism

πHT : LT η,∞ −→ P̌n−1

Q̆p

that is GLn(Qp)
1-equivariant and O×

D-invariant. Here P̌n−1

Q̆p
is the dual projective space clas-

sifying rank n − 1 quotients of On. Let us fix the isomorphism P̌n−1

Q̆p

∼−−→ Pn−1

Q̆p
given by the

identification of (On)∨ and On deduced from the dual of the canonical basis. This commutes
with the action of GLn(Qp) twisted by g 7→ tg−1.

Theorem 2.11 (Faltings, F.). The image of

πHT : LT η,∞ −→ P̌n−1

Q̆p

∼−−→ Pn−1

Q̆p

is Drinfeld’s space Ω. Moreover, LT η,∞ → Ω is a pro-étale OD
×-torsor that is identified

with Drinfeld-tower.

At the end we obtain the following diagram.

LT η,∞

Pn−1

Q̆p
ΩQ̆p

[ GLn(Qp)×D×]1

πdR

GLn(Qp)1

πHT

OD
×

O×
D

GLn(Qp)1
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3. Rapoport-Zink spaces

3.1. Integral models in hyperspecial level. Rapoport-Zink spaces are generaliza-
tions of Lubin-Tate and Drinfeld spaces. We only explain the G = GLn-case.

Let H be a p-divisible group over Fp of dimension n and dimension d. Let (D, φ) be its
covariant rational Dieudonné isocrystal. We note :

(1) G = GLn,

(2) Gb the reductive algebraic group over Qp whose R-points are Aut(D⊗Qp R,φ⊗ Id).

Here the b ∈ G(Q̆p) refers to the matrix of Frobenius in a basis of D, in which case φ can

be identified with bσ ∈ G(Q̆p)⋊ σ. Then, Gb is identified with the twisted centralizer of b,

Gb(R) = {g ∈ G(R⊗Qp Q̆p) | gbσ = bσg}

that is to say

gbg−σ = b.

If (λ1, . . . , λr) are the slopes of (D, φ) with respective multiplicities (m1, . . . ,mr), then

Gb ≃
r∏

i=1

GLmi(D−λi
)

where Dλ is the division algebra with invariant λ over Qp.

Definition 3.1. We note M for the functor on W (Fp)-schemes on which p is locally
nilpotent such that

M(S) = {(H, ρ)}/ ∼
where

— H is a p-divisible group over Fp,
— ρ : H×Fp

(Smod p) −→ H ×S (Smod p) is quasi-isogeny.

The Fp-points of this moduli are identified via Dieudonné theory with

M(Fp) = {M ⊂D a lattice s.t. pM ⊂ φ(M) ⊂M}.

This can be rewritten in the following way. Let µ : Gm → G be the Hodge cocharacter

µ(z) = (z, . . . , z︸ ︷︷ ︸
d times

, 1, . . . , 1︸ ︷︷ ︸
n−d times

).

Then we have

M(Fp) =
{
g ∈ G

(
W (Fp)

[
1
p

])
/G

(
W (Fp)

) ∣∣ inv(bgσ, g) = {µ}
}
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where

G
(
W (Fp)

[
1
p

])
/G

(
W (Fp)

)
×G

(
W (Fp)

[
1
p

])
/G

(
W (Fp)

)
([g1], [g2])

G
(
W (Fp)

)
\G

(
W (Fp)

[
1
p

])
/G

(
W (Fp)

)
[g−1

1 g2]

inv

that is identified with Hom(Gm, G)/G-conjugacy via µ 7→ [µ(p)].

Thus, the Fp-points of M can be identified with an affine Deligne-Lusztig set
(we say “set” instead of “variety” because à priori we don’t know how to put a geometric
structure on this now).

Further more, for any x ∈ M(Fp) if Hx is the associated p-divisible group, there is an
identification

M̂/x = Def(Hx)

that is representable by a formal scheme isomorphic to

Spf(W (Fp)Jx1, . . . , xd(n−d)K).

The moduli spaceM is a much subtler version on the naive formal scheme∐
x∈M(Fp)

Def(Hx).

We have in fact the following theorem.

Theorem 3.2 (Rapoport-Zink). The functor M is a representable by a Spf(W (Fp))-
formal scheme locally formally of finite type that is to say locally isomorphic to

Spf
(
W (Fp)JX1, . . . , XsK⟨Y1, . . . , Yt⟩/ Ideal

)
.

Moreover the irreducible components ofMred are projective algebraic varieties over Fp.

The action of Gb(Qp) on the quasi-isogeny ρ defines a continuous action of Gb(Qp) onM,

M Gb(Qp)

Example 3.3. From the fact that any degree 0 quasi-isogeny between 1-dimensional formal
p-divisible groups over Fp we deduce that in the Lubin-Tate case

M = LT
O×

D

× D×

that is (non-canonically) isomorphic to
∐

Z LT where the action of O×
D on the factor LT

associated to k ∈ Z is the canonical one twisted by d 7→ ΠkdΠ−k.

Remark 3.4. AlthoughM is formally smooth, in generalMred is not smooth.
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3.2. The tower. Let

Mη Gb(Qp)

be the generic fiber of M as a locally of finite type adic space over Spa(Q̆p). As before wit
the Lubin-Tate tower one obtains a tower

(
Mη,K

)
K

G(Qp)

Gb(Qp)

where K goes through the set of compact open subgroups of G(Qp) and both actions com-
mute. The definition of the action of G(Qp) is more subtle than in the Lubin-Tate case since
there is no “good notion” of integral level structures like this is the case for one dimensional
p-divisible groups according to Drinfeld.

This relies on Raynaud’s flatification by blow-ups : if S is a quasi-compact quasi-
separated scheme, G→ S is a finite locally free group scheme, U ⊂ S is an open subset and
H ⊂ G ×S U is a closed finite locally free sub-group scheme then after a blow-up supported
on S ∖U we can suppose that H extends to a closed subgroup scheme of G finite locally free
over S.

Example 3.5. For the Lubin-Tate tower, the associated RZ tower is

(Mη,K)K = (LT η,K)K

(
GLn(Qp)×D×

)1
× GLn(Qp)×D×.

3.3. Period morphisms. As for Lubin-Tate spaces, if (E ,∇) is the convergent isocrystal
associated to the universal deformation H on M, the universal quasi-isogeny ρ induces an
isomorphism

(D ⊗Q̆p
OMη , Id⊗d)

∼−−→ (E ,∇).

The Hodge filtration then defines a Gb(Qp)-equivariant morphism

πdR :Mη −→ Fµ

where Fµ is the rigid analytic flag manifold associated to µ. This satisfies :
— This is étale and thus in particular its image is open,
— Its geometric fibers are the Hecke orbits.

The image of the étale morphism πdR,

F a
µ := Im(πdR),

is the so-called admissible open subset of Fµ. This is a partially proper open subset inside
the flag manifold Fµ. Little is known in general about it outside of the fact that

— there is an inclusion

F a
µ ⊂ Fwa

µ



3. RAPOPORT-ZINK SPACES 39

where Fwa
µ is the so-called weakly admissible open subset, a very concrete open

subset that is of the form

Fµ ∖
⋃

profinite

Schubert varities.

— For [K : Q̆p] < +∞,

F a
µ (K) = Fwa

µ (K)

that is to say F a
µ and Fwa

µ have the same Tate classical points.
— There is a complete characterization of when F a

µ = Fwa
µ .

The picture at this point for the Hodge-Tate period morphism is more difficult to describe
since we first need to give a meaning to

Mη,∞ := lim←−
K

Mη,K .

The fact is that this is a perfectoid space (if H is not étale) but we can make a sense out of
it using integral models and blow-ups as in the Lubin-Tate case. At the end there is picture

Mη,∞

F a
µ Im(πHT ) Fµ−1

G(Qp)×Gb(Qp)

πdR

G(Qp)

πHT

Gb(Qp)

Gb(Qp)
G(Qp)

(1)

where Im(φHT ) ⊂ Fµ−1 is not an open subset in general and is well defined in general
only as a locally spatial diamond. When b is basic i.e. the isocrystal (D, φ) is isoclinic then
Im(πHT ) is open inside the dual flag manifold Fµ−1 and this is a classical rigid analytic open
subset.

3.4. Cohomology. As for Lubin-Tate spaces one can use the cohomology spaces

H•
c (MK⊗̂Q̆p

Cp,Qℓ)

as representations of HQℓ
(K\G(Qp)/K) and Gb(Qp)×WQp to define a kernel for the local

Langlands correspondence. More precisely, we look at the correspondence

(2) π︸︷︷︸
smooth rep.of Gb(Qp)

7−→ lim−→
K

Ext•Gb(Qp)
(H•

c (MK⊗̂Q̆p
Cp,Qℓ), π)︸ ︷︷ ︸

smooth×continuous representation of G(Qp)×WQp

.
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4. Final thoughts

Diagram (1) has been a great motivation for the geometrization conjecture of the local
Langlands correspondence with relation with the correspondence given by the Hecke stack

Hecke

BunG BunG

The “cohomological kernel” of equation (2) given by the cohomology of Rapoport-Zink spaces
is even a reminder that the preceding correspondence should be upgraded to a cohomological
correspondence.
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Chapitre 4

Fourth lecture - October 10

1. Holomorphic functions of the variable p

Let E be a finite degree extension of Q with residue field Fq. Contrary to the “classical
case”, the curve “X” does not exists absolutely over Fq, it exists only after pull-back
to an Fq-perfectoid field F i.e. “X” makes no sense but XF makes sense for each such F .
Let us thus fix an Fq-perfectoid field F . This is nothing else than a perfect, complete with
respect to a non-trivial rank 1 valuation, non-archimedean field. One may, for example, want

to consider F = Fq((T
1/p∞)) or F =

÷Fq((T )).

43
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Definition 1.1. We note Ainf =WOE
(OF ) equipped with its Frobenius φ lifting Frobq

modulo π.

One has

Ainf =︸︷︷︸
unique
writting

{∑
n≥0

[an]π
n
∣∣ an ∈ OF

}
and

φ
(∑

n≥0

[an]π
n
)
=

∑
n≥0

[aqn]π
n.

We think of Ainf as being a ring of holomorphic functions where π is the variable and the
coefficients are in OF . In fact, we want to define an open punctured disk of the variable π
over F . This is the space YF that will come. For this space YF , the ring Ainf is the subring of
O(YF ) formed by holomorphic functions that are holomorphic at π = 0 and bounded by 1.
We fix a pseudo-uniformizer ϖ of F .

Definition 1.2. We note YF = Spa(Ainf , Ainf) \ V (π.[ϖ]) equipped with its Frobenius
φ.

Let us begin by saying the following to remove any doubt.

Theorem 1.3. The following is satisfied :

(1) YF is sous-perfectoid in the sense that for any K|E perfectoid, YF ⊗̂EK is a

K-perfectoid space with tilting Spa(F ) ×Spa(Fq) Spa(K
♭) where φ is identified

with Frobq × Id.

(2) (Kedlaya) YF is strongly Noetherian.

In particular, via point (1) or (2), Huber’s presheaf of holomorphic functions on |YF |
is a sheaf.

Remark 1.4. We will define later YS for any Fq-perfectoid space S. Property (1) is still
valid in this context but property (2) does not hold anymore in general.

There is a radius continuous function

ρ : |YF | −→ ]0, 1[

y 7−→ q
− v(π(ymax))

v([ϖ](ymax))

where ymax is the maximal generalization of y seen as a Berkovich point that is to say a
valuation with values in R. This extends to a continuous function

|Spa(Ainf , Ainf)| −→ [0, 1].
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where ρ = 0 corresponds to the Cartier divisor π = 0 and ρ = 1 to [ϖ] = 0. Those two divisors
are fixed by φ and one has the formula

ρ(φ(y)) = ρ(y)1/q.

In particular, φ acts properly discontinuously without fixed points on |YF |.

For any compact interval I ⊂]0, 1[ of the form [a, b] with a, b ∈ qQ, the annulus

YF,I = {y | ρ(y) ∈ I}
is a rational domain and in particular affinoid (even affinoid sous-perfectoid). One has

YF =
⋃

0<a≤b<1
a,b∈qQ

YF,[a,b]︸ ︷︷ ︸
affinoid
annulus

.

The main difficulty (and this is one of the main reasons why “p-adic Hodge theory is
difficult”) is that O(YF ) is defined as a (Frechet) completion of Ainf [

1
π ,

1
[ϖ] ] and there is no

explicit formula, typically as a power series expansion, for elements in this ring.

2. Newton polygons and Weierstrass factorization

A Key definition is the following.

Definition 2.1. An element ξ =
∑

n≥0[an]π
n ∈ Ainf is distinguished of degree d ≥ 1

if
— a0, . . . , ad−1 ∈ mF ,
— a0 ̸= 0,
— ad ∈ O×

F .

The product of a degree d and degree d′ distinguished elements is a degree d+d′ distingui-
shed element. If ξ is distinguished of degree d and u ∈ A×

inf then uξ is distinguished of degree d.

Another key property if the following. Let us normalize the valuation v on F such that
v(ϖ) = 1. For any r > 0 and f =

∑
n≥0[an]π

n ∈ Ainf , the formula

vr(f) = infn≥0 v(an) + rn

defines a Gauss valuation Gaussr ∈ |YF | with ρ(Gaussr) = q−r. The function r 7→ vr(f) is a
concave polygon and using a process of (inverse) Legendre transform we can deduce from it
a Newton polygon. More precisely :

For any interval I ⊂]0, 1[ with extremities in qQ and any f ∈ O(YF,I) ∖ {0}, one
can define naturally a Newton polygon NewtI(f) with breakpoints at integral x-
coordinates and whose slopes are in − logq I in such a way that

(1) For f =
∑

n≫−∞[an]π
n ∈ Ainf [

1
π ,

1
[ϖ] ], Newt]0,1[(f) is the convex envelope of

(v(an), n)n∈Z,

(2) NewtI(fg) is obtained by concatenation from NewtI(f) and NewtI(g).
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Here is the main factorization result we obtained with Fontaine.

Theorem 2.2. The following is satisfied :

(1) For ξ ∈ Ainf distinguished irreducible of degree d, Kξ = Ainf [
1
π ]/ξ is a perfec-

toid field and the map x 7→
(
[x1/p

n
] mod ξ)n≥0 induces an embedding F ↪→ K♭

ξ

such that
[K♭

ξ : F ] = d.

(2) If F is algebraically closed then any irreducible distinguished element ξ is of
degree 1. We thus has

K♭
ξ = F.

Moreover ξ = u.(π − [a]) with a ∈ mF ∖ {0} and u ∈ A×
inf .

(3) For any I ⊂]0, 1[ with extremities in qQ, for any f ∈ O(YF,I)∖ {0}, and any
slope λ of NewtI(f), there exists a factorization

f = g.ξ

where g ∈ O(YF,I), ξ is distinguished irreducible with Newt]0,1[(ξ) a line with
slope λ between 0 and deg(ξ).

Example 2.3 (Weierstrass factorization). If F is algebraically closed and ξ is distinguished
of degree d one can write

ξ = u(π − [a1])× · · · × (π − [ad])

where u is a unit and v(a1), . . . , v(ad) are the slopes of Newt]0,1[(ξ).

Definition 2.4. A point y ∈ |YF | of the form V (ξ) with ξ distinguished irreducible is
called a classical point of YF . By definition, deg(y) := deg(ξ).

Thus, for y ∈ |YF |cl, K(y) is a perfectoid field with

[K(y)♭ : F ] = deg(y).

This is a form of the point of view that one may think of YF as a moduli of untilts
of the perfectoid field F .

3. The adic curve

We finally arrive to the curve.

Definition 3.1. We note
XF = YF /φ

Z

as a quasi-compact quasi-separated E-adic space.

This is thus strongly Noetherian sous-perfectoid with

(XF ⊗̂FK)♭ = (Spa(F )×Spa(Fq) Spa(K
♭))/φZ × Id .
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This is a curve because of the following. This uses heavily the preceding factorization
results.

Theorem 3.2. For any compact interval I ⊂]0, 1[ with extremities in pQ, the Banach
E-algebra O(YF,I) is a P.I.D. with an identification

Spm(O(YF,I)) = |YF,I |cl.

One deduces from this result that for any U ⊂ YF an affinoid open subset, O(U) is a
P.I.D. and thus XF is a curve. In particular one has the following : for any x ∈ |XF |cl,

— OX,x is an Henselian D.V.R. such that if y 7→ x with y ∈ |YF |cl, y = V (ξ), OXF ,x
∼−−→

OYF ,y,
— in particular the residue field at x, K(x), is perfectoid,
— and one has “OXF ,x

∼−−→ B+
dR(K(x))

as complete D.V.R..

3.1. The schematical curve. The adic curve XF does not come alone. It is in fact
equipped with an “ample” line bundle.

Definition 3.3. We note OXF
(1) for the line bundle on XF associated to the auto-

morphy factor φ 7→ π−1 on YF equipped with its action of φZ.

This means that the pullback of OXF
(1) to YF is trivialized and the descent datum along

the cover YF → XF is given by φ 7→ π−1.

Let us define

B(F ) := O(YF )
as a Frechet E-algebra equipped with the continuous automorphism φ. One has for any d ∈ Z,

H0(XF ,O(d)) = B(F )φ=πd︸ ︷︷ ︸
{f∈B(F ) | φ(f)=πdf}

that is
— 0 if d < 0,
— E if d = 0,
— an infinite dimension E-Banach space if d > 0.

Remark 3.4. Suppose E = Qp. If y ∈ |YF |cl there is an inclusion⋂
n≥0

φn
(
B+

cris(OK(y)/p)
)
⊂ B(F )
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that induces for all d ∈ Z an identification

B+
cris(OK(y)/p)

φ=pd ∼−−→ B(F )φ=pd .

We now declare that O(1) is ample.

Definition 3.5. We define

PF =
⊕
d≥0

H0(XF ,OXF
(d))

as a graded E-algebra and
XF = Proj(PF )

as an E-scheme.

One of the main structure results for the graded algebra PF is the following.

Theorem 3.6. Suppose that F is algebraically closed. The graded E-algebra PF is
graded factorial in the sense that the commutative monoid∐

n≥0

PF,n ∖ {0}/E×

is commutative free on degree 1 non-zero elements up to E×.

In other terms, for any f ∈ PF,d ∖ {0}, one can write

f = t1 . . . td

where t1, . . . td ∈ PF,1 ∖ {0} are uniquely determined up to multiplication by an element of
E×. The proof of this theorem relies on two facts :

(1) Using the preceding results on the factorization of elements and Newton polygons
one defines

Div+(YF ) =
{ ∑

y∈|YF |cl
ay[y]

∣∣ ay ∈ N, {y | ay ̸= 0} is locally finite
}

and an injection of monoids

div : O(YF )∖ {0}/E× ↪→ Div+(YF )

given by “the divisor of an holomorphic function”. In particular, this defines an
injection ∐

n≥0

PF,n ∖ {0}/E× ↪→ Div+(YF )
φ=Id

where the right hand side is the free commutative monoid on {
∑

n∈Z[φ
n(y)] ∈

Div+(YF ) y ∈ |YF |cl mod φZ}.
(2) For any y ∈ |YF |cl one can construct (this is where the hypothesis F alg. closed shows

up) some t ∈ PF,1 ∖ {0} such that div(t) =
∑

n∈Z[φ
n(y)]. In fact, when E = Qp, it

suffices to take t = Fontaine’s 2iπ associated to the algebraically closed fieldK(y)|Qp.
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Theorem 3.7. The scheme XF is a Dedekind scheme.

One can go further into the structure of XF using GAGA. More precisely, for any t ∈
PF,1 ∖ {0}, one has D+(t) = Spec(Be,t) with

Be,t = B(F )[1t ]
φ=Id

that is identified with PF [
1
t ]0. The morphism

Be,t ↪→ B(F )[1t ]→ O(YF ∖ V (t))

induces a morphism of ringed spaces (YF ∖ V (t))/φZ → D+(t). When t varies this defines a
GAGA morphism of ringed spaces

XF −→ XF .

One then has the following result.

Theorem 3.8. Consider the GAGA morphism XF → XF .

(1) It induces a bijection |XF |cl
∼−−→ |XF |closed (closed points).

(2) For any x ∈ |XF |cl, if x 7→ x′ ∈ |XF |, the morphism of D.V.R. OXF ,x′ →
OXF ,x induces an isomorphism“OXF ,x′

∼−−→ “OXF ,x = B+
dR(K(x)).

In particular the residue fields at closed points of XF are perfectoid fields.

Let us note for x a closed point of XF

deg(x) = [K(x)♭ : F ].

We can now dig a little bit deeper into the structure of XF .

Theorem 3.9. (1) The curve is complete : for any f ∈ E(XF )
×,

deg(div(f)) = 0.

(2) If F is algebraically closed then for any t ∈ PF,1∖{0}, V +(t) is one closed point
∞t and XF ∖ {∞t} = Spec(Be,t) with Be,t a P.I.D.. In other words,

Pic0(XF ) = 0.

(3) If F is algebraically closed one has

H1(XF ,O) = 0

and
H1(XF ,O(−1)) ̸= 0.

Said in another way, for the stathme degt := − ord∞t : Be,t → N ∪ {−∞},
the couple (Be,t, degt) is not euclidean but almost euclidean : for any
a, b ∈ Be,t with b ̸= 0 we can write a = bx+ y with degt(y) ≤ degt(b) but not
degt(y) < degt(b) in general.
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4. GAGA

Theorem 4.1. The GAGA morphism XF → XF induces an equivalence of categories{
vector bundles on XF

} ∼−−→
{
vector bundles on XF

}
.

At the heart of the preceding theorem is the following result due to Kedlaya : for any
vector bundle E on XF , for n≫ 0 one has

— H1(XF ,E (n)) = 0,
— E (n) is generated by its global sections.



Chapitre 5

5th course - October 17

1. Vector bundles on the curve

1.1. Isocrystals. Let Fq be an algebraic closure of Fq. We note Ĕ = ‘Eun with its
Frobenius σ lifting Frobq. Recall the following definition.

Definition 1.1. An isocrystal is a pair (D,φ) where D is a finite dimensional Ĕ-vector
space and φ a σ-linear automorphism of D.

Those are classified by Dieudonné-Manin in terms of slopes : the category of isocrystals
is semi-simple with a unique isoclinic of slope λ object for each λ ∈ Q. If λ = d

h with h ≥ 1

and (d, h) = 1 then the associated simple object has dimension h over Ĕ and in a suitable
basis φ is given by â

0 0 · · · 0 πd

1 0 · · · 0 0
0 1 · · · 0 0

. . .

0 0 · · · 1 0

ì
σ.

More precisely, one has an orthogonal decomposition

Isoc =
⊥⊕

λ∈Q
Isocλ︸ ︷︷ ︸
Slope λ

isoclinic isocrystals

where Isocλ has a unique simple object as described before.

1.2. A simple construction. Let F |Fq be a perfectoid field. We have a morphism

YF

Spa(Ĕ)

φ

σ

By pullback this induces a functor from σ-equivariant vector bundles on Spa(Ĕ), i.e. isocrys-
tals, to φ-equivariant vector bundles on YF , i.e. vector bundles on XF .

51
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Definition 1.2. (1) We note E (D,φ)E (D,φ)E (D,φ) the vector bundle

YF
φZ

× D

on XF associated to the isocrystal (D,φ).

(2) For λ ∈ Q we note
OXF (λ)

for (D,φ) = (Ĕh, φ) where λ = d
h with h ≥ 1, (d, h) = 1, and

φ =

â
0 0 · · · 0 π−d

1 0 · · · 0 0
0 1 · · · 0 0

. . .

0 0 · · · 1 0

ì
σ.

The global sections of (E , φ) are given by

H0(XF ,E (D,φ)) =
(
D ⊗Ĕ B(F )

)φ=Id

where “φ” here means φ⊗ φ acting on D ⊗Ĕ B(F ). In particular

H0(XF ,O(λ)) = B(F )φ
h=πd

.

We use the same notations for the associated vector bundle on XF via GAGA (Theorem
4.1). In fact we have the following formula : if

M(D,φ) =
⊕
d≥0

(
D ⊗Ĕ B(F )

)φ=πd

as a graded PF -module then

E (D,φ) = ‚�M(D,φ)

on XF = Proj(PF ).

At the end there is a ⊗-exact functor between monoidal categories

(3) E (−) : Isoc ⊗−−→ {vector bundles on XF }.

1.3. Cohomology. For n ≥ 1 let En|E be the degree n unramified extension of E inside

Ĕ. There is an identification

XF,E ⊗E En = XF,En

XF,E ⊗E En = XF,En
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where XF,En and XF,En are defined using YF,En = YF,E but where the Frobenius has been
replace by φn. At the end the finite Galois cover

YF /φ
nZ

YF /φ
Z

Z/nZ

is identified with

XF,En XF,E ⊗E En

XF,E .

Gal(En|E)

Let us note πn this finite étale morphism. One easily verifies that if λ = d
h as before then

OXF,E
(λ) = πh∗OXF,Eh

(d).

Using this, up to replacing E by a finite unramified extension, one deduces using Theorem
3.9 the following for λ ∈ Q and F algebraically closed :

• H0(XF ,O(λ)) =


0 if λ < 0

E if λ = 0

an infinite dim. E-Banach space if λ > 0

• H1(XF ,O(λ)) =
®
an infinite dim. E-Banach space if λ < 0

0 if λ ≥ 0

1.4. Upgrade of the construction. Let G be a reductive group over E. By definition,
an isocrystal with a G-structure is a ⊗-functor

Rep(G)
⊗−−→ Isoc .

Another way to phrase it is to consider the Dieudonné gerbe

D

Spec(E)

of fiber functors on Isoc seen as a stack over Spec(E) that is a cofiltered limit of algebraic
stacks. More precisely, if D is the slope pro-torus with X∗(D) = Q then Isoc is banded by D
via the equivalence

Isoc⊗EE
un ∼−−→ {Q-graded Eun-vector spaces}
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given by the functor

(D,φ) 7−→
⊕
λ∈Q

⋃
n≫1

Dφn=πnλ
.

One has Isoc = ∪n≥1 Isocn where Isocn is the Tannakian category of isocrystals with slopes
in 1

nZ. Then,
D = 2− lim←−

n≥1

Dn︸︷︷︸
algebraic stack,

gerbe banded by Gm
neutral over En

There is then an identification

{Isocrystals with a G-structure} ∼−−→ {étale G-torsors on D}.

Definition 1.3. We note B(G) for the set of isomorphism classes of isocrystals equip-
ped with a G-structure.

One thus has
B(G) = H1

ét(D, G).

According to Steinberg, H1(Ĕ,G) is trivial. From this one deduces that

B(G) = G(Ĕ)/ ∼
where ∼ is the σ-conjugacy relation,

b ∼ gbg−σ.

To b ∈ G(Ĕ) one associates the G-isocrystal that sends (V, ρ) ∈ Rep(G) to the isocrystal

(V ⊗E Ĕ, ρ(b)σ).

The functor (3) from isocrystals to vector bundles on the curve E (−) defines a morphism
of stacks

XF

D

Spec(E)

stru
ctu

ra
l
m
o
rp

h
ism

induced
by

E (−)

and thus by pullback a map

{G-isocrystals} −→ {étale G-torsors on XF }
inducing

B(G) −→ H1
ét(XF , G).
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Definition 1.4. For b ∈ G(Ĕ) we note EbEbEb the associated G-bundle on XF .

2. Semi-stability

2.1. Vector bundles. Since ”XF is complete”, there is a “nice” degree function

deg : Pic(XF ) −→ Z
simply defined by the formula deg(L ) = deg(div(s)) where s is any rational section of L ,

s : E(XF )
∼−−→ Lη. This allows us to define the degree of a vector bundle E via the formula

deg(E ) := deg(det(E )).

Its main property is that if u : E → E ′ is a morphism between vector bundles that is generically
an isomorphism then deg(E ) ≤ deg(E ′) with equality if and only if u is an isomorphism. This
property implies the existence and uniqueness of Harder-Narasimhan filtrations for the slope
function

µ =
deg

rk
.

Example 2.1. For any λ ∈ Q the vector bundle O(λ) is semi-stable with slope λ. In fact
O(λ) is the pushforward via a finite étale morphism of a semi-stable vector bundle : the
direct sum of line bundles of the same degree (the direct sum of two semi-stable vector
bundles with same slope is semi-stable).

2.2. Principal G-bundles. Here we suppose G is quasi-split to simplify (in fact XF ×G
is a quasi-split reductive group scheme over XF for any G). If E is an étale G-torsor recall
that E is semi-stable if for any parabolic subgroup P of G, for any reduction EP of E to P ,

deg(s∗TP\E ) ≥ 0

(tangent bundle of P\E → XF ) where s is the section

P\E

XF

s

corresponding to the reduction EP i.e. the P -torsor EP is the pullback by s of the étale P -
torsor E → P\E .

One can then prove that for any E there exists (up to G(E)-conjugacy) a unique parabolic
subgroup P and a reduction EP of E to E satisfying :

(1) EP

P
× P/RuP︸ ︷︷ ︸

Levi quotient

is semi-stable,

(2) for any χ ∈ X∗(P/ZG)∖{0}∩N.∆ we have degχ∗E > 0 where ∆ is the set of simple
roots.

This is the so-called canonical reduction of EEE .
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3. Vector and numerical invariants

3.1. B(G). There is an exact sequence of pointed sets

1→ H1(E,G)︸ ︷︷ ︸
unit root

G-isocrystal

−→ B(G) −→
[
Hom(DE , GE) /︸︷︷︸

action by
conjugation

G(E)
]ΓE

that is identified with a low degree Hochschild-Serre spectral sequence

1→ H1(E,G) −→ H1
ét(D, G) −→ H0

(
ΓE , H

1
ét(DE , G)

)
.

Here by “unit root” we mean slope 0. For [b] ∈ B(G) we note [νb] for the class of the associated

morphism DE

νb−−→ GE .

Let us suppose, to simplify, that G is quasi-split. Let A ⊂ T ⊂ B be the inclusion of a
maximal split torus inside a maximal torus inside a Borel subgroup. Then,

[νb] ∈ X∗(A)
+
Q

is the generalized Newton polygon of [b].

There is a second invariant associated to [b],

κ(b) ∈ π1(G)︸ ︷︷ ︸
Borovoi

fund. group

Γ.

that is the generalization of the endpoint of the Newton polygon of an isocrystal. In fact,
the images of [νb] and κ(b) in π1(G)Γ ⊗Q are equal.

The abelian group π1(G) is Borovoi’s fundamental group,

π1(G) = X∗(T )/⟨Φ̌⟩

where Φ̌ is the set of coroots. Its profinite completion is identified with Grothendieck’s étale
fundamental group : ÷π1(G) =

ΓE

πét1 (GE).

This is defined via an abelianization map

B(G) = H1(σZ, G(Ĕ)) −→ H1
(
σZ, [Gsc(Ĕ)→ G(Ĕ)]︸ ︷︷ ︸

crossed module

)
︸ ︷︷ ︸

group coho. with coeff.
in a crossed module

.

Here Gsc is the universal cover of the derived subgroup Gder and G acts on Gsc via the

morphism G −→ Gad
conj. action−−−−−−−−→ Aut(Gsc). If Tsc is the pullback of T ∩ Gder to Gsc the
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morphism of crossed modules

[Tsc → T ] −→ [Gsc → G]

is a quasi-isomorphism and thus induces a bijection

H1(σZ, Tsc(Ĕ)→ T (Ĕ))
∼−−→ H1

(
σZ, [Gsc(Ĕ)→ G(Ĕ)]).

We deduce an exact sequence

B(Tsc) −→ B(T ) −→ H1(σZ, Tsc(Ĕ)→ T (Ĕ)) −→ 0.

One key result due to Kottwitz is that for a torus S, there is a canonical (in S) identification

B(S)
∼−−→ X∗(S)Γ

such that B(Gm) = Z is given by Ĕ× ∋ x 7→ v(x). We deduce our κ map

κ : B(G) −→ π1(G)Γ.

3.2. Principal G-bundles. Suppose again that G is quasi-split. Let E be an étale G-
torsor on XF and let EP be its canonical reduction where P is a standard parabolic subgroup
with respect to the choice of B as before. The morphism

X∗(P ) −→ Z
χ 7−→ deg(χ∗EP )

can be seen as an element of X∗(A)Q. Moreover the second condition in the definition of the
canonical reduction of E implies this is an element of X∗(A)

+
Q. We note it

[νE ] ∈ X∗(A)
+
Q

and we think about it as a generalized Harder-Narasimhan polygon.

As before there is an abelianization map

H1
ét(XF , G) −→ H1

ét,ab(XF , G) := H1
ét(XF , [Gsc → G]︸ ︷︷ ︸

crossed module
on XF,ét

).

One can prove that when F is algebraically closed then for a torus S over E

B(S) = H1
ét(D, S)

∼−−→ H1
ét(XF , S)

(the proof is reduced to theGm-case where one of the key ingredients is to prove that Br(XF ) =
0 ; we will later see that this isomorphism is true for any reductive group G but one can give
a simpler proof for a torus) and thus

H1
ét,ab(D, G)

∼−−→ H1
ét,ab(XF , G).

At the end this allows us to define
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c1(E ) ∈ π1(G)Γ

the first Chern class of EEE .

4. Classification of G-isocrystals

Recall the following definition that generalizes the definition of an isoclinic isocrystal.

Definition 4.1. The element [b] ∈ B(G) is basic if νb is central.

One of the first basic results in the domain is the following.

Proposition 4.2. Kottwitz κ map induces a bijection

κ|B(G)bsc : B(G)bsc
∼−−→ π1(G)Γ.

Remark 4.3. This result that seems mysterious at first will be fully understood later :
any connected component of BunG contains a unique semi-stable point. For any [b], the basic
element associated to κ(b) in B(G) will correspond to the maximal generalization of the point
of BunG associated to [b].

We still suppose that G is quasi-split and we fix A ⊂ T ⊂ B. Then, if Mb is is the Stan-
dard Levi subgroup that is the centralizer of the slope morphism [νb] ∈ X∗(A)

+
Q, [b][b][b] has a

canonical basic reduction [bMb
] ∈ B(Mb)basic[bMb
] ∈ B(Mb)basic[bMb
] ∈ B(Mb)basic.

Finally, one can prove that the map [b] 7→ ([νb], κ(b)) is an injection

B(G) ↪→ π1(G)Γ ×X∗(A)
+
Q.

One can describe its image but this is not useful for what we do. Let us just remark that the
injectivity of this map will later be reinterpreted as saying that on any connected component
C of BunG, the map given by [b] 7→ [νb] induces an injection |C| ↪→ X∗(A)

+
Q.

5. Classification of principal G-bundles

5.1. Vector bundles. The following classification result is a difficult very important
result in the domain.

Theorem 5.1. Suppose F is algebraically closed. There is a bijection{
λ1 ≥ · · · ≥ λr | r ∈ N, λi ∈ Q

} ∼−−→
{
v.b. on XF

}
/ ∼

(λ1, . . . , λr) 7−→
[ r⊕

i=1

O(λi)
]
.

In terms of reduction theory, this can be split in two parts :

(1) Slope λ semi-stable vector bundles are isomorphic to directs sums of O(λ),
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(2) The Harder-Narasimhan filtration of a vector bundle is (non-canonically) split.

Point (2) is an immediate consequence of point (1) since

Ext1(O(λ),O(µ)) = H1(XF ,O(−λ)⊗O(µ)︸ ︷︷ ︸
finite direct

sum of O(µ−λ)

)

is zero if λ ≤ µ when F is algebraically closed.

5.2. Principal G-bundles. Here is the main result.

Theorem 5.2. When F is algebraically closed there is a bijection of pointed sets

B(G)
∼−−→ H1

ét(XF , G)

[b] 7−→ [Eb].

Via this theorem we have the following dictionary between arithmetic and geome-
try :

(1) [b] is basic︸ ︷︷ ︸
arithmetic condition

on the p-adic
valuations of the eigenvalues

of Frob

⇔ Eb is semi-stable︸ ︷︷ ︸
geometric semi-stability

condition

(2) [νb]︸︷︷︸
Newton polygon

= w.(− [νEb
]︸︷︷︸

HN polygon

) where w is the longest element in the Weyl

group

(3) κ(b)︸︷︷︸
terminal point
of Newton

= − c1(Eb)︸ ︷︷ ︸
first Chern class

.

6. On the proof of the classification theorem

6.1. Background on Beauville-Laszlo. Let∞ ∈ |XF | be a degree 1 closed point with

residue field K. We note B+
dR := B+

dR(K) = “OXF ,∞ with uniformizer t.

A modification of a G-bundle E at ∞ is the data given by a a G-bundle E ′ together
with an isomorphism

E|XF∖{∞}
∼−−→ E ′

|XF∖{∞}.

When G = GLn, Beauville-Laszlo tells us that such a modification is the same as the

datum of a B+
dR-lattice in Ê∞[1t ] where here we see E as a vector bundle. In general, this is

the same as an étale G-torsor F on Spec(B+
dR) together with an isomorphism

E ×XF
Spec(BdR)

∼−−→ F ×Spec(B+
dR) Spec(BdR).
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Since B+
dR is complete and the residue field of K contains Fq any étale G-torsor on Spec(B+

dR)
is trivial (Steinberg, Hensel). We deduce that this is the same as an element of

E (BdR)/G(B
+
dR).

where E (BdR) is the set of sections

E

Spec(BdR) XF

se
cti
on

6.2. Some piece of the Hecke groupoid.

Let us now remark that for any b ∈ G(Ĕ)b ∈ G(Ĕ)b ∈ G(Ĕ) there is a canonical trivialization of

Eb ×XF
Spec(B+

dR).

Suppose now that E = Eb and E ′ = Eb′ . Then, modifications

M : Eb 99K Eb′

at ∞ are given by an element of

p1(M) ∈ G(BdR)/G(B
+
dR)

and its inverse

p2(M) := p1(M
−1) ∈ G(BdR)/G(B

+
dR).

The images of p1(M) and of p2(M)−1 ∈ G(B+
dR)\G(BdR) in

G(B+
dR)\G(BdR)/G(B

+
dR)

are equal. We call this the type of the modification.

Suppose that G is split to simplify. There is then a bijection

X∗(A)
+ ∼−−→ G(B+

dR)\G(BdR)/G(B
+
dR)

µ 7−→ G(B+
dR)µ(t)G(B

+
dR).

We equip X∗(A)
+ with the order µ ≤ µ′ if µ′ − µ ∈ N.∆∨.
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Definition 6.1. For G split over E and {µ} a conjugacy class of cocharaters of G we
define for F |Fq a perfectoid field

(1)
Sh(G, b, b′, µ)(F )

as the set of a degree 1 point ∞ ∈ |XF | and a modification at ∞
Eb 99K Eb′

of type ⩽ µ.

(2)

GrBdR
G,⩽µ(F )

as the set of a degree 1 closed point ∞ on XF with residue
field K and an element of G(BdR(K))/G(B+

dR(K)) whose image in

G(B+
dR(K))\G(BdR(K))/G(B+

dR(K)) is ⩽ µ.

We thus have two maps

Sh(G, b, b′, µ)(F )

GrBdR
G,⩽µ(F ) GrBdR

G,⩽µ−1(F )

p1 p2

6.3. Modifications of vector bundles associated to p-divisible groups. The fol-
lowing is the starting point of the link between Rapoport-Zink spaces and modification of
vector bundles on the curve.

Proposition 6.2. LetM be the deformation space by quasi-isogenies of the p-divisible
group H over Fp as defined by Rapoport-Zink. Let C|Q̆p be algebraically closed and
consider an element x ∈M(OC). Let

• V be the rational Tate module of the universal deformation specialized at x,
• (D,φ) be covariant isocrystal of H,
• FilDC be the Hodge filtration.

There is a canonical exact sequence of coherent sheaves on XC♭

0 −→ V ⊗OX
C♭
−→ E (D, p−1φ) −→ i∞∗DC/FilDC −→ 0

where ∞ ∈ |XC♭ | is the closed point associated to the untilt C of C♭.

This is a rewriting in terms of the curve of Fontaine/Faltings comparison theorems :

V ⊗Qp B(C♭)[1t ]
∼−−→ D ⊗Q̆p

B(C♭)[1t ].

where

Id⊗φ↔ p−1φ⊗ φ.
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Define now for F |Fp algebraically closed

M⋄
η,∞/φ

Z(F )

as the set of
• an untilt C of F over E up to a power of Frobenius (i.e. the identification between F

and C♭ is taken up to a power of Frobenius),
• an object ofM(OC),
• an infinite level structure on this object i.e. a base of the associated rational Tate
module.

Let d be the dimension of H and set µ(z) = diag(z, . . . , z︸ ︷︷ ︸
d-times

, 1, . . . , 1) for G = GLn over Qp.

Set G = GLn where n is the height of H. The preceding proposition defines a map for F
algebraically closed

M⋄
η,∞/φ

Z(F )

Sh(G, b, 1, µ)(F )

GrBdR
G,⩽µ(F ) GrBdR

G,⩽µ−1(F )

πdR πHT

p1 p2

where here there is an identification between GrBdR
G,⩽µ(F ) and F ⋄

µ/φ
Z(F ) since µ is minus-

cule.

6.4. Application to the classification. As a consequence of the study of de Rham
and Hodge-Tate periods of Lubin-Tate spaces one deduces the following from the preceding
construction

{p-divisible groups/OC} −→ {modifications of vector bundles /XC♭}

For F algebraically closed :

• (Surjectivity of the de Rham period morphism for L.T. spaces) For any exact sequence
of coherent sheaves on XF

0 −→ E −→ O( 1n) −→ F −→ 0,

where F is a torsion coherent sheaf of degree 1, one has

E ≃ On.

• (Computation of the image of πHT for L.T. spaces) For any exact sequence of co-
herent sheaves on XF

0 −→ On −→ E −→ F −→ 0
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where F is a torsion coherent sheaf of degree 1, one has

E ≃ On−r ⊕O(1r )

for some integer 1 ≤ r ≤ n.

Using those two results about degree 1 modifications of vector bundles on the XF one can
obtain by elementary manipulations the classification theorem 5.1.

6.5. Equivalence. Reciprocally one can prove the following result (using the classifica-
tion of vector bundles on the curve).

Theorem 6.3 (F., Scholze-Weinstein). The following is satisfied :

(1) For F algebraically closed the map

M⋄
η,∞/φ

Z(F ) −→ Sh(G, b, 1, µ)(F )

is a bijection.

(2) The functor that sends a p-divisible group over OC to the corresponding mo-
dification of vector bundles on XC♭

E 99K E ′,

with E a trivial vector bundle, together with a lattice in H0(XC♭ ,E ), is an
equivalence of categories.

Using this result together with some arguments bout Banach-Colmez spaces one can prove
that in infinite level Rapoport-Zink spaces are perfectoid and are identified as a moduli of
modifications of vector bundles.

7. p-adic Hodge structures and local Shtukas

The following result says that a (geometric) p-adic Hodge structure is the same as a local
Shtukas.

Theorem 7.1 (F.). Let C|E be algebraically closed. Let ξ be a generator of the kernel
of θ : Ainf :=WOE

(OC♭)→ OC . There is an equivalence of categories between

• local Shtukas i.e. couples (M,φ) where M is a free Ainf-module of finite type
and φ an isomorphism

φ :M [ 1
φ−1(ξ)

]
∼−−→M [1ξ ]

• geometric p-adic Hodge structures i.e. modifications of vector bundles

E 99K E ′

at ∞ where E is a trivial vector bundle.
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Remark 7.2. This last result is the starting point of Ainf-cohomology. In fact if X is a

proper smooth algebraic variety over K where [K : Qp] < +∞ and C = “K, the “classi-
cal” comparison theorems (Fontaine, Fontaine-Messing, Tsuji, Faltings) associates to
any cohomologycal degree i ∈ N a modification of vector bundles E 99K E ′ on XC♭ where

• E = H i
ét(XK ,Qp)⊗Qp O

• E ′ = E (D,φ) where D = H i
cris(XkK

,W )
[
1
p

]
with its crystalline Frobenius.

The lattice
H i

ét(XK ,Zp)/torsion

then gives rise by application of the preceding theorem to a φ-module over Ainf . One
of the starting point of Ainf-cohomology is to refine this construction by construction
a cohomology complex in the derived category of Ainf-modules to take into account
torsion.

8. Some final thoughts

Theorem 6.3 has been a great motivation for the introduction of the geometrization conjec-
ture. Already in my joint work with Fontaine, in the proof we gave of weakly admissible implies
admissible, modification of vector bundles and B+

dR-lattices showed up in an essential way.
The appearance of Kottwitz set already, strongly linked to the mod p geometry of Shimura
varieties, is a great sign.



Chapitre 6

6th lecture - October 24

1. What is a diamond ?

• Schemes are obtained by gluing affine schemes for the Zariski topology.
• Algebraic spaces are obtained by gluing affine schemes for the étale topology.
• Usually one adds a coherence condition in the definition of an algebraic space, one
typically assumes that they are quasi-separated to remove pathological objects like
Ga,C/Z (action by translations) that is not quasi-separated since the étale topology is
not coarse enough contrary to the analytic topology where C/Z is a nice good object
as a complex analytic space.
• There is an Artin criterion for algebraic spaces.

The theory of diamonds follows the same path by replacing schemes by Fp-perfectoid
spaces and the étale topology by the pro-étale topology. The nice coherence condition that
one adds to make them look like analytic adic spaces is called the spatialness condition.
There is even an analog of Artin’s criterion.

Historically there has been different sources of diamonds :

(1) The first one comes from he theory of finite dimensional Banach spaces in the
sense of Colmez. The first, from the historical point of view, typical question being

to describe geometrically Bφ=p2 that, contrary to Bφ=p that is a 1-dimensional open
ball, is a quotient of a 2-dimensional ball by a pro-étale pro-p equivalence relation
but is not represented by a perfectoid space.

(2) The second one is the remark that points of the curve correspond to untilts up to
Frobenius, this has lead to the introduction of Spa(Qp)

⋄Spa(Qp)
⋄Spa(Qp)
⋄.

(3) The third one is the remark due to Faltings and Colmez that pro-étale locally
analytic adic spaces are perfectoid ; this is typically the remark due to Faltings
that “the Frobenius of R/pR is surjective”. This has lead later to the construction
of X⋄X⋄X⋄ where X is an analytic adic space.

(4) The fourth one come from the desire to put a geometric structure on the set of
B+

dRB+
dRB+
dR-latticed in Bn

dRBn
dRBn
dR, a construction that already showed up in the curve proof of

weakly admissible implies admissible.

2. Background on the pro-étale and the v-topology

Let Perf be the category of perfectoid spaces.

Here, and this is essential for our work, see Remark 2.2, we consider affinoid perfectoid
algebras that may not contain a field. They are classified as couples ((R,R+), I) where

65
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• (R,R+) is an Fp-affinoid perfectoid algebra,
• I ⊂ W (R+) is an ideal generated by a degree 1 distinguished element i.e. an element

of the form
∑
n≥0

[an]p
n where a0 ∈ R◦◦ and a1 ∈ (R+)× (such elements are regular and

such an ideal I is a Cartier divisor).

This correspondence is given by the following rules :
• To (A,A+) affinoid perfectoid we associate(

(A♭, A♭,+), ker θ
)

where θ :W (A♭,+)→ A+.
• In the other direction, to ((R,R+), I) we associate(

W (R+)/I[ 1
[ϖ] ],W (R+)/I

)
.

If (A,A+) contains a field and corresponds to ((R,R+), (ξ)) with ξ =
∑

n≥0[an]p
n then

either a0 = 0 i.e. A contains Fp, either a0 ∈ R× i.e. A contains Qp.

Example 2.1. If we take

(R,R+) = (K⟨T 1/p∞⟩,OK⟨T 1/p∞⟩)

with K a characteristic p perfectoid field and

I = ([T ] + p)

then the corresponding perfectoid space S = Spa(A,A+) satisfies |S| = |B1
K | that is connected.

The open subset |B1
K ∖{0}| is a Qp-perfectoid space and the origin {0} ⊂ |B1

K | is Spa(K) that
is an Fp-perfectoid space.

Remark 2.2. From this example we deduce a quotient map

|B1
K | → |Spa(Zp)

⋄|︸ ︷︷ ︸
top. space
associated
to a small
v-sheaf

(see later)

=︸︷︷︸
as a
set

{s, η}

where the image of |B1
K ∖ {0}| is η and the one of {0} is s. This implies that η ⩾ s and thus

|Spa(Zp)
⋄| = {s, η} with η ⩾ s as a topological space. This fact is crucial for the proof of the

geometric Satake correspondence where we use a degeneration of the BdR-affine Grassmanian
from Spa(Qp)

⋄ to Spa(Fp)
⋄ via Spa(Zp)

⋄ to the usual Witt vector affine Grassmanian where
we can apply some classical arguments using the decomposition theorem.

The category Perf is equipped with three natural Grothendieck topologies.
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2.1. The étale topology. This is the usual étale topology on perfectoid spaces. One of
its main properties is that it is compatible with the tilting equivalence : if S is a perfectoid
space, via the equivalence

(−)♭ : PerfS
∼−−→ PerfS♭ ,

T → S is étale if and only if T ♭ → S♭ is étale. This is part of the so-called purity theorem.
Among its elementary properties is the fact that any étale morphism is open.

In general the étale site of a perfectoid space is considered as a small site.

2.2. The pro-étale topology.
2.2.1. Definition. One of the great features of perfectoid spaces, compared to “classical

Noetherian analytic adic spaces” is that some operations that do not exist in the Noetherian
world make a sense for perfectoid spaces. Typically, if (Si)i is a cofiltered projective system
of affinoid perfectoid spaces, Si = Spa(Ri, R

+
i ), then

lim←−
i

Si

is well defined, and affinoid perfectoid, as Spa(R+
∞[ 1ϖ ], R+

∞) where R+
∞ is the ϖ-adic comple-

tion of lim−→i
R+

i and ϖ is the image of some pseudo-uniformizer in Ri for some index i.

Recall the following definition.

Definition 2.3. A morphism T → S of perfectoid spaces is pro-étale if it can be
written locally on T and S as

T = lim←−
i≥i0

Si −→ Si0 = S

where (Si)i is a cofiltered projective system of affinoid perfectoid spaces with étale tran-
sition morphisms.

The pro-étale topology has to be manipulated carefully for the following reason : contrary
to étale morphisms of perfectoid spaces, in general pro-étale morphisms are not open.
This is for example the case for any s ∈ S where

Spa(K(s),K(s)+) = lim←−
U∋s

U ↪→ S

is pro-étale not open. This may still be the case for surjective morphisms of affinoid perfectoid
spaces, typically S

∐
Spa(K(s),K(s)+)→ S.

One thus has to add the following condition in the definition of a pro-étale cover :
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Definition 2.4. A family of morphisms of perfectoid spaces (Ti → S)i∈I is a pro-étale
cover if for any quasi-compact open subset U in S there exists I ′ ⊂ I finite and for
each i ∈ I ′ a quasi-compact open subset Vi ⊂ Ti such that

U =
⋃
i∈I′

Im(Vi → T ).

If for all indices i ∈ I, Ti → S is open this “strong surjectivity condition” is equivalent
to “the weak one” saying that

∐
i∈I |Ti| → |S| is surjective. But as we said before this is not

true in general. The pro-étale site is seen as a big site.

2.2.2. Pro-étale local structure of perfectoid spaces. One of the most important results
is the following structure of perfectoid spaces pro-étale locally. In fact, recall the following
definition. We use the fact that for any qc qs perfectoid space X there is a morphism

X −→ π0(X)

whose fibers are the connected components of X (that are perfectoid spaces). Here

π0(X) =

profinite︷ ︸︸ ︷
π0( |X|︸︷︷︸

spectral
space

) .

Remark 2.5. Here we use the following construction. If T is a topological space then we
define T as a functor on Perf via the formula

T (S) = C (|S|, T ).

This defines a pro-étale (and even a v)-sheaf on Perf.

Definition 2.6. A perfectoid qc qs space X is strictly totally discontinuous if it
satisfies the following equivalent properties :

(1) Every connected components of X contains a unique closed point i.e. is of the
form Spa(K,K+) with (K,K+) an affinoid perfectoid field. We moreover ask
that all residue fields are algebraically closed i.e. any connected component is
of the form Spa(C,C+) with C algebraically closed.

(2) Any étale cover of X splits i.e. admits a section.

Strictly totally disconnected perfectoid spaces can be though of as a amal-
gamations of collections Spec(C(x), C(x)+) with C(x) algebraically closed when x
goes along a profinite set.

The following says that pro-étale locally any perfectoid space if a disjoint union of strictly
totally disconnected perfectoid spaces.
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Proposition 2.7 (Pro-étale local structure of perfectoid spaces). For any qc
qs perfectoid space X there exists an open pro-étale surjective morphism‹X −→ X

with ‹X strictly totally discontinuous.

Example 2.8. For any perfectoid space X, if X• → X is an hypercover by
∐

strictly
totally disconnected perfectoid spaces then

{étale sheaves on X} ∼−−→ {cartesian sheaves on |X•|}.
From this point of view étale cohomology of perfectoid spaces is simpler than étale coho-
mology of schemes : everything is reduced to cartesian sheaves on simplicial topological
spaces.

2.2.3. A geometric fiberwise criterion to be pro-étale pro-étale locally. Pro-étale mor-
phisms do not satisfy descent for the pro-étale topology. This problems has lead to
the following.

Proposition 2.9. A morphism of perfectoid spaces X → S is pro-étale pro-étale locally
on S if and only if for all its geometric fibers, X ×S Spa(C,C+) for Spa(C,C+)→ S,
are locally profinite, i.e. locally of the form P × Spa(C,C+) for a profinite set P .

This has lead to the definition of quasi-pro-étale morphisms and his a very useful
criterion for application to morphisms of moduli spaces for which computing the geometric
fibers is usually easy.

Example 2.10. Let T → S be a morphism of qc qs perfectoid spaces such that |T | →
|S| is surjective (i.e. this is a v-cover) and such that for all s : Spa(C,C+) → S,
Ts ≃ P × Spa(C,C+) with P a profinite set. Then, up to replacing S by a pro-étale
cover, T → S is a pro-étale cover. From this we deduce that T → S is a surjective
morphism of pro-étale sheaves. This is for example the case for the Kummer map

B1,1/p∞

K︸ ︷︷ ︸
perfectoid

ball

z 7→zn−−−−−→ B1,1/p∞

K when K is a perfectoid field.

2.3. The v-topology. The v-topology is an analog of the fpqc topology for schemes.
This is a big site on perfectoid spaces where we take the same definition for covers as for the
pro-étale topology but by taking any morphism of perfectoid spaces instead of the pro-étale
one. This is the most general topology we use. It is subcanonical : the functor defined by a
perfectoid space is a v-sheaf. It moreover satisfies some nice descent properties. For example :

(1) Vector bundles satisfy descent for the v-topology.
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(2) Separated étale morphisms satisfy descent for the v-topology.

This last (difficult) result is used all the times.

Example 2.11. Let G be a locally profinite group and T → S be a G torsor for the
v-topology where S is a perfectoid space. One has, as v-sheaves,

T
∼−−→ lim←−

K

K\T

where K goes through the set of compact open subgroups of G. Since v-locally K\T → S
is separated étale, one deduces that K\T → S is representable by a separated étale mor-
phism of perfectoid spaces. In particular, T → S is a pro-étale morphism of perfectoid
spaces,

T = lim←−
K′⊂K

K ′\T −→︸︷︷︸
pro-

étale finite

K\T −→︸︷︷︸
étale

separated

S,

and thus a pro-étale torsor and we have

H1
pro-ét (S,G)

∼−−→ H1
v (S,G).

Example 2.12. Let Qcyc
p = ∪n≥1Qp(ζn). Then,

‘Qcyc
p is a perfectoid field. The morphism

Spa(Cp) −→ Spa(‘Qcyc
p )

is a v (and even pro-étale) cover. Let H = Gal(Qp|Q
cyc
p ). The preceding morphism is an

H-torsor. The fact that vector bundles descend along this morphisms is then equivalent
to (Sen)

Vect’Qcyc
p︸ ︷︷ ︸

finite dim.’Qcyc
p -v.s.

∼−−→ RepCp
(H)︸ ︷︷ ︸

semi-linear
rep. of H

on finite dim.
Cp-v.s.

3. Diamonds

3.1. Definition and elementary results. As we said, diamonds are algebraic spaces
for the pro-étale topology. One of the ides of the theory is to push everything in characteristic
p.
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Definition 3.1. A diamond is a pro-étale sheaf X on PerfFp such that there exists an

Fp-perfectoid space ‹X and an equivalence relation R ⊂ ‹X × ‹X
• that is representable by a perfectoid space,

• such that both maps R ‹X are pro-étale,
• and we have

X ≃ ‹X/R
(quotient as pro-étale sheaves).

As is well known (Gabber), any algebraic space is an fppf sheaf. The same holds for dia-
monds : one can prove that any diamond is a v-sheaf.

The category of diamonds is very behaved : it has fibered products and finite products.

3.2. Spatial diamonds. Let X be a v-sheaf on PerfFp . Suppose it is small in the sense
that there exists a perfectoid space S and a surjection S → X. One can then define

|X| =
{
Spa(K,K+)→ X | (K,K+) affinoid perf. field

}
/ ∼

where two morphisms Spa(K1,K
+
1 )→ X and Spa(K2,K

+
2 )→ X are equivalent if there exists

a diagram

Spa(K1,K
+
1 )

Spa(K3,K
+
3 ) X

Spa(K2,K
+
2 )

where Spa(K3,K
+
3 )→ Spa(K1,K

+
1 ) and Spa(K3,K

+
3 )→ Spa(K2,K

+
2 ) sends the closed point

to the closed point. This is equipped with the structure of a topological space where the open
subsets are the subsets

|U | ⊂ |X|
where U ↪→ X is a morphisms of v-sheaves representable by an open immersion. One can
verify that if

S1 S0 X

is a 1-v-hypercover by perfectoid spaces then

coeq︸︷︷︸
coeq in

the cat. of
top. spaces

(
|S1| |S0|

) ∼−−→︸︷︷︸
homeomorphism

|X|.

Here is the “good notion” of diamonds we use.

Definition 3.2. A diamond X is spatial if X is qc qs and each point of |X| has a
basis of neighborhoods formed of qc open subsets.
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One can verify that in fact the topological condition is equivalent to saying that |X| is
a spectral space. This makes spatial diamonds look like qc qs analytic adic spaces. This
throws out some pathological objects that are not related to rigid analytic geometry like

T × Spa(K)

where T is a compact Hausdorff space and K is a perfectoid field. In fact, this last object is
a diamond with topological space T . More precisely, if βTdisc is the Stone-Chech compactifi-
cation of Tdisc there is a surjective quotient map

βTdisc︸ ︷︷ ︸
profinite

−→ T

sending an ultrafilter to its limit. This shows that T × Spa(K) is a diamond with topological
space T .

This spatialness notion is extremely flexible, giving rise to a new geometry.
For example, if (Xi)i is a cofiltered projective system of spatial diamonds then lim←−i

Xi is a

spatial diamond with | lim←−i
Xi| = lim←−i

|Xi| as spectral spaces.

Maybe one of the greatest features of the geometry of spatial diamonds is the following.
If X is a v-sheaf and Z ⊂ |X| a subset then Z defines a sub-v-sheaf of X via the formula

Z(S) = {S → X | Im(|S| → |X|) ⊂ Z}.
We have the following result that is a consequence of the fact that if X is a strictly totally
disconnected perfectoid space then any pro-constructible generalizing subset of |X| is repre-
sentable by a perfectoid space.

Proposition 3.3. Let X be a spatial diamond and let Z ⊂ |X| be pro-constructible
generalizing subset. Then Z defines a spatial diamond with topological space Z equipped
with a qc injection inside X.

The geometry of (locally) spatial diamonds is much more flexible than the geometry of
classical rigid spaces à la Tate.

3.3. Some abstract construction : tilting anything. Let X be a v-sheaf on Perf.

Definition 3.4 (Tilting anything). We note X⋄ for the v-sheaf on PerfFp whose

value on S is given by the datum (S♯, ι, s) where
• S♯ is a perfectoid space,
• ι : S ∼−−→ (S♯)♭,
• s is an element of X(S♯).

Of course, if X is a perfectoid space then

X⋄ = X♭.

This abstract construction allows us to tilt anything in characteristic p. If S is any v-sheaf
then
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(−)⋄ : Perf /S ∼−−→ PerfFp /S
⋄

that is a generalized form of the tilting equivalence. This extends to equivalences of
topöı (étale, pro-étale or v) fiPerf/S ∼−−→‡PerfFp/S

⋄

For example, Qp-perfectoid spaces are the same as Fp-perfectoid spaces sitting over Spa(Qp)
⋄.

3.4. First example : Spa(Qp)
⋄. The v-sheaf Spa(Qp)

⋄ is a spatial diamond. This is the
moduli of untilts of a characteristic p perfectoid space in characteristic 0. In fact,

Spa(Qp)
⋄ = Spa(C♭

p)/Gal(Qp|Qp).

Remark 3.5. One has to be careful that Spa(Zp)
⋄ is not a diamond. In fact, one can

prove that any sub-v-sheaf of a diamond is a diamond, but Spa(Fp)
⋄ is not a diamond.

3.5. X⋄ for X an analytic adic space. The starting point of this is the following due
to Colmez : If R is a uniform complete Tate Huber ring then there exists a filtered inductive
system (Ri)i≥i0 of complete uniform Tate Huber rings with Ri0 = R such that all transition
morphisms are finite étale and ÷lim−→

i

Ri

is perfectoid. From this one deduces the following.

Proposition 3.6. If X is an analytic adic space then X⋄ is a locally spatial diamond
with |X⋄| = |X|.

Example 3.7. If X is characteristic p then X⋄ is a perfectoid space equal to X1/p∞.

Example 3.8 (Faltings). Let R be a p-torsion free p-adic integral normal domain. Let
K = Frac(R) and K an algebraic closure of K. Let R be the integral closure of R in the
maximal extension of K inside K that is étale over R

[
1
p

]
i.e. AutR(R) = π1(Spec(R

[
1
p

]
, x)

with x given by the choice of K. Then R̂̂R̂R is perfectoid. In fact, if x ∈ R then the polynomial
P (T ) = T p+pT −x is separable over R

[
1
p

]
. A zero of this polynomial in K is then an element

of R whose p-power is congruent to x modulo p.

Here is how to explicitly construct some perfectoid charts on X⋄. Let‹X → X

be a pro-étale cover with ‹X perfectoid. Let‹X ×X
‹X
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be the categorical product in the category of X-perfectoid spaces. This product exists since

(locally on X and ‹X that we can suppose affinoid) if ‹X = lim←−i≥i0
Xi with Xi0 = X and finite

étale transition morphisms then the purity theorem says that for all indices i,‹X ×X Xi

is perfectoid. On can then take ‹X ×X
‹X = lim←−

i

‹X ×X Xi.

Then one has

X⋄ = coeq
(
(‹X ×X

‹X)♭ ‹X♭
)
.

Remark 3.9. One has to be careful that the product ‹X×X
‹X should not be taken in the ca-

tegory of adic spaces. For example, Cp⊗̂QpCp is not perfectoid contrary to C (Gal(Qp|Qp),Cp).

Example 3.10. One has

Spa
(
Qp⟨T, T−1⟩,Zp⟨T, T−1⟩

)⋄
= Spa

(
C♭
p⟨T±1/p∞⟩,OC♭

p
⟨T±1/p∞⟩

)
/Zp(1)⋊Gal(Qp|Qp).

Let us conclude with the following.

Theorem 3.11. The functor X 7→ X⋄ satisfies the following :

(1) It is fully faithful from the category of Noetherian normal analytic adic spaces
to the category of locally spatial diamonds,

(2) For X a Noetherian analytic adic space one has an equivalence of topoÃ¯›X⋄
ét

∼−−→ ‹Xét

and in particular one can compute the étale cohomology of X in terms of the
one of X⋄.

4. Some final thoughts

The theory of diamonds gives access to some new geometry. For example, if X is an
analytic adic space and Z ⊂ |X| a subset that is locally on X pro-constructible generalizing
then Z defines a sub-locally spatial diamond of X⋄ that is not attached to a classical analytic
adic space in general. For example, the étale cohomology of diamonds allows us to define the
étale cohomology of such a Z.
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7th lecture - October 31

1. The linear objects of the category of diamonds : BC spaces

1.1. The relative curve. For S an Fq-perfectoid space we can define

XS = YS/φ
Z

the relative curve associated to S as an E-adic space. This is defined as when S is the
spectrum of a perfectoid field. More precisely, if S = Spa(R,R+) is affinoid perfectoid then
we can define

YS = Spa(WOE
(R+),WOE

(R+))∖ V (π[ϖ])

with its Frobenius φ. This construction glues and lead to the definition of YS for any S.
The preceding constructions when S = Spa(F ) extends :

(1) For S affinoid perfectoid YS is sous-perfectoid and thus Huber’s structural pre-
sheaf of holomorphic functions is in fact a sheaf. That being said, in general
this is not a Noetherian adic space.

(2) If S = Spa(R,R+) is affinoid perfectoid we can define the associated schematical
curve XR,R+ as before and GAGA theorem extends :

{vector bundles on XR,R+} ∼−−→ {vector bundles on XR,R+}.

The construction S 7→ XS is functorial in S and one can thought of XS as being “X ×S”
although “X” does not exist.

Here is a computation.

Proposition 1.1. One has

X⋄
S =

(
S × Spa(E)⋄

)
/φZ × Id

as a locally spatial diamond over Spa(E)⋄.

This result is reduced to the computation of Y ⋄
S together with its Frobenius action. One

has to compute morphisms Spa(A,A+) → YS for (A,A+) an affinoid perfectoid E-algebra.
Suppose that S = Spa(R,R+). Such a morphism is given by a morphism

(4) WOE
(R+) −→ A+

75
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such that the image of [ϖ] is a pseudo-uniformizer of A.
We now use the adjunction

Perfect Fq-algebras p-adically separated complete OE-algebras
WOE

(−)

(−)♭

where the adjunction maps are given by x 7→ ([x1/p
n
])n≥0 and Fontaine’s θ map.

From this adjunction we deduce that to give oneself a morphism as in Equation (4) is the
same as a morphism

R+ −→ A♭,+

sending ϖ to a pseudo-uniformizer in A. The result is easily deduced.

1.2. BC spaces and their families. Affine spaces and their twisted versions (vector
bundles) are the natural linear objects showing up in the “classical case” as the relative
cohomology of vector bundles. The linear objects of the category of diamonds are the Banach-
Colmez spaces.

Before beginning let us recall that there is a good notion of vector bundles on
analytic adic spaces like XS . More precisely we have the following. Let (A,A+) be stably
uniform complete Tate Huber ring (for example (A,A+) is sous-perfectoid). Then

(−)adification :
{
vector bundles on Spec(A)︸ ︷︷ ︸

projective finite type
A-modules

} ∼−−→
{
vector bundles on Spa(A,A+)︸ ︷︷ ︸

locally free
O-modules

}

This sends a projective finite type A-module P to P ⊗A OSpa(A,A+). Moreover for any such

vector bundle E on Spa(A,A+) one has

H i(Spa(A,A+),E ) = 0 for i > 0.

Proposition 1.2 (Relative cohomology of vector bundles). If S is an Fq-
perfectoid space and E a vector bundle on XS then the functors on S-perfectoid spaces

(1) T 7→ H0(XT ,E|XT
),

(2) the pro-étale sheaf associated to the presheaf T 7→ H1(XT ,E|XT
)

are locally spatial diamonds.

Example 1.3. Let E1 and E2 be two vector bundles on XS. Then the v-sheaf on PerfS

T 7−→ Isom(E1|XT
,E2|XT

)

is representable by a locally spatial diamond as an open sub-diamond of T 7→ H0(XT ,E
∨
1|XT
⊗

E2|XT
). This means that the diagonal of the stack Bun of vector bundles on the curve (see

later) is representable in locally spatial diamonds.
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Theorem 1.4 (Le Bras). When S = Spa(C♭) with C|E algebraically closed one can
prove that this relative cohomology construction gives an equivalence between

(1) objects E ∈ D[−1,0](OX
C♭
) satisfying the perversity conditions

• H−1(E ) is a vector bundle with < 0 H.N. slopes,
• H0(E ) is a coherent sheaf with ⩾ 0 H.N slopes,

(2) the sub-abelian category of the category of pro-étale sheaves on Spa(C) of E-
vector spaces that is the smallest one that
• contains E
• contains Ga,
• is stable under extensions.

2. Artin criterion

To go further and give new examples of diamonds we will need the following.

Theorem 2.1 (Artin criterion for spatial diamonds). Let X be v-sheaf on PerfFp. This
is a spatial diamond if and only if

(1) it is small,

(2) it is spatial i.e. X is qc qs and |X| is spectral,

(3) for any x ∈ |X|, Xx := lim←−U∋x U is a diamond that is to say isomorphic to

Spa(C,C+)/G where G ⊂ Aut(C,C+) is a profinite subgroup.

Like the classical Artin criterion :

Diamonds Algebraic spaces

Global hypothesis spatial v-sheaf finite presentation fppf sheaf

Local hypothesis ∀x ∈ |X|, Xx is a diamond the formal completion at each point
is representable by a formal scheme

The way we are going to apply the preceding result is the following. We will first prove
that X is spatial using the following elementary result.

Lemma 2.2. Let X be a spectral space and R ⊂ X ×X be a pro-constructible equivalence

relation such that both maps R X are open. Then, X/R is a spectral space.
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Here is the corollary we will use. We use the notion of ℓ-cohomological smoothness (to be
seen later) : the only thing to know is that

ℓ-cohomologically smooth =⇒ open.

Proposition 2.3. Let X be a spatial diamond and R ⊂ X × X be an equivalence

relation such that R is a spatial diamond. Suppose both maps R X are ℓ-
cohomologically smooth for some ℓ ̸= p. Then, X/R is a spatial v-sheaf.

Example 2.4. Let X → S be a morphism of spatial diamonds and G a spatial diamond
that is group over S action on X. Suppose that G→ S is ℓ-cohomologically smooth for some
ℓ ̸= p. Then X/G is a spatial v-sheaf.

The second step is the following one we know that X is a spatial v-sheaf. We will exhibit
a finite stratification

|X| =
⋃
i

Zi,

where Zi is locally closed generalizing, such that for all indices i, Zi is a diamond. This will
prove that X is a spatial diamond.

Let’s put this in a corollary.

Corollary 2.5. Let X be a qc qs v-sheaf that is ℓ-cohomologically smooth locally a
spatial diamond and such that |X| =

⋃
i Zi with Zi ⊂ |X| locally closed generalizing

that is a diamond. Then X is a spatial diamond.

3. Schubert cells in the BdR-affine Grassmanian

3.1. The BdR-affine Grassmanian. Let G be our reductive group over E. We can
consider the v-sheaf or filtered E-algebras

B+
dR

Spa(E)⋄.

This sends (R,R+) an Fp-perfectoid algebra to

• an untilt (R♯, R♯,+) over E,
• an element of the completion of WOE

(R+)
[
1
p

]
for the ker θ-adic topology where

θ :WOE
(R+)

[
1
p

]
−→ R♯,+

[
1
p

]
.

We note BdR for the localization of B+
dR obtained after inverting a generator of ker θ.
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Definition 3.1. We note

GrBdR
G

Spa(E)⋄

for G(BdR)/G(B+
dR) (étale quotient).

3.2. Schubert cells. Suppose G is split to simplify. Fix T ⊂ B a maximal torus inside
a Borel subgroup. For each µ ∈ X∗(T )

+ there is defined an open Schubert cell inside a closed
one

GrBdR
G,µ ⊂︸︷︷︸

open

GrBdR
G,⩽µ .

This is defined via a pointwise condition for each morphism Spa(C,C+) → GrBdR
G . The

fact that the inclusion is an open immersion is not completely evident. Nevertheless, there is
a Bialynicki-Birula morphism

BLµ : GrBdR
G,µ −→ F ⋄

µ

where Fµ is the flag variety associated to µ. This morphism is an iterated étale fibration in
(A1)⋄ and we deduce that the open Schubert cell is a diamond. As an application of Artin’s
criterion, using the stratification by open Schubert cells, one can prove the following.

Theorem 3.2 (Scholze). For all µ, the closed Schubert cell GrBdR
G,⩽µ is a spatial diamond.

4. Punctured absolute Banach-Colmez spaces

Let

∗ = Spa(Fq)

be the final object of the v-topos. For each λ ∈ Q>0 let us note

BC(O(λ)) −→ ∗

for the v-sheaf

S 7→ H0(XS ,O(λ)).
We call this an absolute Banach-Colmez space. Here the terminology “absolute” refers to

When λ ∈]0, 1], this is represented by a formal scheme isomorphic to

Spf(FqJx
1/p∞

1 , . . . , x
1/p∞

d K)

where λ = d
h with (d, h) = 1. More precisely, this is the universal cover of a dimension d and

height h π-divisible OE-module. This is clearly not represented by a perfectoid space or even
a diamond. Nevertheless,

BC(O(λ))∖ {0} = Spa
(
FqJx

1/p∞

1 , . . . , x
1/p∞

d K,FqJx
1/p∞

1 , . . . , x
1/p∞

d K
)
∖ V (x1, . . . , xd)



80 7. 7TH LECTURE - OCTOBER 31

that is a qc qs perfectoid space.

For λ < 0 we can consider similarly

BC(O(λ)[1]) −→ ∗
that is the sheaf whose value on S affinoid perfectoid is

H1(XS ,O(λ)).
On then has the following result.

Theorem 4.1 (F.-Scholze). For all λ ∈ Q>0, the punctured absolute Banach-Colmez
spaces

BC(O(λ))∖ {0}
and

BC(O(−λ)[1])∖ {0}
are spatial diamonds.

Those last spatial diamonds are not associated to any classical usual objects like Noethe-
rian analytic adic spaces or formal schemes. They are among the most “original” and new
objects showing up in our work and are completely unrelated to any usual classical object.

5. Some final thoughts

Those last objects, the negative punctured absolute Banach-Colmez spaces, are a key
ingredient in our joint work with Scholze. They allow use to construct some very particu-
lar charts of the stack of G-bundles on the curve, the so-called “Mb”. The spatialness of
BC(O(−λ)[1])∖ {0} is one of the reason why we consider

BunG

∗
absolutely and not by replacing ∗ by Spa(C) where C is an algebraically closed Fp-perfectoid

field. Working absolutely over Spa(Fq) is an essential point.

The geometry of locally spatial diamonds is much more flexible than the
usual one of Noetherian analytic adic spaces ; typically the fact that any locally pro-
constructible generalizing subset of |X|, X locally spatial, defines a sub-locally spatial dia-
mond is extremely useful.

As a final remark : for any small v-sheaf (and even any small v-stack) X and Λ a torsion
ring we can define

Dét(X,Λ)

via a descent procedure : this is

π0 lim←−
S→X

D(|S|,Λ)︸ ︷︷ ︸
stable ∞-category
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where S is a strictly totally disconnected perfectoid space. More concretely, if

S• −→ X

is a v-hypercover by
∐

of strictly totally disconnected perfectoid spaces then Dét(X,Λ) is
identified with the derived category of cartesian sheaves of Λ-modules on |S•|. This makes
the category Dét(X,Λ) quite abstract, in particular the functor Rf∗, when f is a morphism
of small v-sheaves, is not explicit : if we have a diagram

S′
• S•

X ′ X

g

f

then Rf∗ is computed as

Dcart(|S′
•|,Λ)

R|g|∗−−−−→ D(|S•|,Λ)
cartesianification

functor−−−−−−−−−−−→ Dcart(|S•|,Λ)
where the cartesianification functor is not explicit.

Nevertheless, if X is a locally spatial diamond, it has a nice étale site Xét of locally
separated étale morphisms ; this is a consequence of the fact that separated étale morphisms
descend for the v-topology and one has

D+(Xét,Λ)︸ ︷︷ ︸
concrete usual

derived category of
sheaves on Xét

∼−−→ D+
ét(X,Λ)︸ ︷︷ ︸

abstractly defined via descent

with
Rfét∗︸ ︷︷ ︸
concrete

usual derived functor
of étale pushfoward

= Rf∗︸︷︷︸
not explicit
in general

when f is a morphism of locally spatial diamonds.





Chapitre 8

8th lecture - November 14

1. The moduli stack of G-bundles on the curve

Recall the following. We have E|Qp with OE/π = Fq. We let

∗ = Spa(Fq)
⋄

be the final object of (PerfFq
)‹v , the v-topos. For each S ∈ PerfFq

we have, functorially in S,

XS

an E-adic sous-perfectoid space that can be thought of as “X × S” allthought X does not
exist. Being sous-perfectoid, there is a good notion of vector bundles on it.

Definition 1.1. For any S as before, a G-bundle on XS is a faithful tensor functor

RepG
⊗−−→ {vector bundles on XS}.

When S = Spa(R,R+) is affinoid perfectoid, if XR,R+ is the schematical curve as an
E-scheme, there is a GAGA equivalence

{
G-bundles on XR,R+

} ∼−−→
{
étale G-torsors on XR,R+

}
.

Here is the main object of our study.

Definition 1.2. We note BunGBunGBunG the fibered groupoid over PerfFq

S 7−→ {G-bundles on XS }︸ ︷︷ ︸
groupoid

.

The first basic result is the following.

Proposition 1.3. The fibered groupoid BunG is a stack for the v-topology on PerfFq
.

This is easily derived from the fact that the fibered groupoid on Perf

T 7−→ { vector bundles on T }
is a v-stack i.e. vector bundles satisfy descent for the v-topology.

83



84 8. 8TH LECTURE - NOVEMBER 14

2. Six operations

2.1. Small v-stacks. We need a definition to start with.

Definition 2.1. (1) A small v-stack is a v-stack X on PerfFp such that there
exists a v-surjective morphism

S︸︷︷︸
perf. space

−→ X

and
T︸︷︷︸

perf. space

−→ S ×X S︸ ︷︷ ︸
v-sheaf

.

(2) A morphism X → Y of small v-stacks is 0-truncated if for any

S︸︷︷︸
perf. space

−→ Y

the stacky fibered product
X ×Y S

is a v-sheaf i.e. X ×Y S
∼−−→ π0(X ×Y S)︸ ︷︷ ︸

coarse moduli

.

The point is that for any small v-stack X there is a v-hypercovering

S•︸︷︷︸
simplicial
perf. space

−→ X.

2.2. Dét(X,Λ) for X a small v-stack. Let Λ be a prime to p torsion ring. We now
would like to define

Dét(X,Λ)

for any small v-stack X. The way we define it is via descent : we want, functorially in X,

Dét(X,Λ) = Ho︸︷︷︸
homotopy
category

Dét(X,Λ)︸ ︷︷ ︸
v-hypersheaf

of presentable stable ∞-cat.

where the v-hypersheaf condition means that if

S• −→ X

is a v-hypercover of X by perfectoid spaces then

Dét(X,Λ)
∼−−→ lim←−

[n]∈∆
Dét(Sn,Λ)

where the limit is taken in the∞-category of presentable stable∞-categories. The key remark
is now the following.

Lemma 2.2. The correspondence S 7→ D(S,Λ) from the category of spectral spaces
equipped with qc generalizing morphisms is an hypersheaf.
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This is a consequence of the fact that if T → S is a qc generalizing map between spectral
spaces then it is a quotient map. Let us now recall that if S is a strictly totally disconnected
perfectoid space then étale sheaves on S are the same as sheaves on |S|. Coupled with the
preceding lemma we can thus define the following.

Definition 2.3. For X a small v-stack we set

(1)
Dét(X,Λ) = lim←−

S→X

D(|S|,Λ)

where S is a strictly totally disconnected perfectoid space.

(2)
Dét(X,Λ) = HoDét(X,Λ).

One can compute the following that does not require any ∞-categories : there are mor-
phisms of sites

PerfFp,v
λ−−→ PerfFp,pro-ét

ν−−→ PerfFp,ét .

Then on can prove that for X a perfectoid space

Dét(X,Λ)
ν∗
↪→ Dpro-ét,■(X,Λ)︸ ︷︷ ︸

solid pro-étale
sheaves

λ∗
↪→ Dv(X,Λ).

As a consequence one can check that for X a small v-stack

(1) Dét(X,Λ) = {A ∈ Dv(X,Λ) | ∀S → X,S s.t.d. perf. space, A|S ∈ D(|S|,Λ)}.
(2) If S• → X is a v-hypercover by s.t.d. perfectoid spaces then

Dét(X,Λ)
∼−−→ Dcart(|S•|,Λ).

2.3. 4 operations. It is now easy to define a formalism of 4 operations for Dét(−,Λ)

(f∗, Rf∗, RH omΛ(−,−),⊗L
Λ)

where here f is a 0-truncated morphism of small v-stacks. Here f∗ and ⊗L
Λ are explicit but

Rf∗ and RH om(−,−) are not explicit in general, they are constructed as adjoints of explicit
functors.

Since separated étale morphisms descend for the v-topology and thus the pro-étale one,
for any locally spatial diamond X there is a “good” small étale site Xét whose objects are
locally separated étale morphisms of locally spatial diamonds X ′ → X. One then has“D(Xét,Λ)︸ ︷︷ ︸

left completion of D(Xét,Λ)

=Ho lim←−n≥0
D≥−n(Xét,Λ)

∼−−→ Dét(X,Λ)
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where he the process of left completion corresponds to the fact that, in general without
any finite cohomological assumption, Postnikov towers of an object may not converge to the
original object. Then, for f : X → Y a morphism of locally spatial diamonds the preceding
operations are explicit and are the usual one, for example

Rf∗ = Rfét∗︸ ︷︷ ︸
usual derived

functor extended
via left completion

.

2.4. 6 operations. It remains to define the two other operations (Rf!, Rf
!). For this we

need to upgrade our assumptions and add some technical hypothesis : f is not only 0-truncated
but representable in locally spatial diamonds, compactifiable of finite geometric transcendance
degree. We don’t enter into the details, let’s just say that those hypothesis are satisfied for all
the morphisms we consider. One the obtains a formalism of 6 operations

(f∗, Rf∗, Rf!, Rf
!, RH om(−,−),⊗L

Λ)

where Rf ! is formally defined as a right adjoint to Rf!.

3. Cohomological smoothness

By definition, a morphism is cohomologically smooth if a version of relative Poincaré
duality, in the sense of Verdier, is satisfied. More precisely, let

f : X −→ Y

be a morphism of small v-stacks that is representable in locally spatial diamonds, compacti-
fiable of finite dim. trg.. By formal adjunction properties there is always a natural transfor-
mation

Rf !(Λ)⊗L
Λ f

∗(−) −→ Rf !(−)
between functors Dét(Y,Λ)→ Dét(X,Λ).

Definition 3.1. The morphism f is cohomologically smooth if for any ℓ ̸= p, for any
S → Y with S a strictly totally disconnected perfectoid space, if

fS : X ×Y S −→ S

then

(1) Rf !S(Fℓ) ⊗L
Λ f

∗
S(−)

∼−−→ Rf !S(−) as a natural transformation between functors
from Dét(Y,Fℓ) to Dét(X,Fℓ),

(2) Rf !S(Fℓ) is invertible i.e. étale locally isomorphic to Fℓ[2d] for some d ∈ 1
2Z.

One has to be careful that this has to be checked after any base change i.e. we force
the cohomological smoothness property to be stable under base change. Reciprocally, if f is
cohomologically smooth then

Rf !(Λ)⊗L
Λ f

∗(−) ∼−−→ Rf !(−)
and Rf !(Λ) is invertible.
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4. Smooth charts on BunG

We now have a setup in which we can speak about smooth charts on BunG.

Theorem 4.1. The v-stack BunG is an Artin v-stack in the sense that

(1) Its diagonal is representable in locally spatial diamonds,

(2) There exists a locally spatial diamond U together with a cohomologically
smooth surjective morphism U −→ BunG.

It is moreover cohomologically smooth of dimension 0 in the sense that one can choose
such a U → BunG satisfying : U → ∗ is cohomologically smooth of dimension the
dimension of U → BunG.

Moreover one can prove that the dualizing complex of BunG is (non-canonically) isomor-
phic to Λ[0].

One way to construct such charts is to use the following result that is an analog of a result
by Drinfeld and Simpson.

Theorem 4.2 (F.). Let F ba an algebraically closed Fq-perfectoid field, ∞ ∈ |XF | a
closed point and E a G-bundle on XF . Then

E|XF∖{∞}

is trivial.

Using this and Beaville-Laszlo gluing one constructs a v-surjective morphism

GrBdR
G −→ BunG

that allows us to prove that BunG is an Artin v-stack.

5. Points of BunG

For any small v-stack X we can define

|X|
as a topological space. As a consequence of the classification of G-bundles on XF when F is
an algebraically closed perfectoid field one obtains the following.

Theorem 5.1. We have an identification

B(G)
∼−−→ |BunG|

as sets.

6. The topology on |BunG|

6.1. Connected components. The following theorem says, for example, that for G =
GLn the degree of a vector bundle is a locally constant function and the corresponding
open/closed sub-stack Bundn of degree d rank n vector bundles is connected.
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Theorem 6.1. The function

c1 : |BunG| −→ π1(G)Γ

is locally constant with connected fibers.

We thus have a decomposition in connected components

BunG =
∐

c∈π1(G)Γ

BuncG.

6.2. HN stratification. Suppose G is quasi-split to simplify. Let A ⊂ T ⊂ B be as
usual. The HN polygon defines a map

HN : |BunG| −→ X∗(A)
+
Q.

Theorem 6.2. (1) The map

HN : |BunG| −→ X∗(A)
+
Q

is semi-continuous in the sense that if X∗(A)
+
Q is equipped with the order

ν1 ≤ ν2 ⇔ ν2 − ν1 ∈ Q+.Φ̌ then {[b] | [νb] ≥ ν} is open.

(2) In fact the embedding B(G) ↪→ π1(G)Γ×X∗(A)
+
Q defines the topology of |BunG|

in the sense that for [b1], [b2] ∈ B(G), [b1] ≤ [b2] in |BunG| if and only if®
κ(b1) = κ(b2),

νb1 ≤ νb2 .

Recall (Kottwitz) that

κ|B(G)bsc : B(G)bsc
∼−−→ π1(G)Γ.

This is translated geometrically in the following statement : any connected component of
BunG has a unique semi-stable point that is thus open.

Example 6.3. Consider G = GL2.

(1) The unique semi-stable point of Bun02 is O2. There is then a chain of specializations
in Bun02

O2 ⩾ O(1)⊕O(−1) ⩾ O(2)⊕O(−2) ⩾ . . .

(2) The unique semi-stable point of Bun12 is O(12). There is then a chain of specializations

of Bun12
O(12) ⩾ O(2)⊕O(−1) ⩾ O(3)⊕O(−2) ⩾ . . . .

7. Some “nice charts” on BunG

Let us consider the case of GL2 and more precisely the connected component of degree 0
rank 2 vector bundles, Bun02. For d ≥ 0 let

Md
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be the moduli stack that sends S to extensions

0 −→ L −→ E −→ L ′ −→ 0

where

(1) E is a rank 2 vector bundle on XS ,

(2) L is a degree −d line bundle on XS ,

(3) L is a degree d line bundle on XS .

We thus consider “anti-Harder-Narasimhan filtrations” of a given rank 2 vector bundle
E . The evident morphism

Md −→ Bun02
is ℓ-cohomologically smooth. Moreover, its image (that is open as it is ℓ-coho. smooth) is the
set of generalizations of O(d)⊕O(−d) i.e. the O(d′)⊕O(−d′) with 0 ≤ d′ ≤ d.

The Picard stack, Bund1 is isomorphic to [∗/E×] by sending L to the pro-étale torsor of
isomorphisms between O(d) and L . Let

M̃d = BC(O(−2d)[1])
be the absolute Banach-Colmez space that is the moduli of extensions of O(d) by O(−d).
One has

Md =
[
BC(O(−2d)[1])/E× × E×].

We have the more general following theorem for any G that uses the so-called Jacobian
criterion of smoothness.

Theorem 7.1. For any [b] ∈ B(G) one can define a diagram

Mb BunG

[ ∗ /Gb(E) ]

ℓ-coho.
smooth

πb

where Gb is the σ-centralizer of b and such that if M̃b is defined via the cartesian
diagram

M̃b Mb

∗ [ ∗ /Gb(E) ]

then
M̃b ∖ {∗}

is a spatial diamond. Moreover the image of Mb → BunG is the set of generalizations
pf [b].

One of the main point of the preceding result is the spatialness of M̃b ∖ {∗}. This is the
main reason why we consider BunG “absolutely” over ∗ and not its pullback to Spa(C) for

some algebraically closed Fq-perfectoid field C since the pullback to Spa(C) of M̃b ∖ {∗} is
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only locally spatial non quasi-compact.

For K ⊂ Gb(E) compact open pro-p we can consider

f bK : [M̃b/K] −→ BunG

that is thus ℓ-cohomologically smooth and set

Ab
K := Rf bK!Rf

b!
KΛ ∈ Dét(BunG,Λ).

The collection of objects (Ab
K)[b],K is a generalization of the “classical set of compact genera-

tors”
(c-Ind

G(E)
K Λ)K

of the category of smooth representations of G(E) with coefficients in Λ.

Theorem 7.2. The category Dét(BunG,Λ) is compactly generated with (Ab
K)[b],K a set

of compact generators.



Chapitre 9

9th lecture - November 28

1. The moduli of degree 1 divisors on the curve

Let

Spa(Ĕ)⋄ −→ ∗.

If S is an Fq-perfectoid space then any untilt of S over Ĕ, S♯, defines a Cartier divisor

S♯ ↪→ YS .

In fact, if S = Spa(R,R+), an untilt over Ĕ is given by an ideal I ⊂WOE
(R+) generated by

a degree 1 distinguished element ξ (that is automatically a regular element). This defines our
Cartier divisor

V (ξ) ⊂ YS
via the embedding of WOE

(R+) inside O(YR,R+). One verifies that composing with the pro-
jection defines a degree 1 Cartier divisor

S♯ ↪→ XS .

This defines a morphism

Spa(Ĕ)⋄ −→ Div1

where we take the following definition of a relative Cartier divisor.

Definition 1.1. We note Div1(S) the set of equivalence classes of couples (L , u) where
L is a degree 1 line bundle on XS and u ∈ H0(XS ,L ) satisfies

∀s ∈ S, u|XK(s),K(s)+
̸= 0

as an element of H0
(
XK(s),K(s)+ ,L|XK(s),K(s)+

)
.

This morphism is φZ-invariant and induces an isomorphism.

Proposition 1.2. The preceding morphism induces an isomorphism

Spa(Ĕ)/φZ ∼−−→ Div1.

Thus, contrary to the “classical case”, Div1 is note the curve itself. Nevertheless we have
the following remark.
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Remark 1.3. We thus have for any S ∈ PerfFq
,

X⋄
S = (S ×Spa(Fq)

Spa(Ĕ)⋄)/φZ × Id

and
Div1S = (S ×Spa(Fq)

Spa(Ĕ)⋄)/ Id×φZ

and thus
|XS | = |Div1S |

and even equivalences of étale sites (X⋄
S)ét ≃ (Div1S)ét. For example, although XS sits

over Spa(E) and but not over S, there is still a continuous generalizing map of locally
spectral spaces

|XS | = |Div1S | −→ |S|
“as if XS were sitting over S”.

Remark 1.4. One has to be careful that although Div1 is a qc diamond it is not spatial
since not qs. Nevertheless Div1 → ∗ is representable in locally spatial diamonds proper ℓ-
cohomologically smooth.

2. Drinfeld Lemma

The following is our verion of Drinfeld lemma whose proof is simpler than the classical
one. Let us note there is a natural morphism

Div1 −→ [∗/WE ]

defined by the WE-torsor

Spa( “E♭

)

Spa(Ĕ)⋄

Div1 = Spa(Ĕ)⋄/φZ.

WE

IE

Proposition 2.1 (‘’Drinfeld lemma”). For any finite set I there is an equivalence

Dét(BunG × [∗/WE ]
I ,Λ)

∼−−→ Dét(BunG × (Div1)I ,Λ).

There is moreover an equivalence

Dét(BunG,Λ)︸ ︷︷ ︸
stable ∞-cat.
upgraded to a
condensed

stable ∞-cat.

condensed
∞-groupoid︷ ︸︸ ︷
BW I

E ∼−−→ Dét(BunG × [∗/WE ]
I ,Λ).
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Here the condensation is to take into account the topology of WE that is seen as a condensed
group and the classifying stack BW I

E as a condensed ∞-groupoid that is to say an (∞, 0)-
category in the topos of condensed sets. More precisely, the functor

{profinite sets} −→ stable ∞-categories

P −→ Dét(BunG × P ,Λ)

sends disjoint unions of extremally disconnected sets to products and is thus an hypersheaf
of stable ∞-categories on profinite sets. This is what we call the “condensed upgrade” of the
usual stable ∞-category Dét(BunG,Λ). It is a condensed infinite sub-category of the evident
condensed infinite category

Dpro-ét,■(BunG,Λ).

The condensed ∞-groupoid BW I
E is the hypersheaf of ∞-groupoids

{profinite sets} −→ stable ∞-categories

P −→ B
(
W I

E(P )︸ ︷︷ ︸
C (P,W I

E)

).

Remark 2.2. Here we use the notation D C for the infinite category of ∞-functors from
C to D, and more generally for the hypersheaf of ∞-categories of ∞-functors between hyper-
sheaves of ∞-categories whose value on an object of our topos U is

lim
W→V→U

D(W )C(V ).

When X is a topos, Λ a ring in X and G a group in X, one has an identification

D(X,Λ)︸ ︷︷ ︸
hypersheaf of
∞-categories
X∋U 7→D(U,Λ)

hypersheaf of
∞-cat.

X∋U 7→BG(U)︷︸︸︷
BG = D(

classifying
stack
in X︷︸︸︷
BG ,Λ)︸ ︷︷ ︸

hypersheaf
of ∞-cat.

X∋U 7→D(BG×U,Λ)

.

as hypersheaves of stable ∞-categories on X.

Remark 2.3. For p =∞ the analog of the preceding is the following. Let us consider the
Twister projective line

P̃1
R = P1

C/z ∼ −1
z .

This can be described as

P̃1
R = A2

C ∖ {(0, 0)}/WR

where WR is the Weil group. The corresponding torsor A2
C∖{(0, 0)} → P̃1

R defines a morphism
of analytic stacks

P̃1
R −→ [∗/WR].
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3. What we want to do

For each finite set I we equip the infinite category of ∞-functors

Dét(BunG,Λ) −→ Dét(BunG,Λ)
BW I

E

with a monoidal structure by setting

u⊗ v := u(−)⊗L
Λ v(−).

The purpose now is to define a monoidal functor between monoidal stable ∞-categories

FI :
(
RepΛ(

LG)I ,⊗
)
−→

(
H om

(
Dét(BunG,Λ),Dét(BunG,Λ)

BW I
E
)︸ ︷︷ ︸

∞-cat. of ∞-functors

,⊗
)

where
RepΛ(

LG)I

is (the ∞-upgrade of) the category of representations of (LG)I on finite type projective Λ-

modules that are algebraic when restricted to “GI and discrete when restricted to W I
E . The

∞-upgrade is nothing else than the stable ∞-category of perfect complexes of such objects.

We ask moreover that

• (Factorization property) This is functorial in the finite set I in the sense
that if I → I ′ is a map of finite sets then

RepΛ(
LG)I H om

(
Dét(BunG,Λ),Dét(BunG,Λ)

BW I
E
)

RepΛ(
LG)I

′
H om

(
Dét(BunG,Λ),Dét(BunG,Λ)

BW I′
E
)

FI

FI′

commutes where the left vertical map is induced by the morphism (LG)I
′ →

(LG)I and the right vertical one by W I′
E →W I

E .
• (Linearity) This is linear over RepΛW

I
E in the sense that if W ∈ RepΛW

I
E

then
FI(W ) = −⊗L

Λ W.

Example 3.1. If I = {1, 2} and I ′ = {1} the preceding factorization property is the
following “fusion property”. Let W ∈ (RepΛ

LG)2. We note ∆∗W its restriction to
the diagonal, for example

∆∗(W1 ⊠W2) =W1 ⊗W2.

Then, Res
W 2

E
WE

F1,2(W ) = F1(∆
∗W ) via the restriction of the W 2

E-action to WE embed-

ded diagonally inside W 2
E.
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Remark 3.2. The factorization property implies that after forgetting the action of W I
E

the functor

RepΛ(
LG)I −→H om

(
Dét(BunG,Λ),Dét(BunG,Λ))

factorizes through the restriction to the diagonal RepΛ(
LG)I −→ RepΛ

LG.

4. From local to global

To construct our functor FI we consider the global Hecke stack

HeckeI

BunG BunG × (Div1)I

p1 p2

where for S ∈ PerfFq
, HeckeI(S) is the groupoid of quadruples (E1,E2, (Di)i∈I , u) where

• E1 and E2 are G-bundles on XS ,
• (Di)i∈I is a collection of degree Cartier divisors on XS ,
• and

u : E1|XS∖∪i∈IDi

∼−−→ E2|XS∖∪i∈IDi

that is meromorphic along the Cartier divisor
∑

i∈I Di.

Remark 4.1. When S = Spa(R,R+), via GAGA, we have that, if XR,R+ is the schema-
tical curve, HeckeI(S) is the set of quadruples as before where E1 and E2 are étale G-torsors,
(Di)i∈I is a collection of Cartier divisors on XR,R+ that remain Cartier divisors when pulled-

back to XK(s),K(s)+ for any s ∈ S, and u : E1|XR,R+∖∪i∈IDi

∼−−→ E2|XR,R+∖∪i∈IDi
.

We want to upgrade this correspondence to a cohomological one. This is done in
the following way. Let

HeckeI −→ (Div1)I

be the so-called local Hecke stack. This is obtained in the same way as the global Hecke stack
but by replacing XS by its formal completion along the divisor

∑
i∈I Di. Here is a

formal definition.

Definition 4.2. The local Hecke stack is the functor on affinoid perfectoid Fq-algebras
that sends (R,R+) to quadruples (E1,E2, (Di)i∈I , u) where

(1) (Di)i∈I is as before a collection of “relative” Cartier divisors on XR,R+,

(2) E1 and E2 are étale G-torsors on the formal completion of XR,R+ along∑
i∈I Di,

(3) u is a meromorphic isomorphism between E1 and E2 outside the special fiber
of the formal completion.
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There is thus a morphism from global to local

HeckeI HeckeI

BunG BunG × (Div1)I (Div1)I

loc

p1 p2

proj.

The advantage of the local Hecke stack is that it has an interpretation in terms of loop
groups.

Definition 4.3. (1) We note

B+
dR,I , resp. BdR,I ,

for the v-sheaf of E-algebras over (Div1)I that sends (R,R+) to the algebra of
formal functions on the formal completion of the curve along

∑
i∈I Di, resp.

the algebra of formal meromorphic functions.

(2) We note
L+
I G, resp. LIG

for the v-sheaves of groups over (Div1)I equal to

L+
I (G) = G(B+

dR,I), resp. LIG = G(BdR,I).

One thus has for ∗ : S → (Div1)I given by (Di)i∈I ,

B+
dR,I(S)×(Div1)I(S) ∗ = Γ

(
XS , lim←−

k≥0

OXS
/
∏
i∈I

I k
Di

)
and

BdR,I(S)×(Div1)I(S) ∗ = Γ
(
XS , lim−→

l≥0

lim←−
k≥0

∏
i∈I

I −l
Di
/
∏
i∈I

I k
Di

)
The following result is easy.

Lemma 4.4. One has an equality of small v-stacks

HeckeI =
[
L+
I G\LIG/L

+
I G

]
.

5. The Satake correspondence

We now want to use the local Hecke stack to define our functor

FI : Dét(BunG,Λ) −→ Dét(BunG × (Div1)I ,Λ)

via the formula

FI(W ) = Rp2∗
(
p∗1(−)⊗L

Λ loc
∗SW

)
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for W ∈ RepΛ(
LG)I and where

SW ∈ Dét(HeckeI ,Λ)b

is the so-called Satake sheaf associated to W (where the upperscript “b” means bounded
i.e. with quasi-compact support on the BdR-affine Grassmanian that is to say supported on
a finite union of closed Schubert cells).

More precisely, we want to define a monoidal functor

(RepΛ(
LG)I ,⊗) ⊗−−→ (Dét(HeckeI ,Λ)b, ∗)

where the monoidal structure on the right is the one given by the composition of cohomological
correspondences that is to say the convolutions product

A ∗B = Rb∗(a
∗A⊠L

Λ B)

where [
L+
I G\LIG

L+
I G

× LIG/L
+
I G

]

[
L+
I G\LIG/L

+
I G

]
×
[
L+
I G\LIG/L

+
I G

] [
L+
I G\LIG/L

+
I G

]
a b

This is given by the following theorem. Here we suppose that Λ is a Zℓ[q
1/2]-algebra.

Theorem 5.1 (Geometric Satake equivalence). Let SatI(G,Λ) be the category of boun-
ded perverse flat ULA sheaves on HeckeI .

(1) This is stable under the convolution product ∗ and functorial in I.

(2) There is an equivalence of monoidal categories

SatI(G,Λ)
∼−−→ RepΛ(

LG)I .

(3) This equivalence is functorial in I, and linear over RepΛW
I
E via the identi-

fication between RepΛW
I
E and the category of étale local systems of Λ-modules

on (Div1)I .

(4) For any µ ∈ X∗(T )
I = X∗(T̂ )I , if µ̄ is the ΓE-orbit of µ and Wµ̄ is the asso-

ciated highest weight irreducible representation of (LG)I , then Wµ̄ corresponds
to

jµ̄!∗Λ
[∑

i

⟨µi, 2ρ⟩
]

︸ ︷︷ ︸
intersection cohomology

complex of the Schubert cell

where jµ̄ is the inclusion of the open Schubert cell defined by µ̄ inside the closed
one.





Chapitre 10

10th lecture - December 5

Here are the tools used for the geometric Satake equivalence :

(1) The notion of ULA complexes,

(2) Hyperbolic localization,

(3) Fusion,

(4) Degeneracy of the BdR-affine Grassmanian to a “classical” Witt vectors affine Grass-
manian.

Here the coefficients Λ are torsion to simplify.

1. ULA complexes

1.1. The classical case. Classically, if f : X → S is a finite presentation morphism
of schemes, we have a good notion of f -ULA complexes in Dét(X,Λ) where here Λ is a
Noetherian ring killed by a power of ℓ invertible on S. More precisely, those are the étale
complexes “universally without vanishing cycles” i.e. the

A ∈ Db
ét,c(X,Λ)︸ ︷︷ ︸

bounded with constructible
cohomology sheaves

such that
∀ Spec(V ) −→ S

where V is a rank 1 valuation ring, one has

RΦη̄

(
A|X×SSpec(V )

)
= 0

where η̄ is a geometric point over the generic point of Spec(V ).

Remark 1.1. Said roughly this means that for any morphism

C︸︷︷︸
a “curve”

−→ S

the étale complex A|X×SC is without vanishing cycles relatively to X ×S C → C. Thus, the
condition is tested universally for all “curves” mapping to the target S.

One can prove, following Gaitsgory, that this is equivalent to A behaving well with respect
to Verdier duality : A is f -ULA if and only if universally over S,

∀B ∈ Dét(S,Λ), DX/S(A)⊗L
Λ f

∗B
∼−−→ RH omΛ(A,Rf

!B).
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One can moreover prove that if A is f -ULA then it is bidual with respect to Verdier
duality :

A
∼−−→ DX/S(DX/S(A)).

1.2. The diamond case. Let f : X −→ Y be a morphism of locally spatial diamonds
(compactifiable of finite dim. trg.). Let A ∈ Dét(X,Λ). We define a good notion of A to be
f -ULA.

Definition 1.2. A ∈ Dét(X,Λ) is f -ULA if f -ULA if for any j : U → X (separated)
étale with composite U → X → Y quasicompact then R(f◦j)!A is a perfect constructible
complex when restricted to each quasicompact open subset of Y .

Here, when Y is a spatial diamond the constructibility condition has to be though of
differently from the usual case of algebraic varieties. Perfect constructible complexes are étale
complexes of Λ-modules that differ from local systems only via non-overconvergence i.e. a
perfect constructible étale complex of Λ-modules is étale locally constant if and only if it is
overconvergent.

One can prove that all properties of “classical” algebraic étale local systems adapt in this
situation, typically the nice behaviour with respect to Verdier duality.

1.3. Perverse ULA sheaves on GrG,I . Suppose G is split to simplify and let T ⊂ B
be a maximal torus inside a Borel subgroup. There is a stratification of the local Hecke stack
indexed by (X∗(T )

+)I .

Definition 1.3. For (µi)i∈I ∈ (X∗(T )
+)I we note

GrG,I,(µi)i∈I

the associated open Schubert cell and

H eckeG,I,(µi)i∈I
= [ L+

I G\GrI,(µi)i∈I
].

the associated stratum.

One has (for whatever definition of the dimension : Krull or cohomological) :

dimGrG,I,(µi)i∈I
/(Div1)I =

∑
i∈I
⟨µi, 2ρ⟩

(relative dimension).
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Example 1.4. For I = {1, 2}, if ∆ : Div1 ↪→ (Div1)2 is the diagonal,(
GrG,µ1 ×GrG,µ2

)
×(Div1)2 (Div1)2 ∖∆ GrG,I,(µ1,µ2) GrG,µ1+µ2

(Div1)2 ∖∆ (Div1)2 Div1.∆

with cartesian squares.

The following lemma is easy. It is a consequence of the fact that the morphism H eckeI,(µi)i∈I
→

(Div1)I is a gerbe banded by a connected diamond group.

Lemma 1.5. One has

D(Λ)BW I
E = Dét((Div1)I ,Λ)

∼−−→ Dét(H eckeI,(µi)i∈I
,Λ).

Thus, étale sheaves on the open Schubert cells are given by the (derived) category of
discrete representations of W I

E on Λ-modules.

Definition 1.6. Let
D := DULA

ét (H eckeI ,Λ)
b

be the category of A ∈ Dét(H eckeI ,Λ) with qc support and that are ULA relative
to the morphism H eckeI → (Div1)I .

We define
pD≤0 = {A ∈ D | ∀x : Spa(C,C+)→H eckeI , x

∗A ∈ D≤−
∑

i∈I⟨µi(x),2ρ⟩(Λ)}
where µi(x) ∈ X∗(T )

+, i ∈ I, gives the relative position at x, and
pD≥0 = {A ∈ D | D(A) ∈ pD≤0}.

One verifies that this defines a t-structure with heart the abelian category

PervULA(H eckeI ,Λ).

Definition 1.7. The Satake category

SatI(G,Λ)

is the category of A ∈ PervULA(H eckeI ,Λ) that are flat perverse in the sense that for
all finite presentation Λ-module M , A⊗L

Λ M is perverse.

2. Mirkovick Vilonen cycles and the constant term functor

Suppose G is quasi-split.





Chapitre 11

11th lecture - December 12

1. Background on infinite categories

We fix a “sufficiently large” regular cardinal κ. All our categories and sets are κ-small.
Here :

• an ∞-category means an (∞, 1)-category i.e. a quasi-category, which is nothing else
than a particular type of simplicial set : the weak Kan simplicial sets.
• an ∞-groupoid or (∞, 0)-category means a Kan simplicial set. The basic example of
an ∞-groupoid is

BG

where G is a group. This is the nerve of the category with one object with automor-
phisms G, (BG)n = Gn.

Example 1.1. If C is a “usual” 1-category then its nerve NC with (NC)n = Hom([n], C)
is an ∞-category.

If C is an ∞-category we note

Ho(C)︸ ︷︷ ︸
homotopy category

for the category whose objects are C0 and if C0 C1

d0

d1
then

HomHo(C)(x, y) = {f ∈ C1 | d0(f) = x, d1(f) = y}/ ∼

where ∼ is the equivalence relation

f ∼ g ⇔ ∃z ∈ C2


d2(z) = s0(x)

d1(z) = f

d0(z) = g.

The ∞-category C is an ∞-groupoid if and only if Ho(C) is a groupoid.

If C is an ∞-category :
• we call the elements of C0 the objects of C
• if x, y ∈ C0 the maps from x to y are by definition the f ∈ C1 satisfying d0f = x,
d1f = y.

By definition :
• an∞-functor between to infinity categories C and D is a morphism of simplicial sets
from C to D
• a natural transformation between ∞-functors F,G : C → D is a diagram
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• If C and D are infinity categories then the simplicial set

Hom(C,D)︸ ︷︷ ︸
internal maps

in the category of simplicial sets

is a weak Kan complex that we call the∞-category of functors from F to D. Its objects
are ∞-functors as defined earlier and the morphisms are natural transformations as
defined before.
• if x, y are two objects of the ∞-category C then

Hom(x, y)

is the sub-simplicial complex

Hom(x, y)n = {c ∈ Cn+1 | v0c = · · · = vnc = x, vn+1c = y}
where vi : Cn → C0 is the i-th vertex corresponding to the inclusion [0] ↪→ [n + 1]
sending 0 to i. This is in fact a Kan complex, the ∞-groupoid of morphisms from
x to y sometimes called the mapping space from x to y when we see it as a Kan
complex up to (weak) homotopy. Let us note that there exists other versions of this
Kan complex but they are all homotopy equivalent. Moreover, the composition

Hom(x, y)×Hom(y, z) −→ Hom(x, z)

as a morphism of Kan simplicial sets is only well defined up to homotopy. This point of
view leads to the one of ∞-categories as categories enriched in the category of spaces
(i.e. the category of Kan simplical sets up to homotopy) but this is not the one we use.

Let us finally note that

HomHo(C)(x, y) = π0Hom(x, y).

1.1. Homotopy coherent nerve. There is a construction ([2, Definition 1.1.5.5], [3])
called homotopy coherent nerve

Nhc : sSet -Cat︸ ︷︷ ︸
categories enriched
in simplicial sets

−→ sSet︸︷︷︸
simplicial

sets

where a category enriched in simplicial sets is such that for any objects x, y, Hom(x, y) has a
structure of simplicial set and the composition

Hom(x, y)×Hom(y, z)→ Hom(x, z)

is a morphism of simplicial sets. Here we recall that if S and T are simplicial sets, S × T is
such that (S × T )n = Sn × Tn i.e. S × T is defined using the diagonal map ∆ → ∆ × ∆,
∆ being the simplex category. For basic facts about simplicial objects we advise to look at [1].

This construction is such that if for all x, y ∈ Ob C, the simplicial set Hom(x, y) is a Kan
simplicial set then Nhc C is a weak Kan complex. We thus have a construction

Nhc : Kan-sSet-Cat︸ ︷︷ ︸
categories enriched in
Kan simplicial sets

−→ (∞, 1)-categories.
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If C is a category enriched in Kan simplicial sets then for x, y ∈ Ob(C), the Kan simplicial
sets

HomC(x, y) and HomNhc(C)(x, y)

are homotopy equivalent.
This construction is done via a functor

P : ∆︸︷︷︸
simplex
category

−→ sSet-Cat

called the path category. Then,

Nhc(C)n = HomsSet-Cat(P([n]), C).
It satisfies :

(1) Nhc(C)0 = C0,

(2) For x, y ∈ C0,
HomNhc(C)(x, y)0 = HomC(x, y)0

and there is a natural homotopy equivalence between

HomNhc(C)(x, y) and HomC(x, y)

i.e. a canonical isomorphism betwwen those two Kan simplicial sets in the∞-category
of Kan simplicial sets up to homotopy.

(3) There is an equivalence

C0
∼−−→

Example 1.2. (1) The category of simplicial sets is enriched in simplicial sets : if S
and T are simplicial sets, Hom(S, T ) is the simplical set [n] 7→ HomsSet(X ×∆n, Y ).

(2) The category of topological spaces is enriched in simplicial sets by setting, for X and
Y two topological spaces,

Hom(X,Y )n = Hom(X × |∆n|, Y ).

(3) If C is a dg-category then this gives rise the the following category enriched in simpli-
cial sets. Recall the Dold-Kan correspondence given by the simplicialization functor

Γ : CoCh≤0(Ab)
∼−−→ sAb

We can then set for X,Y ∈ Ob(C),
Hom(X,Y ) = Γ τ≤0HomC(X,Y ).

This defines a morphism of 2-categories

dg-Cat −→ sSet-Cat.

Composed with the preceding homotopy coherent nerve construction we obtain a
construction

dg-Cat −→∞ -Cat .

(4) If A is an abelian category then the category of cochaine complexes of elements of A is
naturally a dg-category. The associated∞-category is the one of cochain complexes up
to homotopy i.e. its objects are cochain complexes and its morphisms are morphisms
of cochain complexes with

π0Hom(A•, B•) = Hom(A•, B•)/ homotopy .
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(5) If S and T are weak Kan simplicial sets then Hom(S, T ) is a weak Kan simplicial
set. Thus, à priori

N(the simplicially enriched cat. of weak Kan complexes) = “an (∞, 2)-category”.
Nevertheless, there is a construction

Core :∞ -categories −→∞ -groupoids

that sends a weak Kan complex to the biggest sub-Kan complex (i.e. we only keep the
1-morphisms that are isomorphisms). Then, if we take the simplicial category whose
objects are the weak Kan complexes with morphisms between S and T

CoreHom(S, T ),

its homotopy coherent nerve is what we call the ∞-category of ∞-categories.

1.2. Dwyer-Kan localization. There is another construction. If C is an ∞-category
and S ⊂ C1 a set of maps one can define its Dwyer-Kan localization

S−1C = an ∞-category.

One has
Ho( S−1C︸ ︷︷ ︸

Dwyer-Kan
localization

) = S−1Ho(C)︸ ︷︷ ︸
Gabriel-Zisman
localization

.

Example 1.3. By definition, if f : C → D is a

1.3. Homotopy limits and colimits.

2. The animation slogan

Recall that if I is a small category then I is said to be filtered if colimits (with values
in usual 1-categories) indexed by I commute with finite limits. This is well known to be
equivalent to :

(1) for any i, j ∈ I there exists k ∈ I with Hom(i, k) ̸= ∅ and Hom(j, k) ̸= ∅,

(2) for two morphisms i j
v

u
in I there exist a morphism f : j → k in I such that

f ◦ u = f ◦ v.

By definition, a small category is 1-sifted if colimits (with values in usual 1-categories)
indexed by I commute with finite products. This is of course the case if I is filtered. Another
example is the case of reflexive co-equalizers which correspond to the diagram τ≤1∆

i j
v

u
s

where s is a joint section of u and v i.e. u ◦ s = Id = v ◦ s. In fact, for a finite collection of

morphisms
(
Xα Yα

)
α
, the morphism

coeq
( ∏

αXα
∏

α Yα

)
−→

∏
α

coeq
(
Xα Yα

)
has an explicit inverse induced by

∏
α sα if sα : Yα → Xα is a joint section of Xα Yα .



2. THE ANIMATION SLOGAN 107

Remark 2.1. In any category of “algebraic objects” defined from the category of Sets using

finite products, typically the category of groups or rings (a set A with two maps A×A +−−→ A

and A×A ×−−→ A satisfying some properties), sifted colimits exist. For example,

(1) if A B
v

u
are two morphisms of rings admitting a joint section then Im(u− v)

is an ideal of B,

(2) if G H
v

u
are two morphisms of groups admitting a joint section then the

subgroup generated by the u(g)v(g)−1, g ∈ G, is distinguished.

Animation slogan : If C is a category

(1) admitting small filtered colimits,

(2) generated under small sifted colimits by its compact projective objects,

Definition 2.2. For W a group we note CW for the category of couples (I, F (I)→W )
where

(1) I is a finite set,

(2) F (I) is the free group on I and F (I)→W is a morphism of groups,

(3) morphisms between (I, F (I) → W ) and (I ′, F (I ′) → W ) are given by mor-
phisms of groups F (I)→ F (I ′) such that the diagram

F (I)

W

F (I ′)

commutes.

Lemma 2.3. The category CW is sifted.

→ For two objects F (I)
u−−→W and v : F (I ′)

v−−→W of CW there is a diagram

F (I)

F (I
∐
I ′) W

F (I ′)

u

u∗v

v
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Thus, for x, y ∈ Ob CW one can find z ∈ Ob CW such that Hom(x, z) ̸= ∅ and Hom(y, z) ̸= ∅.
If we have two morphisms

F (I)

W

F (I ′)

the image of F (I) in F (I ′)×W F (I ′) is a finite type subgroup of the free group F (I)× F (I).
It is thus isomorphic to F (J) for a finite set J . From this we deduce that for two morphisms
x y in CW , there is a factorization of those two morphisms

x z y

where z y is a reflexive coequalizer.

Those two properties prove that CW is sifted.

For a finite set I we note ΣI = ∨i∈IS1 as an ∞-groupoid.

Corollary 2.4. We have

colim
(I,F (I)→W )∈CW

ΣI
∼−−→ BW

in the ∞-category of ∞-groupoids i.e. the ∞-groupoid BW is a sifted colimit of
ΣI for finite sets I.

3. The moduli space of Langlands parameters

Proposition 3.1. There is an isomorphism of derived stacks over Spec(Z
[
1
p

]
),

LocSys“G ∼−−→ lim←−
(I,F (I)→W )∈CW

[ “GI / “G ]

where if τ : I →W , the action of “G on “GI is given by g.(hi)i∈I = (ghig
−τi)i∈I .
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4. A conjecture

Conjecture 4.1. The following is conjectured :

(1) There exists a locally complete intersection algebraic stack

X

Spec(Z)

satisfying :

(a) X⊗ZZ
[
1
p

]
is the preceding stack of Langlands parameters [Z1(WE , “G)/“G],

(b) the p-adic completion of X,

X̂

Spf(Zp),

is the Emerton-Gee stack.

(2) There is a monoidal action of Perf(X) on

Dmot(BunG,Z).
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