The curve and the Langlands program: the abelian case

Laurent Fargues (CNRS/IMJ)

Abelianized π_{1} : the case of Riemann surfaces

- $X=$ compact Riemann surface genus g
- Set
here

$$
\begin{aligned}
\pi_{1}(X)^{a b}=H_{1}(X, \mathbb{Z}) & \underset{\text { lattice }}{\hookrightarrow} \\
c & H^{0}\left(X, \Omega_{X}^{1}\right)^{*} \\
c & \left.\longmapsto \omega \mapsto \int_{c} \omega\right]
\end{aligned}
$$

- $\mathrm{Jac}_{X}=$ abelian variety of dim. g

Abelianized π_{1} : the case of Riemann surfaces

Modular interpretation :

$$
\operatorname{Div}^{0}(X)=\left\{\sum_{x \in X} m_{x}[x] \mid m_{x} \in \mathbb{Z}, \sum_{x} m_{x}=0\right\}
$$

degree 0 divisors.

- For $f \in \mathcal{M}(X)$,

$$
\operatorname{div}(f)=\sum_{x \in X} \operatorname{ord}_{x}(f)[x] \in \operatorname{Div}^{0}(X)
$$

where if z_{x} is a local coordinate at x and $f=\sum_{n \geq k} a_{n} z_{x}^{n}$ near $x, a_{k} \neq 0, \operatorname{ord}_{x}(f):=k$

$$
\operatorname{Div}^{0}(X) / \sim=\operatorname{Pic}^{0}(X)
$$

where $D \simeq D^{\prime}$ if $D-D^{\prime}=\operatorname{div}(f), f$ meromorphic

Abelianized π_{1} : the case of Riemann surfaces

Modular interpretation of Jac_{X} :
Theorem (Abel, Jacobi)

$$
\begin{aligned}
\operatorname{Div}^{0}(X) & \longrightarrow H^{0}\left(X, \Omega_{X}^{1}\right)^{*} / H_{1}(X, \mathbb{Z}) \\
{[x]-[y] } & \longmapsto\left[\omega \mapsto \int_{y}^{x} \omega\right] \bmod H_{1}(X, \mathbb{Z})
\end{aligned}
$$

induces

$$
\operatorname{Pic}^{0}(X)=\operatorname{Div}^{0}(X) / \sim \xrightarrow{\sim} \operatorname{Jac}_{X}
$$

Abelianized π_{1} : the case of Riemann surfaces

$-\operatorname{Pic}_{X}=$ Picard scheme of line bundles on X,

$$
0 \longrightarrow \underbrace{\operatorname{Pic}_{X}^{0}}_{\operatorname{Jac}_{x}} \longrightarrow \underbrace{\operatorname{Pic}_{X}}_{\amalg_{d \in \mathbb{Z}} \operatorname{Pic}_{X}^{d}} \xrightarrow{\operatorname{deg}} \mathbb{Z} \longrightarrow 0
$$

- Splitting given by the choice of $\infty \in X$, identifies

$$
\begin{aligned}
\mathrm{Pic}_{X}^{0} & \xrightarrow{\longrightarrow} \mathrm{Pic}_{x}^{d} \\
\mathcal{L} & \longmapsto \mathcal{L}(d[\infty]) .
\end{aligned}
$$

- Canonical identification independent of the choice of ∞

$$
\pi_{1}\left(\mathrm{Pic}_{X}^{0}\right) \xrightarrow{\sim} \pi_{1}\left(\operatorname{Pic}_{X}^{d}\right)
$$

Abelianized π_{1} : the case of Riemann surfaces

$$
\begin{aligned}
\mathrm{AJ}^{1}: X & \longrightarrow \mathrm{Pic}_{x}^{1} \\
x & \longmapsto \mathcal{O}([x])
\end{aligned}
$$

induces

$$
\pi_{1}(X)^{a b} \xrightarrow{\sim} \pi_{1}\left(\operatorname{Pic}^{1}(X)\right)=\pi_{1}\left(\operatorname{Jac}_{X}\right)
$$

- \rightarrow any abelian Galois cover of X come by pullback via AJ^{1} from a cover of Jac_{X}

The geometric Langlands point of view

- X smooth projective algebraic curve over k alg. closed
- $\mathrm{Jac}_{X}=\mathrm{Pic}_{X}^{0}$ abelian variety/k
- construct canonical isomorphism (Groth. $\pi_{1}=$ profinite)

$$
\pi_{1}(X)^{a b} \xrightarrow{\sim} \pi_{1}\left(\operatorname{Jac}_{X}\right) .
$$

- Reduced to:

Théorème

Any rank 1 étale $\overline{\mathbb{Q}}_{\ell}$-local system \mathscr{E} on X descends along $\mathrm{AJ}^{1}: X \longrightarrow \mathrm{Pic}_{X}^{1}$ to a rang 1 étale $\overline{\mathbb{Q}}_{\ell}$-local system

Aut $\mathscr{E}=$ autmorphic loc. syst. associated to \mathscr{E} on Pic_{X}^{1}.

The geometric Langlands point of view

Sketch of proof:

- $d \geq 1$,
$\operatorname{Div}_{X}^{d}=$ Hilbert scheme of deg. d effective divisors on X
- One has

$$
\begin{aligned}
X^{d} / \mathfrak{S}_{d} & \xrightarrow{\sim} \operatorname{Div}_{X}^{d} \\
\left(x_{1}, \ldots, x_{d}\right) \bmod \mathfrak{S}_{d} & \longmapsto \sum_{i=1}^{d}\left[x_{i}\right]
\end{aligned}
$$

- Abel-Jacobi morphism

$$
\begin{aligned}
\mathrm{AJ}^{d}: \operatorname{Div}_{X}^{d} & \longrightarrow \operatorname{Pic}_{X}^{d} \\
D & \longmapsto \mathcal{O}(D)
\end{aligned}
$$

The geometric Langlands point of view

- $\pi_{d}: X^{d} \rightarrow X^{d} / \mathfrak{S}_{d}=\operatorname{Div}^{d}$,

$$
\left(x_{1}, \ldots, x_{d}\right) \longmapsto \sum_{i=1}^{d}\left[x_{i}\right]
$$

- $\mathscr{E}=$ rank 1 étale $\overline{\mathbb{Q}}_{\ell}$-local system on X

$$
\mathscr{E} \longmapsto \underbrace{\left[\pi_{d *} \mathscr{E}^{\boxtimes d}\right]^{\mathfrak{S}_{d}}}_{\mathscr{F}_{d}}=\text { rank } 1 \text { étale loc. sys. on } \operatorname{Div}_{X}^{d}
$$

\rightarrow for $d>1, \pi_{1}\left(X^{d} / \mathfrak{S}_{d}\right)=\pi_{1}(X)^{a b}$
-R.R. : for $d>2 g-2, \mathrm{AJ}^{d}=$ locally trivial fibration with fiber \mathbb{P}^{d-g}
\mathbb{P}^{d-g} simply connected
\Rightarrow for $d>2 g-2$,

$$
\mathscr{F}_{d}=\left(\mathrm{AJ}^{d}\right)^{*} \underbrace{\mathscr{G}_{d}}_{\begin{array}{r}
\text { rk. } 1 \text { loc. sys. } \\
\text { on } \mathrm{Pic}_{X}^{d}
\end{array}}
$$

$\rightarrow \mathscr{F}_{d}$ descends along AJ^{d} in high degree d

The geometric Langlands point of view

- Collection $\left(\mathscr{G}_{d}\right)_{d>2 g-2}$ of rk. 1 loc. sys.
\rightarrow For $d, d^{\prime}>2 g-2$, via $m: \operatorname{Pic}_{X} \times \operatorname{Pic}_{X} \rightarrow \operatorname{Pic}_{X}$

$$
m^{*} \mathscr{G}_{d+d^{\prime}}=\mathscr{G}_{d} \boxtimes \mathscr{G}_{d^{\prime}}
$$

- using the group structure on Pic one deduces that $\left(\mathscr{G}_{d}\right)_{d>2 g-2}$ extends canonically to an equivariant loc. sys. on Pic_{X},
- on Pic_{X}^{1}

$$
\text { Aut }_{\mathscr{E}}:=\mathscr{G}_{1}
$$

easy to verify

$$
\left(\mathrm{AJ}^{1}\right)^{*} \mathrm{Aut}_{\mathscr{E}}=\mathscr{E} .
$$

Geometric class field in equal char.

- X smooth proj. curve $/ \mathbb{F}_{q}$
- $W_{X} \subset \pi_{1}(X)$ pullback of $\mathrm{Frob}_{q}^{\mathbb{Z}}$ via

$$
1 \longrightarrow \pi_{1}^{\text {geo }}(X) \longrightarrow \pi_{1}(X) \longrightarrow \overbrace{\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} \mid \mathbb{F}_{q}\right)}^{\mathrm{Frob}_{q}^{\hat{Z}}} \longrightarrow 1
$$

- Preceding implies

$$
W_{X}^{a b}=\operatorname{Pic}_{X}\left(\mathbb{F}_{q}\right)=F^{\times} \backslash \mathbb{A}_{F}^{\times} / \prod \mathcal{O}_{F_{v}}^{\times}
$$

where $F=\mathbb{F}_{q}(X)$

Abelian π_{1} 's in number theory

- Kronecker-Weber: $\mathbb{Q}^{a b}=\bigcup_{n \geq 1} \mathbb{Q}\left(\zeta_{n}\right)$
- local K.-W. : $\mathbb{Q}_{p}^{a b}=\bigcup_{n \geq 1} \mathbb{Q}_{p}\left(\zeta_{n}\right)$
- more generally, $\left[E: \mathbb{Q}_{p}\right]<+\infty$,

$$
E^{u n}=\bigcup_{(n, p)=1} E\left(\zeta_{n}\right)
$$

$L T_{\pi}=$ Lubin-Tate one dimensional formal group law with logarithm

$$
\begin{gathered}
f=\sum_{n \geq 0} \frac{T^{q^{n}}}{\pi^{n}} \\
\text { i.e } X \underset{L T_{\pi}}{+} Y=f^{-1}(f(X)+f(Y)) \in \mathcal{O}_{E} \llbracket X, Y \rrbracket
\end{gathered}
$$

Local reciprocity

$T_{\pi}\left(\mathrm{LT}_{\pi}\right)=$ rk. 1 free \mathcal{O}_{E}-module \rightarrow character

$$
\chi_{0}: \operatorname{Gal}(\bar{E} \mid E) \longrightarrow \mathcal{O}_{E}^{\times}
$$

Théorème
Let $w: W_{E} \rightarrow \mathbb{Z}$ be s.t. $\sigma \equiv \operatorname{Frob}_{q}^{w(\sigma)}$. Then

$$
\chi=\chi_{0} \cdot \pi^{w}: W_{E} \longrightarrow E^{\times}
$$

induces

$$
W_{E}^{a b} \xrightarrow{\sim} E^{\times}
$$

i.e.

$$
E^{a b}=E^{u n}\left(\text { torsion points of } L T_{\pi}\right)
$$

Local reciprocity via the curve

$*=\operatorname{Spd}\left(\overline{\mathbb{F}}_{q}\right)$,

$$
\operatorname{Div}^{d} \rightarrow *
$$

moduli of degree d divisors on the curve

$$
\mathcal{P i c} \rightarrow *
$$

Picard stack of line bundles on the curve

Théorème (F.)
For $d \geq 2$,

$$
\mathrm{AJ}^{d}: \operatorname{Div}^{d} \longrightarrow \mathcal{P i c ^ { d }}
$$

is a pro-étale locally trivial fibration in simply connected spatial diamonds

Local reciprocity via the curve

One has

$$
\begin{aligned}
& \operatorname{Div}^{1}=\operatorname{Spa}(\breve{E})^{\diamond} / \varphi^{\mathbb{Z}} \\
& \mathcal{P i c}^{1}=\left[* / \underline{E}^{\times}\right]
\end{aligned}
$$

and the morphism

$$
W_{E}=\pi_{1}\left(\operatorname{Div}^{1}\right) \longrightarrow \pi_{1}\left(\mathcal{P i c}^{1}\right)=E^{\times}
$$

is given by χ. Preceding result \Rightarrow local reciprocity :

$$
\chi: W_{E}^{a b} \xrightarrow{\sim} E^{\times} .
$$

Local reciprocity via the curve

Théorème (F .)

1. The morphism $\left(\mathrm{Div}^{1}\right)^{d} \rightarrow \mathrm{Div}^{d}$ is quasi-pro-étale surjective and induces

2. AJ^{d} is a pro-étale fibration in

that is a simply connected spatial diamond if $d \geq 2$
