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1 One dimensional formal group laws

1.1 Definitions
Let R be a ring.

Définition 1. A one dimensional formal group law over R is a F(X,Y) € R[[X,Y]] s.t.
- F(X,Y)=F(,X) (commutativity)
- F(X,0) = X and F(0,Y) = Y (the section T = 0 is the unit section) (in particular
F(X,)Y)=X+4Y mod deg 2)
- F(F(X,Y),Z)=F(X,F(Y,Z)) (associativity)
Lemme 1. For any one dimensional formal group law F over R there erists a unique series
f € R[[T]] such that f(0) =0 and F(f(T),T) =0.

Démonstration. This is an easy induction/approximation argument by constructing and veri-
fying its unicity modulo T* for all k starting with k = 1. O

This series f will be denote [—1]p, it is the “formal inversion” on F.

We will often denote F(X,Y) = X 4+ Y. More generally if A is an R-algebra complete with
F

respect to the ideal m and a,b € m we can define a + b and thus consider (m,+) that is an abelian
F F
group.

Définition 2. Let F' and G be two formal group laws. We define

Hom(F,G) = { f € TR} | /(X +Y) = /(X) + /(¥) )

And thus we have a category structure on formal group laws over R.

If R — R’ is a ring morphism there is an evident base change functor from the category of
one dimensional formal groups laws over R to the one over R’.

Exemple 1. — The additive groupe law G, associated to FX,)Y)=X+4Y
~ The multiplicative one Gy, associated to F(X,Y) = XY +X +Y (this is (X +1)(Y +1)—1,
for formal group laws 0 is the neutral element thus on has to translate by 1)
— If R is a Q-algebra there is an isomorphism of formal group laws log(1 + T) : @m = @a
where log(1+T) = Zk>1(—1)k_1TTk

Set Lie ' = R. We have a linear map :
Hom(F,G) — Hom(Lie F, Lie G)

that associates to f the multiplication by f’(0). Moreover f € Hom(F,G) is an isomorphism iff
f'(0) € R*.



For n € Z set [n]p € End(F) be the multiplication by n via Z — End(F). Thus if n > 0

mep=T+...4+T
F F

—_——
n—times
and if n <0
= [-1|p(T ... —1|g(T
e = 1 (T) + .+ [-1]p(T)
(—n) —times
Then

7] (0) = n
and thus if R is a Z,)-algebra then End(F) is a Z,)-algebra. Moreover one verifies that if R is

p-adicaly complete then End(R) is naturaly a Z,-algebra. The series [p]r will play an important
role in the sequel when R will be p-adically complete.

Définition 3. An invariant differential form on F is an expression w = f(T)dT such that
F.w= f(X)dX + f(Y)dY

h
o Fuwo = FPCOY) 22 (X v yax + £R ) 28 (X, v)ay
e ) ax ey
We set wp to be the R-module of invariant differential forms on F.

Définition 4. A continous translation invariant derivation on F is a T-adicaly continuous R-
derivation 0 : R[[T)] — R|[[T]] such that for any g € R[[T])

Ox(9(X +Y)) = (0f)(X +Y)

Being continuous such a derivation 0 is completly determined by 9T and is of the form 0 =
f(T)4 for some f € R[[T]].

Proposition 1. The morphism

wrp — R

f(T)dT — f(0)

is an isomorphism and thus wr is free of rank 1. Idem for w}. = translation invariant T -adically
continuous derivations on R[[T]] which is identified with Lie(F) = R via

wp — R= LieF
0 — (7)o

Démonstration. One has to solve the system of equations

{f(X) = f(F(X,Y))3&(X,Y)
'

QO Q

fY) = [(F(X,Y)) 57 (X,Y)

Q

which by f(X,Y) = f(Y,X) is reduced to the first equation. Putting ¥ = 0 one finds that

necessarily
oF

(V)55 (0.Y) = F(0)

But the series g(Y) = é,j—)F((O7 Y') verifies g(0) = 1 and is thus invertible. Thus any solution of the

system is a multiple of

OF .,
8_X(0’T)



Reciprocaly, derivating the equation F(Z, F(X,Y)) = F(F(Z,X),Y) with respect to Z and put-
ting Z = 0 one verifies the preceding is a solution of the system. O

Of course F' —— wp is functorial in F' and the morphism induced on this modules by a
morphism f is multiplication by f/(0). From now on we will consider Lie F' as the set of continuous
translation invariant derivations on F'.

Exemple 2. For @m the one has wp = R.% and LieF = R.(1 + T)diT. For @a one has
wrp = RdT and LieF = R.%.

1.2 Lazard’s key lemma
The following is the key lemma to the study of one-dimensional formal group laws.

Définition 5. Let m = (X,Y) C R[[X,Y]]. Call a truncated at the order n one dimensional
formal group law over R a F € R[[X,Y]]/m" satisfying all the azioms of a formal group law in
R[[X,Y]]/m™ that is to say modulo degre > n polynomials.

Lemme 2. Set for all n € N*
(X+Y)"—=X"—=Y" if n is not a power of a prime
p

if n = p® with p prime

Let n € N*. Let F(X,Y) be a truncated at the order n formal group law over R that can be
extended to a truncated at the order n+ 1 formal group law. Then the set of such extensions G to
a truncated at the order n+ 1 formal group law is is a principal homogenous space under R via

Ya € RYG a.G =G+ aCph(X,Y)

We refer to [?]?7?7? for the details of the proof. Let G € R[[X,Y]]/m"*! be an extension as
in the theorem. We look for a polynomial I'(X,Y") = Z ai; X'Y" " such that F =G +Tis a

it+j=n
0<i,j<n
truncated formal group law at the order n+1. The first evident condition is a;; = a;;. Now writting

F(F(X,Y),Z)=F(X,F(Y,Z)) modulo degre n + 1 we find the equivalent cocyle condition
X, Y)+ (X +Y,2)=T(Y,2)+ I(X,Y + Z)

The C,,(X,Y) are solutions to this linear system in the unknown (a;;). Reciprocaly one has to see

that those are the unique solutions up to a scalar which is a linear algebra problem solved in ...

1.3 The caracteristic zero case

Proposition 2. Let R be a Q-algebra. Then for a one dimensional formal group law F over R
there exists a unique series logp € TR[[T]] called the logarithm of F s.t.

logp : F — Go and logh-(0) =1

Démonstration. The uniqueness assertion is clear since if fi, fo : F —— @a then f; Yofy e
End(G,). And since R is a Q-algebra End(G,) = R.
Let now F be such that F(X,Y) = X +Y mod m” for some n € N*. Then from lemma 2 and

since R is a Q-algebra, for au € R
FX,Y)=X+Y 4+u(X+Y)"— X" —Y") mod m"*!

where m = (X,Y"). Now setting
WT) =T —ul™



we find
h(h™1(X) + A1 (Y)) = X +Y mod m™H!

which expresses the fact that h is a truncated isomorphism
h:F %G, mod m't!

By induction we thus construct a sequence (h,)n>1 such that h, = T'[T"] and hy,0---0hq is a
truncated isomorphisme modulo m™*! between F and G,. One concludes easily that lirf (hp o
n—-+oo

.-+ 0 hy) converges to the desired series log . O

Remarque 1. This proposition is a very particular case of the following theorem : over a Q-algebra
R the Lie algebra functor induces a category equivalence between formal group laws (not necessarily
one dimensional or commutative) and Lie algebras over R that are finite free R-modules.

If logp is the logarithm of F' then log} dT is an invariant by translations differential form on
F since dT is one on G,. Reciprocaly if w = f(T)dT is an invariant by translations differential
form on F such that f(0) =1 then logp = fOTw and thus

T oF

logp = —(0,7)"dT
E= ), 0X

If R is p-adically complete and without p-torsion one has the following formula for the logarithm
of F after inverting p still denoted log allthough F' is defined over R

1
logp = lim - [p"]r(T)

where the limit is for the p-adic topology on each of the coefficients of the power series and this
limit lies in R[][[T7]].
1.4 Lazard’s ring
Définition 6. Let A be the ring representing the functor
Rings — Sets

R +—— the set of one dim. formal group laws over R
In fact this ring has the following presentation :
A = Zlaijlij>1/1

where the a;; are inderterminates, the universal group law is F(X,Y) = X +Y + 3, .+, ai; X'Y7
and the ideal I is generated by the relations a;; = a;; and the one given by writting F(F(X,Y), Z) =
F(X,F(Y, Z)).

Lemme 3. With the preceding presentation for A put dega;; = ¢ + j — 1. Then the ideal I is
homogenous.

Démonstration. Put degX = degY = —1. Then F(X,Y) is homogenous of degre —1 in
the variables (a;j);;, X and Y. Thus if we put degZ = —1 the series F(F(X,Y),Z) and
F(X,F(Y,Z)) are homogenous of degre —1 in the variables (a;;); ;, X, Y and Z. Thus the equation
F(F(X,Y),Z)=F(X,F(Y, Z)) gives degre 0 homogenous equations in the (a;;); ;- O

Thus the ring A is graded by

A=Pa*

k>0



with AY = Z. Now put

VEeN A=A/ <ay|zel,yeN i+j=kandi,j>0>
wher < . > means the R-submodule generated. Then a translation of lemma 2 is
Corollaire 1. For all k € N the Z-module A if free of rank 1.

Démonstration. For all n € N consider the ideal @kzn A* of A and the quotient ring
NP~ p A
E>n 0<k<n—1

This quotient ring represents the functor

Rings —  Sets

R +—— truncated at the order n + 1 one dim. formal group laws

Now for a truncated at the order n + 1 formal group law F' corresponding to a morphism
f @ AF—Rr
0<k<n—1

we look for the truncated at the order n + 1 formal group laws that are congruent to F' mod degre
> n. This corresponds to Z-linear maps v : A»~! — R such that if we set

oy fl@)yitk<n-—1
Vk<n—1 VzeAF f(x)_{f(gc)—i—l/}(m)ifk:”_l

then f’ is a ring morphism. One sees easily that this is equivalent to says that 1) factorises as a
morphism of abelian groups as 1 : A"~1 — R. O

From this one deduces :

Théoréme 1 (Lazard). The graded ring A is a polynomial algebra
A ~ Z[tk]k21
with degt, = k.

Démonstration. Choose for all k a lifting to A* of a generator of A* and define a map from
Zltglk>1 to A by sending ¢ to this generator. On has to see this is an isomorphism. But this
is a morphism of graded rings A — B inducing an isomorphism a the level of the Z-modules
A* — B* for all k where AF and B* are defined as A¥. From this one deduces that this morphism
is surjective. Now to prove injectivity it suffices to prove it after tensoring with Q, for the map

Qltrlk>1 — A®Q

But now define the following “universal logarithm” series

WT) =T+ u T € Qualia[[T]]

k>1

and set G(X,Y) = h= 1 (h(X)+h(Y)) € Qlug]r>1[[X, Y]]. By the universal property of A associated
to G there is a graded morphism
A®Q — Quklr>1

and this is an isomorphism since by proposition 2 this morphism defines an isomorphism of functors
between Hom(Q[ug]r>1,—) and Hom(A ® Q, —). More precisely, the inverse of this morphism is



constructed in the following way : by proposition ?? there exists a unique g € A® Q[[T]] such that
9(0) =0, ¢’(0) = 1 and if F is the universal group law on A ® Q then

F(X,Y)=g""(g(X)+g(Y))

Then the inverse of A ® Q — Q[ug]r>1 is given by sending uy to the k + 1-th coefficient of g.
Now this isomorphism
A®Q — Qui)r>1

is a graded isomorphism if we set degur = k. In fact, putting degT = —1 we see the universal
logarithm h(T') € Q[ug]r>1[[T]] is homogenous with degre —1. Thus, with deg X = degl = —1,
G(X,Y) = h=}(h(X)+h(Y)) is homogenous with degre —1 which implies our isomorphism respects
the grading.

Now look at the composition

Qltrlkz1 —» A ® Q == Qlug)r>1

it is a surjective graded morphism

Qltrle>1 = Qur)i>1

and thus an isomorphism since it induces a surjective morphism of finite dimensional Q-vector
spaces of the same dimension between elements of degre less than a given integer. O

1.5 The theory of one-dim. formal groups laws is unobstructed

Corollaire 2. Let R be a ring.
— Any truncated at the order k one dimensional formal group law over R extends to a formal
group law over R.
— Let I be an ideal in R. Any one dimensional formal group law over R/I lifts to a formal
group law over R.

Démonstration. This is a consequence of Lazard’s theorem, since “morphisms of polynomials
algebras can be lifted”. O

1.6 Classification over car. p algebraically closed fields
1.6.1 Frobenius morphism

Let R be a ring such that pR = 0. Let G be a one dim. formal group law over R.

Définition 7. We let GP) be the formal group law obtained by applying the p-power to all the
coefficients of G.

Définition 8. We denote
F:G— GW

the Frobenius morphism defined by the power series TP.

1.6.2 Height
Let k be a caracteristic p field and G defined over k.

Lemme 4. Let f € End(F) be s.t. f/(0) = 0 and f # 0. Then 3h € N* g € k[[T]] ¢(0) =
0,9'(0) #0 and

f=g(T")



Démonstration. Differentiationg the equality f(F(X,Y)) = F(f(X), f(Y)) with respect to X
one finds

, oF _OF ,
FIEXY)) 55 (X Y) = o5 (f(X), F)) f1(X)
with X = 0 one finds OF
)5 (0.Y) =0 = f' =0

since g—§(0, Y') is invertible.
Thus f can be written as a composite

G— o 2Lsq

~_ 7

f

where g € End(F'), and one can apply by induction the preceding process to g. O

Définition 9. Let [plg € End(G). If [plc = 0 we say G has infinite height. If not let h > 1 be the
integer defined in the previous lemma which is the biggest integer k such that [p]F can be factorized

by F®"). We say G has height h.

Thus if G has height h < 400 then [p]p can be factorized as

¢ —% g L>g

[ple

where ¢ is an isomorphism. From this it is clear that the height of G is an invariant of the
isomorphism class of G.

1.7 The infinite height case
We keep the hypothesis of the last section.

Proposition 3. G has infinite height < G ~ ((A}a.
Démonstration. Supppose G = X +Y mod deg > n. Then da € k
G=X+Y+aCh(X,Y) mod deg >n+1
If n is not a power of p then puting h(T) =t — aT™ one finds

A(hHX) £ h7HY)) = X +Y mod deg > n+1

If n is a power of p then one finds [p]g = —aT™ mod deg > n + 1 (cf. lemma 5) and thus from
the hypothesis [p]¢ = 0 we find a = 0. By induction we thus can construct for all n truncated
isomorphisms G —— @a mod deg > n which in the limit gives us an isomorphism as in the proof
of proposition 2. O

1.8 The finite height case

The notations are the same as in the preceding section.



1.8.1 Normalized group law

Définition 10. Let h € N*. The height h group law G over k is normalized if [p]g = ",
Remarque 2. If G is normalized then G € F,.[[X,Y]].

As we have seen we can writte
[Pl =goF"

where ¢ is an isomorphism between G®") and G. Now the problem to know wether or not G is
isomorphic to a normalized group law is equivalent to know wether or not g can be written as

h

9=9191"
for some g1 € Aut(G), that is to say if g is “a coboundary”.

Remarque 3. This problem is related to the problem to know if in a height h one dimensional
crystal over k one can find an non-zero element e s.t. F*.e = p.e.

Proposition 4. If k is separably closed then any finite height one dimensional group law over k
is isomorphic to a normalized one.

Démonstration. If ) .
[plg = aT? [T? ]

with a # 0 then if b € k is such that a = b'=?" and g(T) = bT then go [p|g o gt = T¥" [T?"+1].
And thus we can suppose the coefficient of 77" is 1. Now if for some k > 2

plp =T + aT*" [Tk+1P")
putting g(T) = T — bT* we find
golplaog H(T) =T + (a+ " — p)T [TH+10P"]
and thus using a b solution of the Artin-Schreier equation a = b — b?" we can suppose
ple = 77" [T007]
We conclude as usual by induction and passing to the limit. O
Lemme 5. Let Gy, Gy be two formal group laws over R s.t.
G1 =Gy +aCLi(X,Y) mod degp’ +1

then _ _
Ple, = Pla. +a(—1+p? "I mod degp’ + 1

In particular if pR = 0 then
Pley = e, — aT mod degp’ + 1

Démonstration. By an easy induction argument one finds

n—1
VYn € N* [n]g, =[n G2+aZC’ (T,kT) mod degp’ +1
k=1
Moreover
n—1 n—1 i i i
k+1pT” kP TP — TP
C(T,kT) =

k
= (=14p" 1"



Proposition 5. Let Gy, G2 be two formal group laws over k separably closed. Then G1 ~ Gy iff
ht(G1) = ht(G2).

Démonstration. Suppose ht(G1) = ht(G3) = h, G1 and G5 are normalized, and we have
constructed g € F,n[[T]] s.t. g(0) =0, ¢’(0) # 0 and

9(X +Y)=g(X) 4 g(Y) mod deg > n

Then replacing G; by g(G1(971(X) +¢g~1(Y))) we can suppose
G1 =Gy mod deg >n

and thus
Ja € Fpn Gy =Go+aC,(X,Y) mod deg >n+1

If n is not a power of p, using g(T) = T — aT™ we have g(G1(g71(X),g71(Y))) = G2 mod deg >
n+ 1. If n is a power of p then by the preceding lemma

ple, = e, —aT™ [T"H]

— a = 0 since [p}cl = [p]Gz = Tph

Thus starting from a truncated at the order n isomorphism between G and G5 we have constructed
a truncated isomorphism at the order n + 1. Moreover since g € F,»[[T]] the new formal group
laws are still normalized. By induction and a limit process one then construct an isomorphism

G1 — Gs. O

Corollaire 3. Any finite height h one dim. formal group law is isomorphic to a normalized one
F s.t.
F(X,Y)=X+Y +Cp(X,Y) mod deg > p" + 1

Démonstration. This can be deduced from the proof of the last proposition. O

Théoréme 2. The isomorphism classes of one dimensional formal group laws over a separably
closed field are in bijection with N* U {oo}, the bijection being given by the height.

Démonstration. It remains to prove that for any h € N* there exists a height h formal group
law over k. But if A ~ Z[t;];>1 is Lazard’s ring then if we define the ring morphism A — k by
sending t; — 0 if i < p" — 1, tpn_1 +— 1 and t; — any element of k for other i then if G(X,Y) is
the corresponding formal group law over k we have

G(X,Y)=X+Y +Cpu(X,Y) mod deg >p" +1

which implies as allready seen
ple = 17" [T7"+1]

1.9 Endomorphism algebra
One can show that for a G of height i < 400 over k separably closed
End(G) = Op

where D is a division algebra with invariant % and Op is its maximal order. This is a consequence
of the classification of p-divisible groups via crystals. Concretely

Op = Zy~ 1]



where Zy» = W(F,») is the ring of integers in the degre n unramified extension of Q, and II is
the uniformizing element in D verifying

Vo € Zpn Iz =2°11

where o stands for the Frobenius of Qpn.

It results from the proof of theorem 2 that there exists one dim. formal group law of any height
defined over F,. Then such a formal group law G' admits the Frobenius as an endomorphism. In
the identification End(G) = Op the Frobenius is sent to a uniformizing element of Op and thus
can be identified with II.

2 Deformation theory in the unobstructed case

In this section we present a particular case of Schlessinger’s theorem.

2.0.1 Definitions

Let k be a field and C be the category of local Artin rings with residue field k, morphisms
being morphisms inducing the identity on k. Let

F:C— { Sets }
be a covariant functor. We will make the assumption F'(k) = {#} that is to say F' is “connected”.

Définition 11. The functor F' is formally smooth if for all A,B € C and A — B a surjective
morphism then F(A) — F(B) is surjective.

Of course, as usual, in the preceding definition one can assume the kernel I of A — B verifies
I? = (0) and even m.I = (0) where m is the maximal ideal of A.

Définition 12. The functor F satisfies the Mayer-Vietoris property if for all diagramms in C
A B
C

The natural morphism F(A x¢ B) — F(A) X p(c) F(B) is an isomorphism.

Exemple 3. If F ~ X where X is a formal scheme then F satisfies the Mayer Vietoris property.

2.0.2 Tangent functor

Let’s suppose F' satisfies the Mayer-Vietoris property. Let M be the category of finite dimen-
sional k-vector spaces. There is a functor

M — C
V. — koV

where k @ V is the trivial extension of k by the squared zero ideal V. For example if V = k,
k @V = kle] is the dual number algebra.

Définition 13. We denote TF : M — Sets to be the composite M — C — Sets.

10



There is a canonical factorisation

TF

M Sets

~.

k-vector spaces

defined in the following way : VV' € Ob M there is a morphism in M
VxV — V
(z,y) — x4y
inducing by functoriality a morphism in C
keVxkeV kaV
In the same way forall z € k there is a morphism in M

Vv — V
v o ZW
inducing
My k®V —kpV
They induce
TE(V)xTF(V) —=F(kaV xk® VS(L TE(V)
u/

and
Ve ek TR(V) 20, mRy)

And one verifies those two operations induce a k-vector space structure on TF (V) (in fact k@ V
has a structure of k-vector space in the category C). One verifies immediatly that this vector space
structure is functorial in V. Thus we have our factorization.

Lemme 6. There is a natural isomorphism of functors
TF(—) ~TF(k) ® (—)

Démonstration. Fix an equivalence bewteen M and the subcategory of vector spaces (k™),>0.
It suffices to construct natural isomorphisms

TF(k™) ~ TF(k) ®p k"

They are deduced from the Mayer -Vietoris property : TF(k x --- x k) ~ TF(k)™. The naturality
is easily checked. U

Proposition 6. Let A € C with mazimal ideal m and let I be an ideal of A s.t. m.I = 0. Let
f: F(A) — F(A/I). Then for each x € F(A/I) either f~1({z}) = 0 either f~1({z}) is a
principal homogenous space under TF(I).

Démonstration. There is an isomorphism in C
Axyr A = Ax (koI
(a1,a2) = (a1,81 ® (a1 — az))

where a; is the reduction of a; modulo the maximal ideal of A. Applying the Mayer-Vietoris
property we find
F(A) x TF(I) — F(A) xpa/r) F(A)

and one verifies easily this defines an action of TF(I) on TF(A). O

11



2.1 Formaly étale morphisms

Définition 14. A morphism f : F — G of covariant functors on C is formay étale if for all
A € C and ideal I of A the following diagram is cartesian

F(4) G(4)

L

F(A/I)——= G(A/I)

Of course as usual, by devissage, it suffices to consider the case when I? = 0 or even when
m.] = (0) where m is the maximal ideal of A.

Lemme 7. A morphism f : F — G is an isomorphism iff it is formaly étale and induces a
bijection F (k) — G(k).

Démonstration. This is clear since in a cartesian square if the bottom horizontal line is a bi-
jection then so is the top horizontal one. O

Proposition 7. Suppose F is formaly smooth. Suppose F' and G satisfy the Mayer Vietoris

~

property. A morphism f : F — G is formaly étale iff it induces an isomorphism TF(k) —
TG(k).

Démonstration. If f induces an isomorphism between TF (k) and TG(k) then by lemma 6
is induces an isomorphism of the tangent functors TF(—) — TG(—). Then you conclude by
proposition 6. OJ
2.1.1 Main theorem

If k is a perfect field any complete local ring with residue field k is naturaly a W (k)-algebra.
Thus the category C is the category of local artinian W (k)-algebras with residue field k and F' can
be considered as a functor over Spf(W (k)).

Théoréme 3. Suppose k is perfect. Suppose F' satisfies the Mayer-Vietoris property, is formally
smooth verifies F(k) = {0} and satisfies

dimg TF(k) =n < 400

Then
F~ Spf(W<k)HT1’ s 7Tn]])

Démonstration. Let (eq,...,e,) be a basis of TF (k). It gives an element of
F(k[Ty,...,T)/(TF,...,T2) ~ [[TF (k)
i=1

By the formal smoothness property this can be lifted to an element of

FW(R)[[Ty,.... To]])) = lim FE(W(k)([T1, ..., Tu]]/T")
k

where I = (p,T4,...,T,). This gives a morphism
f:G=Spt(W(K)[T1,...,T,]]) — F

Now because of our choices
TG(k) = TF (k)

and thus by proposition 7 f is an isomorphism. O

12



3 Lubin-Tate spaces : first approach via formal group laws

3.1 Definition
Let F be a one dimensional formal group law of finite height n over F,.

Définition 15. Let A be a local artinian algebra with mazximal ideal m and residue field E,.
— A formal group law G over A is a deformation of G if G = F modulo m
— Two deformations G1,Gs are isomorphic if there is an isomorphism

f:G1 =Gy
such that f = Id mod m (that is ot say f(T)=T).
Let Def be the associated functor of isomorphism classes of deformations of F' on artin local rings
with residue field Fy,.
3.2 Computation of the tangent space
We note k = F,,.
Lemme 8. The tangent space to Def is the k-vector space H(C®) where
C* = |TR(T]] 2 XYHX, Y] 2 K[[X,Y, Z])]
0 +1 +2
where k[[X,Y]]®2 stands for the symmetric formal power series and
Op(T) = (X 1Y) —p(X) - oY)

Démonstration. Writte F'(X,Y) = F(X,Y) + e (X,Y) with €2 = 0. Then
9 =0 = F'(F'(X,Y),Z) = F'(X,F'(Y, Z))
And if h(T) =T + ep(T),

F' = h(F(h™1(X),hH(Y))) <= ¢ =0y

Suppose now F' is normalized and satisfies
FX,Y)=X+Y 4+ Cpn(X,Y) mod deg > p" + 1

(cf. corollary 3). We will suppose more explicitely that F' is associated to the morphism from
Lazard’s ring Z[t;];>1 to k defined by t; — 0 if ¢ < p™ — 1, tpn_q1 — 1 and for other ¢ ¢; maps to
anything.

Proposition 8. The tangent space to Def is n—1 dimensional generated by cocyles 1, ..., %n_1
that verify ¥;(X,Y) = C,i (X,Y) mod deg > p* + 1.
Démonstration. We have
oT* (X +Y)" = X% —Y* mod deg > k + 1
oY = Cpi+n(X,Y) mod deg > pi+1

Moereover if a cocyle v verifies
1 =0 mod deg > k
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then thanks to lemma 2
¥ =aCr(X,Y) mod deg > k + 1

for some a € F,». With this one can prove that if & > p" and 1 is a cocyle that is a coboundary
mod deg> k then ¢ is a couboundary mod deg> k + 1.

Now for each 1 < i < n —1 let ¢; consider the map from Lazard’s ring Z[t;];>1 to k[e] défined
by t; — 0if j < p'—1, tpi_1 €15 — 0 ifp'—1<j<p"—1,tyn_q1 — 1and¢; maps to anything
for other j (the same anything as the one we chosed for defining F'). This defines a deformation
of F' and thus a cocyle ;. It follows by computing modulo 77" and the formulas given for 9T*
with k& not a power of p that those cocyles form a basis of the tangent space to Def. O

3.3 Représentability

Proposition 9. There is an isomorphism
Def = Spf(W(k)[[Tla cee 7Tn—1]])

Démonstration. We apply theorem 3. The functor Def clearly satisfies Mayer-Vietoris pro-
perty. Formal smoothness follows from corollary 2 and the assertion about the tangent space is
proposition 8. O

3.4 Good coordinates on Lubin-Tate spaces

Proposition 10. There is a system of formal coordinates (x1,...,x,—1) on Def that is to say an
isomorphism Def ~ Spfl(W (k)[[x1,...,2n-1]]) such that if G is the associated universal formal
group law then

Vi<i<n-—1 G(X,Y)=2,Cpi(X,Y) mod (deg p' + 1,21,...,2-1)

Démonstration. Let G be the group law over W (k)[[z1, ..., Zn—1]] associated to the map from

Lazard’s ring
A= Z[tk]k21

to W(k)[[z1,...,2,—1]] that maps t,:_; to ; for 1 <i <n —1, t,n_1 to 1 and other ¢; to 0. It
gives a morphism from Spf(W (k)[[x1,...,Zn—-1]]) to Def. To see this is an isomorphism we have
to prove it is one at the level of the tangent spaces, that is to say look at the reduction of G
to k[z1,...,mn_1]/(22,...,22_,). But this is clear from the computation of the tangent space of
Def. O
Corollaire 4. There is a system of formal coordinates (x1,...,2,—1) on Def such that if G is

the associated universal formal group law then
Pl = puoT + 2 TP + - + Tyt T +u, TP
where ug, ..., U, € W(k)[[x1,...,n-a]][[T]]* are units.

Démonstration. This follows from lemma 5. O

Remarque 4. In the following sections we will explain the link with the Newton stratification and
this type of coordinates.
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