An introduction to the geometry of Lubin-Tate spaces

Laurent Fargues
CNRS-IHES-université Paris-Sud Orsay

18 août 2005

1 One dimensional formal group laws

1.1 Definitions

Let R be a ring.
Définition 1. A one dimensional formal group law over R is a $F(X, Y) \in R[[X, Y]]$ s.t.

- $F(X, Y)=F(Y, X)$ (commutativity)
$-F(X, 0)=X$ and $F(0, Y)=Y$ (the section $T=0$ is the unit section) (in particular $F(X, Y) \equiv X+Y \bmod \operatorname{deg} 2)$
- $F(F(X, Y), Z)=F(X, F(Y, Z))$ (associativity)

Lemme 1. For any one dimensional formal group law F over R there exists a unique series $f \in R[[T]]$ such that $f(0)=0$ and $F(f(T), T)=0$.

Démonstration. This is an easy induction/approximation argument by constructing and verifying its unicity modulo T^{k} for all k starting with $k=1$.

This series f will be denote $[-1]_{F}$, it is the "formal inversion" on F.
We will often denote $F(X, Y)=X \underset{F}{+} Y$. More generally if A is an R-algebra complete with respect to the ideal \mathfrak{m} and $a, b \in \mathfrak{m}$ we can define $a \underset{F}{+b}$ and thus consider $(\mathfrak{m}, \underset{F}{+})$ that is an abelian group.

Définition 2. Let F and G be two formal group laws. We define

$$
\operatorname{Hom}(F, G)=\{f \in T R[[T]] \mid f(X \underset{F}{+} Y)=f(X) \underset{G}{+} f(Y)\}
$$

And thus we have a category structure on formal group laws over R.
If $R \longrightarrow R^{\prime}$ is a ring morphism there is an evident base change functor from the category of one dimensional formal groups laws over R to the one over R^{\prime}.

Exemple 1. - The additive groupe law $\widehat{\mathbb{G}}_{a}$ associated to $F(X, Y)=X+Y$

- The multiplicative one $\widehat{\mathbb{G}}_{m}$ associated to $F(X, Y)=X Y+X+Y($ this is $(X+1)(Y+1)-1$, for formal group laws 0 is the neutral element thus on has to translate by 1)
- If R is $a \mathbb{Q}$-algebra there is an isomorphism of formal group laws $\log (1+T): \widehat{\mathbb{G}}_{m} \xrightarrow{\sim} \widehat{\mathbb{G}}_{a}$ where $\log (1+T)=\sum_{k \geq 1}(-1)^{k-1} \frac{T^{k}}{k}$
Set Lie $F=R$. We have a linear map :

$$
\operatorname{Hom}(F, G) \longrightarrow \operatorname{Hom}(\operatorname{Lie} F, \operatorname{Lie} G)
$$

that associates to f the multiplication by $f^{\prime}(0)$. Moreover $f \in \operatorname{Hom}(F, G)$ is an isomorphism iff $f^{\prime}(0) \in R^{\times}$.

For $n \in \mathbb{Z}$ set $[n]_{F} \in \operatorname{End}(F)$ be the multiplication by n via $\mathbb{Z} \rightarrow \operatorname{End}(F)$. Thus if $n>0$

$$
[n]_{F}=\underbrace{T+\ldots+T}_{n-\text { times }}
$$

and if $n<0$

$$
[n]_{F}=\underbrace{[-1]_{F}(T) \underset{F}{+\ldots+\underset{F}{+}[-1]_{F}(T)}}_{(-n)-\text { times }}
$$

Then

$$
[n]_{F}^{\prime}(0)=n
$$

and thus if R is a $\mathbb{Z}_{(p)}$-algebra then $\operatorname{End}(F)$ is a $\mathbb{Z}_{(p)}$-algebra. Moreover one verifies that if R is p-adicaly complete then $\operatorname{End}(R)$ is naturaly a \mathbb{Z}_{p}-algebra. The series $[p]_{F}$ will play an important role in the sequel when R will be p-adically complete.

Définition 3. An invariant differential form on F is an expression $\omega=f(T) d T$ such that

$$
F_{*} \omega=f(X) d X+f(Y) d Y
$$

where

$$
F_{*} \omega=f(F(X, Y)) \frac{\partial F}{\partial X}(X, Y) d X+f(F(X, Y)) \frac{\partial F}{\partial Y}(X, Y) d Y
$$

We set ω_{F} to be the R-module of invariant differential forms on F.
Définition 4. A continous translation invariant derivation on F is a T-adicaly continuous R derivation $\partial: R[[T]] \longrightarrow R[[T]]$ such that for any $g \in R[[T]]$

$$
\partial_{X}(g(X \underset{F}{+} Y))=(\partial f)(X \underset{F}{+} Y)
$$

Being continuous such a derivation ∂ is completly determined by ∂T and is of the form $\partial=$ $f(T) \frac{d}{d T}$ for some $f \in R[[T]]$.
Proposition 1. The morphism

$$
\begin{array}{rll}
\omega_{F} & \longrightarrow & R \\
f(T) d T & \longmapsto & f(0)
\end{array}
$$

is an isomorphism and thus ω_{F} is free of rank 1. Idem for $\omega_{F}^{*}=$ translation invariant T-adically continuous derivations on $R[[T]]$ which is identified with $\operatorname{Lie}(F)=R$ via

$$
\begin{array}{rll}
\omega_{F}^{*} & \longrightarrow & R=L i e F \\
\partial & \longmapsto & (\partial T)_{\mid T=0}
\end{array}
$$

Démonstration. One has to solve the system of equations

$$
\left\{\begin{array}{l}
f(X)=f(F(X, Y)) \frac{\partial F}{\partial X}(X, Y) \\
f(Y)=f(F(X, Y)) \frac{\partial F}{\partial Y}(X, Y)
\end{array}\right.
$$

which by $f(X, Y)=f(Y, X)$ is reduced to the first equation. Putting $Y=0$ one finds that necessarily

$$
f(Y) \frac{\partial F}{\partial X}(0, Y)=f(0)
$$

But the series $g(Y)=\frac{\partial F}{\partial X}(0, Y)$ verifies $g(0)=1$ and is thus invertible. Thus any solution of the system is a multiple of

$$
\frac{\partial F}{\partial X}(0, T)^{-1}
$$

Reciprocaly, derivating the equation $F(Z, F(X, Y))=F(F(Z, X), Y)$ with respect to Z and putting $Z=0$ one verifies the preceding is a solution of the system.

Of course $F \longmapsto \omega_{F}$ is functorial in F and the morphism induced on this modules by a morphism f is multiplication by $f^{\prime}(0)$. From now on we will consider Lie F as the set of continuous translation invariant derivations on F.
Exemple 2. For $\widehat{\mathbb{G}}_{m}$ the one has $\omega_{F}=R \cdot \frac{d T}{T+1}$ and Lie $F=R .(1+T) \frac{d}{d T}$. For $\widehat{\mathbb{G}}_{a}$ one has $\omega_{F}=R . d T$ and Lie $F=R \cdot \frac{d}{d T}$.

1.2 Lazard's key lemma

The following is the key lemma to the study of one-dimensional formal group laws.
Définition 5. Let $\mathfrak{m}=(X, Y) \subset R[[X, Y]]$. Call a truncated at the order n one dimensional formal group law over R a $F \in R[[X, Y]] / \mathfrak{m}^{n}$ satisfying all the axioms of a formal group law in $R[[X, Y]] / \mathfrak{m}^{n}$ that is to say modulo degre $\geq n$ polynomials.

Lemme 2. Set for all $n \in \mathbb{N}^{*}$

$$
C_{n}(X, Y)=\left\{\begin{array}{c}
(X+Y)^{n}-X^{n}-Y^{n} \text { if } n \text { is not a power of a prime } \\
\frac{(X+Y)^{n}-X^{n}-Y^{n}}{p} \text { if } n=p^{\alpha} \text { with } p \text { prime }
\end{array}\right.
$$

Let $n \in \mathbb{N}^{*}$. Let $F(X, Y)$ be a truncated at the order n formal group law over R that can be extended to a truncated at the order $n+1$ formal group law. Then the set of such extensions G to a truncated at the order $n+1$ formal group law is is a principal homogenous space under R via

$$
\forall a \in R \forall G \quad a . G=G+a C_{n}(X, Y)
$$

We refer to [?] ? ?? for the details of the proof. Let $G \in R[[X, Y]] / \mathfrak{m}^{n+1}$ be an extension as in the theorem. We look for a polynomial $\Gamma(X, Y)=\sum_{\substack{i+j=n \\ 0<i, j<n}} a_{i j} X^{i} Y^{n-i}$ such that $F=G+\Gamma$ is a truncated formal group law at the order $n+1$. The first evident condition is $a_{i j}=a_{j i}$. Now writting $F(F(X, Y), Z)=F(X, F(Y, Z))$ modulo degre $n+1$ we find the equivalent cocyle condition

$$
\Gamma(X, Y)+\Gamma(X+Y, Z)=\Gamma(Y, Z)+\Gamma(X, Y+Z)
$$

The $C_{n}(X, Y)$ are solutions to this linear system in the unknown $\left(a_{i j}\right)$. Reciprocaly one has to see that those are the unique solutions up to a scalar which is a linear algebra problem solved in ...

1.3 The caracteristic zero case

Proposition 2. Let R be a \mathbb{Q}-algebra. Then for a one dimensional formal group law F over R there exists a unique series $\log _{F} \in T R[[T]]$ called the logarithm of F s.t.

$$
\log _{F}: F \xrightarrow{\sim} \widehat{\mathbb{G}}_{a} \quad \text { and } \log _{F}^{\prime}(0)=1
$$

Démonstration. The uniqueness assertion is clear since if $f_{1}, f_{2}: F \xrightarrow{\sim} \widehat{\mathbb{G}}_{a}$ then $f_{1}^{-1} \circ f_{2} \in$ $\operatorname{End}\left(\widehat{\mathbb{G}}_{a}\right)$. And since R is a \mathbb{Q}-algebra $\operatorname{End}\left(\widehat{\mathbb{G}}_{a}\right)=R$.

Let now F be such that $F(X, Y) \equiv X+Y \bmod \mathfrak{m}^{n}$ for some $n \in \mathbb{N}^{*}$. Then from lemma 2 and since R is a \mathbb{Q}-algebra, for a $u \in R$

$$
F(X, Y) \equiv X+Y+u\left((X+Y)^{n}-X^{n}-Y^{n}\right) \bmod \mathfrak{m}^{n+1}
$$

where $\mathfrak{m}=(X, Y)$. Now setting

$$
h(T)=T-u T^{n}
$$

we find

$$
h\left(h^{-1}(X) \underset{F}{h^{-1}}(Y)\right) \equiv X+Y \bmod \mathfrak{m}^{n+1}
$$

which expresses the fact that h is a truncated isomorphism

$$
h: F \xrightarrow{\sim} \widehat{\mathbb{G}}_{a} \bmod \mathfrak{m}^{n+1}
$$

By induction we thus construct a sequence $\left(h_{n}\right)_{n \geq 1}$ such that $h_{n} \equiv T\left[T^{n}\right]$ and $h_{n} \circ \cdots \circ h_{1}$ is a truncated isomorphisme modulo \mathfrak{m}^{n+1} between F and $\widehat{\mathbb{G}}_{a}$. One concludes easily that $\lim _{n \rightarrow+\infty}\left(h_{n} \circ\right.$ $\left.\cdots \circ h_{1}\right)$ converges to the desired series $\log _{F}$.

Remarque 1. This proposition is a very particular case of the following theorem : over a \mathbb{Q}-algebra R the Lie algebra functor induces a category equivalence between formal group laws (not necessarily one dimensional or commutative) and Lie algebras over R that are finite free R-modules.

If $\log _{F}$ is the logarithm of F then $\log _{F}^{*} d T$ is an invariant by translations differential form on F since $d T$ is one on $\widehat{\mathbb{G}}_{a}$. Reciprocaly if $\omega=f(T) d T$ is an invariant by translations differential form on F such that $f(0)=1$ then $\log _{F}=\int_{0}^{T} \omega$ and thus

$$
\log _{F}=\int_{0}^{T} \frac{\partial F}{\partial X}(0, T)^{-1} d T
$$

If R is p-adically complete and without p-torsion one has the following formula for the logarithm of F after inverting p still denoted $\log _{F}$ allthough F is defined over R

$$
\log _{F}=\lim _{k \rightarrow+\infty} \frac{1}{p^{k}}\left[p^{k}\right]_{F}(T)
$$

where the limit is for the p-adic topology on each of the coefficients of the power series and this limit lies in $R\left[\frac{1}{p}\right][[T]]$.

1.4 Lazard's ring

Définition 6. Let Λ be the ring representing the functor

$$
\begin{aligned}
\text { Rings } & \longrightarrow \text { Sets } \\
R & \longmapsto \text { the set of one dim. formal group laws over } R
\end{aligned}
$$

In fact this ring has the following presentation :

$$
\Lambda=\mathbb{Z}\left[a_{i j}\right]_{i, j \geq 1} / I
$$

where the $a_{i j}$ are inderterminates, the universal group law is $F(X, Y)=X+Y+\sum_{i, j \geq 1} a_{i j} X^{i} Y^{j}$ and the ideal I is generated by the relations $a_{i j}=a_{j i}$ and the one given by writting $F(F(X, Y), Z)=$ $F(X, F(Y, Z))$.

Lemme 3. With the preceding presentation for Λ put $\operatorname{deg} a_{i j}=i+j-1$. Then the ideal I is homogenous.

Démonstration. Put $\operatorname{deg} X=\operatorname{deg} Y=-1$. Then $F(X, Y)$ is homogenous of degre -1 in the variables $\left(a_{i j}\right)_{i, j}, X$ and Y. Thus if we put $\operatorname{deg} Z=-1$ the series $F(F(X, Y), Z)$ and $F(X, F(Y, Z))$ are homogenous of degre -1 in the variables $\left(a_{i j}\right)_{i, j}, X, Y$ and Z. Thus the equation $F(F(X, Y), Z)=F(X, F(Y, Z))$ gives degre 0 homogenous equations in the $\left(a_{i j}\right)_{i, j}$.

Thus the ring Λ is graded by

$$
\Lambda=\bigoplus_{k \geq 0} \Lambda^{k}
$$

with $\Lambda^{0}=\mathbb{Z}$. Now put

$$
\forall k \in \mathbb{N} \widetilde{\Lambda}^{k}=\Lambda^{k} /<x y \mid x \in \Lambda^{i}, y \in \Lambda^{j} \quad i+j=k \text { and } i, j>0>
$$

wher $<.>$ means the R-submodule generated. Then a translation of lemma 2 is
Corollaire 1. For all $k \in \mathbb{N}$ the \mathbb{Z}-module $\widetilde{\Lambda}^{k}$ if free of rank 1.
Démonstration. For all $n \in \mathbb{N}$ consider the ideal $\bigoplus_{k \geq n} \Lambda^{k}$ of Λ and the quotient ring

$$
\Lambda / \bigoplus_{k \geq n} \Lambda^{k} \simeq \bigoplus_{0 \leq k \leq n-1} \Lambda^{k}
$$

This quotient ring represents the functor

$$
\begin{aligned}
& \text { Rings } \longrightarrow \text { Sets } \\
& R \longmapsto \\
& \text { truncated at the order } n+1 \text { one dim. formal group laws }
\end{aligned}
$$

Now for a truncated at the order $n+1$ formal group law F corresponding to a morphism

$$
f: \bigoplus_{0 \leq k \leq n-1} \Lambda^{k} \longrightarrow R
$$

we look for the truncated at the order $n+1$ formal group laws that are congruent to F mod degre $\geq n$. This corresponds to \mathbb{Z}-linear maps $\psi: \Lambda^{n-1} \longrightarrow R$ such that if we set

$$
\forall k \leq n-1 \quad \forall x \in \Lambda^{k} \quad f^{\prime}(x)=\left\{\begin{array}{c}
f(x) \text { if } k<n-1 \\
f(x)+\psi(x) \text { if } k=n-1
\end{array}\right.
$$

then f^{\prime} is a ring morphism. One sees easily that this is equivalent to says that ψ factorises as a morphism of abelian groups as $\psi: \widetilde{\Lambda}^{n-1} \longrightarrow R$.

From this one deduces :
Théorème 1 (Lazard). The graded ring Λ is a polynomial algebra

$$
\Lambda \simeq \mathbb{Z}\left[t_{k}\right]_{k \geq 1}
$$

with $\operatorname{deg} t_{k}=k$.
Démonstration. Choose for all k a lifting to Λ^{k} of a generator of $\widetilde{\Lambda}^{k}$ and define a map from $\mathbb{Z}\left[t_{k}\right]_{k \geq 1}$ to Λ by sending t_{k} to this generator. On has to see this is an isomorphism. But this is a morphism of graded rings $A \longrightarrow B$ inducing an isomorphism a the level of the \mathbb{Z}-modules $\widetilde{A}^{k} \longrightarrow \widetilde{B}^{k}$ for all k where \widetilde{A}^{k} and \widetilde{B}^{k} are defined as $\widetilde{\Lambda}^{k}$. From this one deduces that this morphism is surjective. Now to prove injectivity it suffices to prove it after tensoring with \mathbb{Q}, for the map

$$
\mathbb{Q}\left[t_{k}\right]_{k \geq 1} \longrightarrow \Lambda \otimes \mathbb{Q}
$$

But now define the following "universal logarithm" series

$$
h(T)=T+\sum_{k \geq 1} u_{k} T^{k+1} \in \mathbb{Q}\left[u_{k}\right]_{k \geq 1}[[T]]
$$

and set $G(X, Y)=h^{-1}(h(X)+h(Y)) \in \mathbb{Q}\left[u_{k}\right]_{k \geq 1}[[X, Y]]$. By the universal property of Λ associated to G there is a graded morphism

$$
\Lambda \otimes \mathbb{Q} \longrightarrow \mathbb{Q}\left[u_{k}\right]_{k \geq 1}
$$

and this is an isomorphism since by proposition 2 this morphism defines an isomorphism of functors between $\operatorname{Hom}\left(\mathbb{Q}\left[u_{k}\right]_{k \geq 1},-\right)$ and $\operatorname{Hom}(\Lambda \otimes \mathbb{Q},-)$. More precisely, the inverse of this morphism is
constructed in the following way : by proposition ?? there exists a unique $g \in \Lambda \otimes \mathbb{Q}[[T]]$ such that $g(0)=0, g^{\prime}(0)=1$ and if F is the universal group law on $\Lambda \otimes \mathbb{Q}$ then

$$
F(X, Y)=g^{-1}(g(X)+g(Y))
$$

Then the inverse of $\Lambda \otimes \mathbb{Q} \longrightarrow \mathbb{Q}\left[u_{k}\right]_{k \geq 1}$ is given by sending u_{k} to the $k+1$-th coefficient of g.
Now this isomorphism

$$
\Lambda \otimes \mathbb{Q} \xrightarrow{\sim} \mathbb{Q}\left[u_{k}\right]_{k \geq 1}
$$

is a graded isomorphism if we set $\operatorname{deg} u_{k}=k$. In fact, putting $\operatorname{deg} T=-1$ we see the universal \log arithm $h(T) \in \mathbb{Q}\left[u_{k}\right]_{k>1}[[T]]$ is homogenous with degre -1 . Thus, with $\operatorname{deg} X=\operatorname{deg} Y=-1$, $G(X, Y)=h^{-1}(h(X)+h(Y))$ is homogenous with degre -1 which implies our isomorphism respects the grading.

Now look at the composition

$$
\mathbb{Q}\left[t_{k}\right]_{k \geq 1} \rightarrow \Lambda \otimes \mathbb{Q} \xrightarrow{\sim} \mathbb{Q}\left[u_{k}\right]_{k \geq 1}
$$

it is a surjective graded morphism

$$
\mathbb{Q}\left[t_{k}\right]_{k \geq 1} \rightarrow \mathbb{Q}\left[u_{k}\right]_{k \geq 1}
$$

and thus an isomorphism since it induces a surjective morphism of finite dimensional \mathbb{Q}-vector spaces of the same dimension between elements of degre less than a given integer.

1.5 The theory of one-dim. formal groups laws is unobstructed

Corollaire 2. Let R be a ring.

- Any truncated at the order k one dimensional formal group law over R extends to a formal group law over R.
- Let I be an ideal in R. Any one dimensional formal group law over R / I lifts to a formal group law over R.

Démonstration. This is a consequence of Lazard's theorem, since "morphisms of polynomials algebras can be lifted".

1.6 Classification over car. p algebraically closed fields

1.6.1 Frobenius morphism

Let R be a ring such that $p R=0$. Let G be a one dim. formal group law over R.
Définition 7. We let $G^{(p)}$ be the formal group law obtained by applying the p-power to all the coefficients of G.
Définition 8. We denote

$$
F: G \longrightarrow G^{(p)}
$$

the Frobenius morphism defined by the power series T^{p}.

1.6.2 Height

Let k be a caracteristic p field and G defined over k.
Lemme 4. Let $f \in \operatorname{End}(F)$ be s.t. $f^{\prime}(0)=0$ and $f \neq 0$. Then $\exists!h \in \mathbb{N}^{*} \exists g \in k[[T]] g(0)=$ $0, g^{\prime}(0) \neq 0$ and

$$
f=g\left(T^{p^{h}}\right)
$$

Démonstration. Differentiationg the equality $f(F(X, Y))=F(f(X), f(Y))$ with respect to X one finds

$$
f^{\prime}(F(X, Y)) \frac{\partial F}{\partial X}(X, Y)=\frac{\partial F}{\partial X}(f(X), f(Y)) f^{\prime}(X)
$$

with $X=0$ one finds

$$
f^{\prime}(Y) \frac{\partial F}{\partial X}(0, Y)=0 \Longrightarrow f^{\prime}=0
$$

since $\frac{\partial F}{\partial X}(0, Y)$ is invertible.
Thus f can be written as a composite

where $g \in \operatorname{End}(F)$, and one can apply by induction the preceding process to g.
Définition 9. Let $[p]_{G} \in \operatorname{End}(G)$. If $[p]_{G}=0$ we say G has infinite height. If not let $h \geq 1$ be the integer defined in the previous lemma which is the biggest integer k such that $[p]_{F}$ can be factorized by $F^{\left(p^{k}\right)}$. We say G has height h.

Thus if G has height $h<+\infty$ then $[p]_{F}$ can be factorized as

where g is an isomorphism. From this it is clear that the height of G is an invariant of the isomorphism class of G.

1.7 The infinite height case

We keep the hypothesis of the last section.
Proposition 3. G has infinite height $\Longleftrightarrow G \simeq \widehat{\mathbb{G}}_{a}$.
Démonstration. Supppose $G \equiv X+Y \bmod \operatorname{deg} \geq n$. Then $\exists a \in k$

$$
G \equiv X+Y+a C_{n}(X, Y) \bmod \operatorname{deg} \geq n+1
$$

If n is not a power of p then puting $h(T)=t-a T^{n}$ one finds

$$
h\left(h^{-1}(X) \underset{G}{+} h^{-1}(Y)\right) \equiv X+Y \bmod \operatorname{deg} \geq n+1
$$

If n is a power of p then one finds $[p]_{G} \equiv-a T^{n} \bmod \operatorname{deg} \geq n+1(c f$. lemma 5$)$ and thus from the hypothesis $[p]_{G}=0$ we find $a=0$. By induction we thus can construct for all n truncated isomorphisms $G \xrightarrow{\sim} \widehat{\mathbb{G}}_{a} \bmod \operatorname{deg} \geq n$ which in the limit gives us an isomorphism as in the proof of proposition 2.

1.8 The finite height case

The notations are the same as in the preceding section.

1.8.1 Normalized group law

Définition 10. Let $h \in \mathbb{N}^{*}$. The height h group law G over k is normalized if $[p]_{G}=T^{p^{h}}$.
Remarque 2. If G is normalized then $G \in \mathbb{F}_{p^{h}}[[X, Y]]$.
As we have seen we can writte

$$
[p]_{G}=g \circ F^{h}
$$

where g is an isomorphism between $G^{\left(p^{h}\right)}$ and G. Now the problem to know wether or not G is isomorphic to a normalized group law is equivalent to know wether or not g can be written as

$$
g=g_{1} g_{1}^{-p^{h}}
$$

for some $g_{1} \in \operatorname{Aut}(G)$, that is to say if g is "a coboundary".
Remarque 3. This problem is related to the problem to know if in a height h one dimensional crystal over k one can find an non-zero element e s.t. $F^{h} . e=p . e$.
Proposition 4. If k is separably closed then any finite height one dimensional group law over k is isomorphic to a normalized one.

Démonstration. If

$$
[p]_{G} \equiv a T^{p^{h}}\left[T^{p^{h}+1}\right]
$$

with $a \neq 0$ then if $b \in k$ is such that $a=b^{1-p^{h}}$ and $g(T)=b T$ then $g \circ[p]_{G} \circ g^{-1} \equiv T^{p^{h}}\left[T^{p^{h}+1}\right]$. And thus we can suppose the coefficient of $T^{p^{h}}$ is 1 . Now if for some $k \geq 2$

$$
[p]_{F} \equiv T^{p^{h}}+a T^{k p^{h}}\left[T^{(k+1) p^{h}}\right]
$$

putting $g(T)=T-b T^{k}$ we find

$$
g \circ[p]_{G} \circ g^{-1}(T) \equiv T^{p^{h}}+\left(a+b^{p^{h}}-b\right) T^{k p^{j}}\left[T^{(k+1) p^{h}}\right]
$$

and thus using a b solution of the Artin-Schreier equation $a=b-b^{p^{h}}$ we can suppose

$$
[p]_{G} \equiv T^{p^{h}}\left[T^{(k+1) p^{h}}\right]
$$

We conclude as usual by induction and passing to the limit.
Lemme 5. Let G_{1}, G_{2} be two formal group laws over R s.t.

$$
G_{1} \equiv G_{2}+a C_{p^{i}}(X, Y) \bmod \operatorname{deg} p^{i}+1
$$

then

$$
[p]_{G_{1}} \equiv[p]_{G_{2}}+a\left(-1+p^{p^{i}-1}\right) T^{p^{i}} \bmod \operatorname{deg} p^{i}+1
$$

In particular if $p R=0$ then

$$
[p]_{G_{1}} \equiv[p]_{G_{2}}-a T^{p^{i}} \bmod \operatorname{deg} p^{i}+1
$$

Démonstration. By an easy induction argument one finds

$$
\forall n \in \mathbb{N}^{*}[n]_{G_{1}} \equiv[n]_{G_{2}}+a \sum_{k=1}^{n-1} C_{p^{i}}(T, k T) \bmod \operatorname{deg} p^{i}+1
$$

Moreover

$$
\begin{aligned}
\sum_{k=1}^{n-1} C_{p^{i}}(T, k T) & =\sum_{k=1}^{n-1} \frac{(k+1)^{p^{i}} T^{p^{i}}-k^{p^{i}} T^{p^{i}}-T^{p^{i}}}{p} \\
& =\left(-1+p^{p^{i}-1}\right) T^{p^{i}}
\end{aligned}
$$

Proposition 5. Let G_{1}, G_{2} be two formal group laws over k separably closed. Then $G_{1} \simeq G_{2}$ iff $h t\left(G_{1}\right)=h t\left(G_{2}\right)$.

Démonstration. Suppose $\operatorname{ht}\left(G_{1}\right)=\operatorname{ht}\left(G_{2}\right)=h, G_{1}$ and G_{2} are normalized, and we have constructed $g \in \mathbb{F}_{p^{h}}[[T]]$ s.t. $g(0)=0, g^{\prime}(0) \neq 0$ and

$$
g\left(X \underset{G_{1}}{+} Y\right) \equiv g(X) \underset{G_{2}}{+} g(Y) \bmod \operatorname{deg} \geq n
$$

Then replacing G_{1} by $g\left(G_{1}\left(g^{-1}(X)+g^{-1}(Y)\right)\right)$ we can suppose

$$
G_{1} \equiv G_{2} \bmod \operatorname{deg} \geq n
$$

and thus

$$
\exists a \in \mathbb{F}_{p^{h}} \quad G_{1} \equiv G_{2}+a C_{n}(X, Y) \bmod \operatorname{deg} \geq n+1
$$

If n is not a power of p, using $g(T)=T-a T^{n}$ we have $g\left(G_{1}\left(g^{-1}(X), g^{-1}(Y)\right)\right) \equiv G_{2} \bmod \operatorname{deg} \geq$ $n+1$. If n is a power of p then by the preceding lemma

$$
\begin{gathered}
{[p]_{G_{1}} \equiv[p]_{G_{2}}-a T^{n}\left[T^{n+1}\right]} \\
\Longrightarrow a=0 \text { since }[p]_{G_{1}}=[p]_{G_{2}}=T^{p^{h}}
\end{gathered}
$$

Thus starting from a truncated at the order n isomorphism between G_{1} and G_{2} we have constructed a truncated isomorphism at the order $n+1$. Moreover since $g \in \mathbb{F}_{p^{h}}[[T]]$ the new formal group laws are still normalized. By induction and a limit process one then construct an isomorphism $G_{1} \xrightarrow{\sim} G_{2}$.

Corollaire 3. Any finite height h one dim. formal group law is isomorphic to a normalized one F s.t.

$$
F(X, Y) \equiv X+Y+C_{p^{h}}(X, Y) \bmod \operatorname{deg} \geq p^{h}+1
$$

Démonstration. This can be deduced from the proof of the last proposition.
Théorème 2. The isomorphism classes of one dimensional formal group laws over a separably closed field are in bijection with $\mathbb{N}^{*} \cup\{\infty\}$, the bijection being given by the height.

Démonstration. It remains to prove that for any $h \in \mathbb{N}^{*}$ there exists a height h formal group law over k. But if $\Lambda \simeq \mathbb{Z}\left[t_{i}\right]_{i \geq 1}$ is Lazard's ring then if we define the ring morphism $\Lambda \longrightarrow k$ by sending $t_{i} \mapsto 0$ if $i<p^{h}-1, t_{p^{h}-1} \mapsto 1$ and $t_{i} \mapsto$ any element of k for other i then if $G(X, Y)$ is the corresponding formal group law over k we have

$$
G(X, Y) \equiv X+Y+C_{p^{h}}(X, Y) \bmod \operatorname{deg} \geq p^{h}+1
$$

which implies as allready seen

$$
[p]_{G} \equiv-T^{p^{h}}\left[T^{p^{h}+1}\right]
$$

1.9 Endomorphism algebra

One can show that for a G of height $h<+\infty$ over k separably closed

$$
\operatorname{End}(G)=\mathcal{O}_{D}
$$

where D is a division algebra with invariant $\frac{1}{n}$ and \mathcal{O}_{D} is its maximal order. This is a consequence of the classification of p-divisible groups via crystals. Concretely

$$
\mathcal{O}_{D}=\mathbb{Z}_{p^{n}}[\Pi]
$$

where $\mathbb{Z}_{p^{n}}=W\left(\mathbb{F}_{p^{n}}\right)$ is the ring of integers in the degre n unramified extension of \mathbb{Q}_{p} and Π is the uniformizing element in D verifying

$$
\forall x \in \mathbb{Z}_{p^{n}} \quad \Pi x=x^{\sigma} \Pi
$$

where σ stands for the Frobenius of $\mathbb{Q}_{p^{n}}$.
It results from the proof of theorem 2 that there exists one dim. formal group law of any height defined over \mathbb{F}_{p}. Then such a formal group law G admits the Frobenius as an endomorphism. In the identification $\operatorname{End}(G)=\mathcal{O}_{D}$ the Frobenius is sent to a uniformizing element of \mathcal{O}_{D} and thus can be identified with Π.

2 Deformation theory in the unobstructed case

In this section we present a particular case of Schlessinger's theorem.

2.0.1 Definitions

Let k be a field and \mathcal{C} be the category of local Artin rings with residue field k, morphisms being morphisms inducing the identity on k. Let

$$
F: \mathcal{C} \longrightarrow\{\text { Sets }\}
$$

be a covariant functor. We will make the assumption $F(k)=\{\emptyset\}$ that is to say F is "connected".
Définition 11. The functor F is formally smooth if for all $A, B \in \mathcal{C}$ and $A \rightarrow B$ a surjective morphism then $F(A) \longrightarrow F(B)$ is surjective.

Of course, as usual, in the preceding definition one can assume the kernel I of $A \rightarrow B$ verifies $I^{2}=(0)$ and even $\mathfrak{m} \cdot I=(0)$ where \mathfrak{m} is the maximal ideal of A.

Définition 12. The functor F satisfies the Mayer-Vietoris property if for all diagramms in \mathcal{C}

The natural morphism $F\left(A \times_{C} B\right) \longrightarrow F(A) \times_{F(C)} F(B)$ is an isomorphism.
Exemple 3. If $F \simeq \mathfrak{X}$ where \mathfrak{X} is a formal scheme then F satisfies the Mayer Vietoris property.

2.0.2 Tangent functor

Let's suppose F satisfies the Mayer-Vietoris property. Let \mathcal{M} be the category of finite dimensional k-vector spaces. There is a functor

$$
\begin{array}{rll}
\mathcal{M} & \longrightarrow \mathcal{C} \\
V & \longmapsto & k \oplus V
\end{array}
$$

where $k \oplus V$ is the trivial extension of k by the squared zero ideal V. For example if $V=k$, $k \oplus V=k[\epsilon]$ is the dual number algebra.

Définition 13. We denote $T F: \mathcal{M} \longrightarrow$ Sets to be the composite $\mathcal{M} \longrightarrow \mathcal{C} \longrightarrow$ Sets.

There is a canonical factorisation

defined in the following way : $\forall V \in O b \mathcal{M}$ there is a morphism in \mathcal{M}

$$
\begin{array}{rll}
V \times V & \longrightarrow V \\
(x, y) & \longmapsto x+y
\end{array}
$$

inducing by functoriality a morphism in \mathcal{C}

$$
k \oplus V \times k \oplus V \xrightarrow{+} k \oplus V
$$

In the same way forall $x \in k$ there is a morphism in \mathcal{M}

$$
\begin{array}{rll}
V & \longrightarrow & V \\
v & \longmapsto & x \cdot v
\end{array}
$$

inducing

$$
m_{x}: k \oplus V \longrightarrow k \oplus V
$$

They induce

$$
T F(V) \times T F(V) \xrightarrow{\simeq} F(k \oplus V \times k \oplus V) \xrightarrow{(+)} T F(V)
$$

and

$$
\forall x \in k T F(V) \xrightarrow{F\left(m_{x}\right)} T F(V)
$$

And one verifies those two operations induce a k-vector space structure on $T F(V)$ (in fact $k \oplus V$ has a structure of k-vector space in the category \mathcal{C}). One verifies immediatly that this vector space structure is functorial in V. Thus we have our factorization.

Lemme 6. There is a natural isomorphism of functors

$$
T F(-) \simeq T F(k) \otimes_{k}(-)
$$

Démonstration. Fix an equivalence bewteen \mathcal{M} and the subcategory of vector spaces $\left(k^{n}\right)_{n \geq 0}$. It suffices to construct natural isomorphisms

$$
T F\left(k^{n}\right) \simeq T F(k) \otimes_{k} k^{n}
$$

They are deduced from the Mayer -Vietoris property : $T F(k \times \cdots \times k) \simeq T F(k)^{n}$. The naturality is easily checked.

Proposition 6. Let $A \in \mathcal{C}$ with maximal ideal \mathfrak{m} and let I be an ideal of A s.t. $\mathfrak{m} . I=0$. Let $f: F(A) \longrightarrow F(A / I)$. Then for each $x \in F(A / I)$ either $f^{-1}(\{x\})=\emptyset$ either $f^{-1}(\{x\})$ is a principal homogenous space under $T F(I)$.

Démonstration. There is an isomorphism in \mathcal{C}

$$
\begin{aligned}
& A \times_{A / I} A \xrightarrow{ } A \times(k \oplus I) \\
&\left(a_{1}, a_{2}\right) \mapsto \\
&\left(a_{1}, \bar{a}_{1} \oplus\left(a_{1}-a_{2}\right)\right)
\end{aligned}
$$

where \bar{a}_{1} is the reduction of a_{1} modulo the maximal ideal of A. Applying the Mayer-Vietoris property we find

$$
F(A) \times T F(I) \xrightarrow{\sim} F(A) \times_{F(A / I)} F(A)
$$

and one verifies easily this defines an action of $T F(I)$ on $T F(A)$.

2.1 Formaly étale morphisms

Définition 14. A morphism $f: F \longrightarrow G$ of covariant functors on \mathcal{C} is formay étale if for all $A \in \mathcal{C}$ and ideal I of A the following diagram is cartesian

Of course as usual, by devissage, it suffices to consider the case when $I^{2}=0$ or even when $\mathfrak{m} \cdot I=(0)$ where \mathfrak{m} is the maximal ideal of A.

Lemme 7. A morphism $f: F \longrightarrow G$ is an isomorphism iff it is formaly étale and induces a bijection $F(k) \longrightarrow G(k)$.

Démonstration. This is clear since in a cartesian square if the bottom horizontal line is a bijection then so is the top horizontal one.

Proposition 7. Suppose F is formaly smooth. Suppose F and G satisfy the Mayer Vietoris property. A morphism $f: F \longrightarrow G$ is formaly étale iff it induces an isomorphism $T F(k) \xrightarrow{\sim}$ $T G(k)$.

Démonstration. If f induces an isomorphism between $T F(k)$ and $T G(k)$ then by lemma 6 is induces an isomorphism of the tangent functors $T F(-) \xrightarrow{\sim} T G(-)$. Then you conclude by proposition 6 .

2.1.1 Main theorem

If k is a perfect field any complete local ring with residue field k is naturaly a $W(k)$-algebra. Thus the category \mathcal{C} is the category of local artinian $W(k)$-algebras with residue field k and F can be considered as a functor over $\operatorname{Spf}(W(k))$.
Théorème 3. Suppose k is perfect. Suppose F satisfies the Mayer-Vietoris property, is formally smooth verifies $F(k)=\{\emptyset\}$ and satisfies

$$
\operatorname{dim}_{k} T F(k)=n<+\infty
$$

Then

$$
F \simeq \operatorname{Spf}\left(W(k)\left[\left[T_{1}, \ldots, T_{n}\right]\right]\right)
$$

Démonstration. Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of $T F(k)$. It gives an element of

$$
F\left(k\left[T_{1}, \ldots, T_{n}\right] /\left(T_{1}^{2}, \ldots, T_{n}^{2}\right)\right) \simeq \prod_{i=1}^{n} T F(k)
$$

By the formal smoothness property this can be lifted to an element of

$$
F\left(W(k)\left[\left[T_{1}, \ldots, T_{n}\right]\right]\right):=\underset{k}{\lim _{k}} F\left(W(k)\left[\left[T_{1}, \ldots, T_{n}\right]\right] / I^{k}\right)
$$

where $I=\left(p, T_{1}, \ldots, T_{n}\right)$. This gives a morphism

$$
f: G=\operatorname{Spf}\left(W(k)\left[\left[T_{1}, \ldots, T_{n}\right]\right]\right) \longrightarrow F
$$

Now because of our choices

$$
T G(k) \xrightarrow{\sim} T F(k)
$$

and thus by proposition $7 f$ is an isomorphism.

3 Lubin-Tate spaces : first approach via formal group laws

3.1 Definition

Let F be a one dimensional formal group law of finite height n over $\overline{\mathbb{F}}_{p}$.
Définition 15. Let A be a local artinian algebra with maximal ideal \mathfrak{m} and residue field $\overline{\mathbb{F}}_{p}$.

- A formal group law G over A is a deformation of G if $G \equiv F$ modulo \mathfrak{m}
- Two deformations G_{1}, G_{2} are isomorphic if there is an isomorphism

$$
f: G_{1} \xrightarrow{\sim} G_{2}
$$

such that $f \equiv I d$ mod \mathfrak{m} (that is ot say $f(T) \equiv T$).
Let \mathcal{D} ef be the associated functor of isomorphism classes of deformations of F on artin local rings with residue field $\overline{\mathbb{F}}_{p}$.

3.2 Computation of the tangent space

We note $k=\overline{\mathbb{F}}_{p}$.
Lemme 8. The tangent space to $\mathcal{D e f}$ is the k-vector space $H^{1}\left(C^{\bullet}\right)$ where

$$
C^{\bullet}=\underset{0}{[T k[[T]]} \xrightarrow{\partial} \underset{+1}{X Y k[[X, Y]]}{ }^{\mathfrak{S}_{2}} \xrightarrow{\partial} \underset{+2}{k[[X, Y, Z]]]}
$$

where $k[[X, Y]]^{\mathfrak{S}_{2}}$ stands for the symmetric formal power series and

$$
\begin{aligned}
\partial \varphi(T) & =\varphi(X+Y)-\varphi(X)-\varphi(Y) \\
\partial \psi(X, Y) & =\psi(Y, Z)-\psi(X \underset{F}{+Y, Z)+\psi(X, Y \underset{F}{+Z})-\psi(X, Y)}
\end{aligned}
$$

Démonstration. Writte $F^{\prime}(X, Y)=F(X, Y)+\epsilon \psi(X, Y)$ with $\epsilon^{2}=0$. Then

$$
\partial \psi=0 \Longleftrightarrow F^{\prime}\left(F^{\prime}(X, Y), Z\right)=F^{\prime}\left(X, F^{\prime}(Y, Z)\right)
$$

And if $h(T)=T+\epsilon \varphi(T)$,

$$
F^{\prime}=h\left(F\left(h^{-1}(X), h^{-1}(Y)\right)\right) \Longleftrightarrow \psi=\partial \varphi
$$

Suppose now F is normalized and satisfies

$$
F(X, Y) \equiv X+Y+C_{p^{n}}(X, Y) \bmod \operatorname{deg} \geq p^{n}+1
$$

(cf. corollary 3). We will suppose more explicitely that F is associated to the morphism from Lazard's ring $\mathbb{Z}\left[t_{i}\right]_{i \geq 1}$ to k defined by $t_{i} \mapsto 0$ if $i<p^{n}-1, t_{p^{n}-1} \mapsto 1$ and for other $i t_{i}$ maps to anything.
Proposition 8. The tangent space to \mathcal{D} ef is $n-1$ dimensional generated by cocyles $\psi_{1}, \ldots, \psi_{n-1}$ that verify $\psi_{i}(X, Y) \equiv C_{p^{i}}(X, Y) \bmod \operatorname{deg} \geq p^{i}+1$.

Démonstration. We have

$$
\begin{aligned}
\partial T^{k} & \equiv(X+Y)^{k}-X^{k}-Y^{k} \bmod \operatorname{deg} \geq k+1 \\
\partial T^{p^{i}} & \equiv C_{p^{i+n}}(X, Y) \bmod \operatorname{deg} \geq p^{i}+1
\end{aligned}
$$

Moereover if a cocyle ψ verifies

$$
\psi \equiv 0 \bmod \operatorname{deg} \geq k
$$

then thanks to lemma 2

$$
\psi \equiv a C_{k}(X, Y) \bmod \operatorname{deg} \geq k+1
$$

for some $a \in \mathbb{F}_{p^{h}}$. With this one can prove that if $k \geq p^{h}$ and ψ is a cocyle that is a coboundary $\bmod \operatorname{deg} \geq k$ then ψ is a couboundary $\bmod \operatorname{deg} \geq k+1$.

Now for each $1 \leq i \leq n-1$ let ψ_{i} consider the map from Lazard's ring $\mathbb{Z}\left[t_{j}\right]_{j \geq 1}$ to $k[\epsilon]$ défined by $t_{j} \mapsto 0$ if $j<p^{i}-1, t_{p^{i}-1} \mapsto \epsilon, t_{j} \mapsto 0$ if $p^{i}-1<j<p^{n}-1, t_{p^{n}-1} \mapsto 1$ and t_{j} maps to anything for other j (the same anything as the one we chosed for defining F). This defines a deformation of F and thus a cocyle ψ_{i}. It follows by computing modulo $T^{p^{n}}$ and the formulas given for ∂T^{k} with k not a power of p that those cocyles form a basis of the tangent space to $\mathcal{D e} f$.

3.3 Représentability

Proposition 9. There is an isomorphism

$$
\mathcal{D} e f \simeq \operatorname{Spf}\left(W(k)\left[\left[T_{1}, \ldots, T_{n-1}\right]\right]\right)
$$

Démonstration. We apply theorem 3. The functor $\mathcal{D} e f$ clearly satisfies Mayer-Vietoris property. Formal smoothness follows from corollary 2 and the assertion about the tangent space is proposition 8.

3.4 Good coordinates on Lubin-Tate spaces

Proposition 10. There is a system of formal coordinates $\left(x_{1}, \ldots, x_{n-1}\right)$ on $\mathcal{D e f}$ that is to say an isomorphism $\mathcal{D e} f \simeq \operatorname{Spf}\left(\left(W(k)\left[\left[x_{1}, \ldots, x_{n-1}\right]\right]\right)\right.$ such that if G is the associated universal formal group law then

$$
\forall 1 \leq i \leq n-1 \quad G(X, Y) \equiv x_{i} C_{p^{i}}(X, Y) \bmod \left(\operatorname{deg} p^{i}+1, x_{1}, \ldots, x_{i-1}\right)
$$

Démonstration. Let G be the group law over $W(k)\left[\left[x_{1}, \ldots, x_{n-1}\right]\right]$ associated to the map from Lazard's ring

$$
\Lambda=\mathbb{Z}\left[t_{k}\right]_{k \geq 1}
$$

to $W(k)\left[\left[x_{1}, \ldots, x_{n-1}\right]\right]$ that maps $t_{p^{i}-1}$ to x_{i} for $1 \leq i \leq n-1, t_{p^{n}-1}$ to 1 and other t_{i} to 0 . It gives a morphism from $\operatorname{Spf}\left(W(k)\left[\left[x_{1}, \ldots, x_{n-1}\right]\right]\right)$ to $\mathcal{D} e f$. To see this is an isomorphism we have to prove it is one at the level of the tangent spaces, that is to say look at the reduction of G to $k\left[x_{1}, \ldots, x_{n-1}\right] /\left(x_{1}^{2}, \ldots, x_{n-1}^{2}\right)$. But this is clear from the computation of the tangent space of Def.

Corollaire 4. There is a system of formal coordinates $\left(x_{1}, \ldots, x_{n-1}\right)$ on $\mathcal{D e f}$ such that if G is the associated universal formal group law then

$$
[p]_{G}=p u_{0} T+x_{1} u_{1} T^{p}+\cdots+x_{n-1} u_{n-1} T^{p^{n-1}}+u_{n} T^{p^{n}}
$$

where $u_{0}, \ldots, u_{n} \in W(k)\left[\left[x_{1}, \ldots, x_{n-1}\right]\right][[T]]^{\times}$are units.
Démonstration. This follows from lemma 5.
Remarque 4. In the following sections we will explain the link with the Newton stratification and this type of coordinates.

