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1 One dimensional formal group laws

1.1 Definitions

Let R be a ring.

Définition 1. A one dimensional formal group law over R is a F (X,Y ) ∈ R[[X,Y ]] s.t.
– F (X,Y ) = F (Y,X) (commutativity)
– F (X, 0) = X and F (0, Y ) = Y (the section T = 0 is the unit section) (in particular
F (X,Y ) ≡ X + Y mod deg 2)

– F (F (X,Y ), Z) = F (X,F (Y, Z)) (associativity)

Lemme 1. For any one dimensional formal group law F over R there exists a unique series
f ∈ R[[T ]] such that f(0) = 0 and F (f(T ), T ) = 0.

Démonstration. This is an easy induction/approximation argument by constructing and veri-
fying its unicity modulo T k for all k starting with k = 1.

This series f will be denote [−1]F , it is the “formal inversion” on F .

We will often denote F (X,Y ) = X +
F
Y . More generally if A is an R-algebra complete with

respect to the ideal m and a, b ∈ m we can define a+
F
b and thus consider (m,+

F
) that is an abelian

group.

Définition 2. Let F and G be two formal group laws. We define

Hom(F,G) = { f ∈ TR[[T ]] | f(X +
F
Y ) = f(X) +

G
f(Y ) }

And thus we have a category structure on formal group laws over R.

If R −→ R′ is a ring morphism there is an evident base change functor from the category of
one dimensional formal groups laws over R to the one over R′.

Exemple 1. – The additive groupe law Ĝa associated to F (X,Y ) = X + Y

– The multiplicative one Ĝm associated to F (X,Y ) = XY +X+Y (this is (X+1)(Y +1)−1,
for formal group laws 0 is the neutral element thus on has to translate by 1)

– If R is a Q-algebra there is an isomorphism of formal group laws log(1 + T ) : Ĝm
∼−−→ Ĝa

where log(1 + T ) =
∑
k≥1(−1)k−1 Tk

k

Set LieF = R. We have a linear map :

Hom(F,G) −→ Hom(LieF,LieG)

that associates to f the multiplication by f ′(0). Moreover f ∈ Hom(F,G) is an isomorphism iff
f ′(0) ∈ R×.
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For n ∈ Z set [n]F ∈ End(F ) be the multiplication by n via Z→ End(F ). Thus if n > 0

[n]F = T +
F
. . .+

F
T

︸ ︷︷ ︸
n−times

and if n < 0
[n]F = [−1]F (T ) +

F
. . .+

F
[−1]F (T )

︸ ︷︷ ︸
(−n)−times

Then
[n]′F (0) = n

and thus if R is a Z(p)-algebra then End(F ) is a Z(p)-algebra. Moreover one verifies that if R is
p-adicaly complete then End(R) is naturaly a Zp-algebra. The series [p]F will play an important
role in the sequel when R will be p-adically complete.

Définition 3. An invariant differential form on F is an expression ω = f(T )dT such that

F∗ω = f(X)dX + f(Y )dY

where

F∗ω = f(F (X,Y ))
∂F

∂X
(X,Y )dX + f(F (X,Y ))

∂F

∂Y
(X,Y )dY

We set ωF to be the R-module of invariant differential forms on F .

Définition 4. A continous translation invariant derivation on F is a T -adicaly continuous R-
derivation ∂ : R[[T ]] −→ R[[T ]] such that for any g ∈ R[[T ]]

∂X(g(X +
F
Y )) = (∂f)(X +

F
Y )

Being continuous such a derivation ∂ is completly determined by ∂T and is of the form ∂ =
f(T ) d

dT for some f ∈ R[[T ]].

Proposition 1. The morphism

ωF −→ R

f(T )dT 7−→ f(0)

is an isomorphism and thus ωF is free of rank 1. Idem for ω∗F = translation invariant T -adically
continuous derivations on R[[T ]] which is identified with Lie(F ) = R via

ω∗F −→ R = LieF

∂ 7−→ (∂T )|T=0

Démonstration. One has to solve the system of equations
{
f(X) = f(F (X,Y )) ∂F∂X (X,Y )

f(Y ) = f(F (X,Y )) ∂F∂Y (X,Y )

which by f(X,Y ) = f(Y,X) is reduced to the first equation. Putting Y = 0 one finds that
necessarily

f(Y )
∂F

∂X
(0, Y ) = f(0)

But the series g(Y ) = ∂F
∂X (0, Y ) verifies g(0) = 1 and is thus invertible. Thus any solution of the

system is a multiple of
∂F

∂X
(0, T )−1
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Reciprocaly, derivating the equation F (Z,F (X,Y )) = F (F (Z,X), Y ) with respect to Z and put-
ting Z = 0 one verifies the preceding is a solution of the system.

Of course F 7−→ ωF is functorial in F and the morphism induced on this modules by a
morphism f is multiplication by f ′(0). From now on we will consider LieF as the set of continuous
translation invariant derivations on F .

Exemple 2. For Ĝm the one has ωF = R. dTT+1 and LieF = R.(1 + T ) d
dT . For Ĝa one has

ωF = R.dT and LieF = R. ddT .

1.2 Lazard’s key lemma

The following is the key lemma to the study of one-dimensional formal group laws.

Définition 5. Let m = (X,Y ) ⊂ R[[X,Y ]]. Call a truncated at the order n one dimensional
formal group law over R a F ∈ R[[X,Y ]]/mn satisfying all the axioms of a formal group law in
R[[X,Y ]]/mn that is to say modulo degre ≥ n polynomials.

Lemme 2. Set for all n ∈ N∗

Cn(X,Y ) =





(X + Y )n −Xn − Y n if n is not a power of a prime

(X + Y )n −Xn − Y n
p

if n = pα with p prime

Let n ∈ N∗. Let F (X,Y ) be a truncated at the order n formal group law over R that can be
extended to a truncated at the order n+ 1 formal group law. Then the set of such extensions G to
a truncated at the order n+ 1 formal group law is is a principal homogenous space under R via

∀a ∈ R ∀G a.G = G+ aCn(X,Y )

We refer to [?] ? ? ? for the details of the proof. Let G ∈ R[[X,Y ]]/mn+1 be an extension as

in the theorem. We look for a polynomial Γ(X,Y ) =
∑

i+j=n
0<i,j<n

aijX
iY n−i such that F = G+ Γ is a

truncated formal group law at the order n+1. The first evident condition is aij = aji. Now writting
F (F (X,Y ), Z) = F (X,F (Y, Z)) modulo degre n+ 1 we find the equivalent cocyle condition

Γ(X,Y ) + Γ(X + Y, Z) = Γ(Y, Z) + Γ(X,Y + Z)

The Cn(X,Y ) are solutions to this linear system in the unknown (aij). Reciprocaly one has to see
that those are the unique solutions up to a scalar which is a linear algebra problem solved in ...

1.3 The caracteristic zero case

Proposition 2. Let R be a Q-algebra. Then for a one dimensional formal group law F over R
there exists a unique series logF ∈ TR[[T ]] called the logarithm of F s.t.

logF : F
∼−−→ Ĝa and log′F (0) = 1

Démonstration. The uniqueness assertion is clear since if f1, f2 : F
∼−−→ Ĝa then f−1

1 ◦ f2 ∈
End(Ĝa). And since R is a Q-algebra End(Ĝa) = R.

Let now F be such that F (X,Y ) ≡ X + Y mod mn for some n ∈ N∗. Then from lemma 2 and
since R is a Q-algebra, for a u ∈ R

F (X,Y ) ≡ X + Y + u((X + Y )n −Xn − Y n) mod mn+1

where m = (X,Y ). Now setting
h(T ) = T − uTn
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we find
h(h−1(X) +

F
h−1(Y )) ≡ X + Y mod mn+1

which expresses the fact that h is a truncated isomorphism

h : F
∼−−→ Ĝa mod mn+1

By induction we thus construct a sequence (hn)n≥1 such that hn ≡ T [Tn] and hn ◦ · · · ◦ h1 is a

truncated isomorphisme modulo mn+1 between F and Ĝa. One concludes easily that lim
n→+∞

(hn ◦
· · · ◦ h1) converges to the desired series logF .

Remarque 1. This proposition is a very particular case of the following theorem : over a Q-algebra
R the Lie algebra functor induces a category equivalence between formal group laws (not necessarily
one dimensional or commutative) and Lie algebras over R that are finite free R-modules.

If logF is the logarithm of F then log∗F dT is an invariant by translations differential form on

F since dT is one on Ĝa. Reciprocaly if ω = f(T )dT is an invariant by translations differential

form on F such that f(0) = 1 then logF =
∫ T

0
ω and thus

logF =

∫ T

0

∂F

∂X
(0, T )−1dT

If R is p-adically complete and without p-torsion one has the following formula for the logarithm
of F after inverting p still denoted logF allthough F is defined over R

logF = lim
k→+∞

1

pk
[pk]F (T )

where the limit is for the p-adic topology on each of the coefficients of the power series and this
limit lies in R[ 1

p ][[T ]].

1.4 Lazard’s ring

Définition 6. Let Λ be the ring representing the functor

Rings −→ Sets

R 7−→ the set of one dim. formal group laws over R

In fact this ring has the following presentation :

Λ = Z[aij ]i,j≥1/I

where the aij are inderterminates, the universal group law is F (X,Y ) = X +Y +
∑
i,j≥1 aijX

iY j

and the ideal I is generated by the relations aij = aji and the one given by writting F (F (X,Y ), Z) =
F (X,F (Y, Z)).

Lemme 3. With the preceding presentation for Λ put deg aij = i + j − 1. Then the ideal I is
homogenous.

Démonstration. Put degX = deg Y = −1. Then F (X,Y ) is homogenous of degre −1 in
the variables (aij)i,j , X and Y . Thus if we put degZ = −1 the series F (F (X,Y ), Z) and
F (X,F (Y, Z)) are homogenous of degre −1 in the variables (aij)i,j , X, Y and Z. Thus the equation
F (F (X,Y ), Z) = F (X,F (Y, Z)) gives degre 0 homogenous equations in the (aij)i,j .

Thus the ring Λ is graded by

Λ =
⊕

k≥0

Λk
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with Λ0 = Z. Now put

∀k ∈ N Λ̃k = Λk/ < xy | x ∈ Λi, y ∈ Λj i+ j = k and i, j > 0 >

wher < . > means the R-submodule generated. Then a translation of lemma 2 is

Corollaire 1. For all k ∈ N the Z-module Λ̃k if free of rank 1.

Démonstration. For all n ∈ N consider the ideal
⊕

k≥n Λk of Λ and the quotient ring

Λ/
⊕

k≥n
Λk '

⊕

0≤k≤n−1

Λk

This quotient ring represents the functor

Rings −→ Sets

R 7−→ truncated at the order n+ 1 one dim. formal group laws

Now for a truncated at the order n+ 1 formal group law F corresponding to a morphism

f :
⊕

0≤k≤n−1

Λk −→ R

we look for the truncated at the order n+ 1 formal group laws that are congruent to F mod degre
≥ n. This corresponds to Z-linear maps ψ : Λn−1 −→ R such that if we set

∀k ≤ n− 1 ∀x ∈ Λk f ′(x) =

{
f(x) if k < n− 1

f(x) + ψ(x) if k = n− 1

then f ′ is a ring morphism. One sees easily that this is equivalent to says that ψ factorises as a
morphism of abelian groups as ψ : Λ̃n−1 −→ R.

From this one deduces :

Théorème 1 (Lazard). The graded ring Λ is a polynomial algebra

Λ ' Z[tk]k≥1

with deg tk = k.

Démonstration. Choose for all k a lifting to Λk of a generator of Λ̃k and define a map from
Z[tk]k≥1 to Λ by sending tk to this generator. On has to see this is an isomorphism. But this
is a morphism of graded rings A −→ B inducing an isomorphism a the level of the Z-modules
Ãk −→ B̃k for all k where Ãk and B̃k are defined as Λ̃k. From this one deduces that this morphism
is surjective. Now to prove injectivity it suffices to prove it after tensoring with Q, for the map

Q[tk]k≥1 −→ Λ⊗Q

But now define the following “universal logarithm” series

h(T ) = T +
∑

k≥1

ukT
k+1 ∈ Q[uk]k≥1[[T ]]

and set G(X,Y ) = h−1(h(X)+h(Y )) ∈ Q[uk]k≥1[[X,Y ]]. By the universal property of Λ associated
to G there is a graded morphism

Λ⊗Q −→ Q[uk]k≥1

and this is an isomorphism since by proposition 2 this morphism defines an isomorphism of functors
between Hom(Q[uk]k≥1,−) and Hom(Λ ⊗ Q,−). More precisely, the inverse of this morphism is
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constructed in the following way : by proposition ?? there exists a unique g ∈ Λ⊗Q[[T ]] such that
g(0) = 0, g′(0) = 1 and if F is the universal group law on Λ⊗Q then

F (X,Y ) = g−1(g(X) + g(Y ))

Then the inverse of Λ⊗Q −→ Q[uk]k≥1 is given by sending uk to the k + 1-th coefficient of g.
Now this isomorphism

Λ⊗Q ∼−−→ Q[uk]k≥1

is a graded isomorphism if we set deg uk = k. In fact, putting deg T = −1 we see the universal
logarithm h(T ) ∈ Q[uk]k≥1[[T ]] is homogenous with degre −1. Thus, with degX = deg Y = −1,
G(X,Y ) = h−1(h(X)+h(Y )) is homogenous with degre−1 which implies our isomorphism respects
the grading.

Now look at the composition

Q[tk]k≥1 � Λ⊗Q ∼−−→ Q[uk]k≥1

it is a surjective graded morphism

Q[tk]k≥1 � Q[uk]k≥1

and thus an isomorphism since it induces a surjective morphism of finite dimensional Q-vector
spaces of the same dimension between elements of degre less than a given integer.

1.5 The theory of one-dim. formal groups laws is unobstructed

Corollaire 2. Let R be a ring.
– Any truncated at the order k one dimensional formal group law over R extends to a formal

group law over R.
– Let I be an ideal in R. Any one dimensional formal group law over R/I lifts to a formal

group law over R.

Démonstration. This is a consequence of Lazard’s theorem, since “morphisms of polynomials
algebras can be lifted”.

1.6 Classification over car. p algebraically closed fields

1.6.1 Frobenius morphism

Let R be a ring such that pR = 0. Let G be a one dim. formal group law over R.

Définition 7. We let G(p) be the formal group law obtained by applying the p-power to all the
coefficients of G.

Définition 8. We denote
F : G −→ G(p)

the Frobenius morphism defined by the power series T p.

1.6.2 Height

Let k be a caracteristic p field and G defined over k.

Lemme 4. Let f ∈ End(F ) be s.t. f ′(0) = 0 and f 6= 0. Then ∃!h ∈ N∗ ∃g ∈ k[[T ]] g(0) =
0, g′(0) 6= 0 and

f = g(T p
h

)
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Démonstration. Differentiationg the equality f(F (X,Y )) = F (f(X), f(Y )) with respect to X
one finds

f ′(F (X,Y ))
∂F

∂X
(X,Y ) =

∂F

∂X
(f(X), f(Y ))f ′(X)

with X = 0 one finds

f ′(Y )
∂F

∂X
(0, Y ) = 0 =⇒ f ′ = 0

since ∂F
∂X (0, Y ) is invertible.

Thus f can be written as a composite

G
F //

f

;;G(p)
g // G

where g ∈ End(F ), and one can apply by induction the preceding process to g.

Définition 9. Let [p]G ∈ End(G). If [p]G = 0 we say G has infinite height. If not let h ≥ 1 be the
integer defined in the previous lemma which is the biggest integer k such that [p]F can be factorized

by F (pk). We say G has height h.

Thus if G has height h < +∞ then [p]F can be factorized as

G
Fh //

[p]G

;;G(ph)
g

'
// G

where g is an isomorphism. From this it is clear that the height of G is an invariant of the
isomorphism class of G.

1.7 The infinite height case

We keep the hypothesis of the last section.

Proposition 3. G has infinite height ⇐⇒ G ' Ĝa.

Démonstration. Supppose G ≡ X + Y mod deg ≥ n. Then ∃a ∈ k

G ≡ X + Y + aCn(X,Y ) mod deg ≥ n+ 1

If n is not a power of p then puting h(T ) = t− aT n one finds

h(h−1(X) +
G
h−1(Y )) ≡ X + Y mod deg ≥ n+ 1

If n is a power of p then one finds [p]G ≡ −aTn mod deg ≥ n + 1 (cf. lemma 5) and thus from
the hypothesis [p]G = 0 we find a = 0. By induction we thus can construct for all n truncated

isomorphisms G
∼−−→ Ĝa mod deg ≥ n which in the limit gives us an isomorphism as in the proof

of proposition 2.

1.8 The finite height case

The notations are the same as in the preceding section.
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1.8.1 Normalized group law

Définition 10. Let h ∈ N∗. The height h group law G over k is normalized if [p]G = T p
h

.

Remarque 2. If G is normalized then G ∈ Fph [[X,Y ]].

As we have seen we can writte
[p]G = g ◦ F h

where g is an isomorphism between G(ph) and G. Now the problem to know wether or not G is
isomorphic to a normalized group law is equivalent to know wether or not g can be written as

g = g1g
−ph
1

for some g1 ∈ Aut(G), that is to say if g is “a coboundary”.

Remarque 3. This problem is related to the problem to know if in a height h one dimensional
crystal over k one can find an non-zero element e s.t. F h.e = p.e.

Proposition 4. If k is separably closed then any finite height one dimensional group law over k
is isomorphic to a normalized one.

Démonstration. If
[p]G ≡ aT p

h

[T p
h+1]

with a 6= 0 then if b ∈ k is such that a = b1−ph and g(T ) = bT then g ◦ [p]G ◦ g−1 ≡ T p
h

[T p
h+1].

And thus we can suppose the coefficient of T p
h

is 1. Now if for some k ≥ 2

[p]F ≡ T p
h

+ aT kp
h

[T (k+1)ph ]

putting g(T ) = T − bT k we find

g ◦ [p]G ◦ g−1(T ) ≡ T ph + (a+ bp
h − b)T kpj [T (k+1)ph ]

and thus using a b solution of the Artin-Schreier equation a = b− bph we can suppose

[p]G ≡ T p
h

[T (k+1)ph ]

We conclude as usual by induction and passing to the limit.

Lemme 5. Let G1, G2 be two formal group laws over R s.t.

G1 ≡ G2 + aCpi(X,Y ) mod deg pi + 1

then
[p]G1

≡ [p]G2
+ a(−1 + pp

i−1)T p
i

mod deg pi + 1

In particular if pR = 0 then

[p]G1
≡ [p]G2

− aT pi mod deg pi + 1

Démonstration. By an easy induction argument one finds

∀n ∈ N∗ [n]G1
≡ [n]G2

+ a
n−1∑

k=1

Cpi(T, kT ) mod deg pi + 1

Moreover

n−1∑

k=1

Cpi(T, kT ) =
n−1∑

k=1

(k + 1)p
i

T p
i − kpiT pi − T pi

p

= (−1 + pp
i−1)T p

i
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Proposition 5. Let G1, G2 be two formal group laws over k separably closed. Then G1 ' G2 iff
ht(G1) = ht(G2).

Démonstration. Suppose ht(G1) = ht(G2) = h, G1 and G2 are normalized, and we have
constructed g ∈ Fph [[T ]] s.t. g(0) = 0, g′(0) 6= 0 and

g(X +
G1

Y ) ≡ g(X) +
G2

g(Y ) mod deg ≥ n

Then replacing G1 by g(G1(g−1(X) + g−1(Y ))) we can suppose

G1 ≡ G2 mod deg ≥ n

and thus
∃a ∈ Fph G1 ≡ G2 + aCn(X,Y ) mod deg ≥ n+ 1

If n is not a power of p, using g(T ) = T − aT n we have g(G1(g−1(X), g−1(Y ))) ≡ G2 mod deg ≥
n+ 1. If n is a power of p then by the preceding lemma

[p]G1
≡ [p]G2

− aTn [Tn+1]

=⇒ a = 0 since [p]G1
= [p]G2

= T p
h

Thus starting from a truncated at the order n isomorphism betweenG1 andG2 we have constructed
a truncated isomorphism at the order n + 1. Moreover since g ∈ Fph [[T ]] the new formal group
laws are still normalized. By induction and a limit process one then construct an isomorphism
G1

∼−−→ G2.

Corollaire 3. Any finite height h one dim. formal group law is isomorphic to a normalized one
F s.t.

F (X,Y ) ≡ X + Y + Cph(X,Y ) mod deg ≥ ph + 1

Démonstration. This can be deduced from the proof of the last proposition.

Théorème 2. The isomorphism classes of one dimensional formal group laws over a separably
closed field are in bijection with N∗ ∪ {∞}, the bijection being given by the height.

Démonstration. It remains to prove that for any h ∈ N∗ there exists a height h formal group
law over k. But if Λ ' Z[ti]i≥1 is Lazard’s ring then if we define the ring morphism Λ −→ k by
sending ti 7→ 0 if i < ph − 1, tph−1 7→ 1 and ti 7→ any element of k for other i then if G(X,Y ) is
the corresponding formal group law over k we have

G(X,Y ) ≡ X + Y + Cph(X,Y ) mod deg ≥ ph + 1

which implies as allready seen

[p]G ≡ −T p
h

[T p
h+1]

1.9 Endomorphism algebra

One can show that for a G of height h < +∞ over k separably closed

End(G) = OD

where D is a division algebra with invariant 1
n and OD is its maximal order. This is a consequence

of the classification of p-divisible groups via crystals. Concretely

OD = Zpn [Π]
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where Zpn = W (Fpn) is the ring of integers in the degre n unramified extension of Qp and Π is
the uniformizing element in D verifying

∀x ∈ Zpn Πx = xσΠ

where σ stands for the Frobenius of Qpn .
It results from the proof of theorem 2 that there exists one dim. formal group law of any height

defined over Fp. Then such a formal group law G admits the Frobenius as an endomorphism. In
the identification End(G) = OD the Frobenius is sent to a uniformizing element of OD and thus
can be identified with Π.

2 Deformation theory in the unobstructed case

In this section we present a particular case of Schlessinger’s theorem.

2.0.1 Definitions

Let k be a field and C be the category of local Artin rings with residue field k, morphisms
being morphisms inducing the identity on k. Let

F : C −→ { Sets }

be a covariant functor. We will make the assumption F (k) = {∅} that is to say F is “connected”.

Définition 11. The functor F is formally smooth if for all A,B ∈ C and A � B a surjective
morphism then F (A) −→ F (B) is surjective.

Of course, as usual, in the preceding definition one can assume the kernel I of A� B verifies
I2 = (0) and even m.I = (0) where m is the maximal ideal of A.

Définition 12. The functor F satisfies the Mayer-Vietoris property if for all diagramms in C

A

��@@@@@@@ B

��~~~~~~~

C

The natural morphism F (A×C B) −→ F (A)×F (C) F (B) is an isomorphism.

Exemple 3. If F ' X where X is a formal scheme then F satisfies the Mayer Vietoris property.

2.0.2 Tangent functor

Let’s suppose F satisfies the Mayer-Vietoris property. Let M be the category of finite dimen-
sional k-vector spaces. There is a functor

M −→ C
V 7−→ k ⊕ V

where k ⊕ V is the trivial extension of k by the squared zero ideal V . For example if V = k,
k ⊕ V = k[ε] is the dual number algebra.

Définition 13. We denote TF :M−→ Sets to be the composite M−→ C −→ Sets.
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There is a canonical factorisation

M TF //

&&MMMMMMMMMMM Sets

k-vector spaces

77ooooooooooo

defined in the following way : ∀V ∈ ObM there is a morphism in M
V × V −→ V

(x, y) 7−→ x+ y

inducing by functoriality a morphism in C

k ⊕ V × k ⊕ V +−−→ k ⊕ V
In the same way forall x ∈ k there is a morphism in M

V −→ V

v 7−→ x.v

inducing
mx : k ⊕ V −→ k ⊕ V

They induce

TF (V )× TF (V )
' // 11F (k ⊕ V × k ⊕ V )

F (+) // TF (V )

and

∀x ∈ k TF (V )
F (mx)−−−−−→ TF (V )

And one verifies those two operations induce a k-vector space structure on TF (V ) (in fact k ⊕ V
has a structure of k-vector space in the category C). One verifies immediatly that this vector space
structure is functorial in V . Thus we have our factorization.

Lemme 6. There is a natural isomorphism of functors

TF (−) ' TF (k)⊗k (−)

Démonstration. Fix an equivalence bewteenM and the subcategory of vector spaces (kn)n≥0.
It suffices to construct natural isomorphisms

TF (kn) ' TF (k)⊗k kn

They are deduced from the Mayer -Vietoris property : TF (k× · · · × k) ' TF (k)n. The naturality
is easily checked.

Proposition 6. Let A ∈ C with maximal ideal m and let I be an ideal of A s.t. m.I = 0. Let
f : F (A) −→ F (A/I). Then for each x ∈ F (A/I) either f−1({x}) = ∅ either f−1({x}) is a
principal homogenous space under TF (I).

Démonstration. There is an isomorphism in C
A×A/I A ∼−−→ A× (k ⊕ I)

(a1, a2) 7→ (a1, ā1 ⊕ (a1 − a2))

where ā1 is the reduction of a1 modulo the maximal ideal of A. Applying the Mayer-Vietoris
property we find

F (A)× TF (I)
∼−−→ F (A)×F (A/I) F (A)

and one verifies easily this defines an action of TF (I) on TF (A).
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2.1 Formaly étale morphisms

Définition 14. A morphism f : F −→ G of covariant functors on C is formay étale if for all
A ∈ C and ideal I of A the following diagram is cartesian

F (A) //

��

G(A)

��
F (A/I) // G(A/I)

Of course as usual, by devissage, it suffices to consider the case when I 2 = 0 or even when
m.I = (0) where m is the maximal ideal of A.

Lemme 7. A morphism f : F −→ G is an isomorphism iff it is formaly étale and induces a
bijection F (k) −→ G(k).

Démonstration. This is clear since in a cartesian square if the bottom horizontal line is a bi-
jection then so is the top horizontal one.

Proposition 7. Suppose F is formaly smooth. Suppose F and G satisfy the Mayer Vietoris
property. A morphism f : F −→ G is formaly étale iff it induces an isomorphism TF (k)

∼−−→
TG(k).

Démonstration. If f induces an isomorphism between TF (k) and TG(k) then by lemma 6
is induces an isomorphism of the tangent functors TF (−)

∼−−→ TG(−). Then you conclude by
proposition 6.

2.1.1 Main theorem

If k is a perfect field any complete local ring with residue field k is naturaly a W (k)-algebra.
Thus the category C is the category of local artinian W (k)-algebras with residue field k and F can
be considered as a functor over Spf(W (k)).

Théorème 3. Suppose k is perfect. Suppose F satisfies the Mayer-Vietoris property, is formally
smooth verifies F (k) = {∅} and satisfies

dimk TF (k) = n < +∞

Then
F ' Spf(W (k)[[T1, . . . , Tn]])

Démonstration. Let (e1, . . . , en) be a basis of TF (k). It gives an element of

F (k[T1, . . . , Tn]/(T 2
1 , . . . , T

2
n)) '

n∏

i=1

TF (k)

By the formal smoothness property this can be lifted to an element of

F (W (k)[[T1, . . . , Tn]]) := lim
←−
k

F (W (k)[[T1, . . . , Tn]]/Ik)

where I = (p, T1, . . . , Tn). This gives a morphism

f : G = Spf(W (k)[[T1, . . . , Tn]]) −→ F

Now because of our choices
TG(k)

∼−−→ TF (k)

and thus by proposition 7 f is an isomorphism.
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3 Lubin-Tate spaces : first approach via formal group laws

3.1 Definition

Let F be a one dimensional formal group law of finite height n over Fp.

Définition 15. Let A be a local artinian algebra with maximal ideal m and residue field Fp.
– A formal group law G over A is a deformation of G if G ≡ F modulo m
– Two deformations G1, G2 are isomorphic if there is an isomorphism

f : G1
∼−−→ G2

such that f ≡ Id mod m (that is ot say f(T ) ≡ T ).
Let Def be the associated functor of isomorphism classes of deformations of F on artin local rings
with residue field Fp.

3.2 Computation of the tangent space

We note k = Fp.

Lemme 8. The tangent space to Def is the k-vector space H1(C•) where

C• =
[
Tk[[T ]]

∂−−→ XY k[[X,Y ]]S2
∂−−→ k[[X,Y, Z]]

]

0 +1 +2

where k[[X,Y ]]S2 stands for the symmetric formal power series and

∂ϕ(T ) = ϕ(X +
F
Y )− ϕ(X)− ϕ(Y )

∂ψ(X,Y ) = ψ(Y, Z)− ψ(X +
F
Y, Z) + ψ(X,Y +

F
Z)− ψ(X,Y )

Démonstration. Writte F ′(X,Y ) = F (X,Y ) + εψ(X,Y ) with ε2 = 0. Then

∂ψ = 0⇐⇒ F ′(F ′(X,Y ), Z) = F ′(X,F ′(Y, Z))

And if h(T ) = T + εϕ(T ),

F ′ = h(F (h−1(X), h−1(Y )))⇐⇒ ψ = ∂ϕ

Suppose now F is normalized and satisfies

F (X,Y ) ≡ X + Y + Cpn(X,Y ) mod deg ≥ pn + 1

(cf. corollary 3). We will suppose more explicitely that F is associated to the morphism from
Lazard’s ring Z[ti]i≥1 to k defined by ti 7→ 0 if i < pn − 1, tpn−1 7→ 1 and for other i ti maps to
anything.

Proposition 8. The tangent space to Def is n−1 dimensional generated by cocyles ψ1, . . . , ψn−1

that verify ψi(X,Y ) ≡ Cpi(X,Y ) mod deg ≥ pi + 1.

Démonstration. We have

∂T k ≡ (X + Y )k −Xk − Y k mod deg ≥ k + 1

∂T p
i ≡ Cpi+n(X,Y ) mod deg ≥ pi + 1

Moereover if a cocyle ψ verifies
ψ ≡ 0 mod deg ≥ k
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then thanks to lemma 2
ψ ≡ aCk(X,Y ) mod deg ≥ k + 1

for some a ∈ Fph . With this one can prove that if k ≥ ph and ψ is a cocyle that is a coboundary
mod deg≥ k then ψ is a couboundary mod deg≥ k + 1.

Now for each 1 ≤ i ≤ n− 1 let ψi consider the map from Lazard’s ring Z[tj ]j≥1 to k[ε] défined
by tj 7→ 0 if j < pi−1, tpi−1 7→ ε, tj 7→ 0 if pi−1 < j < pn−1, tpn−1 7→ 1 and tj maps to anything
for other j (the same anything as the one we chosed for defining F ). This defines a deformation
of F and thus a cocyle ψi. It follows by computing modulo T p

n

and the formulas given for ∂T k

with k not a power of p that those cocyles form a basis of the tangent space to Def .

3.3 Représentability

Proposition 9. There is an isomorphism

Def ' Spf(W (k)[[T1, . . . , Tn−1]])

Démonstration. We apply theorem 3. The functor Def clearly satisfies Mayer-Vietoris pro-
perty. Formal smoothness follows from corollary 2 and the assertion about the tangent space is
proposition 8.

3.4 Good coordinates on Lubin-Tate spaces

Proposition 10. There is a system of formal coordinates (x1, . . . , xn−1) on Def that is to say an
isomorphism Def ' Spf((W (k)[[x1, . . . , xn−1]]) such that if G is the associated universal formal
group law then

∀1 ≤ i ≤ n− 1 G(X,Y ) ≡ xiCpi(X,Y ) mod (deg pi + 1, x1, . . . , xi−1)

Démonstration. Let G be the group law over W (k)[[x1, . . . , xn−1]] associated to the map from
Lazard’s ring

Λ = Z[tk]k≥1

to W (k)[[x1, . . . , xn−1]] that maps tpi−1 to xi for 1 ≤ i ≤ n − 1, tpn−1 to 1 and other ti to 0. It
gives a morphism from Spf(W (k)[[x1, . . . , xn−1]]) to Def . To see this is an isomorphism we have
to prove it is one at the level of the tangent spaces, that is to say look at the reduction of G
to k[x1, . . . , xn−1]/(x2

1, . . . , x
2
n−1). But this is clear from the computation of the tangent space of

Def .

Corollaire 4. There is a system of formal coordinates (x1, . . . , xn−1) on Def such that if G is
the associated universal formal group law then

[p]G = pu0T + x1u1T
p + · · ·+ xn−1un−1T

pn−1

+ unT
pn

where u0, . . . , un ∈W (k)[[x1, . . . , xn−1]][[T ]]× are units.

Démonstration. This follows from lemma 5.

Remarque 4. In the following sections we will explain the link with the Newton stratification and
this type of coordinates.
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