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1 From one-dimensional formal group laws to p-divisible
groups

Until now we’ve been working with formal group laws that are rather concrete objects. To go
further in the study of Lubin-Tate spaces, we will switch to a more abstract but more powerful
object that are p-divisbile groups. Those objects are better suited for the study of higher di-
mensional formal groups too. We begin with explaining the bridge between one dimensional group
laws and p-divisible groups. We refer to the appendix ? ? ? for facts about finite flat group schemes.

Recall the following form of Weierstrass division/factorization :

Lemme 1. Let A be a complete local ring with maximal ideal m and f =
∑

k≥0 akT
k ∈ A[[T ]] s.t

f mod m ̸= 0. Let n ∈ N be such that an ∈ A× and ∀k < n ak ∈ m. Then for each g ∈ A[[T ]]
∃!Q,R with Q ∈ A[[T ]], R ∈ A[T ], deg R < n and

g = Qf +R

Moerover ∃g ∈ A[T ] a degre n unitary polynomial and h ∈ A[[T ]]× s.t.

f = gh

Démonstration. The division assertion is an easy approximation argument, the case when A is
a field being evident.

The factorization assertion is, as usual, deduced from the division one by applying it to Tn,
writting Tn = Qf +R and constating Q ∈ A[[T ]]×.

Thus for such an f there is an isomorphism of A-algebras

A[[T ]]/(f(T )) ≃ A[T ]/(g(T ))

that is a finite free A-module.

Lemme 2. Let A be a complete local ring with a car. p residue field k. Let F be a one-dimensional
formal group law over A s.t. F ⊗A k has finite height h. Then for each k ∈ N∗

F [pk] = Spec(A[[T ]]/([pk]F (T )))

is a (commutative) finite localy free Spec(A)-group scheme of order pkh.

Démonstration. Let B = A[[T ]]/([pk]F (T )) equiped with the T -adic topology. The formal
scheme Spf(B) with (T ) being a definition ideal, has a structure of formal group scheme given
by the formal group law F (X,Y ). In fact, [pk]F (F (X,Y )) = F ([pk]F (X), [pk]F ) and thus the
composed morphism of A-algebras

A[[T ]] −→ A[[X,Y ]] ↠ A[[X,Y ]]/([pk]F (X), [pk]F (Y )) = B⊗̂AB

T 7−→ F (X,Y )
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verfies [pk]F (F (X,Y )) ∈ ([pk]F (X), [pk]F (Y )) in A[[X,Y ]] and thus factorises as a morphism

B −→ B⊗̂AB

Now, from the preceding lemma and the definition of height one deduces B is a finite A-module.
From this one deduces easily that B⊗̂AB = B ⊗A B. In fact if [pk]F = gh as in the preceding
lemma with g a unitary polynomial and h a unit then B ≃ A[T ]/(g) and B⊗̂AB = B ⊗A B =
A[X,Y ]/(g(X), g(Y )).

Remarque 1. One has to be careful with the following : in the last lemma, for R an A-algebra
in general

F [pk]⊗A R ̸= Spec(R[[T ]]/([pk]F⊗AR(T )))

For example if A is an unequal caracteristic discrete valuation ring then F [pk] ⊗A A[ 1p ] is étale

allthough A[ 1p ][[T ]]/([p
k]F (T )) is T -adic. Spf(A[ 1p ][[T ]]/([p

k]F (T ))) is the formal completion of

F [pk]⊗AA[ 1p ] along its zero section and is thus equal to Spec(A[ 1p ]). This phenomenon will become
clearer in a few moment when we will study the Newton stratfication.

By definition, when we will say a sequence of group schemes is exact this will mean exact as a
sheaf sequence on the fppf site.

Lemme 3. With the hypothesis of the last lemma for each 1 ≤ l ≤ k the sequence of finite flat
group schemes

0 −→ F [pl] −→ F [pk]
pl

−−→ F [pk−l] −→ 0

is exact.

Démonstration. The sequence

0 −→ F [pl] −→ F [pk]
pl

−−→ F [pk−l]

is easily seen to be exact (even on the big Zariski site). By couting ranks one concludes ( ? ? ?).

Lemme 4. Suppose moreover A is artinian. Consider the formal scheme Spf(A[[T ]]) with (T )
being a definition ideal. It is a formal group scheme, the group law being given by F (X,Y ), and
thus an ind-group scheme. Then the natural morphism of ind-group schemes

lim
−→
k

F [pk] −→ Spf(A[[T ]])

is an isomorphism where F [pk] is a radicial group scheme over Spec(A).

Démonstration. Let’s first prove F [pk] is radicial. Since A is artinian and the A-module
A[[T ]]/([pk]F ) is of finite type it is of finite length. Thus if I = T.A[[T ]]/([pk]F ) is the augmen-
tation ideal of A[[T ]]/([pk]F ), the sequence (Ik)k≥0 is stationary for k >> 0, but A[[T ]]/([pk]F )
being I-adicaly complete one deduces the augmentation ideal I is nilpotent and thus the morphism
F [pk] −→ Spec(A) is radicial.

This proves moreover that for each k ∈ N there exists l ∈ N such that T l ∈ [pk]F (T ).A[[T ]].
Now to finish to verify that our morphism of ind-group schemes is an isomorphism we have to

prove that for each k ∈ N there exists l ∈ N such that [pl]F (T ) ∈ T k.A[[T ]]. But

[p]F ∈ T ph

A[[T ]] + Tm[[T ]]

but
f(T ) ∈ T ph

A[[T ]] + Tm[[T ]] =⇒ f◦k(T ) ∈ T ph

A[[T ]] + Tmk[[T ]]

(compute in A[T ]/(T ph

)).

Thus, when A is artinian the formal group scheme Spf(A[[T ]]) and the inductive system of
finite flat group schemes (F [pk])k determine each other.
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2 p-divisible groups : basics

2.1 p-divisible groups : definition

Let’s fix a base scheme S. For an abelian scheaf G we note G[pk] the kernel of the multiplication
by pk.

A p-divisible group is a particular type of ind-group scheme.

Définition 1 (Grothendieck). A p-divisible group over S is an abelian fppf sheaf G over S such
that :

— p : G −→ G is an epimorphism
— The natural monomorphism lim

−→
k

G[pk] −→ G is an isomorphism, that is to say G is p∞-

torsion
— For each k ∈ N∗ G[pk] is representable by a finite localy free group scheme

The height of G[p] (as a localy constant function on S) is called the height of G.

Of course, as usual for sheaves, when we say G is p∞-torsion this means that any section is
localy killed by a power of p (here it is sufficient to restrict one-self to Zariski localy, and thus
globaly on a quasicompact scheme).

Lemme 5 (Equivalent definition). A p-divisible group over S “is the same” as an inductive system
of finite localy free group schemes (Gk)k≥1 s.t. for each k there is an exact sequence

0 −→ G1 −→ Gk
×p−−−→ Gk−1 −→ 0

where the map Gk
×p−−−→ Gk−1 ↪→ Gk is multiplication by p on Gk.

Démonstration. To (Gk)k≥1 one associates G = lim
−→
k

Gk and to G one associates the system

(G[pk])k≥1.

Lemme 6 (Equivalent definition not using fppf topology). A p-divisible group is an inductive
system of finite flat group schemes (Gk)k≥1 such that for all k Gk is killed by pk, Gk = Gk+1[p

k]
and if h is the heigth of G1 then the heigth of Gk is kh.

Démonstration. This is a consequence of the fact that in the exact sequence

0 −→ G1 −→ Gk
×p−−−→ Gk−1

the rank of the middle term is the product of the rank of other terms and thus ? ? ?

0 −→ G1 −→ Gk
×p−−−→ Gk−1 −→ 0

is exact.

The preceding definition is the original one given by Tate.

Exemple 1. — Qp/Zp or more generaly (Qp/Zp)
h

— µp∞ which is the inductive system formed by the µpk for k ∈ N∗.
— If A is an abelian scheme over S then A[p∞] is a p-divisible group over S
— It follows from last section that if F is a one dimensional formal group law over a complete

local ring R with residue field of car. p then the (F [pk])k≥1 form a p-divisible group over
Spec(R)
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Remarque 2. The category of p-divisible groups is Zp-linear and pseudo-abelian (any idempotent
has a kernel and cokernel). This allows one to construct more p-divisible groups from abelian
varities (the category of ab. var. being only Z-linear) in the following way : take A an abelian
variety with an action of an order OD in a division algebra D over a number field and suppose
D⊗Qp is split and OD ⊗Zp is a maximal order. Then A[p∞] has an action of OD ⊗Zp that is a
product of matrix algebras over the ring of integers of finite extensions of Qp. Then one can apply
idempotents in those matrix algebras as in Morita equivalence and obtain new p-divisible groups.

2.2 Example : the étale case

Définition 2. A p-divisible group G is étale if G[p] is étale, or equivalently if the G[pk] for all k
are étale.

The equivalence results from the short exact sequences

O −→ G[p] −→ G[pk]
p−→ G[pk−1] −→ 0

the fact that an extension of an étale group by an étale one is still étale and induction.

Exemple 2. If p is invertible over S then any p-divisible group on S is étale.

Exemple 3. For any h ∈ N∗ (Qp/Zp)
h is an étale p-divisible group.

Recall a smooth p-adic sheaf on Sét is a projective system (Fk)k≥1 where Fk is localy free

Z/pkZ-sheaf on Sét and Fk+1 ⊗ Z/pkZ ∼−−→ Fk is an isomorphism.

Lemme 7. The category of étale p-divisible groups over S is equivalent to the category of smooth
Zp-adic sheaves over Sét.

Démonstration. In one direction the equivalence is given by G 7−→the projective system given

by the G[pk] and with transition mapping G[pk+1]
p−→ G[pk]. This projective system can be

non-rigorously written ” lim
←−
k

G[pk]”.

In the other direction the equivalence is “F 7−→ F⊗Qp/Zp” which means if F = (Fk)k≥1 then

one associates the inductive system (Fk)k≥1 with transition mappings Fk = Fk+1 ⊗Z/pkZ Id⊗p−−−−→
Fk+1 where p : Z/pkZ −→ Z/pk+1Z.

Let K be a separably closed field. Suppose S is connected and let ξ ∈ S(K) be a geometric
point. Set Γ = π1(S, ξ). Recall there is an equivalence between smooth p-adic sheaves on Sét and
continouous representations of Γ in finite type free Zp-modules. This equivalence is given by

(Fk)k≥1 7−→ lim
←−
k

Fk,ξ

Corollaire 1. There is an category equivalence between étale p-divisible groups over S and conti-
nouous representations of Γ in finite type free Zp-modules. The rank of the Zp-module equals the
height of the p-divisible group.

Exemple 4. The Zp-modules that are free of finite type and have a trivial action of Γ correspond
to p-divisible groups isomorphic to (Qp/Zp)

h.

Exemple 5. Suppose p is invertible on the base S. Then the p-divisible group µp∞ is étale. The
corresponding one dimensional representation of Γ is the cyclotomic character Zp(1).

Définition 3. The smooth Zp[Γ]-module attached to an étale p-divisible group is called its Tate
module and is denoted Tp(G).

The notation Tp(G) is ambigous because there no ξ in it. Concretely

Tp(G) = lim
←−
k

G[pk](K)

= Hom(Qp/Zp, G×S Spec(K))
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2.3 Cartier duality

If G is a p-divisible group then one defines its Cartier dual GD by setting GD[pk] = G[pk]D and
the inclusion GD[pk] ↪→ GD[pk+1] is the Cartier dual of multiplication by p. This is a p-divisible
group since cartier duality transforms the exact sequence

0 −→ G[p] −→ G[pk+1]
p−→ G[pk] −→ 0

in
0 −→ G[pk]D −→ G[pk+1]D −→ G[p]D −→ 0

Exemple 6. In the same way we defined an étale p-divisible group one can define a p-divisible
group of multiplicative type by saying G[p] is of multiplicative type that is to say localy isomorphic
to some µh

p . Then p-divisible groups of multiplicative type are Cartier duals to the étale one.
Take the notations of the last section on fundamental groups. Tori T over S split after a finite

étale base change are equivalent to discrete representations of Γ = π1(S, ξ) on finite type free Z-
modules. This equivalence is given by T 7→ X∗(Tξ). For such a T T [p∞] is of multiplicative type
and

Tp(T [p
∞]D) = X∗(T )⊗ Zp

Exemple 7. If A is an S-abelian scheme and A∨ = Ext1(A,Gm) is the dual abelian scheme then

A∨[p∞] = A[p∞]D

In fact from the exact sequence

0 −→ A[pk] −→ A
pk

−−→ A −→ 0

one deduces by applying Hom(−,Gm) the exact sequence

Hom(A,Gm) = 0 −→ A[pk]D −→ A∨
pk

−−→ A∨ −→ 0

If λ : A −→ A∨ is a polarization it is symetric, λ∨ = λ, and induces a map λ : A[p∞] −→ A[p∞]D

that verifies λ∨ = −λ (when you turn triangles in derived categories you have to change the signs !)
which expresses the antisymetry of Weil pairing.

2.4 Isogenies

Définition 4. An isogeny between two p-divisible groups G1 and G2 is an epimorphism f : G1 −→
G2 such that ker f is represented by a finite localy free group scheme. The height of ker f is called
the height of the isogeny.

For example, p : G −→ G is an isogeny.
In fact one has the following :

Lemme 8. Let G be a p-divisible group over S and H a subgroup that is finite localy free over S
(thus H ⊂ G[pn] for n >> 0). Then G/H is a p-divisible group and the morphism G ↠ G/H is
an isogeny.

Démonstration. The only non-trivial thing to prove is that foral all n the (G/H)[pn] are finite
localy free group schemes. But if N is such that H ⊂ G[pN ] then if H ′ makes the following square
cartesian

H ′ //� _

��

H� _

��
G[pN+n]

pn

// G[pN ]
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then H ′ is finite localy free over S because the bottom horizontal morphism is finite localy free
since it is an epimorphism of finite localy free group schemes and thus the top horizontal morphism
is finite localy free which implies H ′ is finite localy free over H. Then (G/H)[pn] = H ′/H.

Thus, up to isomorphisms, isogenies are given by finite localy free sub-group schemes of the
G[pn], n ≥ 1.

If f : A1 −→ A2 is an isogeny of abelian schemes then the induced morphisms A1[p
∞] −→

A2[p
∞] is an isogeny. And this induces a bijection between isogenies from

Remarque 3. For any two p-divisible groups G1, G2 the group Hom(G1, G2) is a Zp-module
without p-torsion.

Lemme 9. Suppose S is connected or quasicompact then a morphism bewteen p-divisible groups
f : G1 −→ G2 is an isogeny iff there exists a morphism g : G2 −→ G1 and an integer N such that
g ◦ f = pNIdG2

and f ◦ g = pNIdG1
.

Démonstration. Suppose f is an isogeny. Then let N ∈ N be such that ker f ⊂ G1[p
N ]. Then,

f being an epimorphism f induces an isomorphism

G1/ ker f
∼−−→ G2

But the morphism pN : G1/ ker f −→ G1/ ker f lifts to a morphism

G1/ ker f
pN

//

pN

&&

G1/ ker f

G1

OO

And thus there is a composed morphism g : G2 ≃ G1/ ker f
pN

−−−→ G1 that verifies g ◦ f = pN . This
implies (f ◦ g) ◦ f = (pNId) ◦ f , but f being an epimorphism this implies f ◦ g = pN .

Reciprocaly, let f and g verifie f ◦ g = pN and g ◦ f = pN . Then f is an epimorphism since pN

is. Moreover ker f ⊂ G1[p
N ]. Then the morphisms

G1[p
N ]

f|G1[pN ] //
G2[p

N ]
g|G1[pN ]

oo

verifie
ker f|G1[pN ] = Im g|G2[pN ]

In fact the inclusion Im g|G2[pN ] ⊂ ker f|G1[pN ] is immediate and if x ∈ G1[p
N ] ∩ ker f fppf localy

x = pNy = g(f(y)) for somme y. But pNf(y) = f(g(f(y))) = f(x) = 0. Thus f(y) ∈ G1[p
N ].

Now ker f = ker f|G1[pN ] is representable by a finite S-group scheme of finite presentation. Moreover

there is an epimorphism g|G2[pN ] : G2[p
N ] −→ ker f . This implies ( ? ? ?) that ker f is finite flat

over S.

Corollaire 2. There is an isogeny G1 −→ G2 iff there is one G2 −→ G1. The relation to be
isogenous is reflexive and defines an equivalence relation on the set of isomorphism classes of
p-divisible groups over S.

Démonstration. Apply the preceding lemma to verfiy reflexivity and that the composition of
two isogenies is an isogeny.
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Exemple 8. If G is an étale p-divisible group then all isogenous p-divisible groups are étale. A
morphism f : G1 −→ G2 between étale p-divisible groups is an isogeny iff the induced morphism
f∗ : Tp(G1) −→ Tp(G2) is injective and makes Tp(G1) a lattice inside Tp(G2) that is to say the
cokernel of f∗ is torsion.

If G is étale the isomorphism classes of couples (G′, f) where f : G −→ G′ is an isogeny are in
bijection with Γ-stable lattices in Tp(G)[ 1p ] containing the lattice Tp(G) (where Γ is the fundamental

group). The kernel of the isogeny f : G −→ G′ is the finite étale group-scheme associated to the
torsion Γ-module Tp(G

′)/f∗Tp(G).

3 Formal Lie groups

3.1 Definition

Définition 5. A (commutative) formal Lie group over S is a formal group scheme G over S s.t.
localy on S there is an isomorphism of pointed S-formal schemes G ≃ Spf(OS [[T1, . . . , Td]]) for
some d, where G is pointed by its unit section and Spf(OS [[T1, . . . , Td]]) by the section given by
∀i Ti 7→ 0.

In particular G is an affine formal scheme over S.

Exemple 9. Let G be a smooth group scheme over S. Then Ĝ, its formal completion along its
zero section, is a formal Lie group. This is for example the case if G is an abelian scheme, a torus
or a vector bundle.

If G is a formal Lie group on S we denote ωG the localy free OS-module that is the conormal
sheaf of the unit section or if you want e∗Ω1

G/S with e the unit section. Then if p : G −→ S

Ω1
G/S ≃ p∗ωG

which expresses the fact that the cotangent bundle is trivial, as it-is on any Lie group. Then

p−1ωG ⊂ p∗ωG = Ω1
G/S

is the sub-sheaf of translation invariant differential forms that is to say the sub-scheaf of Ω1
G/S of

section α such that
m∗α = pr∗1α+ pr∗2α

whrere m : G×SG −→ G is the multiplication and pr1, pr2 : G×SG −→ G are the two projections.
We note LieG = ω∗G.
If G = Spf(A) with augmentation ideal I there is a natural isomorphism of augmented OS-

algebras
ŜymOS

ωG
∼−−→ GrIA

3.2 Connection with formal group laws

The connection with one-dimensional formal Lie groups is given by the following :

Lemme 10. There is a category equivalence between one dimensional formal group laws over R
and the category whose objects are couples (G, r) where G is a one dimensional formal Lie group,

r : R[[T ]]
∼−−→ Γ(Spec(R),OG)

is an isomorphism of augmented R-algebras and morphisms are Hom((G1, r1), (G2, r2)) = Hom(G1, G2).

Thus, via the functor (G, r) 7→ G, the category of formal group laws is a fibered groupöıd over
the category of formal Lie groups. The fiber category over a formal Lie group G is a groupöıd
attached to the group of pointed automorphisms of the R-formal scheme Spf(R[[T ]]).
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3.3 Formal Lie groups as fppf-sheaves

We view S as a formal scheme, (0) being a definition ideal.

Définition 6. Let X be an S-formal scheme. For U an S-scheme we set X(U) = HomS(U,X)
where U is viewed as a formal scheme with definition ideal (0).

This defines an fppf sheaf on S still denoted X. If X = lim
−→
k

Xk is a presentation of X as

an-ind-scheme then the sheaf X is the inductive limit of the sheaves associated to the Xk.

More clearly : if I is a definition ideal of X and U is quasicompact

X(U) = lim
−→
k

HomS(U,Spec(OX/Ik))

If G is a formal group-scheme, for example a formal Lie group, we wtill note G for the associated
fppf sheaf.

3.4 Formal completion of an abelian sheaf along its zero section

Définition 7. A closed immersion T ↪→ U is called a nil-immersion of order ≤ k if the ideal I
defining it verfies Ik+1 = (0).

Définition 8. Let F be an abelian fppf sheaf on S. For all k ∈ N∗ we note Inf kF for the set-sheaf
associated to the sub-presheaf of F

U −→ {s ∈ F(U) | ∃nil-immersion T ↪→ U of order ≤ k s.t. s|T = 0}

Remarque 4. The given presheaf being a sub-presheaf of F it is separated. Thus the associated
sheaf if easy to explicit.

Exemple 10. If G is an S-group scheme with augmentation ideal I then Inf kG = Spec(OG/Ik+1).

For all k Inf kF is a subsheaf of F . One verifies Inf kF + Inf k
′
F ⊂ inf k+k′+1F .

Définition 9. We note F̂ = lim
−→
k

Inf kF as an abelian sub-sheab of F . It is called the formal

completion of F along its zero section.

Exemple 11. If G is a formal group scheme then G = Ĝ.

Remarque 5. The quotient F/F̂ is formaly net and F̂ is the smallest abelian sub-sheaf of F
such that F/F̂ is formaly net. Thus we have written canonicaly F as an extension of a formally
net sheaf by an “infinitesimal” one.

3.5 A caracterisation of formal Lie groups in caracteristic p

Let S be a caracteristic p scheme that is to say s.t. p.OS = 0.

Définition 10. For a sheaf F on Sfppf we note

F (p) = Frob∗F

where Frob : S −→ S is the Frobenius morphism. We note

F : F −→ F (p)

for the morphism that associates to any U over S the morphism

F(U) −→ F(U ′)

s 7−→ Frob∗s
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where if U
p−→ S then U ′ = U is the S-scheme defined by q = Frob ◦ p and

U ′
Frob //

q
  

U

p
��

S

Définition 11. An fppf abelian sheaf G on S is said to be F -divisible if it satisfies the analogous
conditions to the one satisfied by a p-divisible group but with p replaced by F :

— F : G −→ G(p) is an epimorphism
— If ∀n G(n) = kerFn then G is F∞-torsion : the natural morphism lim

−→
n

G(n) −→ G is an

isomorphism
— For all n G(n) is represented by a finite localy free S-group scheme

We now note for F a sheaf F(n) for the kernel of Fn : F −→ F (pn).

Théorème 1 (Messing). An fppf abelian sheaf G is F -divisible iff it is represented by a formal
Lie group over S.

Démonstration. Of course one direction is easy : if G is a formal Lie group it easily satisfies
the given conditions. In fact it sufficies to verify the following for the formal affine space Âd =
Spf(R[[R1, . . . , Td]]) :

— We have (Âd)(p) = Âp and the morphism F : Âd −→ Âd is given by F ∗Ti = T p
i

— F : Âd −→ Âd is faithfully flat of finite presentation thus an fppf epimorphism
— Forall n the reciprocial image by F of the zero section in Âd is Spec(R[T1, . . . , Td](T

p
1 , . . . , T

p
d ))

and is thus a finite localy free scheme
— Any section of Âd over a quasicompact scheme is clearly killed by a power of F

The other direction is based one the following proposition :

Proposition 1. Let G be a finite localy free S-group scheme killed by Fn. Then the following are
equivalent :

— Localy on S G ≃ Spec(OS [T1, . . . , Td]/(T
pn

1 , . . . , T pn

d ))

— For all 0 ≤ i ≤ n the morphism F i : G −→ G(n− i)(p
i) is an epimorphism

Démonstration. In the second condition we can replace epimorphism by flat since G is flat over
S and F i is always surjective (use ? ? ?).

Now it is easy to verify that the first condition implies the second one.
In the other direction, if the second condition is verified let’s first check the first condition

when S is the spectrum of a perfect field k. In this case one knows

G ≃ Spec(k[T1, . . . , Td]/(T
pa1

1 , . . . , T pad

d ))

for some ai ∈ N. But then it is an easy commutative algebra computation to check that if for all
0 ≤ i ≤ n F i : G −→ G(n− i)(p

i) is flat then a1 = · · · = ad = n.
Now for S general, to the local choice of a lifting to I of a generating system of ωG = I/I2 is

associated a morphism localy on S

OS [T1, . . . , Td]/(T
pn

1 , . . . , T pn

d ) −→ OG

(use the fact that G is killed by Fn) that is an isomorphism on geometric fibers of S by the field
case. This is thus an isomorphism since both sides are finite localy free over OS .

The proof that if G is F -divisible then it is a formal Lie group is now easy since one can check
easily that for all n the G(n) satisfy the hypothesis of the last proposition. Thus, localy on S, if
I is the augmentation ideal of G(n) (which does not depend on n) then any lift of a base of I/I2

to I gives compatibles isomorphisms for varying n

G(n)
∼−−→ Spec(OS [T1, . . . , Td]/(T

pn

1 , . . . , T pn

d ))

9



4 p-divisible groups in caracteristic p

For any finite flat group scheme G over a caracteristic p scheme there is a Verschiebung mor-
phism V : G −→ G(p) verifying FV = p and V F = p. This defines for any p-divisible group G
over a caracteristic p base a morphism V : G −→ G(p) verifying FV = p and V F = p.

Now as a corolary of lemma 9 we have

Lemme 11. The morphisms F and V are isogenies.

Théorème 2 (Messing). Let G be a p-divisible group on a scheme S s.t. p.OS = 0. Then if
∀n G(n) = kerFn

lim
−→
n

G(n) = Ĝ

is a formal Lie group on S.

Démonstration. The equality lim
−→
n

G(n) = Ĝ is easily checked once one knows lim
−→
n

G(n) is a

formal Lie group. In fact the inclusion Ĝ ⊂ lim
−→
n

G(n) is always true and if lim
−→
n

G(n) is a formal

Lie group then it is infinitesimal thus the other inclusion is verified.
Let’s prove lim

−→
n

G(n) is a formal Lie group by applying theorem 1. It is clearly of F∞-

torsion. Now since F is an isogeny it is clear ∀n G(n) is finite localy free over S and F is an
epimorphism.

5 Differential calculus and deformation theory on syntomic
schemes

5.1 Cotangent complex

Let S ba a scheme and p : X −→ S an S-scheme. If p is smooth then the differential calculus
of X/S is governed by Ω1

X/S a localy free OX -module of rank the relative dimension of X over S.

If X is not smooth over S anymore the OX -module Ω1
X/S is not the good object anymore.

Définition 12 (Grothendieck-Illusie). The cotangent complex L•X/S ∈ D[−∞,0](X,OX) is the

“derived functor” of Ω1 :

L•X/S = Ω1
A•/p−1OS

⊗A• OX ∈ D[−∞,0](X,OX)

where :
— A• is a particular simplicial resolution of OX as a p−1OS-algebra : A• is a simplicial

p−1OS-algebra s.t. ∀i ∈ N πi(A•) = 0 if i > 0 and π0(A•)
∼−−→ OS. The πi here being the

“local” homotopy groups (those are sheaves on X).
— The simplicial complex Ω1

A•/p−1OS
⊗A•OX is seen as a complexe of OX-modules in negative

degrees via the Dold-Kan equivalence between simplicial objects and complexes in negative
degres in abelian categories.

— The simplical p−1OS-algebra A• is constructed in the following way : consider the adjoint
functors couple

p−1OS − algebras
F //

p−1OS −modules
G
oo

where F is the forget functor and G(M) = OS [M]. Then to this couple is associated a
simplicial resolution

(An)n≥0 = ((G ◦ F )◦n(OX))n≥0

10



the edge and faces map being given by the adjonction morphisms{
G ◦ F −→ Id

Id −→ F ◦G
Then for all n An is a “formaly smooth” OS-algebra (OS [M] is “formaly smooth”) and

L•X/S =
(
Ω1
A•/OS

)
⊗A• OX .

This cotangent complex is augmented

L•X/S −→ Ω1
X/S

and this augmentation gives an isomorphism

H0(L•X/S)
∼−−→ Ω1

X/S

Of course L•X/S is functorial in X −→ S as is Ω1
X/S .

One of the first results of the theory is the following :

Proposition 2. Let

X
f //

��

Y

��
S

be a diagram of schemes. There is a distinguished triangle

f∗L•Y/S
// L•X/S

{{
L•X/Y

+1

dd

This triangle generalises the usual short exact sequence

f∗Ω1
Y/S −→ Ω1

X/S −→ Ω1
X/Y −→ 0

that is obtained by applying H0 to the preceding triangle.
There are particular cases :

Proposition 3. — Let X be of finite type over S. The scheme X is smooth over S iff the
augmentation morphism L•X/S −→ Ω1

X/S is an isomorphism in D(X,OX) thath is to say

∀i < 0 Hi(L•X/S) = 0
— Let X ↪→ Y be a closed immersion defined by the ideal I. Then

τ≥−1L•X/Y ≃ I/I2[1]

— In the preceding if moreover X ↪→ Y is a regular immersion then

L•X/Y ≃ I/I2[1]

Exemple 12. In the triangle of the last proposition if the morphism f is a closed immersion then
one finds the usual exact sequence

I/I2 −→ f∗Ω1
Y/S −→ Ω1

X/S −→ 0

Exemple 13. If f is smooth then one finds back the fact that the sequence

0 −→ f∗Ω1
Y/S −→ Ω1

X/S −→ Ω1
X/Y −→ 0

is exact

The following corollary will be fundamental for the study of group schemes.

Corollaire 3. If X is a localy complete intersection scheme over S then L•X/S is a perfect complex

in D[−10](X,OX).

11



5.2 Obstruction to smoothness

We have seen that H0(L•X/S)
∼−−→ Ω1

X/S . Thus, for any OX -module M

Ext0OX
(L•X/S ,M) ≃ DerOS

(OX ,M)

Recall (EGA? ? ?) one can define the OX -module ExtalgOS
(OX ,M) classifying isomorphism

classes of extensions of OS-algebras of OX by the squared zero ideal M, the identity class being
the one of the dual numbers algebra OX ⊕M.

We can go a step further now :

Théorème 3. For all OX-modules M there is natural isomorphism

Ext1OX
(L•X/S ,M)

∼−−→ ExtalgOS
(OX ,M)

And we find back the short exact sequence of EGA? ? ?.

Let T0 ↪→ T be a closed immersion of S-schemes defined by an ideal I s.t. I2. It thus corresponds
to a class

c ∈ Ext1OT0
(L•T0/S

, I)

We want to study the application reduction modulo I : X(T ) −→ X(T0).
Suppose thus we are given f : T0 −→ T an S-morphism. We want to know if it lifts to an

element of X(T ) :

T0
f //

� _

��

X

��
T // S

This is equivalent to fill the following diagram of OS-algebras

f−1OX

f∗

��{{
0 // I // OT

// OT0
// 0

or equivalently to know wether or not the clas of the extension of OT0
by I becomes trivial by

pullback from OT0 to f−1OX that is to say if through the morphism

Ext1OT0
(L•T0/S

, I) −→ Ext1f−1OX
(f−1L•X/S , I) ≃ Ext1OX

(L•X/S , rf∗I)

the class c goes to zero (we suppose Rf∗ has finite cohomological dimension on quasi-coherent
sheaves, for example quasicompact and quasi-separated).

Moerover if such an extension exists the set of such liftings of our element of X(T0) to an
element of X(T )is a torsor under Ext0(L•X/S , Rf∗I).

In particular if T0 is affine (and X is separated over S which implies f is affine) this obstruction
lies in

Ext1OX
(L•X/S , f∗I)

If X is localy a complete intersection over S, L•X/S is a perfect complex and

Ext1OX
(L•X/S , f∗I) ≃ H1(X, (L•X/S)

∨ L
⊗OX

f∗I)

12



6 p-divisible groups and formal Lie groups

Théorème 4 (Grothendieck-Messing). Let G be a p-divisible group over a base S such that p is

localy nilpotent on S. Then G is fomaly smooth and Ĝ is a formal Lie group.

In particular, one can define for such a G ωG and LieG that are localy free OS-module of finite
rank. Localy on S, we have ωG = ωG[pn] for n >> 0, the conormal sheaf associated to the unit

section of H[pn], and the inclusion H[pn] ↪→ H[pn+1] induces isomorphisms ωH[pn+1]
∼−−→ ωH[pn]

for n >> 0. In fact one has
∀n ωH[pn] ≃ ωH/pnωH

Théorème 5. Let S and G be as in the preceding theorem. The following are equivalent :
— G = Ĝ
— G[p] is radicial
— for all n G[pn] is radicial

In this case G is said to be a formal p-divisible group. Moerover the following are equivalent :
— Ĝ is p-divisible that is to say is a formal p-divisible group
— G[p] is an extension of an étale finite finite group scheme by a finite localy free radicial one

0 −→ G[p]0 −→ G[p] −→ G[p]ét −→ 0

— idem for all G[pn]
— The function s 7−→ the separable rank of the fiber G[p]s is localy constant

If this is the case then Ĝ = lim
−→
n

G[pn]0 is a formal p-divisible group, Gét = lim
−→
n

G[pn]ét is an

étale one and G is an extension

0 −→ Ĝ −→ G −→ Gét −→ 0

7 Classification over caracteristic p perfect fields

7.1 The Dieudonné functor

Let k be a caracteristic p perfect field. Let W (k) be the Witt vectors and σ its Frobenius.

Définition 13. A cristal over k is a couple (M,V ) where M is a finite free W (k)-module and
V : M −→ M is a σ−1-linear mapping verifying

pM ⊂ V (M) ⊂ M

Remarque 6. An equivalent definition is to take a triple (M,F, V ) where F is σ-linear, V is
σ−1-linear and FV = p.

Théorème 6 (Dieudonné). There is a category equivalence between p-divisible groups over Spec(k)
and cristals over k.

In fact, more precisely, there is a covariant functor D from p-divisible groups over a perfect
field k to finite free W (k)-modules. This functor is compatible with base change : if k1 −→ k2
then D(− ⊗k1 k2)

∼−−→ W (k2) ⊗W (k1) D(−). The Frobenius morphism F : G −→ G(p) induces
D(F ) : D(G) −→ W (k) ⊗W (k),σ D(G) and thus a σ−1-linear mapping V : D(G) −→ D(G). In the
same way there is a σ-linear mapping F : D(G) −→ D(G) induced by the Verschiebung. Then
since V F = p on the p-divisible group we have FV = p on D(G). Thus to a G there is associated
a cristal (D(G), F, V ).

Moreover the rank of D(G) is equal to the height of G and [D(G) : V D(G)] = dim(G).

Remarque 7. We take the covariant definition of the Dieudonné modules. There is a contrava-
riant one. Both are linked through Cartier duality.
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Remarque 8. The Lie algebra functor can be deduced from D thanks to the relation

LieG = D(G)/V D(G)

Moreover
LieGD = V D(G)/pD(G)

and the extension

0 −→ V D(G)/pD(G) −→ D(G)/pD(G) −→ D(G)/V D(G) −→ 0

is the Lie algebra of the universal vector extension of G. We will see in the sequel that in fact
D(G) can be defined as the Lie algebra of the universal extension of a lifting of G to W (k).

One of the corollaries of the construction of the Dieudonné functor is :

Fait 1. A morphism f : G1 −→ G2 is an isogeny iff D(f) is injective and Im D(f) ia a lattice
in D(G2), or equivalently D(f) induces an isomorphism bewtween D(G1) ⊗ Q and D(G2) ⊗ Q.
Moreover the height of the isogeny f is equal to the length of coker(D(f)).

7.2 Three definitions of the Dieudonné functor

Here we give a brief summary of the different approaches to define the Dieudonné module of a
p-divisible group.

7.2.1 Via co-Witt vectors

Let for all n ∈ N∗ Wn be the group scheme of truncated Witt vectors. One has Wn = cokerV n

where W is the functor of Witt vectors and V : W −→ W is the Verschiebung. As a scheme one
has Wn ≃ An. One defines the co-Witt vectors as the fppf sheaf

CW (−) = lim
−→
n

Wn(−)

where the transition morphisms are given by the Verschiebung V : Wn −→ Wn+1. The idea is to
use an analog of the Pontryagin duality M 7→ Hom(M,Qp/Zp) where CW play the role of the
dualizing object. Then one puts for a p-divisible group over Spec(k)

D(G) = Hom(G,CW )

In fact this is not the good definition. One has to modify it a little bit using unipotent co-Witt
vectors CWu to catch the unipotent part of the p-divisible group.

This Dieudonné module is not the one we spoke before : it is the contravariant one (both are
linked through Cartier duality).

7.3 Via Cartier theory

7.4 Via the evaluation of a crystal

7.5 Classification of isocrystals

Définition 14. An isocristal over k is a couple (N,V ) where N is a finite dimensional W (k)Q-

vector space and V : N
∼−−→ N is a σ−1-linear isomorphism. A morphism of isocrystals is a

W (k)Q-linear morphism commuting to the action of V .

Thus to any crystal over k is associated an isocrystal. And thanks to the given caracterisation
of isogenies one has

14



Corollaire 4. The functor G 7→ D(G)Q is a fully faithfull functor from the category of p-divisible
groups up to isogeny (the cateory of p-divisible groups where we have inverted the class of maps
given by isogenies, in the sens of localization of categories) to the category of isocrystals over k.

We will see in a few moment what is the esential image of this functor.

Définition 15. Let λ ∈ Q. An isocrystal (N,V ) is isoclinic with slope λ if there exists a lattice
M in N such that V sM = prM where λ = r/s.

Théorème 7 (Dieudonné-Manin). The category of isocrystals over k is a direct orthogonal sum
indexed by Q of the categories of isoclinic isocrystals with some given slope in Q. In down to earth
terms : for any (N,V ) there is a V -invariant decomposition

N =
⊕
λ∈Q

Nλ

were (Nλ, V ) is isoclinic (zero for only a finite number of λ ∈ Q) and if λ1 ̸= λ2 then

Hom((Nλ1 , V ), (Nλ2 , V )) = 0

If k is algebraically closed then this category is semi-simple, the simple objects being indexed
by Q : for exach slople λ there exists a unique simple isocrystal isoclinic with slope λ.

The sets of λ s.t. Nλ ̸= 0 are called the slopes of (N,V ).

Corollaire 5. The functor G 7−→ D(G)Q induces an equivalence between p-divisible groups over
k up to isogeny and isocrystals whose slope lie bewteen 0 and 1.

One know G is étale iff F : G −→ G is an isomorphism. Thus :

Fait 2. G is étale iff D(G)Q is isoclinic with slope 0. G is a formal p-divisible group iff D(G)Q
doesn’t have the zero slope.

Thus, in the extension
0 −→ Ĝ −→ G −→ Gét −→ 0

D(Ĝ)Q ⊂ D(G)Q is the direct sum of the isoclinic parts with slope > 0.

Remarque 9. This is very particular to the zero slope case that the zero slope part of D(G)Q
splits without inverting p at the level of D(G).

If λ1, . . . , λr are the slopes of D(G) with multiplicity (a1, . . . , ar) then if ∀i λi = di

hi
with

di ∧ hi = 1 then

ht(G) =
∑
i

aihi dim(G) =
∑
i

aidi

Sometimes the number aihi is called the multiplicity of λi.

Définition 16. The Newton polygon attached to the data (λi, ai) is the unique convex polygon
whose breakpoints are in Z2 that begins at (0, 0) and whose slpopes are the λi each with multiplicity
aihi.

Thus this Newton polygon, if attached to (N,V ), ends at (ht(N,V ),dim(N,V )).

Corollaire 6. Let k be algebraically closed. The isogeny classes of height h dimension d p-divisible
groups over k are in bijection with convex polygons whose breakpoints are in N2, whose slopes are
in [01], that begin at (0, 0) and end at (h, d).
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n

1

n−1h0

Figure 1 – The possible Newton polygons of a one dimensional p-divisible group

7.6 Example in the case of Lubin-Tate groups

Using the preceding results one can find back the classification of one dimensional formal
p-divisible groups over Fp by their height.

In fact the possible Newton polygons of a one dimensional p-divisible group over Fp are shown
in the following figure

One sees they are parametrized by an integer h ∈ {0, . . . , n−1} where a p-divisible group such
that its Newton polygon is attached to the integer h is an extension

0 −→ H0 −→ H −→ H ét −→ 0

where H ét is étale of height h and H0 is a formal one dimensional p-divisibile group with height
n− h.

Moerover one verifies there is a unique isomorphism class of formal p-divisible groups H of
height n. Their crystal is given in the following way. TheW (k)-module D(H) has a base (e1, . . . , en)
such that

∀1 ≤ i ≤ n− 1 V.ei = ei+1 and V.en = pe1

that is to say the matrix of V is 
0 . . . 0 p
1 0

. . .
...

1 0


Then End(H) = End(W (k),V )(D(H)) = OD where D is a division algebra with invariant 1/n. If

Qpn = W (Fpn)[ 1p ] is the degre n unramified extension of Qp thent

D = Qpn [Π] OD = Zpn [π]

where Πn = p and ∀x ∈ Qpn Πx = xσΠ. Concretely,

∀1 ≤ i ≤ n− 1 Π.ei = ei+1 and Π.en = pe1

and ∀x ∈ Zpn its action on D(H) is x.ei = σ−i(x)ei.

8 Algebraization theorem

Let A be an I-adic ring.
Recall (EGA III) the following corollary of Grothendieck’s algebraization theorem :
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Théorème 8 (Grothendieck). Define an abelian scheme over Spf(A) as being a compatible system
of abelian schemes over the Spec(A/In) for n ∈ N∗ (a cartesian section of the fibered category of
abelian schemes over the Spec(A/In), n ≥ 1). Define a polarization of an abelian scheme over
Spf(A) as being a compatible system of polarizations.

Then the functor “formal completion along V (I)” induces a category equivalence between po-
larizable abelian schemes over Spec(A) and polarizable abelian schemes over Spf(A).

We’re going to see the same property is satisfied by p-divisible groups.

Définition 17. Let X be a formal scheme with ideal of definition I. A p-divisible group over X is
a compatible system of p-divisible groups over the Spec(OX/In), n ≥ 1.

This means we have forall n ≥ 1 a p-divisible group Gn over Spec(OX/In) and isomorphisms
Gn+1 mod In ∼−−→ Gn satisfying the usual cocyle relation.

Proposition 4 (Messing). The functor G 7−→ (G mod In)n≥1 induces a category equivalence
between p-divisible groups over Spec(A) and over Spf(A).

9 Rigidity of quasi-isogenies

Let’s remark for two p-disvisible groups G1, G2 Hom(G1, G2) is a Zp-module without torsion.

Proposition 5. Let S0 ↪→ S be an immersion defined by a localy nilpotent ideal. Suppose p is
localy nilpotent on S. Let G,H be two p-divisible groups over S and G0, S0 their reduction to S0.
Then the reduction to S0 induces an injection

HomS(G,H) ↪→ HomS(G0, H0)

and if moreover S is quasi-compact there exists N ∈ N s.t.

pNHomS0(G0, H0) ⊂ HomS(G,H)

Démonstration. By devissage one is reduced to the case when the immersion i : S0 ↪→ S is
defined by a squared zero ideal I.

We have now

HomS0(G0, H0) = HomS0(i
∗G, i∗H) = HomS(G, i∗i

∗H)

There is an adjonction morphismH −→ i∗i
∗H and the morphism HomS(G,H) −→ HomS(G0, H0)

is nothing else than the morphism induced by applying HomS(G,−) to this adjunction morphism.
The formal smoohtness of H implies H −→ i∗i

∗H is an epimorphism. Thus we have an exact
sequence

0 −→ ker(H −→ i∗i
∗H) −→ H −→ i∗i

∗H −→ 0

But from the following lemma we have

ker(H −→ i∗i
∗H) ≃ i∗HomOS0

(ωH0 , I)

This gives the exact sequence

HomS(G, i∗HomOS0
(ωH0

, I)) −→ HomS(G,H) −→ HomS(G0, H0) −→ Ext1(G, i∗HomOS0
(ωH0

, I))

But p is an epimorphism on G and localy nilpotent on i∗HomOS0
(ωH0

, I) thus the left term in

this sequence is zero. Now if pN is zero on S then the right term is killed by pN since it kills
i∗HomOS0

(ωH0
, I).

17



Lemme 12. Let i : S0 ↪→ S be a closed immersion defined by an ideal I such that I2 = (0).
Let H be a group-scheme over S and H0 = i∗H its reduction modulo I. Let H −→ i∗i

∗H be the
adjonction morphism that associates to s ∈ H(U) s|U×SS0

∈ H(U ×S S0) = H0(U ×S S0). Then
as fppf abelian sheaves over S

ker(H −→ i∗i
∗H) ≃ i∗HomOS0

(ωH0 , I)

where ωH0 is the conormal quasi-coherent sheaf associated to the unit section of H0.

Démonstration. Easy.
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