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1 Grothendieck Messing deformation theory

1.1 Universal vector extension

1.2 Motivation

We know the Hodge filtration of theH1 of an abelian variety over C determines the deformation
theory of this abelian variety. For example is S is a smooth analytic space over C and A −→ S is a
princiaply polarized abelian variety for each s ∈ S if one trivializes the Betti relative cohomology
of A −→ S in a a neighborhood of s the Hodge filtration the local trivialization of Betti defines
an holomorphic map U −→ H ⊂ Gr where U is a neighborhood of s and H ⊂ Gr is Siegel space
in its associated Grassmanian. Then the germs (A×S V )V where V goes through neigborhoods of
s ins S is a versal deformation of As iff the tangent map to U −→ H at s is an isomorphism that
is to say it is a local isomorphism at s.

Let A be an abelian variety of C. Consider its Hodge filtration

0 −→ Γ(A,Ω1
A) −→ H1

dR(A) −→ H1(A,OA) −→ 0

and Γ(A,Ω1) = ωA is the vectorspace of translation invariant differential forms, H1(A,OA) = ω∗
A∨

where A∨ is the dual abelian variety.
There is a imbedding H1

B(A,Z) ⊂ H1
dR(A) given by the comparison theorem between De

Rham and Betti cohomolohy. Moreover this imbeding composed with the projection H1
dR(A) −→

H1(A,OA) is still an embedding and

A∨(C) = H1(A,OA)/H
1
B(A,Z)

as can be easily verified by writting A = V/Λ, A∨ = V ∗/Λ∨, ωA∨ ≃ V,H1
dR(A) ≃ V ∗ ⊗R C.

Now we’re looking for a geometric way to find back the Hodge filtration. Let’s look at the
following extension of holomorphic Lie groups

0 −→ ωA −→ H1
dR(A)/H1

B(A,Z) −→ A∨(C) −→ 0

obtained by taking the quotient of the Hodge filtation by the discrete H1
B(A,Z). It is an extension

of the abelian variety A∨ by the vector bundle ωA.
Moreover, since we took the quotient by a discrete subgroup, one can find back the Hodge

filtration from this extension by applying the Lie algebra functor to it.
In fact one can prove :

Fait 1. The preceding extension is algebraic and it is universal among extension of A∨ by a vector
bundle.

which gives an intrinsec definition of it.

We are going to do the same for p-divisible groups, apart from the fact that the theory we’re
going to developp is covariant that is to say is expressed in terms of the “De Rham homology”.
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1.3 Universal vector extension of a p-divisible groups

Let S be a scheme on which p is localy nilpotent.

Définition 1. Let M be a quasi-coherent OS-module. We note M for the associated fppf sheaf.

Remarque 1. If M is localy free of finite rank over S then M is represented by a vector bundle
but in general it is not representable by a scheme.

Définition 2. Let G be a p-divisible group over S. A vector extension of G is an extension of fppf
sheaves

0 −→ M −→ E −→ G −→ 0

where M is a quasi-coherent OS-module. A morphism of vector extensions is a morphism of
digagrams

0 //M1

��

// E1

��

// G // 0

0 //M2
// E2

// G // 0

such that the left square is co-cartesian that is to say the morphisms induce an isomorphism
between the push-out of the upper extension by M1 −→ M2 and the bottom extension.

The category of vector extensions of G is rigid in the sens that there is at most one mor-
phism from a vector extension to another one. In fact, two morphisms differ from an element of
Hom(G,M). But since p is an epimorphism onG and localy niltpotent onM we have Hom(G,M) =
0.

Thus this has a meaning to speak about a universal vector extension that is to say an initial
object in the category of vector extensions.

From now we note M for M since there’s no ambiguity.

Proposition 1. There exists a universal vector extension

0 −→ V (G) −→ E(G) −→ G −→ 0

Moreover V (G) = ωGD and is thus a vector bundle.

Démonstration. We have to prove the functor M 7−→ Ext1(G,M) is representable. This is
local on S and we thus can suppose pNOS = 0 for an N ∈ N. The exact sequence

0 −→ G[pN ] −→ G
pN

−−−→ G −→ 0

induces

0 −→ Hom(G,M)
pN

−−−→ Hom(G,M) −→ Hom(G[pN ],M) −→ Ext1(G,M)
pN

−−−→ Ext1(G,M)

But in the preceding sequence both maps pN are zero since pN is zero on M. Thus there is an
isomorphism

Ext1(G,M) ≃ Hom(G[pN ],M)

but ( ? ? ?)
Hom(G[pN ],M) ≃ HomOS

(ωG[pN ]D ,M)

Thus the extension obtained py push-out in the following diagram

0 // G[pN ] //

��

G
pN

// G // 0

ωG[pN ]D

where G[pN ] −→ ωG[pN ]D is the morphisms that associates to an x ∈ G[pN ] = (G[pN ]D)D,

x : G[pN ]D −→ Gm, the element x∗ dT
T ∈ ωG[pN ]D , is universal.
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Exemple 1. The uniersal vector extension of Qp/Zp is

0 −→ Ga −→ (Ga ⊕Qp) /Zp −→ Qp/Zp −→ 0

where Zp ↪→ Ga ⊕Qp is the diagonal embeding.

Of course the universal vector extension is functorial in G : for all f : G1 −→ G2 there is a
morphism

0 // V (G1) //

h

��

E(G1)

��

// G1
//

f

��

// 0

0 // V (G2) // E(G2) // G2
//// 0

where h = (fD)∗ : ωGD
1

−→ ωGD
2
. This is easily checked using the pullback by f of the bottom

extension and the universality property of the upper extension.

Proposition 2. The fppf-sheaf E(G) is formaly smooth and Ê(G) is a formal Lie group and is
an extension of formal Lie groups

0 −→ V̂ (G) −→ Ê(G) −→ Ĝ −→ 0

where V̂ (G), the formal completion of a vector bundle along its zero section, is Zariski localy on

S isomorphic to a sum of copies of Ĝa.
Moreover the following sequence of OS-modules is exact

0 −→ V (G) −→ LieE(G) −→ LieG −→ 0

Démonstration. This is not difficult, essentialy by writting E(G) = lim
−→
n

En where En is the

reciprocal image of G[pn] and

0 −→ V (G) −→ En −→ G[pn] −→ 0

thus, En is a fppf-torsor over G[pn] under a smooth affine scheme and is thus representable by a
smooth G[pn]-scheme.

Remarque 2. By functoriality of the universal extension, for a p-divisible group over a formal
scheme such that p is in its definition ideal there is associated a universal vector extension.

1.4 Messing’s crystal

Let S be a scheme on which p is localy nilpotent. Let NCRIS(S) be the absolute big Zariski
nilpotent cristalline site of S whose objects are (U ↪→ T, γ) where U is an S-scheme, U ↪→ T is a
nil-immersion defined by an ideal I equiped with nilpotent divided powers γ. Let OCRIS

S be the
structural sheaf of this site.

Théorème 1 (Messing). There exists a crystal E in localy free OCRIS
S -modules on NCRIS(S)

such that ∀(U ↪→ T, γ) ∈ NCRIS(S) for any lifting G̃U of G ×S U to a p-divisible group over T
there exists a canonical isomorphism

E(U↪→T )
∼−−→ LieE(G̃U )

Here to explain the word canonical it would need to go inside the construction of this crystal.
This is done in the following section.

Définition 3. We will note D(G) for the crystal of G.

Remarque 3. In fact Messing proves E(G̃U ) defines a crystal in fppf sheaves. The preceding
crystal is deduced by applying the Lie algebra functor.
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1.5 Construction of Messing’s crystal

1.5.1 The exponential map

Théorème 2 (Messing). Let S0 ↪→ S be an immersion defined by an ideal I equiped with nilpotent
divided powers γ. Let H be a formal Lie group over S and M a localy free of finite rank OS-module.
Let G0 and M0 be the reductions moduli I of G and M. Then there exists a morphism

exp : HomOS
(M, I.LieH) −→ ker(HomS(M, H) −→ HomS0

(M0, H0))

natural in H, M and (S, I, γ) such that if I2 = pI = 0 then via the natural identification between
ker(HomS(M, H) −→ HomS0

(M0, H0)) and HomOS
(M, I.LieH) then

exp f =
∑
i≥0

(−1)iΠi ◦ f

Wehre Π : I ⊗LieH −→ I ⊗LieH is defined by Π = γp ⊗α where γp : I −→ I is Frob-linear and
α is the Frob-linear morphism induced at the level of the Lie algebra LieH by V : H(p) −→ H
if H is p-divisible and more generaly by the p-exponentiation of invariant derivations on H for
general H (the operation defining the restricted Lie algebra structure on Lie (H)).

We won’t give the proof of this theorem. The proof given in ? ? ? is not realy natural. A more
natural one is given in ? ? ? using Cartier theory. The points consists in proving that with the
hypothesis of the theorem there is an isomorphism

log : H(I) ∼−−→ I.LieH

(depending on the divided powers on I allthough it is not in the notations). This can be done for

the infinite dimensional formal group given by the formal completion of the Witt vectors Ŵ (−).
Then Cartier theory gives a resolution of any formal group by Witt vectors

Ŵm −→ Ŵn −→ H −→ 0

and this enables one to construct such a logarithm isomorphism using the one for Witt vectors.

In the case of a one dimension formal group law the concrete statement about the existence of
this logarithm is the following.

Théorème 3. Let R ba a ring and I an ideal in R equiped with nilpotent divided powers (γn)n.
Let F ∈ R[[X,Y ]] be a formal group law over R. Let ω = f(T )dT be a generator of the invariant
differential forms on F . Let f(T ) =

∑
n≥0 anT

n. For x ∈ I put

log(x) =
∑
n≥0

an(n− 1)!γn(x)

Then log induces an isomorphism of groups

log : (I,+
F
)

∼−−→ (I,+)

Exemple 2. If F is Ĝm then log(x) =
∑

n≥0(n− 1)!γn(x). Where (n− 1)!γn(x) is the analog of
“xn/n”.

Now let’s note exp : I.LieH −→ H(I) for the inverse of log. To construct

exp : HomOS
(M, I.LieH) −→ HomS(M, H)

one uses the fact for any flat S scheme T the divided powers extend to I.OT . Thus since M is
represented by a flat S-scheme one concludes thanks to Yoneda lemma.
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1.5.2 The crystal

Here we explain how using the exponential morphism Messing proves the preceding theorem.

Théorème 4 (Messing). Let S0 ↪→ S be a closed immersion defined by an ideal equiped with
nilpotent divided powers. Suppose p is localy nilpotent on S. Let G, resp. H, be two p-divisible
groups over S and G0, resp. H0 their reduction to S0. Suppose given a morphism f : G0 −→ H0.
Then there exists a unique morphism g : E(G) −→ E(H) reducing to E(f) on S0 such that for
any linear morphism u : V (G) −→ V (H) lifting V (f) : V (G0) −→ V (H0) in the following diagram

0 // V (G)
i //

u

��

E(G)

g

��

// G // 0

0 // V (H)
j // E(H) // H // 0

j ◦ u − g ◦ i : V (G) −→ E(H) (that reduces to zero on S0) is an exponential (with values in the

formal Lie group Ê(H)).

This theorem proves for any p-divisible group G0 over S0, for two lifts G,G′ there exists a
unique isomorphism E(G)

∼−−→ E(G′) deforming the identity and satisfying the conditions of the
preceding theorem. Moerover, still thanks to the preceding theorem, this construction is functorial
in G, proving the fact that this defines a crystal.

The proof of the preceding theorem is by devissage to the case when the ideal I defininig
he immersion S0 ↪→ S verifies I2 = pI = 0. Then one uses the explicit formula given for the
exponential map in this case and the universal property of the universal vector extension.

1.6 Deformation theory

Let S0 ↪→ S be a divided powers immersion as in the preceding theorem.
For each p-divisible groupG0 over S0 we can consider its crystal D(G0). Its evaluation D(G0)

(S0
Id−−→S0)

is identified with LieE(G0) and is thus filtered by the sub OS0
-module V (G0) = FilD(G)

(S0
Id−−→S0)

that is a localy free, localy direct summand in D(G0)
(S0

Id−−→S0)
.

To each lifting G of G0 over S is associated localy free localy direct factor filtration V (G) of
the evaluation of the crystal D(G0)(S0↪→S), filtration thtat reduces modulo de divided powers ideal
I to FilD(G)

(S0
Id−−→S0)

.

Définition 4. Let C be the category whose objects are couples (G0,Fil) where G0 is a p-divisible
group over S0 and Fil is a localy free localy direct summand OS-module in D(G0)(S0↪→S) such
that its reduction to S0 is V (G0) ⊂ D(G0)

(S0
Id−−→S0)

; and HomC((G0,Fil), (G
′
0,Fil

′)) consists in

morphisms f from G0 to G′
0 such that the induced crystal morphism D(f) verifies

D(f)(S0↪→S)(Fil) ⊂ Fil ′

Théorème 5. The functor from the category of p-divisible group over S to C that associates to
G the couple (G0,Fil) where G0 is the reduction to S0 of G and Fil is the vector part V (G) is a
category equivalence.

Remarque 4. The case when S0 ↪→ S is defined by a squared zero ideal has been obtained by
Grothendieck using the theory of the cotangent complex ( ? ? ?). The more general case with divided
powers is due to Messing.

1.7 The squared zero case

This case had allready been obtained by Grothendieck using the cotangent complex theory.

5



Corollaire 1. Let S0 ↪→ S be an immersion defined by an ideal I s.t. I2 = (0). Let G0 be a
p-divisible group over S0. Then the set of liftings of G0 to a p-divisible group over S is a principal
homogenous space under

ω∗
GD ⊗ ω∗

G ⊗ I

Démonstration. The tangent space to the deformation functor of p-divisible groups is identified
to the one of a Grassmanian thanks to Grothendieck-Messing’s deformation theory.

Here is a more conceptual restatement of the preceding results

Théorème 6. The stack X of p-divisible groups is formaly smooth. Let G be the universal p-
divisible group over X. Then restricted to schemes on which p is localy nilpotent the tangent bundle
to this stack is LieGD ⊗ LieG.

Exemple 3. Let O be an inequal caracteristic discrete valuation ring with residue field of ca-
racteristic p. Then if p ̸= 2, pO has nilpotent divided powers. Thus the category of p-divisible
groups over Spf(O) being equivalent to the one over Spec(O) there is a fully faithfull functor from
the category of p-divisible groups over Spec(O) to the category of couples (G0,Fil) where G0 is a
p-divisible group over O/pO and Fil is a direct factor filtration of the evaluation of its crystal on
O ↠ O/pO.

If O is unramified over Zp one obtains thus a fully faithfull functor from the category of
p-divisibile groups over O to filtered Dieudonné modules. After inverting p one obtains a fully
faithfull functor from p-divisible groups over O to filtered isocrystals. This works the same when
the absolute ramification index e verifies e ≤ p− 1 since then the ideal pO is equiped with divided
powers. The determination of the essential image of this functor is Fontaine’s theory of filtered
admissible modules in a partciular case.

1.8 Application to the deformation spaces of p-divisible groups

Here we are going to refind and generalize theorem ? ? ? on Lubin-Tate deformation spaces.

Théorème 7. Let k be a caracteristic p perfect field. Let H be a dimension d and height h p-
divisible group over Spec(k) Let DefH be the functor from artinian rings with residue field k to
sets that associates to A the isomorphism classes of couples (H, ρ) where H is a p-divisible group
over A and ρ : H ∼−−→ H ⊗A k is an isomorphism.

Then DefH is pro-representable :

DefH ≃ Spf
(
W (k)[[T1, . . . , Td(h−d)]]

)
Démonstration. We apply theorem? ?. We know the functor F is formaly smooth. The compu-

tation of the tangent space has been done through Grothendieck-Messing deformation theory.
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