
An introduction to the geometry of Lubin-Tate spaces

Laurent Fargues
CNRS-IHES-université Paris-Sud Orsay
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1 The Lubin-Tate tower

1.1 Motivation

As allready remarked, the upper/lower Poincaré half plane H± = C \R represents the functor
from smooth analytic spaces S to sets that associates to S the isomorphism classes of couples

(E, ρ) where E
p−→ S is an elliptic curve and ρ : Z2 ∼−−→ R1p∗Z. Instead of trivialising the Betti

cohomology one can trivialse it partialy : for N ≥ 3 one can consider the functor X(N) that
associates to S the isomorphism classes of couples (E, ρ) where E is as before and

ρ : (Z/NZ)2 ∼−−→ R1p∗Z/NZ

This is the level N modular curve.
On Lubin-Tate spaces the situation is more complicated : there are two fiber functors on p-

divisible groups in unequal caracteristic, the Dieudonné functor (crystalline cohomology of the
special fiber) and the Tate module functor (the p-adic étale cohomology of the generic fiber). We
have allready trivialized the Dieudonné functor on Lubin-Tate spaces by specifying the isomor-
phism class of our p-divisible group on the special fiber. Now, our space is not simply connected
as is H±. We still can trivialize the Tate-module, at least partialy like in the case of X(N).

1.2 Level structures on the generic fiber

Let X = Spf(R) be the Lubin-Tate space of deformations of the p-divisible group H of height
n. Let (H, ρ) be the universal deformation. We still note H for the associated p-divisible group
over Spec(R).

Let’s consider the Tate module Tp(H) of H ×Spec(R) Spec(R[ 1p ]). We can see it as an étale

p-adic local system on Xrig : the system (H[pk]rig)k≥1.

Définition 1. Let X = Xrig. We define forall k ≥ 1 Xk to be the functor on rigid analytic spaces
over Xrig that associates to S −→ X the sets of isomorphism of étale sheaves

η : (p−kZ/Z)n ∼−−→ H[pk]rig ×X S

called a level k structure.

Lemme 1. X is represented by a finite étale Galois covering of X with Galois group GLn(Z/pkZ).

Démonstration. There is a right action of GLn(Z/pkZ) on X by η 7→ η ◦ g. After a finite étale
covering of X trivializing H[pk] that is to say X ′ −→ X such that H[pk] ×S X ′ ≃ (p−kZ/Z)n,
Xk ×X X ′ becomes a GLn(Z/pkZ)-Galois cover over X ′. Thus by finite étale descent this proves
the assertion.

We thus have a tower of étale coverings

. . . −→ Xk+1 −→ Xk −→ . . . −→ X1 −→ X

with an action of GLn(Zp) wich make it “pro-Galois covering of X with Galois group GLn(Zp)”.
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1.3 Drinfeld level structures

Définition 2. Let (A,m) be a complete local ring with caratetristic p residue field. Let F ∈
A[[X,Y ]] be a height n formal group law on R. A level k Drinfeld structure on F is a group
morphism

η : (p−kZ/Z)n −→ F [pk](R)

that is to say a group morphism η : (p−kZ/Z)n −→ (m,+
F
) such that

∏
x∈(p−kZ/Z)n

(T − η(x)) | [pk]F (T )

Remarque 1. The preceding definition depends only on the formal group and not on the group
law since for any f ∈ A[[T ]], f(0) = 0 and f ′(0) ∈ A×∏

x∈(p−kZ/Z)n
(T − η(x)) | [pk]F (T ) ⇐⇒

∏
x∈(p−kZ/Z)n

(T − f(η(x))) | f ◦ [pk]F ◦ f−1

Hence the preceding definition makes sens for a formal p-divisible group H without any particular
choice of an isomorphism of pointed formal schemes Spf(A[[T ]])

∼−−→ H.

We will use repeteadly the following form of Weierstrass division

Lemme 2. Let A be an I-adicaly compete ring. Let g =
∑

i≥0 aiT
i ∈ A[[T ]]. Suppose ∃n an ∈ A×

and ∀i < n ai ∈ I. Then for all f ∈ A[[T ]] ∃Q,R such that Q ∈ A[[T ]], R ∈ A[T ], degR < n and

f = Qg +R

Lemme 3. Let F (X,Y ) be a formal group law over a ring B. Then ∃w ∈ B[[X,Y ]]× such that

X −
F
Y = (X − Y )× w

Démonstration. We apply Weierstrass division theorem in the ring C = B[[Y ]], complete for
the Y -adic topology. The series X − Y ∈ C[[X]] verifies that the coefficient of X is 1, a unit, and
−Y is topologicaly nilpotent. Thus we can apply Weierstrass division

∃f ∈ C[[X]] ∃g ∈ C X −
F
Y = (X − Y )f + g

But puting X = Y one sees g = 0. Thus X−
F
Y = (X−Y )f . Now since X−

F
Y ≡ X−Y mod deg 2

one sees f(0) = 1 and thus f is a unit.

Remarque 2. Last lemma is false for X +
F
Y and X + Y as one sees in the case of Ĝm.

Corollaire 1. In the definition of a Drinfeld level structure one can replace∏
x∈(p−kZ/Z)n

(T − η(x))

by ∏
x∈(p−kZ/Z)n

(T −
F
η(x))

Proposition 1. With the hypothesis of the preceding definition for a morphism

η : (p−kZ/Z)n −→ (m,+
F
)

the following are equivalent
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— η is a Drinfeld level structure

— [pk]F (T ) = u×
∏

x∈(p−kZ/Z)n
(T − η(x)) where u ∈ A[[T ]]×.

—
∏

x∈(p−1Z/Z)n
(T − η(x)) | [p]F (T )

— [p]F (T ) = v ×
∏

x∈(p−1Z/Z)n
(T − η(x)) with v ∈ A[[T ]]×.

Démonstration. The second assertion clearly implies the first. Let’s see the first assertion implies
the second one. If

[pk]F (T ) = f ×
∏

x∈(p−kZ/Z)n
(T − η(x))

for somme f ∈ A[[T ]] then by reducing modulo the maximal ideal of A, using the fact that [pk]F is
congruent to unit×T pn

modulo m and degre ≥ pn+1, one sees f(0) is a unit and thus f ∈ A[[T ]]×.
Thus the two first assertiion are equivalent.

In the same way one proves assertions three and four are equivalent.

Let’s prove assertion three implies the first one. First by the preceding lemma we have to prove∏
x∈(p−1Z/Z)n

(T −
F
η(x)) | [p]F (T ) =⇒

∏
x∈(p−kZ/Z)n

(T −
F
η(x)) | [pk]F (T )

Thus let’s suppose

[p]F (T ) = f(T )×
∏

x∈(p−1Z/Z)n
(T −

F
η(x))

for some f(T ). Let’s prove by induction on i, starting at i = 1 and finishing at i = k, the following
assertion ∏

x∈(p−iZ/Z)n
(T −

F
η(x)) | [pi]F (T )

Suppose it is verified for i− 1. Then

[p]F (T ) = f(T )×
∏

x∈(p−1Z/Z)n
(T−

F
η(x)) =⇒ [pi]F (T ) = f([pi−1]F (T ))×

∏
x∈(p−1Z/Z)n

([pi−1]F (T )−
F
η(x))

If we choose for each x ∈ (p−1Z/Z)n an element x̃ ∈ (p−iZ/Z)n such that pi−1x̃ = x then

[pi]F (T ) = f([pi−1]F (T ))×
∏

x∈(p−1Z/Z)n
([pi−1]F (T )−

F
[pi−1]F (η(x̃)))

= f([pi−1]F (T ))×
∏

x∈(p−1Z/Z)n
[pi−1]F (T −

F
η(x̃))

By the induction hypothesis

∃g(T ) [pi−1]F = g(T )×
∏

y∈(p−i+1Z/Z)n
(T −

F
η(y))

And thus

[pi]F (T ) = f([pi−1]F (T ))×
∏

x∈(p−1Z/Z)n
y∈(p−i+1Z/Z)n

g(T −
F
η(x̃)) (T −

F
η(x̃)−

F
η(y))︸ ︷︷ ︸

T−
F
η(x̃+y)

3



and thus ∏
x∈(p−1Z/Z)n

y∈(p−i+1Z/Z)n

(T −
F
η(x̃+ y)) | [pi]F (T )

But the family of x̃+ y, with x, y as in the preceding formula, is exactly (p−iZ/Z)n.

Now let’s prove assertion two implies assertion three. Thus suppose

[pk]F (T ) = w ×
∏

x∈(p−kZ/Z)n
(T −

F
η(x))

with w ∈ A[[T ]]×. Writte

[p]F (T ) =
∏

x∈(p−1Z/Z)n
(T −

F
η(x))×Q(T ) +R(T )

for the Weierstrass division of [p]F by the polynomial
∏

x∈(p−1Z/Z)n(T −
F

η(x)) that is to say

Q ∈ A[[T ]] and R ∈ A[T ] degR < pn. As before one verifies Q ∈ A[[T ]]×. Moreover by reducing
modulo m, since [p]T ≡ unit× T pn

mod deg > pn we have R ∈ m[T ]. Putting T = 0 one finds

R ∈ Tm[T ]

Now suppose R ∈ mk[T ] for some k ≥ 1. We will now prove R ∈ mk+1[T ]. This will allow us to
conclude since then R ∈ (∩k≥1m

k)[T ] = (0).
Thus, let’s compute in A/mk+1[[T ]]. Then we prove by induction on i for 1 ≤ i ≤ k

[pi]F ≡
∏

x∈(p−iZ/Z)n
(T −

F
η(x))×Qi(T ) +R(aiT

p(i−1)n

) mod (mk+1[[T ]], T pin

mk[[T ]])

where Qi ∈ A[[T ]]× and ai ∈ A×. In fact if it is verified for i− 1 that is to say

[pi−1]F ≡
∏

x∈(p−i+1Z/Z)n
(T −

F
η(x))×Qi−1(T ) +R(ai−1T

p(i−2)n

) mod (mk+1[[T ]], T p(i−1)n

mk[[T ]])

then

[pi]F ≡
∏

x∈(p−i+1Z/Z)n
[p]F (T−

F
η(x̃))×Qi−1◦[p]F+R(ai−1[p]

p(i−2)n

F ) mod (mk+1[[T ]], [p]p
(i−1)n

F mk[[T ]])

where x̃ ∈ (p−iZ/Z)n is such that px̃ = x. But the ideal (mk+1[[T ]], [p]p
(i−1)n

F mk[[T ]]) is equal to

(mk+1[[T ]], T pin

) since [p]F ≡ unit×T pn

mod (m[[T ]], T pn+1A[[T ]]). Now in the same way one has

R(ai−1[p]
p(i−2)n

F ) ≡ R(unit× T p(i−1)n

)

thus, we have modulo (mk+1[[T ]], T pin

mk[[T ]])

[pi]F ≡
∏

x∈(p−i+1Z/Z)n

 ∏
y∈(p−1Z/Z)n

(T −
F
η(x̃+ y)).Q(T −

F
η(x̃)) +R(T −

F
η(x̃))

 .Q([p]F )+R(aiT
p(i−1)n

)

Now R(T −
F
η(x̃)) ≡ R(T ), R(T )2 ≡ 0 and Q(T −

F
η(x̃))R(T ) ≡ Q(T )R(T ). Thus

[pi]F ≡ Q([p]F )
∏

x∈(p−i+1Z/Z)n
y∈(p−1Z/Z)n

(T −
F
η(x̃+ y))Q(T −

F
η(x̃)) + pi−1Q([p]F )R(T ) +R(aiT

p(i−1)n

)
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But pi−1 ∈ m and thus pi−1R(T ) ≡ 0. We thus obtain the induction hypothesis for i easily.
Thus we now have

[pk]F ≡
∏

x∈(p−kZ/Z)n
(T −

F
η(x))×Qk(T ) +R(ak(T

p(k−1)n

)) mod (mk+1[[T ]], T pkn

mk[[T ]])

where Qk ∈ A[[T ]]× and axk ∈ A×. And by hypothesis

[pk]F (T ) = w ×
∏

x∈(p−kZ/Z)n
(T −

F
η(x))

with w ∈ A[[T ]]×. Using Qk and w are units plus the fact that degR < pn one concludes
R ≡ 0 mod mk+1[T ].

1.4 Drinfeld integral models

Proposition 2. Consider the functor on artin local ring with residue field Fp that associates to
A the set of isomorphism classes of triples (H, ρ, η) where H is a p-divisible group over A,

ρ : H ∼−−→ H ⊗A Fp

and
η : (p−kZ/Z)n −→ H[pk](A)

is a Drinfeld level structure. This functor is pro-representable by a formal scheme Xk = Spf(Rk)
where Rk is a complete local ring.

Démonstration. By associating (H, ρ) to (H, ρ, η) one sees this functor is over Lubin-Tate space
X = Spf(R). Moreover if F (X,Y ) ∈ R[[X,Y ]] is a universal formal group law over R this functor
is a subfunctor of

Y = F [pk]×X · · · ×X F [pk]

where F [pk] = Spf(R[[T ]]/([pk]F )). We have Y = Spf(B) with

B = R[[T1]]/([p
k]F (T1))⊗̂R . . . ⊗̂RR[[Tn]]/([p

k]F (Tn))

and over Y there ia a universal η :

η : (p−kZ/Z)n −→ H ×X Y

given by ei 7→ Ti where (ei)1≤i≤n is the canonical base of (p−kZ/Z)n. Now our functor is the
subfunctor of Y where this η satisfies Drinfeld divisibility condition. First let’s remark B is a
complete local ring finite over R. In fact By Weierstrass R[[T ]]/([pk]F (T )) is a finite R-algebra
thus B is finite over R (finiteness implies one can replace ⊗̂ by ⊗) and

B ≃ R[[T1, . . . , Tn]]/([p]F (T1), . . . , [p]F (Tn))

with each [pk]F (Ti) in the maximal ideal (m, T1, . . . , Tn) of the complete local ring R[[T1, . . . , Tn]]
with m being the maximal ideal of R, which implies B is local and complete.

Now we can applyWeierstrass division theorem to the ringB, [pk]F (U) ∈ B[[U ]] and
∏

x∈(p−kZ/Z)n(U−
Ti) :

[pk]F (U) =
∏

x∈(p−kZ/Z)n
(U − Ti).Q(U) +R(U)

where R(U) ∈ B[U ] and degR < pnk. Writte

R =

pnk−1∑
i=0

aiU
i
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Reducing modulo the maximal ideal of B the preceding division on sees forall i ai lies in this
maximal ideal. Thus

Rk = B/(a1, . . . , apnk−1)

is a complete local ring such that Spf(Rk) represents our functor.

Théorème 1. For all k the complete local rings Rk are regular with a system of parameter given
by (η(p−ke1), . . . , η(p

−ken)), η being the universal level structure and (e1, . . . , en) the canonical
basis of Zn.

Démonstration. We have seen in the preceding proof thatRk is a finiteR-algebra. Since dimR =
n we deduce dimRk = n. Thus it suffices to prove

Rk/(η(p
−ke1), . . . , η(p

−ken)) = Fp

But by proposition ? ? ? and the preceding proof giving an explicit construction of Rk

Rk = R1[[T1, . . . , Tn]]/
(
([pk−1]F (T1)− η(p−1e1)), . . . , ([p

k−1]F (Tn)− η(p−1en))
)

where F is the universal formal group law and on Rk

∀i η(p−kei) = Ti

Thus
Rk/(η(p

−ke1), . . . , η(p
−ken)) = R1/(η(p

−1e1), . . . , η(p
−1en))

We thus have to prove the assertion for R1. But now thanks to ? ? ? we can choose formal coordi-
nates (x1, . . . , xn−1) on R such that

[p]F = pu0T + x1u1T
p + · · ·+ xn−1un−1T

pn−1

+ unT
pn

with ∀i ui ∈ W (Fp)[[x1, . . . , xn−1]][[T ]]
×. Writting Drinfeld divisibility condition we find

unit× T pn

= pu0T + x1u1T
p + · · ·+ xn−1un−1T

pn−1

+ unT
pn

modulo (η(p−1e1), . . . , η(p
−1en))

and thus
∀i xi ∈ (η(p−1e1), . . . , η(p

−1en)) and p ∈ (η(p−1e1), . . . , η(p
−1en))

But, as seen in the explicit given construction of R1 from R, R1 as an R-algebra is generated by
(η(p−1e1), . . . , η(p

−1en)). Thus

R1/(η(p
−1e1), . . . , η(p

−1en)) = R/(p, x1, . . . , xn−1) = Fp

Remarque 3. This proof consists just in verifying any Lubin-Tate group with a trivial Drinfeld
level structure is trivial that is to say isomorphic to H since Spf(Rk/((η(p

−ke1), . . . , η(p
−ken))) is

the moduli space of (H, ρ, η) with trivial η.

Corollaire 2. Putting R = R0, forall k
′ ≥ k ≥ 0 Rk′ is a finite flat Rk-algebra.

Démonstration. We have allready seen it is finite. But both ring being regular it is flat since any
finite type morphism between noetherian regular rings with fibers of the same dimension is flat.

Now there is a right action of GLn(Z/pkZ) on Xk over X by η 7−→ η ◦ g.

Proposition 3. Spec(Rk[
1
p ]) −→ Spec(R[ 1p ]) with its action of GLn(Z/pkZ) is the moduli space

of trivializations of the finite étale group scheme H[pk]⊗R R[ 1p ].
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Démonstration. Writte [pk]F = u(T ) × f(T ) with u an invertible series and f(T ) a polyno-
mial. After inverting p Drinfeld condition becomes : all η(x) form distinct roots of the separable
polnyomial f(T ).

Corollaire 3. Via the preceding action Spec(Rk) is an fppf GLn(Z/pkZ)-torsor over Spec(R).
Thus Rk is finite flat of degre |GLn(Z/pkZ)|.

Démonstration. The quotient Spec(Rk)/GLn(Z/pkZ) is the spectrum of a finite R-algebra
equal to R after inverting p by the preceding lemma. But R being regular it is integraly closed in
R[ 1p ]. Thus

Spec(Rk)/GLn(Z/pkZ) = Spec(R)

But Spec(Rk) −→ Spec(R) being flat this implies Spec(Rk) is an fppf-torsor over Spec(R) under
GLn(Z/pkZ).
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