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A Finite flat group schemes

All schemes will be separated. If S is a scheme we will consider the associated fppf topology. It
is the topology associated to all schemes over S and whose covering morphisms are generated by
faithfully flat of finite presentation morphisms of S-schemes (by topology associated to we mean
the topology associated to the preceding pretopology). We refer to [SGA 3, tome I, exposé IV] for
generalities on Grothendieck topologies and quotients of sheaves.

In the following notes we will work with general hypothesis like “of finite presentation” or
“finite localy free”. For a first approach the reader can suppose he is working over a noetherian
base and all its schemes are of finite type. This is what the author of this note used to do until
the day he really had to use the theory over non-noetherian bases.

A.1 General results of algebraic geometry

A.1.1 Finite flat/finite localy free

Recall the following very basic lemma from commutative algebra, since we use it without
quoting.

Lemme 1. Let f : X −→ S. Then X is finite localy free over S iff f is finite flat of finite
presentation.

In particular if S is localy noetherian finite flat over S is equivalent to finite localy free over S.

Recall moreover that a finite morphism f : X −→ S is of finite presentation iff f∗OX is localy
of finite presentation as an OS-module. That is to say a finite A-algebra B is of finite presentation
as an A-algebra iff it is of finite presentation as an A-module.

A.1.2 Flatness fiber by fiber

Recall :

Théorème 1 (Grothendieck, EGA IV Coro. 11.3.11). Let

X
f //

g
��

Y

h��
S

be a diagram of localy of finite presentation morphisms of schemes. Then the following are equi-
valent

— g is flat and ∀s ∈ S fs : Xs −→ Ys is flat
— f is flat and h is flat at all points of f(X)
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A.1.3 Monomorphisms

Proposition 1 (EGA IV, proposition 8.1.5). A proper morphism of schemes is a monomorphism
iff it is a closed immersion.

Corollaire 1. Let S be a scheme. A morphism from a finite S-group-scheme to a finite type
S-groups-scheme is a monomorphism iff it is a closed immersion iff the kernel is trivial.

Remarque 1. We refer to [SGA 3 exposé XVI, chapter 1] for examples of monomorphisms of
group schemes that are not immersions.

A.1.4 Connected components of a finite flat morphism

Recall for a quasi-finite morphism f : X −→ S and s ∈ S the separable rank of the fiber Xs

is |Xs(k(s)
sep)| where k(s)sep is a separable closure of k(s). One has Xs ≃ Spec(A) where A is a

finite k(s)-algebra. It is thus artinian isomorphic to a finite product

A ≃
∏
i∈I

Bi

where each Bi is artinian local with residue field ki that is a finite extension of k(s). Then the
separable rank of Xs is ∑

i∈I

[ki : k(s)]
sep

where [. : .]sep means separable degre.

Lemme 2 ([1], lemma 4.8 p.63). Let f : X −→ S be finite and localy free. Then there exists a
factorization

f : X
g−→ Y

h−−→ S

with h and g finite localy free, h étale and g radicial surjective iff the separable degre of the fibers of
f is localy constant. If this is the case then this factorization is unique up to a unique isomorphism
and functorial in X/S.

We refer to [1] for the details of the proof, but let’s point out that when S = Spec(k) is the
spectrum of a field the proof is the following. Let A ≃

∏
i∈I Bi be a finite k-algebra as before with

Bi local artinian and residue field ki. Then if for each i k′i is the separable closure of k in ki thanks
to the fact that k′i|k is separable (and thus étale) there exists a unique lift

Bi
// // ki

k′i
?�

OO

O/

__

of k-algebra morphisms from k′i into Bi. Then Y = Spec(
∏

i∈I k
′
i) and at the level of algebras the

factorization is
k −→

∏
i∈I

k′i −→
∏
i∈I

Bi = A

Here is a particular case of [EGA IV, proposition 15.5.1] :

Proposition 2. Suppose S is localy noetherian. Let X −→ S be finite flat. Then the function
S ∋ s 7−→ (separable rank of Xs) is lower semi-continuous.
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This means for each n ∈ N the sets of s ∈ S such that |Xs(k(s)
sep)| ≥ n is open in S. The proof

of [EGA IV, proposition 15.5.1] is, using the fact one konw this function is allready constructible,
by reduction to the case when S is the spectrum of a discrete valuation ring S = Spec(O). Then
one has to prove the separable rank of the special fiber of X/O is greater than the one of its
generic fiber.

Corollaire 2. Let S be noetherian. Let X −→ S be finite flat. Then there exists a “découpage”
of X into dijsoints localy closed subsets

|X| =
∐

1≤i≤N

Zi

such that ∀k
⋃
i≤k

Zi is closed and if Zi stands for the associated reduced localy closed subscheme

of X then over Zi there is a factorization

X ×S Zi −→ Yi −→ Zi

as in lemma 2.

A.2 Quotients

This is one of the main theorem of [SGA 3, tome I, exposé V].

Théorème 2 (Grothendieck). Let S be a scheme. Let G be a finite localy free S-group scheme
acting on an S-scheme X via q : G×S X −→ X. Suppose each orbit of G is contained in an affine
open subset of X that is to say if p : G ×S X −→ X is the projection ∀x ∈ X the set q(p−1(x))
is contained in an affne open subset. Then the fppf quotient sheaf G\X is representable by an
S-scheme. Moreover :

— The quotient scheme G\X coincide with the quotient in the category of ringed spaces
— The morphism X −→ G\X is integral
— If X is affine so is G\X
— If G acts freely on X then X −→ G\X is a finite localy free morphism and the morphism

G×S X −→ X ×G\X X

(g, x) 7−→ (x, g.x)

is an isomorphism. Thus X −→ G\X is an fppf G-torsor.

In the preceding theorem by quotient in the category of ringed spaces we mean : consider the
diagram of ringed spaces

G×S X
q //

p
// X

then the quotient ringed spaces has as underlying topological space the quotient Y of the diagram

|G×S X|
q //

p
// |X|

in the category of topological spaces and has as a structural sheaf the subsheaf of δ∗OX , where
δ : |X| −→ Y is the projection, consisting of elements x such that q∗x = p∗x.

If S = Spec(R), G = Spec(A) and X = Spec(B) then in the diagram

B
p∗
//

q∗
// A⊗R B
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(where p∗b = 1⊗ b) if
C = {b ∈ B | q∗b = p∗b}

we have
G\X = Spec(C)

In the preceding theorem when we say G acts freely on X we mean : for all S-scheme U G(U)
acts freely on X(U), and it suffices to verify it for U = X and Id : X −→ X that is to say the
square

X
Id //

(e,Id)

��

X

∆X/S

��
G×S X

(p,q) // X ×S X

is cartesian (where e is the unit section and ∆X/S the diagonal).

Remarque 2. In the preceding theorem if G acts freely on X and X is of finite presentation over
S then G\X is of finite presentation over S. This results from the fact that X −→ G\X being
finite localy free it is of finite presentation and EGA IV proposition 1.4.3 (v).

Corollaire 3. Let G be an S-group scheme of finite presentation and H ⊂ G a sub-group-scheme
finite localy free over S such that H is distinguished in G. Then G/H is representable by a finite
presentation S-group scheme and G −→ G/H is finite localy free.

A.3 epimorphism/faithfully flat

Any faithfully flat of finite presentation morphism of schemes is an fppf epimorphism but in
general the converse is false : take for example X a scheme, Y an X-scheme that is not flat over
X and the morphism X

∐
Y −→ X that is the identity on X and the structural morphism of Y

on Y . Since it has a section it is an epimorphism but is not flat.

Proposition 3. Let G be a finite localy free S-group scheme and H an S-group scheme of finite
presentation. Let f : G −→ H be a morphism of S-group schemes. Then the following are equivalent

— f is an fppf epimorphism
— f is faithfully flat
— ∀s ∈ S fs : Gs −→ Hs is an épimorphism
— ∀s ∈ S fs : Gs −→ Hs is faithfully flat

And if one of those conditions is verified then H is finite localy free over S.

Démonstration. We use the fact that if s ∈ S and X is an S-scheme then if f : Spec(k(s)) −→ S
and F is the fppf sheaf associated to X f∗F is represented by the Spec(k(s))-scheme Xs. This
is due to the fact we took all schemes in the definition of the fppf topology (for example this fact
is false in general for the small étale site). Thus in particular if X −→ Y is an epimorphism then
∀s ∈ S Xs −→ Ys is an epimorphism.

By Grothendieck’s theorem on flatness fiber by fiber everything is now reduced to prove that
if S is the spectrum of a field then f is an epimorphism iff it is faithfully flat. Of course if it is
faithully flat is an epimorphism. Now suppose it is an epimorphism. The kernel of f is a finite
flat group scheme since S is the spectrum of a field. The morphism of sheaves G/ ker f −→ H
is an isomorphism. But by grothendieck’s theorem on quotients by finite flat group schemes the
morphism G −→ G/ ker f is faithully flat, which proves the result.

A.4 Exact sequences

Proposition 4. Consider an exact sequence

0 −→ G1 −→ G2 −→ G3 −→ 0

of finite S-group schemes that are of finite presentation over S. Then
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— If G2 is localy free over S so are G1 and G3

— If G1 and G3 are localy free over S so is G2

Démonstration. If G2 is localy free over S then by the preceding proposition so is G3 and
moreover the morphism G2 −→ G3 is faithfully flat which implies G1 is finite localy free.

If G1 and G3 are localy free then G2 being a G1-torsor over G3 thus if flat over G3 thus over
S.

Lemme 3. Consider an exact sequence

0 −→ G1
u−−→ G2

v−→ G3

of finite localy free S-group schemes. Then the sequence

0 −→ G1
u−−→ G2

v−→ G3 −→ 0

is exact iff
rank(G2) = rank(G1)× rank(G3)

Démonstration. If it is exact then G2 being a G1-torsor over G3 we have G1×S G2
∼−−→ G2×G3

G2. Thus rankS(G1) × rankS(G2) = rankG3(G2)
2. But rankS(G2) = rankS(G3) × rankG3(G2).

Thus combining both equality rank(G2) = rang(G1)× rank(G3).
Reciprocaly, there is a monomorphism coker(u) ↪→ G3 that is a closed immersion since coker(u)

is finite localy free. Moreover by the preceding case and the hypothesis rank(coker(u)) is equal
to rank(G3). Thus, a closed immersion of finite localy free S-schemes of the same rank being an
isomorphism we conclude.

A.5 Étale/connected finite flat group-schemes

Let G be a finite localy free S-group scheme.
We say G is étale, resp. radicial, if the morphism G −→ S is étale, resp. radicial.
We remark if ωG is the conormal sheaf of the unit section of G then Ω1

G/S ≃ p∗ωG where
p : G −→ S.

Lemme 4. Write G = Spec(OS ⊕ I) where I is the augmentation ideal of G.
The group G is étale iff ωG = I/I2 = 0.
The group G is radicial iff I is (localy on S) a nil-ideal.

A.6 Finite flat group-schemes over fields

Let k be a field.

Lemme 5. Let G be finite group-scheme over k. Then

Lemme 6. Let G be a finite group scheme over k. Then there is an exact sequence

0 −→ G0 −→ G −→ Gét −→ 0

where G0 is connected and Gét étale. If k is perfect then G0 = Gred. If k is separably closed this
sequence is split.

Démonstration.
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A.7 The order of a finite flat group-scheme

In this section all group-schemes are commutative.

Définition 1. For G a finite localy free group-scheme over S we note |G| the order of G that is
to say the rank of OG as a localy free OS-module.

Proposition 5 (Deligne). Any finite localy free G over S is killed by its order.

The proof is given in ? ? ?. When S is the spectrum of a field there is a more elementary proof.
In fact if S = Spec(k), if k has caracteristic 0 then G is étale and this is the usual statement for
abstract finite groups (after going to the algebraic closure of k). If k has caracteristic p, one can
suppose k is algebraically closed. Then G ≃ G0 ×Gét and one is reduced to the statement for G
connected : G = G0. Then if G = Spec(k⊕ I) were I is the augmentation ideal of the unit section
then multiplication by p on G induces multiplication by p ∈ k on I/I2 and is thus zero. Thus if
[p] ∈ End(G) is multiplication by p then [p]∗I ⊂ I2. With this one easily concludes.

Remarque 3. The preceding proof over a field implies at least that for any base S any finite
localy free G over S is torsion, which is weaker than Deligne’s statement but sufficient for most
applications.

Lemme 7. Let G finite localy free over S and N ∈ N its annihilator that is to say NZ = ker(Z −→
End(G)). Then the prime divisors of N and |G| are the same.

Démonstration. By the preceding proposition N | |G|. Let now p be a prime factor of |G|.
Suppose p ∤ N . Then p : G −→ G is an isomorphism. We want to see this is impossible. By
specialization we can suppose S is the spectrum of an algebraicaly closed field. Then G ≃ G0×Gét.
If ℓ is the caracteristic of this field G0 is killed by a power of ℓ. Thus G0 = (0) or ℓ ̸= p. If G0 = (0)
we are reduced to the case of G = Gét an abstract finite group and it is clear p : Gét −→ Gét

canot be an isomorphism. Suppose now ℓ ̸= p. We know the order of G0 is a power of ℓ ( ? ? ?).
Thus p||Gét|. Thus as before this is impossible by the case of usual abstract finite groups.
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