Exercice 35. Soit X un espace topologique et $X = \bigcup_{i \in \mathfrak{I}} X_i$ un recouvrement de X par des ouverts. Nous noterons $X_{ij} = X_i \cap X_j$ et $X_{ijk} = X_i \cap X_j \cap X_k$. On considère pour chaque $i \in \mathfrak{I}$ un faisceau F_i sur X_i et pour chaque couple $(i,j) \in \mathfrak{I}^2$ un isomorphisme $\varphi_{ij}: F_{j|X_{ij}} \longrightarrow F_{i|X_{ij}}$. Pour tout ouvert U de X on définit :

$$\Phi_U : \prod_{i \in \mathfrak{I}} F_i(X_i \cap U) \longrightarrow \prod_{(i,j) \in \mathfrak{I}^2} F_i(X_{ij} \cap U)$$

$$(s_i)_{i \in \mathfrak{I}} \longmapsto \left(s_{i|X_{ij} \cap U} - \varphi_{ij}(s_{j|X_{ij} \cap U}) \right)_{(i,j) \in \mathfrak{I}^2}$$

et on pose $F(U) = \ker \Phi_U$.

(1) Montrer que F est un faisceau.

On suppose désormais que pour tout $i \in \mathfrak{I}$ on a $\varphi_{ii} = \operatorname{Id}_{F_i}$ et que pour tout $(i, j, k) \in \mathfrak{I}^3$ on a $\varphi_{ij|_{X_{ijk}}} \circ \varphi_{jk|_{X_{ijk}}} = \varphi_{ik|_{X_{ijk}}}$.

- (2) Montrer pour tout $i \in \mathfrak{I}$ l'existence d'un unique isomorphisme de faisceau $F_i \xrightarrow{\varphi_i} F_{|X_i|}$ tel que pour tout $(i,j) \in \mathfrak{I}^2$ on ait : $\varphi_{i|X_{ij}} \circ \varphi_{ij} = \varphi_{j|X_{ij}}$.
- (3) Soit G est un faisceau sur X; on suppose que pour tout $i \in \mathfrak{I}$ il existe un isomorphisme $F_i \overset{\psi_i}{\longrightarrow} G_{|X_i}$ et que pour tout $(i,j) \in \mathfrak{I}^2$ on a $\psi_{j|X_{ij}} = \psi_{i|X_{ij}} \circ \varphi_{ij}$; montrer qu'il existe un unique isomorphisme $F \overset{\psi}{\longrightarrow} G$ tel que pour tout $i \in \mathfrak{I}$ on ait $\psi_i = \psi_{|X_i} \circ \varphi_i$.

(On dit que F est le recollement des faisceaux F_i à l'aide des isomorphismes φ_{ij} .)

Solution:

(1) Soit $V \subset U$ deux ouverts de X; le diagramme suivant, dans lequel les flèches verticales sont données par les morphismes de restriction des faisceaux F_i , est commutatif :

$$\prod_{i \in \mathfrak{I}} F_{i}(X_{i} \cap U) \xrightarrow{\Phi_{U}} \prod_{(i,j) \in \mathfrak{I}^{2}} F_{i}(X_{ij} \cap U)$$

$$\downarrow^{\sigma_{VU}} \qquad \qquad \downarrow^{\tau_{VU}} \qquad \qquad \sigma_{VU}((s_{i})_{i \in \mathfrak{I}}) = (s_{i|X_{i} \cap V})_{i \in \mathfrak{I}}$$

$$\prod_{i \in \mathfrak{I}} F_{i}(X_{i} \cap V) \xrightarrow{\Phi_{V}} \prod_{(i,j) \in \mathfrak{I}^{2}} F_{i}(X_{ij} \cap V)$$

En effet (on rappelle que φ_{ij} commute avec les morphismes de restriction car c'est un morphisme de faisceau.) :

$$\tau_{VU} \circ \Phi_{U} \big((s_{i})_{i \in \mathfrak{I}} \big) = \tau_{VU} \Big(\big(s_{i|_{X_{ij} \cap U}} - \varphi_{ij} (s_{j|_{X_{ij} \cap U}}) \big)_{(i,j) \in \mathfrak{I}^{2}} \Big) =$$

$$\big(s_{i|_{X_{ij} \cap V}} - \varphi_{ij} (s_{j|_{X_{ij} \cap V}}) \big)_{(i,j) \in \mathfrak{I}^{2}} = \Phi_{V} \big((s_{i|_{V}})_{i \in \mathfrak{I}} \big) = \Phi_{V} \circ \sigma_{VU} \big((s_{i})_{i \in \mathfrak{I}} \big)$$

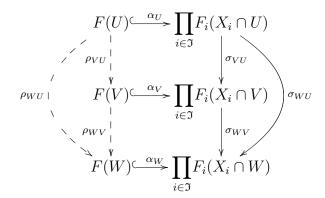
On définit alors le morphisme de restriction : $F(U) \xrightarrow{\rho_{VU}} F(V)$ en complétant ce diagramme de la manière suivante :

$$0 \longrightarrow F(U) \longrightarrow \prod_{i \in \mathfrak{I}} F_i(X_i \cap U) \xrightarrow{\Phi_U} \prod_{(i,j) \in \mathfrak{I}^2} F_i(X_{ij} \cap U)$$

$$\downarrow^{\sigma_{VU}} \qquad \downarrow^{\tau_{VU}}$$

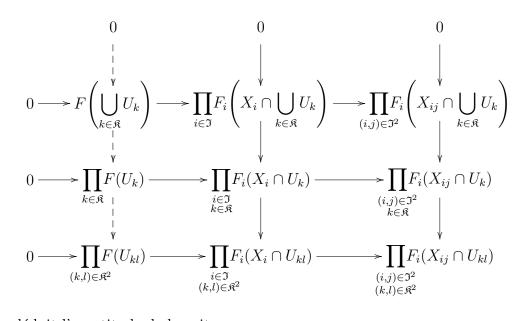
$$0 \longrightarrow F(V) \longrightarrow \prod_{i \in \mathfrak{I}} F_i(X_i \cap V) \xrightarrow{\Phi_V} \prod_{(i,j) \in \mathfrak{I}^2} F_i(X_{ij} \cap V)$$

De plus si $W \subset V \subset U$ sont trois ouverts de X on vérifie que $\rho_{WU} = \rho_{WV} \circ \rho_{VU}$ grâce au diagramme commutatif suivant, dans lequel on remarque que $\sigma_{WU} = \sigma_{WV} \circ \sigma_{VU}$ (on notera en conséquence $s_{|_{V}} = \rho_{VU}(s)$):



En effet $\alpha_W \circ \rho_{WV} \circ \rho_{VU} = \sigma_{WV} \circ \alpha_V \circ \rho_{VU} = \sigma_{WV} \circ \sigma_{VU} \circ \alpha_U = \sigma_{WU} \circ \alpha_U = \alpha_W \circ \rho_{WU}$ or α_W est injective donc $\rho_{WV} \circ \rho_{VU} = \rho_{WU}$.

Soit $(U_k)_{k\in\mathfrak{K}}$ une famille d'ouvert de X; on note $U_{kl}=U_k\cap U_l$; on considère le diagramme commutatif suivant, dans lequel les lignes sont des suites exactes données par la définition de F, el les deux colonnes de droite des suites exactes car les F_i sont des faisceaux :



On en déduit l'exactitude de la suite :

$$0 \longrightarrow F\left(\bigcup_{k \in \mathfrak{K}} U_k\right) \longrightarrow \prod_{k \in \mathfrak{K}} F(U_k) \longrightarrow \prod_{(k,l) \in \mathfrak{K}^2} F(U_{kl})$$

$$s \longmapsto (s_{|U_k})_{k \in \mathfrak{K}}$$

$$(s_k)_{k \in \mathfrak{K}} \longmapsto (s_{k|U_{kl}} - s_{l|U_{kl}})_{(k,l) \in \mathfrak{K}^2}$$

donc F est un faisceau.

(2) Si $U \subset X_{i_0}$ et si $(s_i)_{i \in \mathfrak{I}} \in F(U)$ (avec $s_i \in F_i(X_i \cap U)$) alors, d'après la définition de F(U), on a pour tout $i \in \mathfrak{I}$: $s_{i|X_{i,i_0} \cap U} = \varphi_{i,i_0}(s_{i_0|X_{i,i_0} \cap U})$; or $U \subset X_{i_0}$ donc $X_{i,i_0} \cap U = X_i \cap U$ d'où $s_{i|X_{i,i_0} \cap U} = s_{i|X_i \cap U} = s_i$ et $s_{i_0|X_{i,i_0} \cap U} = s_{i_0|X_i \cap U}$ et donc pour tout $i \in \mathfrak{I}$ on a : $s_i = \varphi_{i,i_0}(s_{i_0|X_i \cap U})$.

Réciproquement, on suppose que pour tout $i \in \mathfrak{I}$ on ait $s_i = \varphi_{i,i_0}(s_{i_0|_{X_i \cap U}})$. On a alors : $\Phi_U((s_i)_{i \in \mathfrak{I}}) = (s_{i|_{X_{ij} \cap U}} - \varphi_{ij}(s_{j|_{X_{ij} \cap U}}))_{(i,j) \in \mathfrak{I}^2} = (\varphi_{i,i_0}(s_{i_0|_{X_{ij} \cap U}}) - \varphi_{ij} \circ \varphi_{j,i_0}(s_{i_0|_{X_{ij} \cap U}}))_{(i,j) \in \mathfrak{I}^2}$ or $U \subset X_{i_0}$ donc $X_{ij} \cap U = X_{i,j,i_0} \cap U$ et comme $\varphi_{ij|_{X_{i,j,i_0}}} \circ \varphi_{j,i_0|_{X_{i,j,i_0}}} = \varphi_{i,i_0|_{X_{i,j,i_0}}}$ on en déduit $\Phi_U((s_i)_{i \in \mathfrak{I}}) = 0$.

On a donc pour tout ouvert $U \subset X_{i_0}$ un isomorphisme $F_{i_0}(U) \xrightarrow{\sim} F(U)$ défini par : $s \longmapsto \left(\varphi_{i,i_0}(s_{|X_i \cap U})\right)_{i \in \mathfrak{I}}$ d'où l'isomorphisme de faisceaux $F_{|X_{i_0}} \simeq F_{i_0}$.

(3) Il suffit d'appliquer l'exercice 34 avec les morphismes $\psi_i \circ \varphi_i^{-1}: F_{|X_i} \to G_{|X_i}$. Pour tout $(i,j) \in \mathfrak{I}^2$ on a $\psi_{j|X_{ij}} = \psi_{i|X_{ij}} \circ \varphi_{ij} = \psi_{i|X_{ij}} \circ \varphi_{i|X_{ij}}^{-1} \circ \varphi_{j|X_{ij}} \operatorname{donc}(\psi_j \circ \varphi_j^{-1})_{|X_{ij}} = (\psi_i \circ \varphi_i^{-1})_{|X_{ij}};$ il existe donc un unique morphisme $\psi: F \to G$ tel que pour tout $i \in \mathfrak{I}$ on ait $\psi_{|X_i} = \psi_i \circ \varphi_i^{-1}$.