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Abstract

We show that the groupsGT` and ĜT defined by Drinfel’d are respectively
the automorphism groups of the tower of the “pro-` completions” B

(`)
n of

the Artin braid groups and of their profinite completions B̂n, equipped with
certain natural inclusion and strand-doubling homomorphisms.

*

§1. Introduction

In [D], Drinfel’d introduced the groups GT` and ĜT via deformations of
quasi-Hopf algebras, a structure which he had defined in a previous paper.
He showed, using tensor-categorical methods, that for each n ≥ 3, ĜT can
be viewed as a subgroup of the automorphism group of B̂n, the profinite
completion of the Artin braid group Bn (see §2 and the appendix for the
precise definitions of braid groups). One of the main goals of this article,
is to characterize this subgroup completely for n ≥ 1 in both the pro-` and
the profinite cases. It is worth recalling that Aut(Bn), the automorphism
group of the discrete group Bn, is easily described: by a result of Dyer
and Grossman (cf. [DG]), we know that Aut(Bn) is generated by the inner
automorphisms of Bn and a single other one given by the mirror reflection,
which sends each generator of Bn to its inverse. In contrast to this, the
automorphism groups of the pro-` and profinite completions B(`)

n and B̂n

of Bn are large and complex groups; this emphasizes the fact that working
with such completions is an essential part of the theory.

One of the most interesting features of the group ĜT is that, using a
result of Belyi (cf. [Be]), Drinfel’d showed that there exists an injection
of the absolute Galois group Gal(Q/Q) into ĜT . Characterizing the image
of Gal(Q/Q) in ĜT is still a major open problem. This connection of ĜT
with Galois theory is not pursued in [D]; it is a surprising fact that one can
even define a group containing the absolute Galois group with no reference
whatsoever to the Galois theory of number fields.

A different way of perceiving the elements of Gal(Q/Q) as elements of ĜT
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was described by Ihara (cf. [I1]), using moduli spaces of Riemann surfaces
with ordered marked points. It is known that Gal(Q/Q) acts on certain
fundamental groups of these moduli spaces. By considering the two sim-
plest cases, those of the sphere with 4 and 5 marked points respectively,
Ihara shows that this classical action corresponds exactly to that of ĜT
restricted to certain subgroups of B̂3 and B̂4 which are isomorphic to these
fundamental groups. This construction should probably be thought of as a
starting point for an impressive construction sketched by A. Grothendieck
in his “Esquisse d’un programme” ([G], 1984, unpublished). He describes
there an action of the absolute Galois group on what he calls the tower of Te-
ichmüller groupoids, that is, a “tower” of algebraic fundamental groupoids
(using certain geometrically significant base points) of the moduli spaces
for all genera and any number of marked points (and presumably over any
ground field).

Let us now extract a few points and suggestions which served as mo-
tivations for the present work, and particularly as inspiration for future
directions.

i) ĜT (resp. GT`) acts on the profinite (resp. “pro-`”, see below) com-
pletions of the braid groups Bn, and these groups can be joined by the ex-
tensions of the natural inclusion homomorphisms in : Bn ↪→ Bn+1 to form
a “tower” of groups whose structure is respected by the action of ĜT (resp.
GT`). We may ask the following question (inspired by a question of Drin-
fel’d relative, not to the profinite completions but to the k-pro-unipotent
completions of the Bn for a field k): is the group of tuples (φn)n≥1, where
each φn ∈ Aut(B̂n) and the φn respect the inclusion homomorphisms in,
equal to ĜT? The goal of this article is to give a partial answer to this
question; we show that ĜT (resp. ĜT `) are the groups of tuples (φn)n≥1

where the φn respect not only the inclusion homomorphisms but certain
natural “string-doubling” ones as well.

ii) The Bn’s are closely related to the Teichmüller modular groups in
genus 0. Indeed M(0, n), the modular group corresponding to spheres with
n marked points, is a quotient of Bn and contains Bn−2 and Bn−1/(center)
as subgroups (cf. §2 and the appendix, as well as [Bi]). This gives the
main link between the braid groups considered in this article and the ge-
ometry of moduli spaces as reflected by the modular groups which are their
fundamental groups.

iii) Grothendieck considers what he calls the full Teichmüller tower, i.e.
the tower consisting of the Teichmüller groupoids mentioned earlier (rather
than the Teichmüller groups) in all genera. One should consider the towers
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of braid groups given below as very primitive versions of this tower, in genus
zero and without the geometric significance of the choice of base points.

iv) A very important suggestion of Grothendieck is that the tower of Te-
ichmüller groupoids (fundamental groupoids of the moduli spaces) should be
entirely reconstructible from its first two levels (“les deux premiers étages”),
levels being numbered according to their modular dimension (the complex
dimension of the moduli space). This is in some sense true for the braid
towers considered below, the first and second levels being embodied in B3

and B4 respectively.

v) Grothendieck suggests that although the absolute Galois group acts
on the whole Teichmüller tower, by virtue of the preceding remark this
action should be completely reflected in the restriction of this action to the
first two levels. This remark corresponds precisely to what happens in the
more limited situation of the actions of GT` and ĜT on the braid towers
considered below (see the main theorem).

From this general and speculative viewpoint (which does not claim to do
more than render the faintest shadow of Grothendieck’s vision), it would
seem that from the profinite situation one should be able to derive a new
description of the elements of Gal(Q/Q). So far, only the information com-
ing from the action of this group on the fundamental group of the first
level, namely the spheres with four marked points (whose moduli space is
the much-studied P1C − {0, 1,∞}), has been studied in any detail, and
just enough is known about the second level (the spheres with five marked
points) to be able to derive the important new property of elements of
Gal(Q/Q) which it entails (the so-called pentagon equation, corresponding
to (III) below). It is still an open question whether considering higher lev-
els, in genus zero or in any genus, should or should not provide any new
constraints on the elements of Gal(Q/Q) (see [I1] for further remarks on
this subject). One of the tasks which lie ahead of us may well consist in an
exploration of the deep interplay between the action of the absolute Galois
group and the geometry of the various moduli spaces, which Grothendieck
appears to have uncovered.

Precise definitions and various necessary results on the different kinds of
braid groups can be found in §2 and especially in the appendix included at
the end of this article. Let us now turn to the definition of the groups GT`

and ĜT , as given in [D]. In reading this definition, it should be kept in mind
that the form (λ, f) of the elements, and the relations (I), (II) and (III) are
all combinatorical properties of the elements of Gal(Q/Q) itself.

In general (i.e. with the exception of ĜT ), we write Ĝ for the profinite
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completion of a group G, and G` for its pro-` completion. Let Z` denote
the `-adic integers, Ẑ the profinite completion of Z, Fn the free group on
n generators for n ≥ 1, and F `

n and F̂n its pro-` and profinite completions
respectively. If x, y are the generators of F̂2, we write an element of F̂2 as
a “profinite word” f(x, y), although it is not generally a word in x and y.
This notation allows us to give a meaning to the element f(x̄, ȳ) where x̄
and ȳ are arbitrary elements of a profinite group.

For a group G, let [G,G] denote its derived subgroup (in the topological
sense if G is a topological group). Let GT `,0 (resp. ĜT 0) be the set of
couples (λ, f) ∈ Z∗` × [F `

2 , F
`
2 ] (resp. (λ, f) ∈ Ẑ∗ × [F̂2, F̂2]) satisfying the

two following relations:

(I) f(x, y)f(y, x) = 1

(II) f(z, x)zmf(y, z)ymf(x, y)xm = 1,

where m = 1
2 (λ − 1) and z = (xy)−1, this set being equipped with the

multiplication law defined by:(
λ1, f1(x, y)

)(
λ2, f2(x, y)

)
=

(
λ1λ2, f2

(
f1(x, y)xλ1f1(x, y)−1, yλ1

)
f1(x, y)

)
,

which makes it into a semigroup. Define ĜT 0 (resp. ĜT `,0) to be the group
of invertible elements of this semigroup. Define GT` (resp. ĜT ) to be the
subgroup of GT`,0 (resp. ĜT 0) of couples (λ, f) satisfying the following
relation, which takes place in the pro-` (resp. profinite) completion of the
group K4 (the precise definition of which, together with its generators xij

for 1 ≤ i < j ≤ 4, is given in §2):

(III) f(x12, x23x24)f(x13x23, x34) = f(x23, x34)f(x12x13, x24x34)f(x12, x23).

Acknowledgments: We would like to extend our warmest thanks to Pas-
cal Degiovanni and Jean-Marc Couveignes for the hours of (extremely ani-
mated, occasionally hilarious) discussion on many aspects of the questions
considered in this article, and the reams of e-mail to which these discussions
gave rise. We are also particularly grateful to Professor Ihara for the pa-
tience and generosity with which he answered our questions and explained
his work to us. It is a real pleasure to thank Professor Nakamura for his
careful reading of the manuscript, for pointing out some errors and for mak-
ing the preprint [N], containing some results which were especially helpful
(cf. §4), available to us. It goes without saying that the results presented
here were principally inspired by ideas of Grothendieck.
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§2. The braid towers

We now introduce the groups we shall work with, starting with the dis-
crete versions, and recall some useful facts about them; a general reference
for this is [Bi], but the main reference is the appendix to this article in
which detailed proofs of all the necessary technical results on braid groups
(and somewhat more) are given.

For n ≥ 2, let Bn be the Artin braid group on n strings, generated by
elements σ1, . . . , σn−1 such that

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n−2 and σiσj = σjσi for |i−j| ≥ 2.
(1)

It is useful to consider the following more symmetric presentation of Bn

(which is restated and proved as proposition A1 of the appendix).

Proposition 1: The following is a presentation for the Artin braid group
Bn: as generators we take σij for 1 ≤ i, j ≤ n with the relations

σii = 1, σij = σji and σjkσij = σikσkj(= σijσki) for i < j < k;

σijσkl = σklσij for i < j < k < l or k < i < j < l.

The usual generators are given by σi = σi,i+1 for 1 ≤ i ≤ n− 1. An im-
portant consequence of the above relations is that σij and σkl are conjugate
for all i, j, k, l (i 6= j, k 6= l). Indeed, if k = i, σij and σil are conjugate
because σjlσij = σilσjl. If k 6= i, σij is conjugate to σik, which in turn
is conjugate to σkl, so that σij and σkl are again conjugate. In particular,
every σij (i 6= j) is conjugate to σ12 = σ1, that is

σij = a−1
ij σ1aij for 1 < i, j < n, i 6= j, (2)

for some elements aij which can be easily computed. This property will be
used below (see sublemma 13 in §6).

We now pass to the definition and some properties of the pure braid
groups. There exists a canonical surjection ρn : Bn → Sn, where Sn is
the group of permutations on n letters, obtained by quotienting Bn by the
relations σ2

i = 1. The kernel Kn = Ker ρn, the pure plane braid group on n
strings, can be described as follows: it is generated by the elements xij for
1 ≤ i < j ≤ n defined by

xij = σj−1 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ

−1
j−1.
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It is useful to set xji = xij and xii = 1; then xij = σ2
ij for the σij as in

proposition 1. The xij satisfy the following relations, where we write (a, b)
for the commutator aba−1b−1:

- xijxikxjk commutes with xij , xik and xjk for all i < j < k;

- (xij , xkl) = (xil, xjk) = 1 for i < j < k < l; (1′)

- (xik, x
−1
ij xjlxij) = 1 for i < j < k < l.

As an immediate consequence of the conjugation relations (2) above, we
get:

xij = a−1
ij x12aij for 1 < i < j < n. (2′)

Let us also define yi ∈ Kn and ωi ∈ Kn by:

y1 = 1, yi = σi−1 · · ·σ2σ
2
1σ2 · · ·σi−1 = x1ix2i · · ·xi−1,i for 2 ≤ i ≤ n

and
ωi = y1y2 · · · yi , for 1 ≤ i ≤ n.

Then the yi’s commute, i.e. (yi, yj) = 1 for all i, j, and the center of Bn

and of Kn is an infinite cyclic group generated by ωn. From now on we use
the notation Z(G) for the center of a group G. However we generally write
just G/Z for the quotient of G modulo its center.

The sphere braid group Hn (the Hurwitz braid group) is the quotient of
Bn by the “sphere relation” yn = 1 (sometimes called the Hurwitz relation),
and the modular group M(0, n) (0 because it is the modular group for genus
0 surfaces, i.e. spheres) is the quotient Hn/Z; in other words:

M(0, n) = Hn/〈ω̃n = 1〉 = Bn/〈yn = ωn = 1〉,

where ω̃n is the image of ωn in Hn. The pure sphere braid groups Pn and
modular groups K(0, n) are defined to be the kernels of the natural maps
Hn → Sn and M(0, n) → Sn induced by ρn : Bn → Sn. In particular, the
subgroup Un of Kn generated by the n elements x1ix2i · · ·xn,i, for 1 ≤ i ≤ n

is a normal subgroup and Pn is exactlyKn modulo this subgroup (cf. lemma
A2 of the appendix), while K(0, n) is Pn/Z. The n equations

x1ix2i · · ·xn,i = 1, 1 ≤ i ≤ n (3)

are known as the “Hurwitz relations based at i”.
We use the notation α̃ for the image in Pn (resp. its completions P `

n or
P̂n) of any element α ∈ Kn (resp. K`

n or K̂n) and ᾱ for the image of α
in K(0, n) (resp. K(0, n)` or K̂(0, n)). The following proposition, giving
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several relations, inclusions and homomorphisms between the various types
of braid groups, is proved as proposition A4 of the appendix, but we state
it here for the convenience of the reader.

Proposition 2: Let K ′
n be the subgroup of Kn generated by the xij for

1 ≤ i < j ≤ n with (i, j) 6= (1, 2). Then

(i) Kn = K ′
n × 〈ωn〉.

(ii) There are two natural inclusions i1 and i2 of Kn−1 into Kn. Both send
xij to xij for 1 ≤ i < j ≤ n, (i, j) 6= (1, 2). But i1 is then defined by setting
i1(x12) = x12, whereas i2 is defined by setting i2(ωn−1) = ωn.

(iii) Pn ' K ′
n−1 × Z/2Z and K(0, n+ 1) ' Pn+1/Z ' K ′

n.

(iv) Pn+1 ' Kn+1/Un+1 ' Kn/〈ω2
n〉.

(v) The subgroup of Pn+1 generated by the x̃ij with 1 ≤ i < j ≤ n − 1 and
(i, j) 6= (1, 2) and the central element ω̃n+1 of Pn+1 is isomorphic to Pn.
Indeed, Pn+1 = Fn×|Pn where Pn is this subgroup and Fn is the free group
of rank n− 1 generated by x̃1,n+1, . . . , x̃n,n+1 (whose product equals 1).

(vi) We have the inclusions K(0, n+ 1) ' Kn/Z ⊂ Bn/Z ⊂M(0, n+ 1).

Let us consider some low-dimensional examples which will be needed later
on.

- B3 is generated by σ1, σ2, with the relation σ1σ2σ1 = σ2σ1σ2; its infinite
cyclic center is generated by ω3 = x12x13x23 = (σ1σ2)

3.

-K3 is the direct product of a free group on two generators, generated say by
x = x12 and y = x23, and the infinite cyclic center generated by x12x13x23.
These x and y (together with z = (xy)−1) appear in the defining relations
(I) and (II) of ĜT given above. The group K(0, 4) ' K3/Z(K3) is thus a
free group on two generators.

We will need the following two relations, valid in the group M(0, 5):

x̄45 = x̄12x̄13x̄23 , x̄15 = x̄23x̄24x̄34. (4)

Proof: In M(0, 5), we have ȳ5 = ω̄5 = 1, so

ȳ2ȳ3ȳ4 = x̄12x̄13x̄23x̄14x̄24x̄34 = 1;

moreover, we have x̄14x̄24x̄34x̄45 = 1 in M(0, 5). This last identity is the
Hurwitz relation based at 4 (see equation (3)). Combining it with the
center relation written as above proves the first of the relations (4); the
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second follows by shifting the indices (which is a legitimate operation in
this situation, as the reader can easily convince her(him)self). ♦

To finish with the preliminaries, we still have to define a – nonstan-
dard – subgroup of B̂n which will be used below. For n > 1, let An de-
note the abstract group isomorphic to the subgroup of Bn generated by
σ2

1 , σ2, · · · , σn−1; a presentation of An is given by the following sets of rela-
tions:
- the relations (1) between the generators σ2, · · · , σn−1;
- the relations (σ2

1 , σi) = 1 for 2 < i ≤ n− 1;
- the commutation relation (σ2

1 , σ2σ
2
1σ2) = 1, which is just (y2, y3) = 1.

We set by convention B1 = K1 = A1 = {1}. Now, the pro-` (resp.
profinite) completions of the groups Kn, Pn and K(0, n) are isomorphic to
the free pro-` (resp. profinite) groups on n(n− 1)/2 generators quotiented
by the relations (1′). Moreover (see for example [M] §2), the presentation
of the profinite completions of the Bn and the An are identical to those
of the discrete groups (so in particular all groups in Proposition 2 can be
replaced by their profinite completions). This does not hold for the pro-
` completions of the Bn. We therefore set B(`)

n to be the free group on
n − 1 generators quotiented by the relations (1). This is not as arbitrary
a procedure as it seems. Indeed, the group B

(`)
n can be obtained as a

modified pro-` completion of Bn as follows: consider the elements of Bn

as automorphisms of Kn (by the restriction to Kn of their action as inner
automorphisms); these automorphisms extend to automorphisms of K`

n.
The group B

(`)
n occurs as the quotient of the semi-direct product K`

n×|Bn

defined by this action by the subgroup of elements of the form (x, x−1),
x ∈ Kn ⊂ K`

n. Let us define H(`)
n and M(0, n)(`) to be the quotients of

B
(`)
n by the same relations as in the discrete case. Proposition 2 is valid

when the groups Kn, Pn, Bn and M(0, n) are replaced by K`
n, P `

n, B(`)
n and

M(0, n)(`).
The map ρn can be extended to a map ρn : B(`)

n → Sn (resp. ρn : B̂n →
Sn) and we still have K`

n = Ker ρn (resp. K̂n = Ker ρn). From now on we
simply write ρ for the canonical epimorphisms from B

(`)
n or B̂n to Sn for

any n. A final useful remark on [Bn, Bn], the derived subgroup of the Artin
braid group (and its pro-` and profinite completions): the quotient of Bn

(resp. B(`)
n , B̂n) by its derived subgroup is isomorphic to the free abelian

group on n− 1 generators (resp. free pro-`, free profinite).

Let us turn to the definition of the braid group tower T .

A tower of groups is given by a family of groups {Gn}n∈N for some index
set N , and for each pair (i, j) ∈ N , of a (possibly empty) family Fi,j of
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homomorphisms Gi → Gj . We ask that the sets Fi,j be saturated with
respect to the composition of maps, i.e. we assume that Fi,j ⊇ Fk,j ◦ Fi,k

for all triples of indices i, j, k.
The automorphism group of a tower of groups is defined by

{(φn)n∈N | φn ∈ Aut(Gn) for n ∈ N and f ◦ φi = φj ◦ f

for all i, j ∈ N , and f ∈ Fi,j}.

In what follows, we will frequently make use the following maps:

- in : B̂n → B̂n+1, the natural inclusion map, given by in(σi) = σi for
1 ≤ i ≤ n− 1;

- fn : Ân → B̂n+1 the restriction of in to Ân and

- gn : Ân → B̂n+1, such that gn(σ2
1) = σ2σ

2
1σ2 and gn(σi) = σi+1 for

2 ≤ i ≤ n− 1.

Remark: The maps in, fn and gn are group homomorphisms for n ≥ 1.

Proof: The maps in and fn are clearly group homomorphisms. In order
to prove that gn is also a group homomorphism, it suffices to show that it
respects the relations defining the group Ân. Since these relations are the
same as those defining An as remarked above, it suffices to show that gn is a
homomorphism from An into Bn+1, which is a straightforward calculation.
Actually, using the set of defining relations for An given above, one sees
that only the last one, namely (y2, y3) = 1 could be a problem, but gn maps
it onto the – true – relation (y3, y4) = 1. ♦

It is more enlightening to visualize the map gn in terms of braids: the
image of any braid in An is the same braid but with the first string doubled,
in Bn+1 (and in fact in An+1). Doubling the first string does not respect
multiplication of arbitrary braids in Bn, and therefore does not induce a
group homomorphism of Bn into Bn+1. In order for this map to be a group
homomorphism, it is necessary to restrict it to those braids whose first
strand, though it may wander about the braid, must return to its place at
the end, i.e. the set of braids which is the pre-image under ρn in Bn of the
subgroup of permutations in Sn which fix 1. But this is exactly the group
An.

Let T be the tower of braid groups defined as follows: let the index set
be the positive integers: as groups we take the B(`)

n for n ≥ 1, and we equip
this family with natural inclusions in : B(`)

n → B
(`)
n+1 given by in(σi) = σi

for 1 ≤ i ≤ n− 1. Saturation of these maps under composition means that
in fact T is equipped with all the natural inclusions in,m : B(`)

n → B
(`)
m for
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n < m, so in = in,n+1. In order to avoid a cumbersome notation, we often
write B(`)

n ⊂ B
(`)
m instead of in,m(B(`)

n ) ⊂ B
(`)
m . We also add in the map

g3 : A(`)
3 → B

(`)
4 – together with its composition with the inclusion maps.

For N ≥ 1, let TN denote the truncated tower given by the finite family of
groups B(`)

n for 1 ≤ n ≤ N , the inclusions in,m for 1 ≤ n < m ≤ N , and the
map g3 if N ≥ 4.

The automorphism group of T is given by

Aut(T ) = {(φn)n≥1 | φn ∈ Aut(B(`)
n ), inφn = φn+1in and φ4g3 = g3φ3};

for N ≥ 1, the automorphism group Aut(TN ) of TN is given in the exact
same way, with n restricted by 1 ≤ n ≤ N − 1 and the compatibility
condition for g3 not included if N ≤ 3. Note that the conditions in,mφn =
φnin,m are automatically satisfied for all n < m if they are satisfied by the
in = in,n+1. The reason for the appearance of the map g3 will be clear from
the proof of the corollary of proposition 6 (see §4 in fine). We do not know
whether the result still holds true without this extra compatibility condition
imposed on the φn.

Let now T̂ (resp. T̂N ) be the tower of groups defined as follows: as groups
we take the B̂n and the Ân for n ≥ 1 (resp. 1 ≤ n ≤ N), and we equip this
family with all the maps in, fn, gn (and all maps obtained by composing
them), for n ≥ 1 (resp. 1 ≤ n ≤ N − 1).

We shall now prove that φ ∈ Aut(T ) (resp. Aut(T̂ )) preserves the per-
mutations of the B(`)

n (resp. B̂n) up to a possible twist by σ1. From now on,
for any element g of a group G, we write Inn(g) for the inner automorphism
of G given by conjugation by g: Inn(g)(h) := g−1hg.

Lemma 3: Suppose φ = (φn)n≥1 ∈ Aut(T ) (resp. Aut(T̂ )) fixes the per-
mutations of B(`)

3 (resp. B̂3), i.e. ρ◦φ3 = φ3. Then φ fixes the permutations
globally, i.e. ρ ◦ φn = φn for all n. If φ3 does not fix the permutations of
B

(`)
3 (resp. B̂3), then φ̃3 = Inn(σ1)◦φ3 does, so φ̃ :=

(
(Inn(σ1)φn

)
n≥1

fixes
the permutations globally.

Proof: The proof is identical for the pro-` and the profinite completions;
indeed it only uses the fact that the automorphisms of the respective towers
respect the inclusions in. We use the notation of the profinite case. Let us
first suppose the following assertion true.

(*) Let ψ be an automorphism of B̂n (for some n ≥ 1); then it induces an
inner automorphism of the permutation group Sn, i.e. there exists α ∈ Sn

such that:
ρ ◦ ψ(σ) = α−1ρ(σ)α for all σ ∈ B̂n.
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Write ρφn = Inn(αn)ρ for n ≥ 3; since the center of Sn is trivial for n ≥ 3,
the αn ∈ Sn are uniquely defined. Assume that φ3 fixes the permutations,
i.e. that α3 = 1. By a simple inductive argument, we show that then
αn = 1 for all n. Assume it is true for n − 1 (n ≥ 4). Then αn must lie
in the centralizer of Sn−1 in Sn, where Sn−1 denotes the subgroup of the
permutations in Sn fixing n. But as is easy to check, this centralizer is the
identity when n > 4. So φ fixes the permutations globally, i.e. φn fixes the
permutations of B̂n for n ≥ 1.

Note that for n = 3, the centralizer of S2 in S3 is isomorphic to S2 ' Z/2Z.
This shows that if φ3 does not fix the permutations of S3, then Inn(σ1) ◦φ3

does, which gives the last assertion in the lemma.

We now prove assertion (*), which is the generalization to the profinite
case of the following result ([DG], cor. 12): for every ψ ∈ Aut(Bn), there
exists an inner automorphism β of Bn such that ρ ◦ ψ ◦ β = ρ. We know
that Kn is characteristic in Bn (see [DG], thm. 11), and if ψ ∈ Aut(B̂n)
is such that ψ(K̂n) = Ĥ, then setting H := Bn ∩ Ĥ, we see that Ĥ is
the profinite completion of H (since Ĥ is of finite index in B̂n), and so
Bn/H = B̂n/Ĥ = Sn. So by corollary 12 of [DG], H = Kn, so Ĥ = K̂n,
which means that K̂n is characteristic in B̂n. Thus if ψ ∈ Aut(B̂n), ρ ◦ ψ
induces an automorphism of Sn, so it is inner (the exceptional cases for
n = 4 or 6 do not occur). ♦

Corollary: All the elements of Aut(T̂ ) actually fix the permutations of B̂n.

Proof: Let (φn)n≥1 ∈ Aut(T̂ ). By Lemma 3, either ρ ◦ φn = ρ or ρ ◦ φn =
Inn(12)ρ on B̂n, for all n ≥ 1. If the second possibility were verified by φ

then the following diagram would commute:

Ân
ρ
- Sn

φn

? ?

φn

Ân
Inn(12)ρ

- Sn.

But φn preserves Ân and the image of Ân in Sn under ρ is the set of permu-
tations fixing 1, whereas the image under Inn(12)ρ is the set of permutations
fixing 2, so this diagram cannot commute. Thus ρ ◦ φn = ρ for all n ≥ 1.♦

Let Inn(T )
(
resp. Inn(TN )

)
denote the subgroup of interior automor-

phisms of T (resp. TN ) which act on each B
(`)
n via conjugation by a fixed

Z`-power of σ1, so that Inn(T ) ' Inn(TN ) ' Z/2Z × Z` for all N . Set
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Out(T ) := Aut(T )/Inn(T ) and Out(TN ) := Aut(TN )/Inn(TN ). Lemma 3
shows that if Φ ∈ Out(T ), then there is an element φ = (φn)n≥1 ∈ Aut(T )
in the class Φ, such that each φn fixes the permutations of B(`)

n . The same
is obviously true when T is replaced by TN .

We can now state the main theorem of this article:

Main Theorem:
(i) Out(T3) ' GT`,0 and Aut(T̂3) ' ĜT 0;

(ii) GT` ' Out(T4) and ĜT ' Aut(T̂4);

(iii) GT` ' Out(T ) ' Out(TN ) and ĜT ' Aut(T̂ ) ' Aut(T̂N ) for N > 4.

Remark: In reference [I3] Ihara proves a result in the context of graded
Lie algebras which, upon tensoring with Q` (over Q), is analogous to an
“infinitesimal version” of the above theorem in the pro-` case, namely a
stability property of a certain Lie tower after the first two levels.

Before proving the theorem in §§3 to 6, let us give the basic underlying
correspondence between elements of ĜT and automorphisms of profinite
completions of braid groups, due to Drinfel’d (and which also works for
GT` and B(`)

n ). For n ≥ 1, there is a natural map from GT` (resp. ĜT ) into
Aut(B(`)

n ) (resp. Aut(B̂n)) given as follows: if (λ, f) ∈ GT` (resp. ĜT ) and
φ ∈ Aut(B(`)

n ) (resp. Aut(B̂n)) is its image, then

φ(σ1) = σλ
1 and φ(σi) = f(σ2

i , yi)σλ
i f(yi, σ

2
i ) for 2 ≤ i ≤ n− 1. (5)

Notice that although σ1 has been singled out for convenience, it is in fact
no exception to the rule: indeed, since f is in the derived group [F̂2, F̂2], it
satisfies f(y1, σ2

1) = f(1, σ2
1) = 1.

The proof of the theorem consists in showing that the φ associated to cou-
ples (λ, f) are actually automorphisms of the B(`)

n (resp. the B̂n); (Drinfel’d
shows this for the “k-pro-unipotent completions” of the Bn but his proof
uses his tensor-categorical construction of the group GT ; thus we prefer to
reprove it in our cases by purely group-theoretic methods), that they re-
spect the natural inclusion maps in (resp. the maps in, fn and gn), and
that all outer automorphisms of T resp. T̂ come from such couples (λ, f).

§3. GT`,0 and ĜT 0 as automorphism groups of T3 and T̂3

In this section we prove (i) of the main theorem.

Proposition 4: GT`,0 ' Out(T3).
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Proof: We begin by defining a homomorphism of GT`,0 into Aut(T3). Let
(λ, f) ∈ GT`,0; we associate to it the map φ3 defined by (5) on the generators
of B(`)

3 , namely as φ3(σ1) = σλ
1 and φ3(σ2) = f(σ2

2 , σ
2
1)σλ

2 f(σ2
1 , σ

2
2). Let us

show first that φ3 can be extended multiplicatively to an automorphism
of B(`)

3 . Set ω3 = (σ1σ2)3; this element generates the center of B(`)
3 . Set

x = σ2
1 , y = σ2

2 , z′ = σ1σ
2
2σ
−1
1 and z = z′ω−1

3 : we have xyz = 1 in B(`)
3 . As

mentioned above, K`
3 is isomorphic to 〈ω3〉 × 〈x, y〉, the group 〈x, y〉 being

isomorphic to F `
2 , so that an element f ∈ F `

2 is entirely determined if we
know f(x, y) ∈ B(`)

3 .
Note now that σ1y = z′σ1 and yσ2 = σ2z

′, which gives the two following
conjugation relations:

(a) σ1f(y, x) = f(z, x)σ1, and
(b) f(x, y)σ2 = σ2f(z, y).
We may (and have) replaced z′ by z inside f because, more generally, if α,

β and γ ∈ B(`)
3 and γ commute with α and β, then f(γα, β) = f(α, γβ) =

f(α, β). This in turn comes from f being in the derived group [F `
2 , F

`
2 ].

Lemma 5: φ3 can be extended multiplicatively to an automorphism of B(`)
3 .

Proof: It suffices to show that φ respects the unique relation σ1σ2σ1 =
σ2σ1σ2 of B(`)

3 . We calculate:

φ(σ1)φ(σ2)φ(σ1) = σλ
1 f(y, x)σλ

2 f(x, y)σλ
1 = σλ

1 f(y, x)σ2y
mf(x, y)xmσ1

= σλ
1 f(y, x)σ2f(z, y)z−mf(x, z)σ1 (since φ satisfies relation (II))

= σλ
1 f(y, x)f(x, y)σ2z

−mσ1f(x, y) (by (a) and (b) above)

= σλ
1σ2z

−mσ1f(x, y) = σλ
1σ2σ1σ

−2m
2 ωm

3 f(x, y)

= xm(σ1σ2σ1)y−mωm
3 f(x, y) = (σ1σ2σ1)ωm

3 f(x, y)

(since (σ1σ2σ1)−1xk(σ1σ2σ1) = yk for all k)

= (σ2σ1σ2)ωm
3 f(x, y) = σ2σ1σ

−2m
2 ωm

3 σ
λ
2 f(x, y) = σ2z

−mσ1σ
λ
2 f(x, y)

= f(y, x)f(x, y)σ2z
−mσ1σ

λ
2 f(x, y) = f(y, x)σ2f(z, y)z−mσ1σ

λ
2 f(x, y)

= f(y, x)σ2f(z, y)z−mf(x, z)f(z, x)σ1σ
λ
2 f(x, y)

= f(y, x)σ2y
mf(x, y)xmσ1f(y, x)σλ

2 f(x, y) (by (a) and (II))

= f(y, x)σλ
2 f(x, y)σλ

1 f(y, x)σλ
2 f(x, y) = φ(σ2)φ(σ1)φ(σ2). ♦

Set φ1 = id and define φ2 on B(`)
2 by φ2(σ1) = σλ

1 . Clearly inφn = φn+1in
for n = 1, 2, so (φn)1≤n≤3 ∈ Aut(T3).

We confirm using the multiplication law of GT`,0 that the map GT`,0 into
Aut(T3) defined in this way is actually a group homomorphism which we
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denote by η̃. It induces a homomorphism of GT`,0 into Out(T3) which we
denote by η.

Let us show that η is injective. Let (λ, f) ∈ GT`,0, be such that η(λ, f) = 1
and set φ = (φn)1≤n≤3 := η̃(λ, f). Then there exists δ ∈ Z` such that
φ3 = Inn(σδ

1). We then have φ3(σ1) = σ1 so λ = 1. Moreover we have

φ3(σ2) = f(y, x)σ2f(x, y) = σ−δ
1 σλ

2σ
δ
1,

so we have an equality of the form

f(x, y) = Cσδ
1

where C ∈ B(`)
3 commutes with σ2.

Let us show that such a C has the form ωα
3 σ

γ
2 for α, γ ∈ Z`. We use the

well-known fact that the centralizer of y in the free pro-` group 〈x, y〉 is the
cyclic group 〈y〉. This shows that the centralizer of the element σ2

2 in the
group K`

3 is generated by ω3 and σ2
2 since K3 ' 〈σ2

1 , σ
2
2〉× 〈ω3〉 and 〈σ2

1 , σ
2
2〉

is a free group. Now consider an element C ∈ B
(`)
3 which centralizes σ2.

Since ρ(C) must centralize ρ(σ2) in S3, ρ(C) must be either trivial or equal
to ρ(σ2) (which is equal to the permutation (23)). If ρ(C) is trivial then
C ∈ K`

3, and if C centralizes σ2 then it centralizes σ2
2 , so it is in 〈σ2

2 , ω3〉.
If ρ(C) = ρ(σ2), then C can be written σ2C

′ where C ′ ∈ K`
3, and C ′ must

centralize σ2 . . .therefore it is again in 〈σ2
2 , ω3〉. This gives the result.

Now, f(x, y) ∈ K`
3, so the expression f(x, y) = ωα

3 σ
γ
2σ

δ
1 must be in K`

3

as well, which implies that γ and δ are congruent to 0 mod 2. But then
σγ

2σ
δ
1 = yγ/2xδ/2 ∈ 〈x, y〉 = F `

2 , so α = 0 since ω3 /∈ 〈x, y〉. But then, since
f is supposed to belong to [F `

2 , F
`
2 ], we must have γ = δ = 0 and thus f = 1,

which gives the injectivity of η.

Let us show that η is surjective. Let Φ ∈ Out(T3) and let (φn)1≤n≤3 ∈
Aut(T3) be a representative of Φ which fixes the permutations (as can always
be chosen by lemma 3). Firstly, λ is determined by φ2, and λ ∈ Z∗` since φ2 is
invertible. Next, because φ3 fixes the permutations, there exist α ∈ Z` and
g ∈ F `

2 such that φ3(σ1σ2σ1) = σ1σ2σ1ω
α
3 g(x, y).Applying φ3 to the relation

(σ1σ2σ1)−1σ1(σ1σ2σ1) = σ2 in B(`)
3 , we obtain φ3(σ2) = g−1(x, y)σλ

2 g(x, y).
Let γ, δ be the unique elements of Z` such that yγg(x, y)xδ ∈ [F `

2 , F
`
2 ]

(where F `
2 is identified with 〈x, y〉), and set f(x, y) = yγg(x, y)xδ. We thus

associate a couple (λ, f) ∈ Z∗` × [F `
2 , F

`
2 ] to φ3. (The automorphism of B(`)

3

associated to this couple is actually Inn(xδ)φ3, which is in the same class
as φ3 modulo Inn(T3)). Let us show that this couple is in GT`,0, i.e. that it
satisfies relations (I) and (II).
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Let T := Inn(σ1σ2σ1) and U := Inn
(
(σ1σ2)2

)
∈ Inn(B(`)

3 ). Note that
T 2 = U3 = 1. Let us calculate Inn

(
f(y, x)−1

)
Tφ3T

−1 ∈ Aut(B(`)
3 ); under

this automorphism we have

σ1 7→ σλ
1 and σ2 7→ f(y, x)σλ

2 f(y, x)−1.

As f(y, x) ∈ [F `
2 , F

`
2 ], this automorphism is equal to η̃

(
λ, f(y, x)−1

)
and is

thus in particular in Aut(T3).
Let us also calculate Inn(f(x, z)) Uφ3U

−1 on σ1 and σ2; we obtain:

σ1 7→ σλ
1 and σ2 7→ f(x, z)−1zmf(z, y)−1σλ

2 f(z, y)z−mf(x, z);

thus Inn(f(x, z)) Uφ3U
−1 is equal to η̃

(
λ, y−mf(z, y)z−mf(x, z)x−m

)
mod-

ulo Inn(T3), where z = (xy)−1 ∈ F `
2 .

If we consider that Aut(T3) ⊂ Aut(B(`)
3 ), then in fact Out(T3) ⊂ Out(B(`)

3 )
since Aut(T3) ∩ Inn(B(`)

3 ) = Inn(T3). By the injectivity of η : GT`,0 →
Out(T3), we see that if (λ, f) and (µ, g) ∈ GT`,0 and the images of η(λ, f)
and of η(µ, g) are equal in Out(B(`)

3 ), then η(λ, f) = η(µ, g) in Out(T `
3 ).

Thus we have f(x, y) = f(y, x)−1 and f(x, y) = y−mf(z, y)z−mf(x, z)x−m,
so (λ, f) satisfies relations (I) and (II). By construction, (φn)1≤n≤3 is in
the class η(λ, f) in Out(T3), so η : GT`,0 → Out(T3) is a bijection. This
concludes the proof of proposition 4. ♦

Corollary: Aut(T̂3) ' ĜT 0.

Proof: Most of the calculations in the proof of proposition 4 work in the
profinite case with no changes whatsoever. For the injectivity, we need
to verify that every automorphism of B̂3 respecting the inclusions in as
in the pro-` situation also respects the other maps fi and gi. Thus let
φ := (φn)1≤n≤3 be a triple of automorphisms respecting the in for n = 1, 2.
Define φ′1 to be the identity, φ′2 by φ′2(σ

2
1) = σ2λ

1 and φ′3 to be the restriction
of φ3 to Â3 ⊂ B̂3 (φ′3 is easily seen to be an automorphism of Â3). Then
φ := (φi, φ

′
i)1≤i≤3 respects the maps i1 and i2 as in proposition 4, f1 and

f2 by construction and g1 by triviality. The relation g2φ
′
2 = φ3g2 is a

consequence of the fact that φ3(y3) = yλ
3 which is proved as follows. Recall

that ω3 = y2y3; we know that φ3(ω3) = ωλ
3 since φ3 must send ω3 to a

power of itself and this power must be exactly λ; (looking at the induced
action of φ3 modulo the derived subgroup of B̂3, i.e. in the free profinite
abelian group on 2 generators, we see that σ1 → σλ

1 and σ2 → σλ
2 ), we

also know that y2 and y3 commute and that φ3(y2) = yλ
2 since y2 = σ2

1 ,
which suffices to show that φ3(y3) = yλ

3 . (The same argument actually
shows that if φn is any automorphism of B̂n such that φn(B̂m) = B̂m for all
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m < n, then φn(yi) = yλ
i for 1 ≤ i ≤ n.) This shows that (φn, φ

′
n)1≤n≤3 ∈

Aut(T̂3) and thus that the map given by equation (5) does determine an
injective map ĜT 0 → Aut(T̂3). The surjectivity argument is easier than
in the pro-` case. There is no need to take a representative of an outer
automorphism. Moreover the element δ introduced in order to ensure that
f(x, y) be in the derived group is necessarily 0 since as shown in the pro-`
case, (Inn(xδ)φn)1≤n≤3 defines an element of Aut(T̂3), however no non-zero
power of x can preserve the subgroup Â3 ⊂ B̂3. The rest of the proof of
surjectivity goes through as in the pro-` case. ♦

§4. ĜT and GT` as automorphism groups of the braid towers T̂4

and T4

In this section we prove statement (ii) of the main theorem, working first
in the profinite setting and stating the straightforward adaptation to the
pro-` case as a corollary. As the proof is somewhat involved and depends
on an unexpected introduction of the mapping class group M(0, 5), we give
a brief description of its logical structure here. The usefulness of M(0, 5)
(and its profinite completion) lies in the existence of a torsion element of
order 5 which gives rise to the pentagon equation in a natural way. The
Artin braid group B4 is not contained in M(0, 5), but the quotient by the
center B4/Z is a subgroup of M(0, 5).

In lemma 7 (and lemma 8) we show the following result. We take a certain
generating set of elements for M̂(0, 5), namely σ̄1, σ̄2, σ̄3, σ̄4 and σ̄15 (see
the beginning of the proof of proposition 6). We let couples (λ, f) ∈ ĜT 0

act on this generating set in a particular way and show that this action
extends to an automorphism of M̂(0, 5) if and only if the couple actually
lies in ĜT . We obtain an (injective) map ι̃ : ĜT → Aut(M̂(0, 5)).

In lemma 9 it is shown that the automorphisms of M̂(0, 5) coming from
elements of ĜT restrict to automorphisms of the subgroup B̂4/Z and lift
uniquely to automorphisms of B̂4 which respect the arrows of the tower T̂4;
we thus obtain an (injective) map ι : ĜT → Aut(T̂4).

In order to show the surjectivity of this map we proceed as follows. Sup-
pose Φ = (φn)1≤n≤4 ∈ Aut(T̂4); then, because Φ must respect the homo-
morphisms in, fn and gn for 1 ≤ n ≤ 3, we have

φ4(σ1) = σλ
1 , φ4(σ2) = f(x23, x12)σλ

2 f(x12, x23),

and φ4(σ3) = f(σ2
3 , y3)σ

λ
3 f(y3, σ2

3).

Now, any automorphism φ4 of B̂4 which acts on σ1, σ2 and σ3 in this
way induces an automorphism of B̂4/Z; moreover if (λ, f) is the couple
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in ĜT 0 associated to φ3 and a map φ corresponding to (λ, f) is defined
on the generating set of M̂(0, 5) as in lemma 7, then φ restricted to the
subgroup B̂4/Z gives an automorphism of this subgroup since it is precisely
the one induced by φ4. We show that any φ defined on the generating
set as in lemma 7 which induces an automorphism of the subgroup B̂4/Z

automatically extends to an automorphism of all of M̂(0, 5); by lemma 7
the couple (λ, f) must then lie in ĜT , so Φ = ι(λ, f). This shows that ι is
a bijection.

Proposition 6: ĜT ' Aut(T̂4).

Proof: Let M(0, 5) be the mapping class group in genus 0 with 5 marked
points; this group is generated by elements σ1, σ2, σ3 and σ4 – please note!
in order to avoid immensely long lines over all the formulae we do not
put bars over the elements of M(0, 5) as we should, throughout the whole
of this section, except in lemma 9 in which it is necessary to distinguish
between elements of B̂4 and their images in B̂4/Z ⊂ M̂(0, 5). We introduce
σ15 := σ4σ3σ2σ1σ

−1
2 σ−1

3 σ−1
4 as in proposition 1 (so σ2

15 = x15).
Set V := Inn

(
(σ4σ3σ2σ1)−3

)
∈ Inn

(
M̂(0, 5)

)
, so V 5 = 1. The map V

acts as follows on the σi’s, σ15, and the xij ’s:

V (σ1) = σ3, V (σ2) = σ4, V (σ3) = σ15, V (σ4) = σ1, V (σ15) = σ2, (6)

V (xij) = xi+2,j+2, for i, j ∈ Z/5Z.

These properties could be expressed more concisely as V (σi,i+1) = σi+2,i+3

for all i ∈ Z/5Z.
We shall make use of a more symmetric form of relation (III), which holds

in M̂(0, 5). Namely, considering the xij ’s as elements of M̂(0, 5), relation
(III) implies the following:

(III′) f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23) = 1

This form of relation (III) was given by Ihara in [I1]: as he points out,
to transform (III) into (III’), one uses relation (I), the relations (4) of §2
and the remarks just preceding lemma 5. We shall write this relation as
f5f4f3f2f1 = 1. Note that

f1 = f(x12, x23), fi+1 = V −1(fi) for i ∈ Z/5Z.

Lemma 7: Let (λ, f) ∈ ĜT 0 and associate to it a map φ sending σ1, σ2,
σ3, σ4 and σ15 into M̂(0, 5) as follows:

φ(σ1) = σλ
1 , φ(σ2) = f(x23, x12)σλ

2 f(x12, x23),
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φ(σ3) = f(x34, x45)σλ
3 f(x45, x34), φ(σ4) = σλ

4 ,

φ(σ15) = f(x23, x12)f(x51, x45)σλ
15f(x45, x51)f(x12, x23).

Then φ can be extended multiplicatively to an automorphism of M̂(0, 5) if
and only if (λ, f) lies in ĜT ; this map defines an injective group homomor-
phism which we denote by ι̃ : ĜT → Aut(M̂(0, 5)).

Remark: This action of ĜT on M̂(0, 5) is determined by considering M̂(0, 5)
as a quotient of B̂5 and looking at the images of the right-hand sides of
equation (5) in the quotient. The idea of passing from B̂5 to M̂(0, 5) in this
way is also employed by Nakamura in the appendix of [N].

Proof: Suppose φ is associated to a couple (λ, f) ∈ ĜT 0. We must study
when φ respects the relations defining M̂(0, 5), namely those of B̂5 and the
sphere and center relations y5 = ω5 = 1 (cf. §2). Remark first that the
subgroup of M̂(0, 5) generated by σ1 and σ2 being isomorphic to B̂3, we
know by proposition 4 that φ induces an automorphism of this group and
thus that φ respects the relation σ1σ2σ1 = σ2σ1σ2. For the other relations
we use the following lemma:

Lemma 8: Let φ act on σ1, σ2, σ3, σ4 and σ15 as in lemma 7. Then

(i) the two maps φV and V Inn(f−1
1 )φ take the same values when applied

to the elements σ1, σ2, σ4 and σ15, and

(ii) the two maps φV 3 and V 3 Inn(f−1
1 f−1

2 f−1
3 )φ take the same values on

σ1 and σ2 if (λ, f) lies in ĜT .

Proof: (i) It suffices to calculate Inn(f1)V −1φV on the given elements using
(6). The calculations are all trivial, so we do it for σ1 only: φV (σ1) =
φ(σ3) = f5σ

λ
3 f

−1
5 = V

(
f1σ

λ
1 f

−1
1

)
= V Inn(f−1

1 )φ(σ1).

(ii) Assume that f satisfies relation (III’), i.e. f5f4f3f2f1 = 1, and
let us do the calculation. By (III’), f−1

1 f−1
2 f−1

3 = f5f4. Thus we have:
φV 3(σ1) = φ(σ2) = f−1

1 σλ
2 f1 and V 3Inn(f5f4)φ(σ1) = V 3

(
f−1
4 f−1

5 σλ
1 f5f4

)
= f−1

1 f−1
2 σλ

2 f2f1 = f−1
1 σλ

2 f1 since f2 = f(x45, x51) commutes with σ2.
Moreover, we have φV 3(σ2) = φ(σ3) = f5σ

λ
3 f

−1
5 and V 3Inn(f5f4)φ(σ2) =

V 3
(
f−1
4 f−1

5 f−1
1 σλ

2 f1f5f4
)

= V 3
(
f3f2σ

λ
2 f

−1
2 f−1

3

)
= f5f4σ

λ
3 f

−1
4 f−1

5 =
f5σ

λ
3 f

−1
5 since f4 = f(x51, x12) commutes with σ3. ♦

We use lemma 8 to determine when φ extends to an automorphism of
M̂(0, 5), i.e. respects the defining relations (besides σ1σ2σ1 = σ2σ1σ2, which
is respected by the assumption that (λ, f) lies in ĜT 0):

(a) σ3σ4σ3 = σ4σ3σ4,
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(b) the sphere relation y5 = σ4σ3σ2σ
2
1σ2σ3σ4 = 1,

(c) the center relation ω5 = (σ1σ2σ3σ4)5 = 1,

(d) the remaining relation σ2σ3σ2 = σ3σ2σ3.

It turns out that (a), (b) and (c) are all respected when φ is associated to
any couple (λ, f) ∈ ĜT 0, for we only need to use lemma 8 (i) (and indeed,
the equality of the two given maps on the elements σ1 and σ2). Relation
(a) is proved by the following argument using the equality of the maps φV
and V Inn(f−1

1 )φ applied to σ1 and σ2:

φ(σ3)φ(σ4)φ(σ3) = (φV )(σ1)(φV )(σ2)(φV )(σ1)

= (V Inn(f−1
1 )φ)(σ1)(V Inn(f−1

1 )φ)(σ2)(V Inn(f−1
1 )φ)(σ1)

=
(
V Inn(f−1

1 )
)(
φ(σ1)φ(σ2)φ(σ1)

)
=

(
V Inn(f−1

1 )
)(
φ(σ2)φ(σ1)φ(σ2)

)
= φ(σ4)φ(σ3)φ(σ4).

Let us show that lemma 8 (i) implies that φ respects relation (b), σ4σ3σ2σ
2
1

σ2σ3σ4 = 1, which we rewrite as (σ2σ
2
1σ2)−1 = σ3σ

2
4σ3. Here we need to use

the fact that φ is an automorphism when restricted to 〈σ1, σ2〉 (since the cou-
ple (λ, f) is assumed to lie in ĜT 0), and that φ(σ2σ

2
1σ2) = (σ2σ

2
1σ2)λ, which

is proved as in the proof of the corollary to proposition 4 since σ2σ
2
1σ2 = y3.

We have:

φ(σ3)φ(σ4)2φ(σ3) = (φV )(σ1)(φV )(σ2)2(φV )(σ1) = V Inn(f−1
1 )φ(σ1σ

2
2σ1)

= V

(
f(x12, x23)(σ1σ

2
2σ1)λf(x23, x12)

)
= f(x34, x45)(σ3σ

2
4σ3)λf(x45, x34)

= f(x34, x45)(σ2σ
2
1σ2)−λf(x45, x34) = (σ2σ

2
1σ2)−λ = φ(σ2σ

2
1σ2)−1.

Similarly, lemma 8 (i) suffices to show that φ respects relation (c). We
work with the equivalent relation σ2

1σ2σ
2
1σ2σ

−2
4 = 1 (the left-hand side is

equal to (σ1σ2σ3σ4)5 in M̂(0, 5)). As the three elements σ2
1 , σ2σ

2
1σ2 and σ2

4

commute and φ takes each one to itself to the power λ, it is immediate that
φ respects this relation.

Let us now show that φ extends to an automorphism of M̂(0, 5) if and
only if (λ, f) lies in ĜT . First suppose that (λ, f) ∈ ĜT . We only need to
show that φ respects (d), which we do using lemma 8 (ii), which tells us
that when (λ, f) lies in ĜT , the maps φ and Inn(f3f2f1)V −3φV 3 take the
same values on σ1 and σ2. Thus we calculate

φ(σ2)φ(σ3)φ(σ2) = (φV 3)(σ1)(φV 3)(σ2)(φV 3)(σ1) =
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(V 3Inn(f3f2f1)
−1
φ)(σ1)(V 3Inn(f3f2f1)

−1
φ)(σ2)(V 3Inn(f3f2f1)

−1
φ)(σ1)

=
(
V 3Inn(f3f2f1)

−1)(
φ(σ1)φ(σ2)φ(σ1)

)
=

(
V 3Inn(f3f2f1)

−1)(
φ(σ2)φ(σ1)φ(σ2)

)
= φ(σ3)φ(σ2)φ(σ3),

which shows that (d) is respected by φ, so φ extends to an automorphism
of M̂(0, 5) if it is associated to a couple (λ, f) ∈ ĜT .

Now let us show that if a couple (λ, f) ∈ ĜT 0, acting as in the state-
ment of lemma 7, extends to an automorphism of M̂(0, 5) then it must lie
in ĜT . This is most simply done by adapting an argument of Nakamura
(see the appendix of [N]). By lemma 8 (i), since σ1, σ2, σ4 and σ15 gener-
ate all of M̂(0, 5), if we assume that φ is an automorphism then we must
have the equality φ = Inn(f1)V −1φV on all of M̂(0, 5). Replacing φ by
Inn(f1)V −1φV in the right-hand side gives φ = Inn(f2f1)V −2φV ; reiterat-
ing three more times gives φ =

Inn(f3f2f1)V −3φV 3 = Inn(f4f3f2f1)V −4φV 4 = Inn(f5f4f3f2f1)V −5φV 5.

Since V5 = 1, we have φ = Inn(f5f4f3f2f1)φ, so the element f5f4f3f2f1
must be in the center of M̂(0, 5), which is trivial. But this element is
exactly the left-hand side of relation (III’).

We thus associate to every (λ, f) ∈ ĜT an automorphism of M̂(0, 5); by
the multiplication law, we see that this map of ĜT into Aut(M̂(0, 5)), which
we denote by ι̃, is a group homomorphism. Restriction to the subgroup
〈σ1, σ2〉 of M̂(0, 5), gives the injective map η̃ : ĜT → Aut(T̂3) ⊂ Aut(B̂3)
of proposition 4, which shows that ι̃ : ĜT → Aut(M̂(0, 5)) is also injective.
This concludes the proof of lemma 7. ♦

As before, for any group G, we write (by a slight abuse of notation) G/Z
for G modulo its center. We have already remarked that the subgroup of
M̂(0, 5) generated by σ1 and σ2 is isomorphic to B̂3, and similarly, the
subgroup generated by σ1, σ2 and σ3 inside M̂(0, 5) is isomorphic, not
to B̂4, but to B̂4/Z (since the relation (σ1σ2σ3)4 = 1 holds in M̂(0, 5)
and this element generates the center of B̂4). It is immediate that if φ
is the automorphism of M̂(0, 5) associated to a couple (λ, f) ∈ ĜT as in
lemma 7, then φ induces an automorphism of B̂4 since φ preserves this
subgroup of M̂(0, 5), thanks to the first of relations (4) in §2. The map
ι̃ : ĜT → Aut(M̂(0, 5)) of lemma 7 thus induces an injective map ι̃ : ĜT →
Aut(B̂4/Z).
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Lemma 9: The map ι̃ induces an injective map ι : ĜT → Aut(T̂4).

Proof: Let (λ, f) ∈ ĜT and let φ := ι̃(λ, f) ∈ Aut(B̂4/Z). In the proof
of this lemma, let σi and xij denote elements of B̂4, not to be confused
with the elements of B̂4/Z ⊂ M̂(0, 5) (which ought to have been denoted
σ̄i and x̄ij but were not for aesthetic reasons). The σ̄i satisfy the relation
(σ̄1σ̄2σ̄3)4 = 1, and this is of course not true of the σi; indeed ω4 = (σ1σ2σ3)4

generates the infinite cyclic center of B̂4. Let us associate to φ an element
φ̃ of Aut(T̂4). Define φ̃ on the generators σ1, σ2 and σ3 of B̂4 by

φ̃(σ1) = σλ
1 , φ̃(σ2) = f(x23, x12)σλ

2 f(x12, x23), φ̃(σ3)

= f(x34, x45)σλ
3 f(x45, x34);

here, we write x45 := x12x13x23 in order to consider x45 as an element of
B̂4, but it is to be considered purely as a formal notation. We first show
that φ̃ induces an automorphism of B̂4. By proposition 4, it induces one on
the subgroup of B̂4 generated by 〈σ1, σ2〉 since this subgroup is isomorphic
to B̂3. Thus φ̃ respects the relation σ1σ2σ1 = σ2σ1σ2 which holds in B̂4.
Since φ is an automorphism of B̂4/Z, we know that φ̃ respects the relation
σ2σ3σ2 = σ3σ2σ3 modulo the center of B̂4, which means that there exists
µ ∈ Z∗ such that

φ̃(σ2)φ̃(σ3)φ̃(σ2) = φ̃(σ3)φ̃(σ2)φ̃(σ3)ω
µ
4 .

Define a map φ̃′ on σ1, σ2 and σ3 as follows: φ̃′(σ1) = φ̃(σ1), φ̃′(σ2) = φ̃(σ2),
and φ̃′(σ3) = φ̃(σ3)ω

−µ
4 . Then it is immediate that φ̃′ respects the two

relations defining B̂4, so it is an automorphism of B̂4. This automorphism
clearly sends the derived subgroup of B̂4 into itself (since it induces an
automorphism on the quotient, i.e. on the free profinite abelian group on
three generators, namely sending each generator to itself to the power λ),
and modulo this subgroup, σ1, σ2 and σ3 become equal, which shows that µ
must be equal to 0 (since the center of B̂4 does not intersect the commutator
subgroup). Thus φ̃′ = φ̃, and we have lifted φ ∈ Aut(B̂4/Z) to φ̃ ∈ Aut(B̂4).
This lifting map is clearly injective, and a simple calculation confirms that
φ̃ is in Aut(T̂4), i.e. that it respects all the homomorphisms in, fn and gn

for 1 ≤ n ≤ 3. So we have an injective map ι : ĜT → Aut(T̂4). ♦

In order to finish the proof of proposition 6, it remains only to prove the
surjectivity of ι. Take an element Φ = (φn)1≤n≤4 in Aut(T̂4). We know by
proposition 4 that the couple (λ, f) determined by φ3 is in ĜT 0. By the
relation φ4i3 = i3φ3 we see that

φ4(σ1) = σλ
1 , and φ4(σ2) = f(x23, x12)σλ

2 f(x12, x23).
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By the commutation φ4g3 = g3φ3 we compute that

φ4(σ3) = φ4g3(σ2) = g3φ3(σ2) = g3
(
f(x23, x12)σλ

2 f(x12, x23)
)

= f(x34, x45)σλ
3 f(x45, x34).

Let φ be the map associated to (λ, f) ∈ ĜT 0 given in the statement of
lemma 7, defined on the generating set of M̂(0, 5) considered there. Con-
sider φ restricted to the subgroup B̂4/Z ⊂ M̂(0, 5); it agrees with the au-
tomorphism of B̂4/Z induced by φ4, so it is an automorphism of this sub-
group. We will show that this implies that φ actually gives an automorphism
of all of M̂(0, 5), which in turn shows by lemma 7 that the couple (λ, f)
must lie in ĜT . We must verify that φ respects the defining relations of
M̂(0, 5). Since φ is an automorphism of B̂4/Z, it respects σ1σ2σ1 = σ2σ1σ2,
σ2σ3σ2 = σ3σ2σ3 and (σ1σ2σ3)4 = 1 (this last relation is well-known to be
equivalent to the center relation (σ1σ2σ3σ4)5 = 1, cf. [Bi]). The relation
σ3σ4σ3 = σ4σ3σ4 and the Hurwitz relation σ4σ3σ2σ

2
1σ2σ3σ4 are respected

simply because φ satisfies the conditions of lemma 8 (i), as in the proof of
lemma 7; these two relations are respected by φ’s associated to any couple
in ĜT 0. Therefore φ is an automorphism of M̂(0, 5) and thus by lemma 7
(λ, f) lies in ĜT , so Φ = ι(λ, f) and ι is a bijection. This concludes the
proof of proposition 6. ♦

Corollary: Out(T4) ' GT`.

Proof: Much as in the last section, this is really a corollary of the proof
of proposition 6, which carries over to the pro-` case. Specifically, note
that the statement and proof of lemma 7 are entirely valid when M̂(0, 5)
is replaced by M(0, 5)(`). This shows that if (λ, f) ∈ GT` then it induces
an automorphism of B(`)

4 /Z which is easily seen to lift to one of B(`)
4 as in

the profinite case. Conversely, if φ4 is an automorphism of B(`)
4 which acts

on σ1, σ2 and σ3 as in equation (5), it induces one of B(`)
4 /Z ⊂ M(0, 5)(`)

which extends uniquely to one of M(0, 5)(`) as in the proof of lemma 9, so
the couple (λ, f) must belong to GT`. If φ4 is associated to (λ, f) ∈ GT`,
it is immediate that defining φn for 1 ≤ n ≤ 3 as the restrictions of φ4 to
B

(`)
n ⊂ B

(`)
4 we obtain a map GT` → Aut(T4) which is injective because its

kernel must be contained in the kernel of the injective map η̃ defined in §3.
To prove the surjectivity of this map, we again simply copy the proof of the
surjectivity of the map ι given above. This is where we use the fact that the
strand-doubling map g3 is part of the tower T4. Needless to say, one would
prefer to dispense with this extra compatibility condition. ♦
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§5. ĜT is the full automorphism group of Aut(T̂ )

We now prove the profinite part of (iii) of the main theorem. In proposi-
tion 10 we define an injective homomorphism of ĜT into Aut(T̂ ), which is
shown to be a bijection in proposition 11.

Proposition 10: Let (λ, f) ∈ ĜT and associate to it for all n ≥ 1 a map
φn = φn,(λ,f) which sends the generators of B̂n into B̂n as in equation (5),
namely:

φn(σ1) = σλ
1 and φn(σi) = f(σ2

i , yi)σλ
i f(yi, σ

2
i ) for 2 ≤ i ≤ n− 1.

Then φn can be extended by multiplicativity to an automorphism of B̂n

for all n which preserves the subgroup Ân ⊂ B̂n. Set φ′n = φn|Ân
; then

(λ, f) 7→ (φn, φ
′
n)n≥1 defines an injective map θ : ĜT → Aut(T̂ ).

Proof: Fix (λ, f) ∈ ĜT . Let us show that for all n ≥ 1, φn determines an
element of Aut(B̂n). We know by proposition 6 that φ4 is an automorphism
of B̂4. To see that φn can be extended multiplicatively to an automorphism
of all of B̂n, we must show that φn respects relations (1) of the definition of
Bn given in §2. For the commutation relations (σi, σj) = 1 when |i− j| ≥ 2,
it suffices to recall that the elements yi ∈ B̂n commute, which shows that
φn(σi)φn(σj) = φn(σj)φn(σi) since the factors of φn(σj) only contain yj and
σj and thus commute with those of φn(σi) which themselves only contain
yi and σi.

For the braid relations σiσi+1σi = σi+1σiσi+1, we first note that since
φn restricted to B̂4 ⊂ B̂n is an automorphism, it respects these relations
for i = 1 and i = 2. For 2 < i ≤ n − 2, let Ci be the subgroup of B̂n

generated by σi, σi+1, yi and yi+1. Then there is a canonical isomorphism
ψi : Ci → C2 taking σi to σ2, σi+1 to σ3, yi to y2 and yi+1 to y3. This
isomorphism can be visualized in terms of braids by noting that the braids
in Ci are exactly those in C2 where the first strand is replaced by i − 1
parallel strands – the situation is similar to the proof that the maps gn are
homomorphisms, cf. §2. Now, consider the map hi := ψ−1

i φnψi on the
subgroup Ci for 2 < i ≤ n−2. Since φn is an automorphism of C2 = ψi(Ci)
because C2 ⊂ B̂4, the map hi is an automorphism of Ci. But

hi(σi) = ψ−1
i φnψi(σi) = ψ−1

i φn(σ2) = ψ−1
i

(
f(σ2

2 , y2)σ
λ
2 f(y2, σ2

2)
)

=

f(σ2
i , yi)σλ

i f(yi, σ
2
i )

and
hi(σi+1) = ψ−1

i φn(σ3) = f(σ2
i+1, yi+1)σλ

i+1f(yi+1, σ
2
i+1),
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so hi agrees with φn on σi and σi+1, so φn respects the braid relations
σiσi+1σi = σi+1σiσi+1 for 2 < i < n − 1 since hi does. This shows that
the φn are in Aut(B̂n) for n ≥ 1. The automorphisms φn defined in this
way preserve the subgroups Ân ⊂ B̂n, so we define φ′n = φn|Ân

. Then it
is easily checked by a simple calculation that (φn, φ

′
n)n≥1 ∈ Aut(T̂ ) since

the φn and the φ′n respect all the arrows in, fn and gn. Thus we have a
map θ : ĜT → Aut(T̂ ). Moreover, this map is injective because its kernel is
contained in the kernel of the injective homomorphism η̃ : ĜT 0 → Aut(T3)
(restricted to ĜT ) defined in §3. ♦

Proposition 11: The map θ : ĜT → Aut(T̂ ) is bijective.

Proof: We prove surjectivity of θ. Let (φn, φ
′
n)n≥1 ∈ Aut(T̂ ). Let (λ, f) ∈

ĜT be the couple associated to (φn, φ
′
n)1≤n≤4 ∈ Aut(T̂4) by proposition 6.

Let (ψn, ψ
′
n)n≥1 := θ(λ, f), so φ4 = ψ4. We must show that φn = ψn for

n > 4, or equivalently, that φn must be as defined on B̂n as in equation
(5). We proceed by induction; it is true for 1 ≤ n ≤ 4; suppose it true for a
given n. We must determine how φn+1 acts on σn. We thus calculate using
the compatibility of the φn with the maps gn that:

φn+1(σn) = φn+1gn(σn−1) = gnφ
′
n(σn−1),

= gn

(
f(yn−1, σ

2
n−1)

−1σλ
n−1f(yn−1, σ

2
n−1)

)
= f(yn, σ

2
n)−1σλ

nf(yn, σ
2
n),

since for 2 ≤ i ≤ n−1, we have gn(yi) = yi+1. This shows that for all n ≥ 1,
φn acts on B̂n as in (5), so φn = ψn for all n, so (φn, φ

′
n)n≥1 = θ(λ, f).

Thus the map θ : ĜT → Aut(T̂ ) is bijective, which concludes the proof
of the profinite part of the Main Theorem (it is obvious that we also have
ĜT ' Aut(T̂N ) for all N > 4). ♦

§6. GT` is the full automorphism group of T

In this paragraph we finish the proof of the pro-` statement (iii) of the
Main Theorem. This involves proving analogues of propositions 10 and 11
in the pro-` case. The statement and proof of proposition 10 are very easily
adapted to the pro-` case. This is not the case for proposition 11, since
the strand-doubling maps gn are not included in the tower T . One could of
course include them, however we found that thanks to an injectivity theorem
proved by Ihara in the pro-` case (see the proof of lemma 16) which is not
known to hold in the profinite case, they are actually not needed to obtain
the result. Before establishing the Main Theorem in the pro-` case, we prove



ĜT and braid groups 25

a necessary auxiliary result on the general behavior of the automorphism
groups of the B(`)

n in Proposition 12.

For all N ≥ 1, let us denote by Aut1(TN ) (resp. Out1(TN )) the subgroup
of elements (resp. classes of elements mod Inn(TN ) ) (φn)1≤n≤N such that
φn(σ1) = σ1. Note that this condition implies that φn(ωn) = ωn for 1 ≤
n ≤ N ; indeed, φn must map ωn to a Z∗` -power µ of itself since the center of
B

(`)
n is cyclic, and this power is easily seen to be equal to 1 by considering

the identity φn(ωn) = ωµ
n modulo the derived subgroup of B(`)

n .

Proposition 12: The map Out1(TN ) → Out1(TN−1) induced by restricting
automorphisms of B(`)

N to the subgroup B(`)
N−1 ⊂ B

(`)
N is injective for N ≥ 4.

Proof: The proof uses sublemmas 13, 14 and 15 to reduce the statement to
the similar statement for the pure braid groups given in lemma 16, which
is an adaptation of an analogous result for the pure Hurwitz braid groups
proven by Ihara in [I2].

Sublemma 13: Let φ ∈ Aut(TN ). Then for 1 ≤ i < j ≤ N there exists
αij ∈ K`

N such that φ(xij) = α−1
ij x

λ
ijαij, and for 1 ≤ i ≤ N − 1, there exists

αi ∈ K`
N such that φ(σi) = α−1

i σλ
i αi.

Proof: If φ ∈ Aut(TN ), then φ(σ1) = σλ
1 and φ(x12) = xλ

12 for some λ ∈ Ẑ∗`
since φ must preserve B(`)

2 . Using equation (2’) in §2 we find that

φ(xij) = φ(aij)−1xλ
12φ(aij) = φ(aij)−1aijx

λ
ija

−1
ij φ(aij) = α−1

ij x
λ
ijαij

which is the statement of the lemma, with αij = a−1
ij φ(aij). For the σi

we proceed more explicitly. Set π = σ1 · · ·σn−1 (this is denoted π2 in the
appendix); it is easy to check that σi = πi−1σ1π

−(i−1) for 1 ≤ i ≤ n − 1.
Thus:

φ(σi) = φ(π)i−1σλ
1φ(π)−(i−1) = φ(π)i−1π−(i−1)σλ

i π
i−1φ(π)−(i−1),

i.e. φ(σi) = α−1
i σλ

i αi where αi := πi−1φ(π)−(i−1). ♦

Sublemma 14: The map Aut(B(`)
N /Z) → Aut(K`

N/Z) induced by restrict-
ing automorphisms to the subgroup K`

N/Z ⊂ B
(`)
N /Z is injective.

Proof: Let K /B be groups and suppose that the centralizer CentrB(K) of
K in B is trivial. Consider B as a normal subgroup of Aut(B) via inner
automorphisms. Let us show that the restriction map Aut(B) → Aut(K)
is injective. It suffices to show that that CentrAut(B)(K) is trivial since any
φ ∈ Aut(B) whose restriction to K is the identity is in CentrAut(B)(K). So
let x ∈ CentrAut(B)(K) and b ∈ B be considered as an inner automorphism .
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Consider the automorphism b−1xbx−1 of B. It is inner since B is normal in
Aut(B). But it is in CentrB(K) since it acts trivially on K. So it is trivial
and x commutes with b. Since this is true for all b ∈ B, x ∈ CentrAut(B)(B).
But this centralizer is also trivial since if φ ∈ Aut(B), then φInn(b)φ−1 =
Inn(φ(b)), so if this expression is equal to Inn(b) for all b ∈ B, then φ is
the identity (the center of B being trivial). So x = 1, which shows that
Aut(B) → Aut(K) is injective.

The sublemma is proved by applying this result to K`
N/Z / B

(`)
N /Z /

Aut(B(`)
N /Z) since the centralizer of K`

N/Z in B(`)
N /Z is trivial. ♦

Let KN be the tower consisting of the pure braid groups K`
n for 1 ≤ n ≤

N , with the restrictions to these groups of the inclusions in,m for 1 ≤ n <

m ≤ N . For each N , let Autr
1(KN ) denote the image of Aut1(TN ) under

the natural restriction map Aut(TN ) → Aut(KN ). Denote by Inn(KN ) the
image of Inn(TN ) under this map (although its elements are not really inner
automorphisms of KN ). Let Out(KN ) = Aut(KN )/Inn(KN ).

Sublemma 15: The restriction map Out1(TN ) → Outr
1(KN ) is an isomor-

phism for N ≥ 1.

Proof: By definition, this map is surjective. We must show it is injective.
Consider the diagram

Aut1(TN ) → Autr
1(KN )

↓ ↓

Aut(B(`)
N /Z) → Aut(K`

N/Z).

The lower map is injective by sublemma 14. The vertical maps are given
by the fact that any automorphism of B(`)

N which fixes the center naturally
induces an automorphism of B(`)

N /Z. These maps are easily seen to be
injective (see [DG], thm. 20); as usual, one considers what happens modulo
the derived subgroup. So the upper map is an isomorphism. By definition,
it remains an isomorphism when Aut is replaced by Out. ♦

Lemma 16: The natural restriction map Outr
1(KN ) → Outr

1(KN−1) is
injective for N ≥ 4.

Proof: Let Pn denote the pure Hurwitz braid group contained in Hn. By
proposition 2 (iv) (pro-`), P `

n+1 is a semi-direct product F `
n×|P `

n for n ≥ 3,
where F `

n is the pro-free group of rank n−1 generated by x̃1,n+1, . . . , x̃n,n+1

with the Hurwitz relation x̃1,n+1 · · · x̃n,n+1 = 1. For n ≥ 1, let (K ′
n)` ⊂ K`

n
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be as in proposition 2. Let the groups Out∗(P `
n) be as defined in [I2], i.e.

Out∗(P `
n) =

{φ ∈ Out(P `
n) | ∃αij ∈ P `

n such that φ(x̃ij) = α−1
ij x̃ijαij ∀ 1 ≤ i < j ≤ n}.

For n ≥ 1, let
hn : Outr

1(Kn) → Out((K ′
n)`, ∗)

be the maps obtained by restricting the elements of Outr
1(Kn), considered as

outer automorphisms of K`
n = (K ′

n)`×Z(K`
n), to the subgroup (K ′

n)` (they
are actually automorphisms of K ′

n, as can easily be seen by recalling that
they conjugate each xij) Let Outr

1((K
′
n)`) = Im(hn). The hn are injective

since elements of Outr
1(Kn), considered as automorphisms of K`

n, fix the
center, so they are isomorphisms

hn : Outr
1(Kn) ∼→ Outr

1((K
′
n)`).

Fix N ≥ 1. The following diagram commutes:

Out∗(P `
N+1) → Out∗(P `

N )

↓ ↓

Outr
1((K

′
N )`) h−→ Outr

1((K
′
N−1)

`),

where the upper map corresponds to the quotient by F `
N , which induces

an automorphism of P `
N since F `

N is normal and so preserved by all φ ∈
Out∗(P `

N+1). The lower map h is simply the restriction map ((K ′
N−1)

` is
considered to be included in (K ′

N )` via iN−1,N ). The vertical maps come
from the fact that elements of Out∗(P `

N ) fix the center of P `
N , so these

maps induce automorphisms on P `
N/Z, which is isomorphic to (K ′

N−1)
` by

proposition 2 (iii).
Ihara showed that the upper map is injective; this theorem is the main

result of [I2]. The right-hand vertical map is also injective. For if φ is in
the kernel, then φ fixes (K ′

N−1)
`, but φ fixes the center of P `

N , so since
P `

N = (K ′
N−1)

`×Z(P `
N ) by proposition 2 (iii), φ is the identity. This shows

that the lower map is injective. So the map

g−1
N−1 ◦ h ◦ gN : Outr

1(KN ) → Outr
1(KN−1)

is injective; it is the map in the statement of the lemma. ♦
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To conclude, we consider the commutative diagram

Out1(TN ) - Out1(TN−1)

? ?
Outr

1(KN ) - Outr
1(KN−1).

By sublemma 14, the vertical arrows are isomorphisms and the lower ar-
row is injective by lemma 16, so the upper arrow is injective. This finally
concludes the proof of proposition 12. ♦

We can now easily establish pro-` analogues of propositions 6, 10 and 11.

Proposition 17: (i) There is an injective map θ : GT` → Out(T ) given
by associating to a couple (λ, f) an automorphism φn of B(`)

n defined as in
equation (5);

(ii) the map θ is a bijection.

Proof: (i) Fix (λ, f) ∈ GT` and define φn on the generators of B(`)
n as in

equation (5). The proof of proposition 10 can be copied directly to prove
this result once the use of proposition 6 is replaced by its corollary.

(ii) We finally prove the surjectivity of the map θ : GT` → Out(T ).
Let Φ ∈ Out(T ) and let φ = (φn)n≥1 ∈ Aut(T ) be a representative of
Φ which fixes the permutations of the B(`)

n (it exists by lemma 3). Then
by proposition 4, there exists a unique couple (λ, f) ∈ GT`,0 such that
φ3 = η̃(λ, f). Let ψ = (ψn)n≥1 = θ̃(λ, f). Then ψ ∈ Aut(T ) and ψ3 = φ3.
Set χ = φψ−1. Then writing χ = (χn)n≥1, we see that χ3 is the identity
on B

(`)
3 , so by proposition 12, χn is the identity on B

(`)
n for n ≥ 1, which

means that φ = ψ = θ̃(λ, f), so θ is surjective. Thus we obtain Out(T ) '
GT` ' Out(TN ) for all N ≥ 4, which concludes the proof of proposition 17,
and of the Main Theorem. ♦
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Appendix

The goal of this appendix is to assemble a number of results on Artin and
sphere braid groups and modular groups, which although quite elementary
to prove, do not seem to be anywhere in the usual literature on braid groups
([A1], [A2], [Bi], [DG], [Ma], etc.). The basic result is proposition A3, which
gives rise to a number of different isomorphisms, homomorphisms, inclusions
and relations between the different braid groups described in proposition A4
(which occurs as proposition 2 of §2). We have chosen to make this appendix
entirely self-contained at the price of repeating several of the definitions and
restating some results already given in §§2 and 4 of the main article.

Let us begin again with notation and definitions. For n > 2, we write Bn

for the Artin braid group on n strings, Kn for the pure Artin braid group on
n strings, Hn for the Hurwitz (or sphere) braid group on n strings, Pn for
the pure Hurwitz braid group, M(0, n) for the modular group of the sphere
with n marked points and K(0, n) for the pure modular group. We will
recall a presentation by generators and relations for each of these groups as
well as a good many other extremely well-known facts, but we do not recall
their proofs and/or geometric interpretations since these are to be found
everywhere in the literature ([Bi] for example).

– Bn is generated by elements σ1, . . . , σn−1 satisfying the following relations:

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 and σiσj = σjσi for |i− j| ≥ 2.
(A1)

It is well-known that the center of Bn is an infinite cyclic group generated
by ωn := (σ1 · · ·σn−1)n.

– Hn is the quotient of Bn by normal closure of the element

αn := σn−1σn−2 · · ·σ2σ
2
1σ2 · · ·σn−2σn−1.

It is well-known that the center of Hn is of order 2, generated by the image
ω̃n of (σ1 · · ·σn−1)n in Hn.

– M(0, n) is the quotient of Hn by its center.

There is a natural surjective homomorphism ρ : Bn → Sn, where Sn is
the permutation group on n letters, giving by quotienting by the relations
σ2

i = 1. This ρ induces homomorphisms Hn → Sn and M(0, n) → Sn. The
groups Kn, Pn and K(0, n) are defined to be the kernels of these maps in
Bn, Hn and M(0, n) respectively.
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Let us give a more symmetric presentation of the group Bn which we have
frequently found useful.

Proposition A1: The following is a presentation for the Artin braid group
Bn: as generators we take σij for i, j ∈ Z/nZ, with the relations

σii = 1, σij = σji, σjkσij = σikσkj(= σijσki) and σijσkl = σklσij (A2)

for i, j, k, l distinct in cyclic order in Z/nZ.

Proof: Let us imagine the strings of a braid to be hanging from a ring and
attached at equally spaced points. The elements σij should then be thought
of as intertwining the i-th and j-th strings once. We use 1, . . . , n as repre-
sentatives of the elements of Z/nZ. Set σij = σj−1 · · ·σi+1σiσ

−1
i+1 · · ·σ

−1
j−1

for i, j ∈ Z/nZ (so σi,i+1 = σi for 1 ≤ i ≤ n − 1). The symbol σn which
appears in this expression when i > j is not defined in Bn, so we define
it by setting σn := σn1 = σ1n, the last quantity being well-defined. Thus,
σii = 1 holds by convention and σ1n = σn1 is true by definition. The defin-
ing relations (A1) for Bn appear as particular cases of the relations (A2):
the braid relations σiσi+1σi = σi+1σiσi+1 correspond to the “triangular”
relations for i, j = i + 1, k = i + 2 and the commutation relations to the
“four-points” relations with i, j = k + 1, k, l = k + 1. To prove that all the
relations of the proposition hold in Bn, we first prove the relation

σ1,nσn−1,nσ
−1
1,n = σ1,n−1 (A3)

(which is just the case i = 1, j = n − 1, k = n of the triangular relation)
in Bn. For this we use the following principle of “index shifting”. Set
π1 = σn−1 · · ·σ1 and π2 = σ1 · · ·σn−1. Then we have the relations

(i) π−1
1 σi,i+1π1 = σi+1,i+2 for i ∈ Z/nZ and

(ii) π2σi,i+1π
−1
2 = σi+1,i+2 for 1 ≤ i ≤ n− 2.

We can now prove relation (A3) from the known relation σ23σ12σ
−1
23 = σ13

in Bn by conjugating both sides by π1 to obtain π2
1 (with the positive power

on the left). The other relations are proved by induction on n, starting from
the fact that the relations (A2) are valid for n = 3 (by inspection) and in
the classical cases enumerated above which correspond to Artin’s relations
(A1), and checking that they remain valid if one adds a further n + 1-th
string. This is rather obvious if one keeps in mind the geometric meaning
of σij but the computations are admittedly a bit messy and we shall not
reproduce them here. ♦

The σij arise naturally, in particular because their squares xij := σ2
ij

generate the pure braid group Kn. Since xii = 1 and xij = xji, Kn is
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actually generated by the xij for 1 ≤ i < j ≤ n, with the following classical
defining relations ([A1], [Bi]), where we write (a, b) for the commutator
aba−1b−1:

- xijxikxjk commutes with xij , xik and xjk for all i < j < k;

- (xij , xkl) = (xil, xjk) = 1 for i < j < k < l;

- (xik, x
−1
ij xjlxij) = 1 for i < j < k < l.

Pn is the image of Kn under the map Bn → Hn. More precisely, we have

Lemma A2: Pn is the quotient of Kn by the normal subgroup Un generated
by the elements αi for 1 ≤ i ≤ n given by

αi = x1ix2i · · ·xn−1,ixn,i. (A4)

Proof: We use the presentation given in proposition A1 and the remark
that any n − 1 of the elements σ12, σ23, . . . , σn−1,n, σn1 give a generating
system for Bn. The lemma is then a consequence of the following identities:
(αi, σj,j+1) = 1 for j 6≡ i or i−1 in Z/nZ, and σ−1

i−1,iαiσi−1,i = αi−1; in par-
ticular these identities show that Un is normal in Bn (and thus in Kn), and
indeed is exactly the normal closure of the group generated by the element
αn. It suffices to prove these identities for a single value of i ∈ Z/nZ since
they are then all obtained by shifting indices as in the proof of proposition
A1. Let us take i = n, αn = x1n · · ·xn−1,n = σn−1 · · ·σ2

1 · · ·σn−1. The fact
that αn commutes with σi for 1 ≤ i ≤ n− 2 is immediate to anyone having
the courage to draw the the braids. We prove it explicitly by noting that
αn = π2π1,

αnσj,j+1α
−1
n = π2π1σj,j+1π

−1
1 π−1

2 = π2σj+1,j+2π
−1
2 = σj,j+1

for 1 ≤ j ≤ n− 2.
For the final identity, note that σ−1

n−1αnσn−1 = σn−2 · · ·σ2
1 · · ·σn−2σ

2
n−1,

which is exactly equal to αn−1 = x1,n−2 · · ·xn−3,n−2xn−1,n−2. ♦

From now on, let us write α̃ for the image in Hn of any element α ∈ Bn,
and ᾱ for the image of α in M(0, n). Thus Pn is generated by the x̃ij . For
1 ≤ j ≤ n, we have the sphere relations “based at i” in Pn, namely:

x̃1i · · · x̃n,i = 1, (A5)

which, for 1 ≤ i ≤ n− 1, can also be written

x̃i,n = (x̃1ix̃2i · · · x̃i,n−1)−1. (A5′)
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These relations show that in fact, {x̃ij | 1 ≤ i < j ≤ n− 1} is a generating
set for Pn.

The center of Pn is given by the element of order 2

ω̃n := (x̃12)(x̃13x̃23) · · · (x̃1nx̃2n · · · x̃n−1,n),

or equivalently,

ω̃n = (x̃12)(x̃13x̃23) · · · (x̃1,n−1x̃2,n−1 · · · x̃n−2,n−1) (A6)

since x̃1,nx̃2,n · · · x̃n−1,n = 1 by the sphere relation based at n. In particular,
we have

x̃12 = ω̃n

(
x̃13 · · · x̃n−2,n−1

)−1
. (A7)

Let us introduce the following important sets:

En := {xij | 1 ≤ i < j ≤ n, (i, j) 6= (1, 2)},

Ẽn := {x̃ij | 1 ≤ i < j ≤ n, (i, j) 6= (1, 2)}, (A8)

Ēn := {x̄ij | 1 ≤ i < j ≤ n, (i, j) 6= (1, 2)},

where these sets are considered as subsets of Km, Pm and K(0,m) respec-
tively, for any m ≥ n.

By equations (A5’) and (A7), Ẽn−1 ∪ {ω̃n} is a generating set for Pn,
and thus Ēn−1 is a generating set for K(0, n). If we denote by 〈Ẽn〉 the
subgroup of Pn generated by Ẽn, then Pn ' 〈Ẽn〉 × Z/2Z, and this implies
that

K(0, n+ 1) ' 〈Ẽn〉 ' 〈Ēn〉. (A9)

In fact we have the stronger result

Proposition A3: Let K ′
n−1 denote the subgroup of Kn−1 generated by

En−1. Then
Pn ' K ′

n−1 × Z/2Z.

Proof: The main idea of the rather topological proof given here is that on
the sphere, any pure braid on n-strings can be deformed into a unique braid
with the following property: if the third to n−1-st strings are removed, the
first two strings intertwine either exactly once (via x̃12) or not at all. This
implies that P3 = Z/2Z and in general reflects the fact that Pn is generated
by a certain subgroup of braids in which the first and second strings do not
intertwine at all, namely 〈Ẽn−1〉, and the central element ω̃n of Pn, which
intertwines them once and which is of order 2. Thus there is a bijection
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between the braids in Pn whose first two strings do not intertwine and the
plane braids in Kn whose first two strings do not intertwine, which precisely
means that 〈En−1〉 ' 〈Ẽn−1〉.

In order to prove the result, it is best to use an other well-known inter-
pretation of Pn, namely as the fundamental group of the following “config-
uration space”

F0,n = {Z = (z1, · · · , zn), zi ∈ P1C, zi 6= zj for all (i, j) ∈ {1, · · · , n}, i 6= j}.

A braid is then represented as a path Z(t), t ∈ (0, 1), or rather as the
class [Z(t)] ∈ π1(F0,n) ' Pn. To any path Z(t) we associate a path ζt in
PGL2(C) as follows: ζt is the unique element of PGL2(C) which maps the
points {0, 1,∞} to {z1(t), z2(t), z3(t)}. We assume below that n ≥ 3 (n = 1
or 2 are trivial cases) and PGL2(C) acts on P1C via Möbius transformations
as usual. To a path αt in PGL2(C) and a path Z(t) in F0,n we associate
the path αt · Z(t) in F0,n defined by the componentwise action of αt, i.e.
by (αt · Z(t))i = αtzi(t). It is easy to check that the corresponding braid
[αt · Z(t)] actually depends only on the class [αt] ∈ π1(PGL2(C)); indeed if
αt can be homotoped to the trivial path by a homotopy αt(s), αt(s) · Z(t)
provides a homotopy between αt · Z(t) and Z(t).

Recall now that π1(PGL2(C)) = Z/2Z and that a representative of the
only non-trivial element can be taken to be

γt =
(
eiπt 0
0 e−iπt

)
, t ∈ (0, 1).

Let now [Z(t)] be an arbitrary braid represented by Z(t) and consider ζ−1
t ·

Z(t); by the very definition of ζt, this path fixes {0, 1,∞} so in particular
it can be considered as a path on the plane, representing a braid with n− 1
strings, out of which two are kept fixed. Two cases may arise according to
whether [ζt] = 1 ∈ π1(PGL2(C)) or not. In the first case, [ζ−1

t · Z(t)] =
[Z(t)] ∈ Pn and we have an explicit correspondence of this class of braids
with K ′

n−1. If on the other hand [ζt] 6= 1 ∈ π1(PGL2(C)), we have that
[ζt] = [ζ−1

t ] = [γt].
Let Ω(t) be a path corresponding to the center ω̃n of Pn, and ωt the

corresponding path in PGL2(C). A possible choice of Ω(t) can be described
as follows (see [Bi]; of course all choices are equivalent). We set Ω(0) =
(0, 1, 2, · · · , n− 2,∞) (these are points on P1C) and Ωi(t) = exp(2iπt)Ωi(0)
(so that 0 and ∞ are actually fixed). From this, we obviously get ωt = γt

and a fortiori [ωt] = [γt] 6= 1 ∈ π1(PGL2(C)). Thus returning to the case
when [ζt] associated to Z(t) is non-trivial, we see that the path Ωt ◦ Z(t),
obtained by composing Z(t) with Ωt is associated with the trivial element
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of π1(PGL2(C)) and we are back to the first case. But now [Ωt ◦ Z(t)] =
ω̃n[Z(t)] ∈ Pn, which finishes the proof and in fact provides an explicit
description of the stated isomorphism. ♦

Corollary: 〈En〉 ' 〈Ẽn〉 ' 〈Ēn〉 for n > 2.

Proposition A3 gives rise to a number of natural relations between the
braid groups which we summarize as follows.

Proposition A4: We have:

(i) Kn = K ′
n × 〈ωn〉.

(ii) There are two natural inclusions i1 and i2 of Kn−1 into Kn. Both send
xij to xij for 1 ≤ i < j ≤ n, (i, j) 6= (1, 2). But i1 is then defined by setting
i1(x12) = x12, whereas i2 is defined by setting i2(ωn−1) = ωn.

(iii) Pn ' K ′
n−1 × Z/2Z and K(0, n+ 1) ' Pn+1/Z ' K ′

n.

(iv) Pn+1 ' Kn+1/Un+1 ' Kn/〈ω2
n〉.

(v) The subgroup P̃n of Pn+1 generated by Ẽn−1 ∪ {ω̃n+1} is isomorphic to
Pn.

(vi) Pn+1 = Fn×| P̃n, where Fn is the free group of rank n− 1 generated by
x1,n+1, . . . , xn,n+1 (whose product equals 1).

(vii) We have the inclusions K(0, n+1) ' Kn/〈ωn〉 ⊂ Bn/〈ωn〉 ⊂M(0, n+
1).

Proof: (i) Since x12 = ωn(x13x23 · · ·xn−1,n)−1, we see that K ′
n and ωn gen-

erate Kn. To see that their intersection is trivial, it suffices to consider their
images modulo the derived subgroup of Kn, and notice that the quotient is
just the free abelian group on the images of the xij . Finally, it is obvious
that K ′

n is normal in Kn since it is normalized by ωn. This shows that
Kn = K ′

n×| 〈ωn〉, so Kn = K ′
n × 〈ωn〉 since ωn is central.

(ii) That i1(Kn−1) ↪→ Kn is injective is obvious. As for i2(Kn−1), it sends
K ′

n−1 injectively into K ′
n and the cyclic group 〈ωn−1〉 isomorphically onto

〈ωn〉, so it sends Kn−1 = K ′
n−1 × 〈ωn−1〉 injectively into Kn = K ′

n × 〈ωn〉.

(iii) The first isomorphism is just proposition A3 and the others immedi-
ate consequences of it and the definitions.

(iv) The first isomorphism is by definition. For the second, we have
Kn/〈ω2

n〉 ' K ′
n × Z/2Z ' Pn+1 by (i) and (iii).

(v) Consider the map Kn+1 → Kn+1/Un+1 ' Pn+1. This map induces
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an injection on K ′
n−1 because by proposition A3, the image of K ′

n−1 in
Pn+1 is 〈Ẽn−1〉 which is isomorphic to 〈En−1〉 which is isomorphic to K ′

n−1,
where we consider K ′

n−1 to be included in Kn as in (ii). The subgroup
〈Ẽn−1〉 × 〈ω̃n+1〉 of Pn+1 is thus isomorphic to K ′

n−1 × Z/2Z, so to Pn by
proposition A3.

(vi) Let Vn denote the image of Un under the mapKn → Kn/〈ω2
n〉 ' Pn+1

(by (iv)). This image is generated in Pn+1 by the images α̃i in Pn+1 of the
αi = x1i · · ·xni ∈ Kn, so they are the products x̃1i · · · x̃ni. But in Pn+1,
we have the relations x1i · · ·xnixn+1,i = 1, so x−1

n+1,i = α̃i, so in Pn+1, it is
generated by the xn+1,i for 1 ≤ i ≤ n; it is precisely Fn ⊂ Pn+1. Since Un

is normal in Kn, Fn is normal in Pn+1.
Under the isomorphism Pn+1 ' K ′

n × Z/2Z of proposition A3, Fn thus
corresponds to Vn. We saw in (v) that moreover P̃n ⊂ Pn+1 corresponds to
the subgroup K ′

n−1×Z/2Z included in K ′
n×Z/2Z in the obvious way. The

intersection K ′
n−1 ∩ Vn is trivial in K ′

n × Z/2Z for the following reason: we
know that (K ′

n × Z/2Z)/Vn ' Pn and that the image of K ′
n−1 × Z/2Z is

P̃n−1 ⊂ Pn which is isomorphic to Pn−1 and therefore to K ′
n−1 ×Z/2Z (by

(iii) and (v)). So this quotient map is injective on K ′
n−1×Z/2Z and Vn is its

kernel, so these groups cannot intersect. This shows that Fn ∩ P̃n = {1} in
Pn+1. Since Fn and P̃n generate all of Pn+1, this means that Pn+1 ' Fn×| P̃n

as stated.

(vii) The isomorphism comes from K(0, n + 1) ' K ′
n = Kn/〈ωn〉 (by

(i) and (iii)). The first inclusion is obvious and the second is because the
relation (σ̄1 · · · σ̄n)n+1 = 1 and the Hurwitz relation ᾱn = 1 in M(0, n+ 1)
imply that the relation (σ̄1 · · · σ̄n−1)n is also valid in M(0, n+ 1) (cf. [Bi])
which means that the subgroup generated by σ̄1, . . . , σ̄n−1 in M(0, n+1) is
isomorphic to Bn/〈ωn〉. ♦
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