Explicit Realisations of Subgroups of $G L_{2}\left(\mathbf{F}_{3}\right)$ as Galois Groups

Leila Schneps
Max-Planck Institut für Mathematik, Gottfried-Clarenstrasse 26, 5300 Bonn 3, Germany
Communicated by D. Zagier

Received July 15, 1988; revised September 1, 1988

Let F be a number ficld and K an extension of F with Galois group D_{4} (resp. A_{4} or S_{4}). In this article we explicitly construct all of the quadratic extensions L of K having Galois group \tilde{D}_{4}, the Sylow subgroup of $G L_{2}\left(\mathbf{F}_{3}\right)$ (resp. $S L_{2}\left(\mathbf{F}_{3}\right)$ or $G L_{2}\left(\mathbf{F}_{3}\right)$) over F, whenever such extensions exist. © 1991 Academic Press, Inc.

1. Introduction

Let G be a finite group and H an extension of G by $\{ \pm 1\}$, i.e.,

$$
1 \rightarrow\{ \pm 1\} \rightarrow H \rightarrow G \rightarrow 1
$$

Suppose $H \neq G \times\{ \pm 1\}$. Let $\left\{v_{\sigma} \in H \mid \sigma \in G\right\}$ be a set of representatives for $H /\{ \pm 1\}$ such that $v_{\sigma} \rightarrow \sigma$ under reduction $\bmod \pm 1$. Let F be a number field and K a Galois extension of F having Galois group G. The following result is well known:

Lemma 1. Let $A=\sum_{\sigma} K v_{\sigma}=\left(K / F, \zeta_{\sigma, \tau}\right)$ be the crossed-product algebra whose multiplicative law is given by

$$
\alpha v_{\sigma}=v_{\sigma} \sigma(\alpha) \quad \text { for } \quad \alpha \in K \quad \text { and } \quad v_{\sigma} v_{\tau}=\zeta_{\sigma, \tau} v_{\sigma \tau},
$$

where $\zeta_{\sigma, \tau}= \pm 1$ and the second law is given by multiplication in H. Let $E(F, K, G, H)$ be the set of quadratic extensions L of K, Galois over F of Galois group H and such that the diagram

commutes. Then $E(F, K, G, H)$ is non-empty if and only if the class of A in the Brauer group $\operatorname{Br}(F)$ is equal to the identity class. Moreover if $\gamma \in K$ is such that $K(\sqrt{\gamma}) \in E(F, K, G, H)$, then $E(F, K, G, H)=\left\{K\left(\sqrt{r_{\gamma}}\right) \mid r \in F^{*}\right\}$.

Proof. Suppose there exists $\gamma \in K$ such that $L=K(\sqrt{\gamma})$ is Galois over F of Galois group H. Let $\omega=\sqrt{\gamma}$: for each $\sigma \in \operatorname{Gal}(K / F)$, set $c_{\sigma}=v_{\sigma}(\omega) / \omega$. Then $c_{\sigma} \sigma\left(c_{\tau}\right) c_{\sigma \tau}^{-1} \zeta_{\sigma, \tau}=1$, so the cocycle defining A is equivalent to the trivial cocycle and A splits. In the other direction, suppose such c_{σ} exist in K. Then $c_{\sigma}^{2} \sigma\left(c_{\tau}\right)^{2}=c_{\sigma \tau}^{2}$, so by Hilbert's Theorem 90 , there exists $\gamma \in K$ such that $c_{\sigma}^{2}=\sigma(\gamma) / \gamma$. But then $K(\omega)$ is Galois over F with Galois group H.

It is easy to see moreover that if $K(\sqrt{\gamma}) \in E(F, K, G, H)$ then so are the $K(\sqrt{r \gamma})$ for $r \in F$: if $K(\sqrt{\gamma})$ and $K(\sqrt{\lambda})$ are both in $E(F, K, G, H)$ one deduces the existence of $r \in F$ such that up to squares, $\lambda=r \gamma$ from Hilbert's Theorem 90.

Let \tilde{S}_{4} denote the central extension of S_{4} by $\{ \pm 1\}$ described in terms of generators and relations by

$$
t_{i}^{2}=1, \quad w^{2}=1, \quad w t_{i}=t_{i} w, \quad\left(t_{i} t_{i+1}\right)^{3}=1, \quad t_{1} t_{3}=w t_{3} t_{1}
$$

for generators w, t_{1}, t_{2}, t_{3} (cf. [2]). From now on we consider $G \subset S_{4}$ and $H=\widetilde{G}$, the lifting of G in \widetilde{S}_{4}. The goal of this article is to explicitly construct the groups H as Galois groups over number fields.

We thank the Max-Planck Institute für Mathematik for its hospitality and financial support during the preparation of this paper.

2. The Quaternion Group H_{8}

Let G be the Vierergruppe $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$, which we identify with the subgroup $\{1,(12)(34),(13)(24),(14)(23)\} \subset S_{4}$. Then $H=\widetilde{G}$ is the quaternion group H_{8} of order 8 . Let K / F be a biquadratic extension, $\left\{v_{\sigma}\right\}$ a set of representatives for $H_{8} /\{ \pm 1\}$, and A the crossed-product algebra defined in Section 1. Witt (cf. [4]) explicitly constructs a field L containing K and having Galois group H_{8} over F whenever A splits. We briefly recall his method here.

Let $1, \sigma_{1}, \sigma_{2}$, and σ_{3} be the elements of G, and let $\left\{\xi_{\sigma} \mid \sigma \in G\right\}$ be a basis of K / F such that $\xi_{1}=1, \xi_{\sigma}^{2}=a_{\sigma} \in F, \prod_{\sigma \in G} \xi_{\sigma}=1$, and $\sigma\left(\xi_{\sigma}\right)=\xi_{\sigma}$. The v_{σ} generate a subalgebra of A isomorphic to the quaternion algebra $(-1,-1)$ over F and the $\xi_{\tau} v_{\tau}$ generate a quaternion algebra of the form $\left(-a_{\sigma_{1}},-a_{\sigma_{2}}\right)$: since the v_{σ} commute with the $\xi_{\tau} v_{\tau}$, we have $A=(-1,-1) \otimes_{F}\left(-a_{\sigma_{1}},-a_{\sigma_{2}}\right)$.

The fact that A splits implies that $(-1,-1) \simeq\left(-a_{\sigma_{1}},-a_{\sigma_{2}}\right)$ and therefore there exist elements $p_{i j} \in F$ such that by setting $w_{\sigma_{i}}=\sum_{j=1}^{3} p_{i j} v_{\sigma_{i}}$, we have $\prod_{i=1}^{3} w_{\sigma_{i}}=-1$ and $w_{\sigma_{i}}^{2}=-1 / a_{\sigma_{i}}$ for $i=1,2,3$. Let $w_{1}=1$.

Witt extends the scalars of $(-1,-1)$ to K (so K is now the center of this algebra) and sets $j_{\sigma}=\xi_{\sigma} w_{\sigma}$: he then constructs the element $C=\sum_{\sigma \in G} v_{\sigma}^{-1} j_{\sigma}$. This element is non-zero and satisfies the identity $C j_{\sigma} C^{-1}=v_{\sigma}$ for each $\sigma \in G$. Replacing C by $v_{\sigma} C^{\sigma}$ in this equation also works. Now set $\mu_{\sigma}=v_{\sigma} C^{\sigma} C^{-1}$: it is easy to see that $\mu_{\sigma} \in K$. Let $\gamma=N C$ (the quaternion norm). Then $\gamma \in K$ and $\gamma^{\sigma} \gamma^{-1}=\mu_{\sigma}^{2}$ for all $\sigma \in G$, so $L=K(\sqrt{\gamma})$ is Galois over F. Moreover, the μ_{σ} satisfy the cocyle relation $\mu_{\sigma} \mu_{\tau}^{\sigma} \mu_{\sigma \tau}^{-1}=$ $\zeta_{\sigma, \tau}$, and $\left\{\zeta_{\sigma, \tau}\right\}$ is exactly the factor system describing H_{8}, so $\operatorname{Gal}(K / F)=$ H_{8}. Direct calculation shows that $\gamma=1+p_{11} \xi_{\sigma_{1}}+p_{22} \xi_{\sigma_{2}}+p_{33} \xi_{\sigma_{3}}$, so we have proved the following:

Lemma 2 (Witt). Let K be an extension of F of Galois group $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ and suppose the_associated algebra A splits. Then $E\left(F, K, \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}, H_{8}\right)=\left\{K(\sqrt{r \gamma}) \mid r \in F^{*}\right\}$ for γ defined as above.

3. The Generalized Dihedral Group \tilde{D}_{4}

We now let F be a number field and K a Galois extension of F such that $\operatorname{Gal}(K / F)=D_{4}$, the dihedral group of order 8. Such a field always occurs as the splitting field of a polynmial of the form

$$
P(X)=X^{4}+b X^{2}+d,
$$

where $d, b^{2}-4 d$, and $d\left(b^{2}-4 d\right)$ are not squares in $F . K$ contains three quadratic subfields, $F\left(\sqrt{b^{2}-4 d}\right), F(\sqrt{D})=F(\sqrt{d})$, where $D=16\left(b^{2}-4 d\right)^{2} d$ is the discriminant of the polynomial $P(X)$, and $F\left(\sqrt{d\left(b^{2}-4 d\right)}\right)$.

In Theorem 4 we explicitly give the set of Galois extensions of F containing K and having Galois group \widetilde{D}_{4} (this group is also known as the generalized dihedral group and is generated by elements a and b such that $a^{4}=(a b)^{2}=-1$ and $b^{2}=1$).

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} be the roots of $P(X)$, numbered in such a way that $\alpha_{1}+\alpha_{3}=0$. We have

$$
\alpha_{1}^{2}=\alpha_{3}^{2}=\frac{-b}{2}-\frac{\sqrt{b^{2}-4 d}}{2} \quad \text { and } \quad \alpha_{2}^{2}=\alpha_{4}^{2}=\frac{-b}{2}+\frac{\sqrt{b^{2}-4 d}}{2} .
$$

$\operatorname{Gal}(K / F)$ is then the subgroup $\{1,(12)(34),(13)(24),(14)(23),(13),(24)$, (1234), (1432) $\} \subset S_{4} . F\left(\alpha_{1}\right)$ is fixed by $\rho=(24)$.

Let $\quad \xi_{1}=\alpha_{1}+\alpha_{2}, \quad \xi_{2}=1 /\left(\alpha+\alpha_{2}\right)\left(\alpha_{1}+\alpha_{4}\right)=-1 / \sqrt{b^{2}-4 d}, \quad$ and $\xi_{3}=\alpha_{1}+\alpha_{4}$ (we write ξ_{i} for $\xi_{\sigma_{i}}$ in the preceding notation). Then 1, ξ_{1}, ξ_{2}, and ξ_{3} form a basis of K over $F(\sqrt{d})$. Moreover if for $1 \leqslant i \leqslant 3$ we define $a_{i}=\xi_{i}^{2}$, the a_{i} are in $F(\sqrt{d})$, and $\operatorname{Gal}(K / F(\sqrt{d}))=\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ (identified
with the subgroup $\{1,(12)(34),(13)(24),(14)(23)\}$ of $\left.D_{4}\right)$, so over $F(\sqrt{d})$ we are in the quaternion case of Witt. We form Witt's algebra $(-1,-1) \otimes_{F(\sqrt{d})}\left(-a_{1},-a_{2}\right)$.

Lemma 3. Let $(a, b)^{\rho}$ denote the part of the quaternion algebra (a, b) fixed by the action of ρ, this action being conjugation by v_{ρ}. Let $A=(-1,-1) \otimes_{F(\sqrt{d})}\left(-a_{1},-a_{2}\right)$ be the algebra associated to D_{4} and \tilde{D}_{4} as in Lemma 1. Then $(-1,-1)$ and $\left(-a_{1},-a_{2}\right)$ are both stable under the action of ρ and

$$
[A]=\left[(-1,-1)^{\rho} \otimes_{F}\left(-a_{1},-a_{2}\right)^{\rho}\right],
$$

where $[A]$ denotes the class of A in $\operatorname{Br}(F)$.
Proof. In fact, $\left.A=(-1,1)^{\rho} \otimes_{F}\left(-a_{1},-a_{2}\right)^{\rho}\right) \otimes_{F}(1, d)$, where $(1, d)$ is generated by v_{ρ} (note that $v_{\rho}^{2}=1$) and \sqrt{d}. But $[(1, d)]$ is trivial in $\operatorname{Br}(F)$.

The part of (a, b) fixed by ρ consists of the elements $x+v_{\rho} x v_{\rho}$ for all $x \in(a, b)$. The algebra $(-1,-1)$ is generated over $F(\sqrt{d})$ by v_{1}, v_{2}, and $v_{3}=-1 / v_{1} v_{2}$, so since $v_{\rho} v_{1} v_{\rho}=-v_{3}$ and $v_{\rho} \sqrt{d} v_{2} v_{\rho}=\sqrt{d} v_{2},(-1,-1)^{\rho}$ is generated by $s_{1}=v_{1}-v_{3}$ and $s_{2}=\sqrt{d} v_{2}$. This gives the quaternion algebra $(-2,-d)$ over F. Similarly, setting $u_{1}=\zeta_{1} v_{1}, u_{2}=\zeta_{2} v_{2}$, and $u_{3}=-\zeta_{3} v_{3}=-1 / u_{1} u_{2}$, the u_{i} generate $\left(-a_{1},-a_{2}\right)$ over $F(\sqrt{d})$ and $t_{1}=u_{1}-u_{3}, t_{2}=\sqrt{d}\left(b^{2}-4 d\right) u_{2}$ generate $\left(-a_{1},-a_{2}\right)^{\rho}=\left(2 b,-d\left(b^{2}-4 d\right)\right)$ over F. Thus,

$$
[A]=\left[(-2,-d) \otimes_{F}\left(2 b,-d\left(b^{2}-4 d\right)\right)\right]
$$

in the Brauer group $\operatorname{Br}(F)$. We note that this algebra is equal to

$$
\begin{aligned}
& (-2 b,-d) \otimes_{F}\left(2 b, b^{2}-4 d\right) \otimes_{F}(2, d) \\
& \quad=\left(\text { Witt invariant of } \operatorname{Tr}\left(x^{2}\right)\right) \otimes_{F}(2, d)
\end{aligned}
$$

which confirms that the splitting of A is identical to the condition for the existence of L given in Serre's theorem [3].

If A splits then there exists an isomorphism of algebras $\phi:(2 b$, $\left.-d\left(b^{2}-4 d\right)\right) \rightarrow(-2,-d)$ and a matrix $Q=\left(q_{i j}\right)$ with coefficients in F such that $t_{i}=\sum_{j=1}^{3} q_{i j} \phi\left(s_{j}\right)$. By extension of scalars, the isomorphism ϕ gives rise to a unique isomorphism $\tilde{\phi}:\left(-a_{1},-a_{2}\right) \rightarrow(-1,-1)$ and an associated matrix $P=\left(p_{i j}\right)$ such that

$$
\tilde{\phi}\left(u_{i}\right)=\sum_{j=1}^{3} p_{i j} v_{j}, \quad i=1,2,3 .
$$

The matrix P is a "Witt's matrix," i.e., setting $\gamma=1+p_{11} \xi_{1}+p_{22} \xi_{2}+p_{33} \xi_{3}$, the field $L=K(\sqrt{\gamma})$ is Galois over $F(\sqrt{d})$ with Galois group H_{8}.

Theorem 4. Let K and γ be as above. Then $E\left(F, K, D_{4}, \tilde{D}_{4}\right)=$ $\left\{K(\sqrt{r \gamma}) \mid r \in F^{*}\right\}$.

Proof. We first show that $\gamma^{\rho} \gamma^{-1}$ is a square in F. Define $w_{i}=\tilde{\phi}\left(u_{i}\right)=$ $\sum_{j=1}^{3} p_{i j} v_{j}$ for $\left(p_{i j}\right)$ as above. Then $w_{i}^{2}=-1 / a_{i}$. Let $j_{\sigma}=\xi_{\sigma} w_{\sigma}$ and let C be the element $\sum_{\sigma \in G} v_{\sigma}^{-1} j_{\sigma}$ constructed by Witt in the algebra $(-1,-1)$ with scalars extended to K. For any quaternion $q=a+b v_{1}+c v_{2}+d v_{3}$, we have $v_{\rho} q v_{\rho}=\rho(a)-\rho(b) v_{3}-\rho(c) v_{2}-\rho(d) v_{1}$, so $N\left(v_{\rho} q v_{\rho}\right)=\rho\left(N_{q}\right)$ (we write $v_{\rho} q v_{\rho}$ instead of $v_{\rho}^{-1} q v_{\rho}$).

If $q \in(-1,-1)$, write $q=\sum_{i} a_{i} \otimes x_{i}$ for $a_{i} \in(-2,-d)$ and $x_{i} \in F(\sqrt{d})$. Then $v_{\rho} q v_{\rho}=\sum_{i} a_{i} \otimes \rho\left(x_{i}\right)$ since ρ acts trivially on $(-2,-d)$. Thus, the isomorphism ϕ commutes with conjugation by $v_{\rho}(-1,-1)$. This allows us to calculate the elements $v_{\rho} w_{i} v_{\rho}$ as follows: $v_{\rho} w_{i} v_{\rho}=v_{\rho} \tilde{\phi}\left(u_{i}\right) v_{\rho}=$ $\tilde{\phi}\left(v_{\rho} u_{i} v_{\rho}\right)=-w_{4-i}$. Now we calculate

$$
\begin{aligned}
v_{\rho} C v_{\rho}= & 1+v_{\rho}\left(v_{1}^{-1} j_{1}\right) v_{\rho}+v_{\rho}\left(b_{2}^{-1} j_{2}\right) v_{\rho}+v_{\rho}\left(v_{3}^{-1} j_{3}\right) v_{\rho} \\
= & 1+v_{\rho}\left(v_{1}^{-1} \xi_{1} w_{1}\right) v_{\rho}+v_{\rho}\left(v_{2}^{-1} \xi_{2} w_{2}\right) v_{\rho}+v_{\rho}\left(v_{3}^{-1} \xi_{3} w_{3}\right) v_{\rho} \\
= & 1+\left(-v_{3}^{-1}\right) \rho\left(\xi_{1}\right)\left(-w_{3}\right)+\left(-v_{2}^{-1}\right) \rho\left(\xi_{2}\right)\left(-w_{2}\right) \\
& +\left(-v_{1}^{-1}\right) \rho\left(\xi_{3}\right)\left(-w_{1}\right)=C
\end{aligned}
$$

since $\rho\left(\xi_{i}\right)=\xi_{4-i}$. Thus, $\gamma^{\rho}=(N C)^{\rho}=N\left(v_{\rho} C v_{\rho}\right)=N C=\gamma$! One can further verify that if $\mu_{\sigma}=v_{\sigma} C^{\sigma} C^{-1}$ for $\sigma \in\{1,(12)(34),(13)(24),(14)(23)\}$ and $\mu_{\rho \sigma}=\mu_{\sigma}^{\rho} \zeta_{\rho, \sigma}$, the μ_{σ} verify the cocycle relation $\mu_{\sigma} \mu_{\tau}^{\sigma} \mu_{\sigma \tau}^{-1}=\zeta_{\sigma, \tau}$ for all σ, $\tau \in D_{4}$ and therefore $\operatorname{Gal}(K(\sqrt{\gamma}) / F)=\widetilde{D}_{4}$ and $K(\sqrt{\gamma}) \in E\left(F, K, D_{4}, \widetilde{D}_{4}\right)$. Lemma 1 suffices to conclude.

We remark in particular that the γ constructed in this way is in fact an element of $F\left(\alpha_{1}\right)$.

Example. Let $P(X)=X^{4}-X^{2}+d$, where $d, 1-4 d$, and $d(1-4 d)$ are not squares in F. In this case, $\left(2 b,-d\left(b^{2}-4 d\right)\right)=(-2,-d(1-4 d))$, so the condition for the existence of L becomes $(-2,-d(1-4 d)) \sim$ $(-2,-d)$, or $(-2,1-4 d) \sim 1$ in the Brauer group of F. This is equivalent to the condition

$$
\text { there exist } u, v \in F \text { such that }-2 u^{2}+(1-4 d) v^{2}=1
$$

Suppose this condition is satisfied. Then a matrix $Q=\left(q_{i j}\right)$ as above is given by

$$
Q^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / v(1+4 d) & u / v(1-4 d) \\
0 & 2 u / v(1-4 d) & 1 / v(1-4 d)
\end{array}\right)
$$

and this gives

$$
P=\left(\begin{array}{ccc}
1 / 2 v a_{1}+1 / 2 & u / v a_{1} & 1 / 2 v a_{1}-1 / 2 \\
u / v & 1 / v & u / v \\
1 / 2 v a_{3}-1 / 2 & u / v a_{3} & 1 / 2 v a_{3}+1 / 2
\end{array}\right) .
$$

Thus we can take

$$
\begin{aligned}
\gamma & =1+\left(\frac{1}{2}+\frac{1}{2 v a_{1}}\right) \xi_{1}+\left(\frac{1}{v}\right) \xi_{2}+\left(\frac{1}{2}+\frac{1}{2 v a_{3}}\right) \xi_{3} \\
& =1+\alpha_{1}-\frac{1}{v \sqrt{1-4 d}}-\frac{\alpha_{1}}{v \sqrt{1-4 d}}
\end{aligned}
$$

If $Q(X)$ is the minimal polynomial of this element, then $Q\left(X^{2}\right)$ is a polynomial having Galois group \widetilde{D}_{4}.

4. The Group $\tilde{A}_{4} \simeq S L_{2}\left(\mathbf{F}_{3}\right)$

Let $P(X)$ be a polynomial over F having splitting field K such that $\operatorname{Gal}(K / F)=A_{4}$. Let $\Gamma=\{1,(12)(34),(13)(24),(14)(23)\} \subset A_{4}$, and let $R \subset K$ be the fixed field of Γ. Then $[R: F]=3$ and $\operatorname{Gal}(K / R)=\Gamma$, so over R we are in the quaternion case of Witt. Let $\tau=(234) \in A_{4}$, so τ fixes $F\left(\alpha_{1}\right)$.

Theorem 5. Suppose there exists an element $\gamma \in K$ such that $K(\sqrt{\gamma})$ is Galois over R with Galois group H_{8}. Set $\beta=\gamma \gamma^{\tau} \gamma^{\tau^{2}}$. Then $E\left(K, F, A_{4}, \widetilde{A}_{4}\right)=$ $\left\{K(\sqrt{r \beta}) \mid r \in F^{*}\right\}$.

Proof. In order to show that $\operatorname{Gal}(K(\sqrt{\beta}) / F)=\tilde{A}_{4}$, we must show that $\beta \beta^{\sigma}$ is a square for all $\sigma \in A_{4}$. Now, $A_{4}=\Gamma \rtimes\left\{1, \tau, \tau^{2}\right\}$, so we can write $\sigma=\delta \omega$ with $\delta \in \Gamma$ and $\omega \in\left\{1, \tau, \tau^{2}\right\}$. Then $\beta \beta^{\sigma}=\left(\gamma \gamma^{\tau} \gamma^{\tau^{2}}\right)\left(\gamma^{\delta \omega} \gamma^{\delta \omega \tau} \gamma^{\delta \omega \tau^{2}}\right)=$ $\left(\gamma \gamma^{\tau} \gamma^{\tau^{2}}\right)\left(\gamma^{\delta} \gamma^{\delta \tau} \gamma^{\delta \tau^{2}}\right)$ since ω permutes $1, \tau$, and τ^{2}. But $\Gamma=\operatorname{Gal}(K \mid R)$, so $\gamma \gamma^{\delta}$ is a square in K for each $\delta \in \Gamma$. Moreover, by writing $\delta \tau=\tau \delta_{1}$ and $\delta \tau^{2}=\tau^{2} \delta_{2}$, we find that δ_{1} and δ_{2} are in Γ, so

$$
\begin{aligned}
\beta \beta^{\sigma} & =\left(\gamma \gamma^{\delta}\right)\left(\gamma^{\tau} \gamma^{\delta \tau}\right)\left(\gamma^{\tau^{2}} \gamma^{\delta \tau^{2}}\right)=\left(\gamma \gamma^{\delta}\right)\left(\gamma^{\tau} \gamma^{\tau \delta_{1}}\right)\left(\gamma^{\tau^{2}} \gamma^{\tau^{2} \delta_{2}}\right) \\
& =\left(\gamma \gamma^{\delta}\right)\left(\gamma \gamma^{\delta_{1}}\right)^{\tau}\left(\gamma \gamma^{\delta \delta_{2}}\right)^{\tau^{2}},
\end{aligned}
$$

which is a square. The usual remark on the cocycle relation satisfied by the μ_{δ} shows that $\operatorname{Gal}(K(\sqrt{\beta}) / F)$ is really \tilde{A}_{4} and Lemma 1 suffices to conclude.

We remark that the β obtained in this way is an element of $F\left(\alpha_{1}\right)$.

Example. Let $P(X)=x^{4}-12 X^{2}-8 X+9$. The the discriminant of P is 1008^{2} and it is easy to check that the Galois group of P over \mathbf{Q} is A_{4}. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} be the roots of $P(X)$. Let $\xi_{1}=\alpha_{1}+\alpha_{3}, \xi_{2}=\alpha_{1}+\alpha_{4}$, and $\xi_{3}=-\left(\alpha_{1}+\alpha_{2}\right) / 8$. Then $\xi_{1} \xi_{2} \xi_{3}=1$, and together with 1 , these elements form Witt's basis over the field $R=\mathbf{Q}\left(\left(\alpha_{1}+\alpha_{3}\right)^{2}\right)$. Let K be the splitting field of $P(X)$. For $1 \leqslant i \leqslant 3$, let $a_{i}=\xi_{i}^{2}$. Witt's methods give the following expression for an element γ such that $K(\sqrt{\gamma})$ is Galois over R of Galois group H_{8} :

$$
\begin{aligned}
\gamma= & 672+\left(-8-192 a_{2} a_{3}+4 a_{1}\right) \xi_{1}+\left(-192+320 a_{1} a_{3}+12 a_{2}\right) \xi_{2} \\
& +\left(1472-8 a_{1} a_{2}-4096 a_{3}\right) \xi_{3} .
\end{aligned}
$$

Let τ be the permutation of the roots given by the 3-cycle (234), and let $\beta=\left(\gamma \gamma^{\tau} \gamma^{\tau^{2}}\right) /\left(2^{11} 7^{2}\right)$. Then if $Q(X)$ is the minimal polynomial of $\beta, Q\left(X^{2}\right)$ has Galois group \tilde{A}_{4} over \mathbf{Q} : we have

$$
\begin{aligned}
Q\left(X^{2}\right)= & X^{8}-12884 X^{6}+41492682 X^{4} \\
& -7985480580 X^{2}-5051798406522 \\
= & X^{8}-2^{2} \cdot 3221 X^{6}+2 \cdot 3^{3} \cdot 7 \cdot 11 \cdot 17 \cdot 587 X^{4} \\
& -2^{2} \cdot 3^{7} \cdot 5 \cdot 7 \cdot 11 \cdot 2371 X^{2}-2 \cdot 3^{6} \cdot 7 \cdot 494983187 .
\end{aligned}
$$

5. The Group $\tilde{S}_{4}=G L_{2}\left(\mathrm{~F}_{3}\right)$

The argument is analogous to that for A_{4}, using D_{4} instead of Γ. Let $\operatorname{Gal}(K / F)=S_{4}$, and let $D_{4} \subset S_{4}$ be given by $\{1,(12)(34),(13)(24),(14)(23)$, (13), (24), (1234), (1432) $\} \subset S_{4}$. Let R be the fixed field of D_{4}. Then $[R: F]=3$, but R is not Galois over F. Let $\tau=(234) \in S_{4}$. Then $\tau^{-1} D_{4} \tau=\operatorname{Gal}\left(K / R^{\tau}\right)$ and $\tau D_{4} \tau^{-1}=\operatorname{Gal}\left(K / R^{\tau^{2}}\right)$.

Theorem 6. Suppose there exists $\gamma \in K$ such that $K(\sqrt{\gamma})$ is Galois over R with Galois group D_{4}. Let $\beta=\gamma \gamma^{\tau} \gamma^{\tau^{2}}$. Then $K(\sqrt{\beta})$ is Galois over F with Galois group \widetilde{S}_{4}, and therefore $E\left(K, F, S_{4}, \tilde{S}_{4}\right)=\left\{K(\sqrt{r \beta}) \mid r \in F^{*}\right\}$.

Proof. As before, we must show that $\beta \beta^{\sigma}$ is a square in K for all $\sigma \in K$. We first suppose that $\sigma \in S_{3}=\{1,(234),(243),(23),(24),(34)\}$, i.e., the set of elements of S_{4} fixing $F\left(\alpha_{1}\right)$. Now, by the argument for D_{4}, we know that $\gamma \in R\left(\alpha_{1}\right)$ and therefore $\beta \in F\left(\alpha_{1}\right)$, so $\beta \beta^{\sigma}=\beta^{2} \in K$. Next we let $\sigma \in \Gamma=\{1$, (12)(34), (13)(24), (14)(23)\}. This subgroup is normal in S_{4} and therefore $\beta \beta^{\sigma}$ is a square in K by the same argument as that in the case of A_{4}. Now, $S_{4}=\Gamma \rtimes S_{3}$, so any $\sigma \in S_{4}$ can be written $\sigma=\delta \omega$ with $\delta \in \Gamma, \omega \in S_{3}$, Then $\beta \beta^{\sigma}=\beta \beta^{\delta \omega}=\beta \beta^{\delta} \beta^{\delta} \beta^{\delta \omega}\left(\beta^{\delta}\right)^{-2}=\left(\beta \beta^{\delta}\right)\left(\beta \beta^{\omega}\right)^{\delta}\left(\beta^{\delta}\right)^{-2}$, which is a square in K.

We note that we may use these methods to derive Serre's theorem directly for $n=4$ (see [3]).

Lemma 7. Let $P(X)$ be a polynomial over F with splitting field K and Galois group S_{4} : we assume P has the form $X^{4}+b X^{2}+c X+d$. Let $W_{2}(P)$ be the Witt invariant of the quadratic form $\operatorname{Tr}_{K / F}\left(x^{2}\right)$. Then there exists a quadratic extension L of K such that L is Galois over F with Galois group \tilde{S}_{4} if and only if the algebra $B=W_{2}(P) \otimes_{F}(2, D)$ splits in $\operatorname{Br}(F)$, where D is the discriminant of P.

Proof. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} be the roots of $P(X)$, and let $Y=\left(\alpha_{1}+\alpha_{3}\right)^{2}$. Let R be the field $F(Y)$. Then $[R: F]=3$, and a polynomial over R having K as splitting field and D_{4} as Galois group is

$$
X^{4}+(2 Y-4 b) X^{2}+\left(16 d-4 b Y-3 Y^{2}\right)
$$

obtained by taking $Q\left(X^{2}\right)$, where $Q(X)$ is the minimal polynomial of $\left(\alpha_{1}-\alpha_{3}\right)^{2}$ over R. Let $W_{2}(Q)$ be the Witt invariant of $\operatorname{Tr}_{K / R}\left(x^{2}\right)$. By Theorem 5 , in order to show existence of L, it suffices to prove the existence of some L^{\prime} containing K such that $\operatorname{Gal}\left(L^{\prime} / R\right)=\tilde{D}_{4}$. In Section 3, we saw that L exists if and only if $A=W_{2}(Q) \otimes_{R}\left(2, D_{Q}\right)$ splits in $\operatorname{Br}(R)$, where D_{Q} is the discriminant of $Q\left(X^{2}\right)$. But $W_{2}(Q)=W_{2}(P) \otimes_{F} R$ and $\left(2, D_{Q}\right)=$ $(2, D) \otimes_{F} R$, so $A=B \otimes_{F} R$. But if A splits, either B splits or R is a neutralising field for this B. Since $[R: F]=3, R$ cannot be isomorphic to a maximal commutative subfield of B, so B must split over F.

Corollary. Suppose $P(X)$ has the form $X^{4}+c X+d$. Let D be the discriminant of P. Then the condition for L to exist is that $(-2,-D)$ must split, i.e., there exist elements u and v in F such that $-D=2 u^{2}+v^{2}$.

Proof. In this case the polynomial over R whose splitting field is K is given by

$$
X^{4}+2\left(\alpha_{1}+\alpha_{3}\right)^{2} X^{2}+\left(16 d-3\left(\alpha_{1}+\alpha_{3}\right)^{4}\right)
$$

It is easy to see that up to squares in R, if we let $Y=\left(\alpha_{1}+\alpha_{3}\right)^{2}$, then $Y=Y^{2}-4 d$ and $D=16 d-3 Y^{2}$. An extension L of K with $\operatorname{Gal}(L / R)=\widetilde{D}_{4}$ exists if and only if $(-2,-D)(Y,-D Y)$ splits; but in this case, $(Y,-D Y)=(Y, D)=\left(Y^{2}-4 d, \quad 16 d-3 Y^{2}\right)$ splits because $4\left(Y^{2}-4 d\right)+$ $\left(16 d-3 Y^{2}\right)=Y^{2}$, which is a square in R. So L exists if and only if $(-2,-D)$ splits.

References

1. I. Reiner, "Maximal Orders," Academic Press, London/New York/San Francisco, 1975.
2. I. Schur, Ueber die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250.
3. J-P. Serre, L'invariant de Witt de la forme $\operatorname{Tr}\left(x^{2}\right)$, Comment. Math. Helv. 59 (1984), 651-676.
4. E. WItt, Konstruktion von galoisschen Körpern der Charakteristik puu vorgegebener Gruppe der Ordnung pf, J. Reine Angew. Math. 174 (1935), 237245.
