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Let F be a number field and K an extension of F with Galois group D, (resp. 4,
or S,). In this article we explicitly construct all of the quadratic extensions L of K
having Galois group D,, the Sylow subgroup of GL,(F;) (resp. SL,(F;) or
GL,(F;)) over F, whenever such extensions exist.  © 1991 Academic Press, Inc.

1. INTRODUCTION

Let G be a finite group and H an extension of G by {+1}, ie,
l-{+1}>H->G-1.

Suppose H# G x {+1}. Let {v,e H|ceG} be a set of representatives for
H/{+1} such that v, - ¢ under reduction mod +1. Let F be a number
field and K a Galois extension of F having Galois group G. The following
result is well known:

LemMMA 1. Let A=Y, Kv,=(K/F,{,.) be the crossed-product algebra
whose multiplicative law is given by

av,=v,0(a) for aekK and VoV = {4y Vsrs

where {, .= +1 and the second law is given by multiplication in H. Let
E(F, K, G, H) be the set of quadratic extensions L of K, Galois over F of
Galois group H and such that the diagram

Gal(L/F)—— Gal(K/F)

1 |

H — G
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commutes. Then E(F, K, G, H) is non-empty if and only if the class of A in
the Brauer group Br(F) is equal to the identity class. Moreover if ye K is
such that K(\/;)GE(F, K, G, H), then E(F,K, G, H)= {K(\/r_y) |re F*|.

Proof. Suppose there exists y € K such that L= K(\/; ) is Galois over F
of Galois group H. Let w:\/y}:: for each o e Gal{K/F), set ¢, =v (w)/w.
Then c,a(c.)c;,'(,.=1, so the cocycle defining 4 is equivalent to the
trivial cocycle and A splits. In the other direction, suppose such ¢, exist in
K. Then c2a(c.)*=c2,, so by Hilbert’s Theorem 90, there exists y € K such
that ¢2 = a(y)/y. But then K(w) is Galois over F with Galois group H.

It is easy to see moreover that if K(ﬁ) e E(F, K, G, H) then so are the
K(\/E) for re F: if K(\/:y_) and K(ﬂ) are both in E(F, K, G, H) one
deduces the existence of r € F such that up to squares, A= ry from Hilbert’s
Theorem 90.

Let 8, denote the central extension of S, by { +1} described in terms of
generators and relations by

=1, w=1, wi=1w, (1t =1, 1ty=wis,

1 1

for generators w, t,, t,, 15 (cf. [2]). From now on we consider G < S, and
H=G, the lifting of G in §,. The goal of this article is to explicitly
construct the groups H as Galois groups over number fields.

We thank the Max-Planck Institute fiir Mathematik for its hospitality
and financial support during the preparation of this paper.

2. THE QUATERNION GROUP H,

Let G be the Vierergruppe Z/2Z x Z/2Z, which we identify with the sub-
group {1, (12)(34), (13)(24), (14)(23)} = S,. Then H= G is the quaternion
group Hg of order 8. Let K/F be a biquadratic extension, {v,} a set of
representatives for Hg/{ + 1}, and A the crossed-product algebra defined in
Section 1. Witt (cf. [4]) explicitly constructs a field L containing K and
having Galois group Hy over F whenever A splits. We briefly recall his
method here.

Let 1,0,,0,, and g, be the elements of G, and let {{,|o0eG} be a
basis of K/F such that ¢, =1, é2=a,eF, [I,ccé,=1, and -a(&,)=¢,.
The v, generate a subalgebra of A isomorphic to the quaternion algebra
(—1, —1) over F and the ¢,v, generate a quaternion algebra of the
form (—a,, —a,): since the v, commute with the .v., we have
A=(_1’ _1)®F(_aap —aaz)'

The fact that A splits implies that (—1, —1) ~(—a,,, —a,,) and there-
fore there exist elements p,e F such that by setting wa,=2;:1 Pilos
we have []°.,w,=—1 and wl=—1/a, for i=1,2,3. Let w =1
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Witt extends the scalars of (—1, —1) to K (so K is now the center
of this algebra) and sets j,=¢&,w,: he then constructs the element
C=Y,.6V, ", This element is non-zero and satisfies the identity
Cj,C~'=uv, for each o€ G. Replacing C by v,C? in this equation also
works. Now set u, =v,C°C~': it is easy to see that u, € K. Let y = NC (the
quaternion norm). Then ye K and y°y ' =2 for all 6€G, so L=K(\/;)
is Galois over F. Moreover, the u, satisfy the cocyle relation p,ulpu..' =
{,.> and {{, .} is exactly the factor system describing Hg, so Gal(K/F)=
Hg. Direct calculation shows that y=1+p &, +pné,, +Pp3é,,, s0 we
have proved the following:

LEMMA 2 (Witt). Let K be an extension of F of Galois group
Z2Z x Z/2Z. and suppose the associated algebra A splits. Then
E(F, K, Z)2Z x Z)2Z, Hy) = {K(\/ry)|r € F*} for y defined as above.

3. THE GENERALIZED DIHEDRAL GrouP D,

We now let F be a number field and K a Galois extension of F such that
Gal(K/F)= D,, the dihedral group of order 8. Such a field always occurs
as the splitting field of a polynmial of the form

P(X)=X*+bX*+d,

where d, b* —4d, and d(b>—4d) are not squares in F. K contains three
quadratic subfields, F(,/6?—4d), F(,/D)=F(,/d), where D=16(b?—4d)*d
is the discriminant of the polynomial P(X), and F(,/d(b*— 4d)).

In Theorem 4 we explicitly give the set of Galois extensions of F
containing K and having Galois group D, (this group is also known as the
generalized dihedral group and is generated by elements a and b such that
a*=(ab)>=—1 and b*=1).

Let a,, o5, a5, and a, be the roots of P(X), numbered in such a way that
oy +a3=0. We have

/b'—4d —b, b —4d
2 2 ) 2

Gal(K/F) is then the subgroup {1, (12)(34), (13)(24), (14)(23), (13), (24),
(1234), (1432)} = S,. F(a,) is fixed by p = (24).

Let & =a,+a,, & = 1/(a+a)(a, +a,)=—1//b*—4d, and
Ey=a;+a, (we write &; for £, in the preceding notation). Then 1, &,, &,,
and &, form a basis of K over F(\/E). Moreover if for 1 <i<3 we define
a;= &2, the q; are in F(\/E), and Gal(K/F(\/:z')) = Z/2Z x Z/2Z (identified
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with the subgroup {1, (12)(34), (13)(24), (14)(23)} of D,), so over
F(\/c_i) we are in the quaternion case of Witt. We form Witt's algebra

(-1, _1)®F(ﬂ) (—ay, —a,).

LEMMA 3. Let (a, b)? denote the part of the quaternion algebra (a, b)
fixed by the action of p, this action being conjugation by v,. Let
A=(-1, =1)®pa (—a,, —ay) be the algebra associated to D, and D,
as in Lemma 1. Then (—1, —1) and (—a,, —a,) are both stable under the
action of p and

[A] = [(_1’ _1)0®F(—ala —aZ)p]a
where [ A] denotes the class of A in Br(F).

Proof. Infact, A=(—1,1)’®z(—a;, —a,)’)®Fr(1, d), where (1,d) is
generated by v, (note that vf, =1) and \/:1 But [(1, d)] is trivial in Br(F).

The part of (a, b) fixed by p consists of the elements x+v,xv, for all
xe(a, b). The algebra (—1, —1) is generated over F(\/:I) by v,, v,, and
vy=—1/v,v,, so since v,v,v,= —v; and vp\/c—z’vzvp=\/;lv2, (=1, =1)°
is generated by s,=v, —v; and sz=\/c—iv2. This gives the quaternion
algebra (—2, —d) over F. Similarly, setting u, ={,v,,u,={,v,, and
us=—{303=—1/u u,, the u, generate (—a,, —a,) over F(\/:z’) and
ty=uy—us, t,=/d (b>—4d)u, generate (—a,, —a,)’ = (2b, —d(b* — 4d))
over F. Thus,

[4]1=[(-2, —d)® (2b, —d(b* —4d))]

in the Brauer group Br(F). We note that this algebra is equal to

(—2b, —d)®f (2b, b —4d) R, (2, d)
= (Witt invariant of Tr(x2))® » (2, d),

which confirms that the splitting of A4 is identical to the condition for the
existence of L given in Serre’s theorem [3].

If A4 splits then there exists an isomorphism of aigebras ¢: (25,
—d(b*>—4d)) —» (—2, —d) and a matrix Q = (g5) with coefficients in F such
that ¢, = ZJL 1 9;9(s;). By extension of scalars, the isomorphism ¢ gives rise
to a unique isomorphism @:(—a,, —a,) > (—1, —1) and an associated
matrix P=(p;) such that

3
J(ui)z Z pzjvj9 l: 15 2’ 3
Jj=1

The matrix P is a “Witt’s matrix,” i.e., setting y =1+ p,, &, + p2 &, + P33 &5,
the field L =K(\/;) is Galois over F(\/c—i) with Galois group Hj.
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TueoreM 4. Let K and y be as above. Then E(F,K,D, D, =
{K(/m)IreF*}.

Proof. We first show that y?y~! is a square in F. Define w,=(u;) =
>3 _1 pyv, for (p;) as above. Then w} = —1/a,. Let j,=¢,w, and let C be
the element 3, . ;v Y, constructed by Witt in the algebra (—1, —1) with
scalars extended to K. For any quaternion ¢ =a+ bv, + cv, + dv;, we have
v,qv,=pla)— p(b)vs —p(c)v,— p(d)v;, so N(v,qu,)=p(N,) (we write
v,qv, instead of v, 'qv,).

If ge(—1, —1), write g=3,a,® x, for a,e(—2, —d) and xieF(\/;I).
Then v,qv, =3, a,® p(x;) since p acts trivially on (—2, —d). Thus, the
isomorphism ¢ commutes with conjugation by v, (—1, —1}). This allows us
to calculate the elements v,wuw, as follows: v,w,v,=v,8(u)v,=
$(v,u,0,)= —w,_,;. Now we calculate

v,Co,=1+v,(v; )0, + 0,65 2)v,+v,(v5Y3)0,
=1+Up(vflélwl)vp+Up(vgléZWZ)vp+Up(v3_1£3w3)vp
=1+ (=03 NpE)(—w3)+ (—v5 ) p(E)(—w,)
+(—v; o) =wy)=C

since p(¢;) =&, _;. Thus, y* =(NC)” = N(v,Cv,) = NC =y! One can further
verify that if u,=v,C°C~! for o€ {1, (12)(34), (13)(24), (14)(23)} and
Hoo =150, ., the p, verify the cocycle relation p,ulp;.'={, . for all o,
1eD, and therefore Gal(K(\/;)/F)=54 and K(\/‘;)EE(F, K, D, D,

Lemma 1 suffices to conclude.

We remark in particular that the y constructed in this way is in fact an
element of Fla,).

EXAMPLE. Let P(X)=X*—X*+d, where d, 1 —4d, and d(1 —4d) are
not squares in F. In this case, (2b, —d(b*—4d))=(—2, —d(1 —4d)), so
the condition for the existence of L becomes (—2, —d(1—4d))~
(=2, —d), or (—2,1—4d)~ 1 in the Brauer group of F. This is equivalent
to the condition

there exist u, v e Fsuch that —2u? + (1 —4d)v* = 1.

Suppose this condition is satisfied. Then a matrix Q =(g,) as above is
given by

0 0

1
0 '=(0  1p(l+4d)  wu(l—4d)
0  2uip(l—4d)  1/o(1 —4d)
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and this gives

12va, + 1/2 ufva, 1/2va, — 1/2
P= ufv 1/v ufv .
1/2va;—1/2 ufva, 1/2va; + 1/2

Thus we can take

1 1 1 1 1
V=1+<5+'2';7‘a‘;)§1+<;> 52+<§+M> &

=1+4a—

1 o,
v/1—4d v /1-4d
If Q(X) is the minimal polynomial of this element, then Q(X?) is a
polynomial having Galois group D, .

4. THE Group A, ~ SL,(F,)

Let P(X) be a polynomial over F having splitting field K such that
Gal(K/F)=A,. Let I'=1{1,(12)(34), (13)(24), (14)(23)} < A,, and let
R < K be the fixed field of I. Then [R: F]=3 and Gal (K/R)=1T, so over
R we are in the quaternion case of Witt. Let T =(234)¢e 4,, so 7 fixes F(a,).

THEOREM 5. Suppose there exists an element y€ K such that K(\/j) is
Galois over R with Galois group Hg. Set = vy~ Then E(K, F, Ay, A,)=
{K(/rB)|reF*}.

Proof. In order to show that Gal (K(,/B)/F)= 4,, we must show that
BB is a square for all oe A,. Now, A,=TIx{l,1,1°}, so we can write
6=00 with del and we {1, 1,72} Then BB° = (3" )y*y’y%e’) =
(77" )(¥%°°%) since w permutes 1, 7, and 12 But I'= Gal(K|R), so yy°
is a square in K for each delI. Moreover, by writing dt=19, and
612 =125,, we find that §, and §, are in I, so

2

BB = (172 )yy° )% = (%) () ()
= (1)) (1),

which is a square. The usual remark on the cocycle relation satisfied by
the ps; shows that Ga](K(\/B)/F) is really 4, and Lemma 1 suffices to
conclude.

We remark that the f obtained in this way is an element of F(«,).
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ExampLE. Let P(X)=x*—12X?—8X+9. The the discriminant of P is
10082 and it is easy to check that the Galois group of P over Q is 4,. Let
o, &y, 03, and a, be the roots of P(X). Let &, =a;, +a;, {;=0,+a,, and
E3= —(a;+a,)/8. Then &,&,£,=1, and together with 1, these elements
form Witt’s basis over the field R =Q((a, +«;)?). Let K be the splitting
field of P(X). For 1<i<3, let a;=¢2. Witt’s methods give the following
expression for an element y such that K(\/§) is Galois over R of Galois
group Hy:

y =672+ (—8 — 192a,a; +4a,) &, + (— 192 + 320a, a, + 12a,) &,
+ (1472 — 8a,a, — 4096a,) 5.

Let t be the permutation of the roots given by the 3-cycle (234), and let
B=(yyy*)/(2"'7%). Then if Q(X) is the minimal polynomial of g, Q(X?)
has Galois group 4, over Q: we have

O(X?) = X* — 12884X° + 41492682X*
— 7985480580X2 — 5051798406522
=X*—22.3221X+2-3%.7.11.17.587X*
—22.37.5.7.11-2371X*— 2. 35.7.494983187.

5. THE GrouP S, = GL,(F;)

The argument is analogous to that for 4,, using D, instead of I'. Let
Gal(K/F)=S,, and let D, < S, be given by {1, (12)(34), (13)(24), (14)(23),
(13), (24), (1234), (1432)} = S,. Let R be the fixed field of D,. Then
[R:F]=3, but R is not Galois over F. Let t=(234)eS,. Then
17D 7 =Gal(K/R%) and 1D, ! = Gal(K/R?).

THEOREM 6. Suppose there exists y e K such that K(\/‘)—) ) is Galois over R
with Galois group D,. Let B=yyy". Then K(\/ﬁ) is _Galois over F with
Galois group S,, and therefore E(K, F, S,, S,) = {K(\/r_B)lreF*}.

Proof. As before, we must show that 7 is a square in X for all 6 K.
We first suppose that g € S5 = {1, (234), (243), (23), (24), (34)}, i.e., the set
of elements of S, fixing F(«,). Now, by the argument for D,, we know that
7€ R(a,) and therefore Be F(a,), so Bf°=p>e K. Next we let ae I'= {1,
(12)(34), (13)(24), (14)(23)}. This subgroup is normal in S, and therefore
BB’ is a square in K by the same argument as that in the case of 4,. Now,
S4=IxS;, so any o€ .S, can be written 6 =d0w with eI, we S;, Then

BB” = B> = BB°B°B°*(B°)~*=(BB°)(BB“)’ (B°)~2, which is a square in K.
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We note that we may use these methods to derive Serre’s theorem
directly for n=4 (see [3]).

LEmMMA 7. Let P(X) be a polynomial over F with splitting field K and
Galois group S,: we assume P has the form X*+bX>+ cX+d. Let W,(P)
be the Witt invariant of the quadratic form Tt (x*). Then there exists a
quadratic extension L of K such that L is Galois over F with Galois group
S, if and only if the algebra B= W,(P)® (2, D) splits in Br(F), where D
is the discriminant of P.

Proof. Llet ao;, a,, a3, and a, be the roots of P(X), and let
Y =(a, + ;)% Let R be the field F(Y). Then [R: F] =3, and a polynomial
over R having K as splitting field and D, as Galois group is

X*+(2Y—4b)X? + (16d—4bY —3Y?),

obtained by taking Q(X?), where Q(X) is the minimal polynomial of
(¢, —a3)* over R. Let W,(Q) be the Witt invariant of TrK/R(xZ). By
Theorem 5, in order to show existence of L, it suffices to prove the existence
of some L’ containing K such that Gal(L'/R)=D,. In Section 3, we saw
that L exists if and only if A= W,(Q)®x (2, D) splits in Br(R), where D
is the discriminant of Q(X?). But W,(Q)=W,(P)®,R and (2, D,)=
(2,D)®:R, so A=B®rR. But if A splits, either B splits or R is a
neutralising field for this B. Since [R: F] =3, R cannot be isomorphic to
a maximal commutative subfield of B, so B must split over F.

COROLLARY. Suppose P(X) has the form X*+ cX +d. Let D be the dis-
criminant of P. Then the condition for L to exist is that (—2, — D) must
split, ie., there exist elements u and v in F such that — D =2u® + v,

Proof. 1In this case the polynomial over R whose splitting field is X is
given by

X+ 2(0 + 23)? X2+ (16d — 3(o; + @3)*).

It is easy to see that up to squares in R, if we let Y =(x, + ;) then
Y=Y?>—4d and D=16d—3Y2 An extension L of K with Gal(L/R)=D,
exists if and only if (—2, —D)(Y, —DY) splits; but in this case,
(Y, =DY)=(Y,D)=(Y>—4d, 16d—3Y?) splits because 4(Y>—4d)+
(16d—3Y?%*) = Y? which is a square in R. So L exists if and only if
(—2, — D) splits.
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