Explicit Realisations of Subgroups of $GL_2(\mathbf{F}_3)$ as Galois Groups

LEILA SCHNEPS

Max-Planck Institut für Mathematik, Gottfried-Clarenstrasse 26, 5300 Bonn 3, Germany

Communicated by D. Zagier

Received July 15, 1988; revised September 1, 1988

Let F be a number field and K an extension of F with Galois group D_4 (resp. A_4 or S_4). In this article we explicitly construct all of the quadratic extensions L of K having Galois group \tilde{D}_4 , the Sylow subgroup of $GL_2(\mathbf{F}_3)$ (resp. $SL_2(\mathbf{F}_3)$ or $GL_2(\mathbf{F}_3)$) over F, whenever such extensions exist. (© 1991 Academic Press, Inc.

1. INTRODUCTION

Let G be a finite group and H an extension of G by $\{\pm 1\}$, i.e.,

$$1 \to \{\pm 1\} \to H \to G \to 1.$$

Suppose $H \neq G \times \{\pm 1\}$. Let $\{v_{\sigma} \in H | \sigma \in G\}$ be a set of representatives for $H/\{\pm 1\}$ such that $v_{\sigma} \rightarrow \sigma$ under reduction mod ± 1 . Let F be a number field and K a Galois extension of F having Galois group G. The following result is well known:

LEMMA 1. Let $A = \sum_{\sigma} Kv_{\sigma} = (K/F, \zeta_{\sigma,\tau})$ be the crossed-product algebra whose multiplicative law is given by

 $\alpha v_{\sigma} = v_{\sigma} \sigma(\alpha)$ for $\alpha \in K$ and $v_{\sigma} v_{\tau} = \zeta_{\sigma,\tau} v_{\sigma\tau}$,

where $\zeta_{\sigma,\tau} = \pm 1$ and the second law is given by multiplication in H. Let E(F, K, G, H) be the set of quadratic extensions L of K, Galois over F of Galois group H and such that the diagram

0022-314X/91 \$3.00 Copyright © 1991 by Academic Press, Inc. All rights of reproduction in any form reserved.

LEILA SCHNEPS

commutes. Then E(F, K, G, H) is non-empty if and only if the class of A in the Brauer group Br(F) is equal to the identity class. Moreover if $\gamma \in K$ is such that $K(\sqrt{\gamma}) \in E(F, K, G, H)$, then $E(F, K, G, H) = \{K(\sqrt{r\gamma}) | r \in F^*\}$.

Proof. Suppose there exists $\gamma \in K$ such that $L = K(\sqrt{\gamma})$ is Galois over F of Galois group H. Let $\omega = \sqrt{\gamma}$: for each $\sigma \in \text{Gal}(K/F)$, set $c_{\sigma} = v_{\sigma}(\omega)/\omega$. Then $c_{\sigma}\sigma(c_{\tau})c_{\sigma\tau}^{-1}\zeta_{\sigma,\tau} = 1$, so the cocycle defining A is equivalent to the trivial cocycle and A splits. In the other direction, suppose such c_{σ} exist in K. Then $c_{\sigma}^2\sigma(c_{\tau})^2 = c_{\sigma\tau}^2$, so by Hilbert's Theorem 90, there exists $\gamma \in K$ such that $c_{\sigma}^2 = \sigma(\gamma)/\gamma$. But then $K(\omega)$ is Galois_over F with Galois group H.

It is easy to see moreover that if $K(\sqrt{\gamma}) \in E(F, K, G, H)$ then so are the $K(\sqrt{r\gamma})$ for $r \in F$: if $K(\sqrt{\gamma})$ and $K(\sqrt{\lambda})$ are both in E(F, K, G, H) one deduces the existence of $r \in F$ such that up to squares, $\lambda = r\gamma$ from Hilbert's Theorem 90.

Let \tilde{S}_4 denote the central extension of S_4 by $\{\pm 1\}$ described in terms of generators and relations by

$$t_i^2 = 1,$$
 $w^2 = 1,$ $wt_i = t_i w,$ $(t_i t_{i+1})^3 = 1,$ $t_1 t_3 = wt_3 t_1$

for generators w, t_1 , t_2 , t_3 (cf. [2]). From now on we consider $G \subset S_4$ and $H = \tilde{G}$, the lifting of G in \tilde{S}_4 . The goal of this article is to explicitly construct the groups H as Galois groups over number fields.

We thank the Max-Planck Institute für Mathematik for its hospitality and financial support during the preparation of this paper.

2. The Quaternion Group H_8

Let G be the Vierergruppe $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, which we identify with the subgroup $\{1, (12)(34), (13)(24), (14)(23)\} \subset S_4$. Then $H = \tilde{G}$ is the quaternion group H_8 of order 8. Let K/F be a biquadratic extension, $\{v_\sigma\}$ a set of representatives for $H_8/\{\pm 1\}$, and A the crossed-product algebra defined in Section 1. Witt (cf. [4]) explicitly constructs a field L containing K and having Galois group H_8 over F whenever A splits. We briefly recall his method here.

Let 1, σ_1 , σ_2 , and σ_3 be the elements of G, and let $\{\xi_{\sigma} | \sigma \in G\}$ be a basis of K/F such that $\xi_1 = 1$, $\xi_{\sigma}^2 = a_{\sigma} \in F$, $\prod_{\sigma \in G} \xi_{\sigma} = 1$, and $\sigma(\xi_{\sigma}) = \xi_{\sigma}$. The v_{σ} generate a subalgebra of A isomorphic to the quaternion algebra (-1, -1) over F and the $\xi_{\tau}v_{\tau}$ generate a quaternion algebra of the form $(-a_{\sigma_1}, -a_{\sigma_2})$: since the v_{σ} commute with the $\xi_{\tau}v_{\tau}$, we have $A = (-1, -1) \otimes_F (-a_{\sigma_1}, -a_{\sigma_2})$.

The fact that A splits implies that $(-1, -1) \simeq (-a_{\sigma_1}, -a_{\sigma_2})$ and therefore there exist elements $p_{ij} \in F$ such that by setting $w_{\sigma_i} = \sum_{j=1}^3 p_{ij} v_{\sigma_j}$, we have $\prod_{i=1}^3 w_{\sigma_i} = -1$ and $w_{\sigma_i}^2 = -1/a_{\sigma_i}$ for i = 1, 2, 3. Let $w_1 = 1$. Witt extends the scalars of (-1, -1) to K (so K is now the center of this algebra) and sets $j_{\sigma} = \xi_{\sigma} w_{\sigma}$: he then constructs the element $C = \sum_{\sigma \in G} v_{\sigma}^{-1} j_{\sigma}$. This element is non-zero and satisfies the identity $Cj_{\sigma}C^{-1} = v_{\sigma}$ for each $\sigma \in G$. Replacing C by $v_{\sigma}C^{\sigma}$ in this equation also works. Now set $\mu_{\sigma} = v_{\sigma}C^{\sigma}C^{-1}$: it is easy to see that $\mu_{\sigma} \in K$. Let $\gamma = NC$ (the quaternion norm). Then $\gamma \in K$ and $\gamma^{\sigma}\gamma^{-1} = \mu_{\sigma}^{2}$ for all $\sigma \in G$, so $L = K(\sqrt{\gamma})$ is Galois over F. Moreover, the μ_{σ} satisfy the cocyle relation $\mu_{\sigma}\mu_{\tau}^{\sigma}\mu_{\sigma\tau}^{-1} =$ $\zeta_{\sigma,\tau}$, and $\{\zeta_{\sigma,\tau}\}$ is exactly the factor system describing H_{8} , so Gal(K/F) = H_{8} . Direct calculation shows that $\gamma = 1 + p_{11}\xi_{\sigma_{1}} + p_{22}\xi_{\sigma_{2}} + p_{33}\xi_{\sigma_{3}}$, so we have proved the following:

LEMMA 2 (Witt). Let K be an extension of F of Galois group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and suppose the associated algebra A splits. Then $E(F, K, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, H_8) = \{K(\sqrt{r\gamma}) | r \in F^*\}$ for γ defined as above.

3. The Generalized Dihedral Group \tilde{D}_4

We now let F be a number field and K a Galois extension of F such that $Gal(K/F) = D_4$, the dihedral group of order 8. Such a field always occurs as the splitting field of a polynmial of the form

$$P(X) = X^4 + bX^2 + d,$$

where $d, b^2 - 4d$, and $d(b^2 - 4d)$ are not squares in F. K contains three quadratic subfields, $F(\sqrt{b^2 - 4d}), F(\sqrt{D}) = F(\sqrt{d})$, where $D = 16(b^2 - 4d)^2 d$ is the discriminant of the polynomial P(X), and $F(\sqrt{d(b^2 - 4d)})$.

In Theorem 4 we explicitly give the set of Galois extensions of F containing K and having Galois group \tilde{D}_4 (this group is also known as the generalized dihedral group and is generated by elements a and b such that $a^4 = (ab)^2 = -1$ and $b^2 = 1$).

Let $\alpha_1, \alpha_2, \alpha_3$, and α_4 be the roots of P(X), numbered in such a way that $\alpha_1 + \alpha_3 = 0$. We have

$$\alpha_1^2 = \alpha_3^2 = \frac{-b}{2} - \frac{\sqrt{b^2 - 4d}}{2}$$
 and $\alpha_2^2 = \alpha_4^2 = \frac{-b}{2} + \frac{\sqrt{b^2 - 4d}}{2}$.

Gal(K/F) is then the subgroup {1, (12)(34), (13)(24), (14)(23), (13), (24), (1234), (1432)} $\subset S_4$. $F(\alpha_1)$ is fixed by $\rho = (24)$.

Let $\xi_1 = \alpha_1 + \alpha_2$, $\xi_2 = 1/(\alpha + \alpha_2)(\alpha_1 + \alpha_4) = -1/\sqrt{b^2 - 4d}$, and $\xi_3 = \alpha_1 + \alpha_4$ (we write ξ_i for ξ_{σ_i} in the preceding notation). Then 1, ξ_1 , ξ_2 , and ξ_3 form a basis of K over $F(\sqrt{d})$. Moreover if for $1 \le i \le 3$ we define $a_i = \xi_i^2$, the a_i are in $F(\sqrt{d})$, and $\operatorname{Gal}(K/F(\sqrt{d})) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (identified

LEILA SCHNEPS

with the subgroup $\{1, (12)(34), (13)(24), (14)(23)\}$ of D_4 , so over $F(\sqrt{d})$ we are in the quaternion case of Witt. We form Witt's algebra $(-1, -1) \bigotimes_{F(\sqrt{d})} (-a_1, -a_2)$.

LEMMA 3. Let $(a, b)^{\rho}$ denote the part of the quaternion algebra (a, b)fixed by the action of ρ , this action being conjugation by v_{ρ} . Let $A = (-1, -1) \bigotimes_{F(\sqrt{d})} (-a_1, -a_2)$ be the algebra associated to D_4 and \tilde{D}_4 as in Lemma 1. Then (-1, -1) and $(-a_1, -a_2)$ are both stable under the action of ρ and

$$[A] = [(-1, -1)^{\rho} \otimes_{F} (-a_{1}, -a_{2})^{\rho}],$$

where [A] denotes the class of A in Br(F).

Proof. In fact, $A = (-1, 1)^{\rho} \otimes_F (-a_1, -a_2)^{\rho} \otimes_F (1, d)$, where (1, d) is generated by v_{ρ} (note that $v_{\rho}^2 = 1$) and \sqrt{d} . But [(1, d)] is trivial in Br(F).

The part of (a, b) fixed by ρ consists of the elements $x + v_{\rho}xv_{\rho}$ for all $x \in (a, b)$. The algebra (-1, -1) is generated over $F(\sqrt{d})$ by v_1, v_2 , and $v_3 = -1/v_1v_2$, so since $v_{\rho}v_1v_{\rho} = -v_3$ and $v_{\rho}\sqrt{d}v_2v_{\rho} = \sqrt{d}v_2$, $(-1, -1)^{\rho}$ is generated by $s_1 = v_1 - v_3$ and $s_2 = \sqrt{d}v_2$. This gives the quaternion algebra (-2, -d) over F. Similarly, setting $u_1 = \zeta_1v_1, u_2 = \zeta_2v_2$, and $u_3 = -\zeta_3v_3 = -1/u_1u_2$, the u_i generate $(-a_1, -a_2)$ over $F(\sqrt{d})$ and $t_1 = u_1 - u_3, t_2 = \sqrt{d}(b^2 - 4d)u_2$ generate $(-a_1, -a_2)^{\rho} = (2b, -d(b^2 - 4d))$ over F. Thus,

$$[A] = [(-2, -d) \otimes_F (2b, -d(b^2 - 4d))]$$

in the Brauer group Br(F). We note that this algebra is equal to

$$(-2b, -d) \otimes_F (2b, b^2 - 4d) \otimes_F (2, d)$$

= (Witt invariant of $\operatorname{Tr}(x^2) \otimes_F (2, d)$

which confirms that the splitting of A is identical to the condition for the existence of L given in Serre's theorem [3].

If A splits then there exists an isomorphism of algebras $\phi: (2b, -d(b^2-4d)) \rightarrow (-2, -d)$ and a matrix $Q = (q_{ij})$ with coefficients in F such that $t_i = \sum_{j=1}^{3} q_{ij}\phi(s_j)$. By extension of scalars, the isomorphism ϕ gives rise to a unique isomorphism $\tilde{\phi}: (-a_1, -a_2) \rightarrow (-1, -1)$ and an associated matrix $P = (p_{ij})$ such that

$$\tilde{\phi}(u_i) = \sum_{j=1}^{3} p_{ij}v_j, \qquad i = 1, 2, 3.$$

The matrix P is a "Witt's matrix," i.e., setting $\gamma = 1 + p_{11}\xi_1 + p_{22}\xi_2 + p_{33}\xi_3$, the field $L = K(\sqrt{\gamma})$ is Galois over $F(\sqrt{d})$ with Galois group H_8 .

THEOREM 4. Let K and γ be as above. Then $E(F, K, D_4, \tilde{D}_4) = \{K(\sqrt{r\gamma}) | r \in F^*\}.$

Proof. We first show that $\gamma^{\rho}\gamma^{-1}$ is a square in *F*. Define $w_i = \tilde{\phi}(u_i) = \sum_{j=1}^{3} p_{ij}v_j$ for (p_{ij}) as above. Then $w_i^2 = -1/a_i$. Let $j_{\sigma} = \xi_{\sigma}w_{\sigma}$ and let *C* be the element $\sum_{\sigma \in G} v_{\sigma}^{-1}j_{\sigma}$ constructed by Witt in the algebra (-1, -1) with scalars extended to *K*. For any quaternion $q = a + bv_1 + cv_2 + dv_3$, we have $v_{\rho}qv_{\rho} = \rho(a) - \rho(b)v_3 - \rho(c)v_2 - \rho(d)v_1$, so $N(v_{\rho}qv_{\rho}) = \rho(N_q)$ (we write $v_{\rho}qv_{\rho}$ instead of $v_{\rho}^{-1}qv_{\rho}$).

If $q \in (-1, -1)$, write $q = \sum_i a_i \otimes x_i$ for $a_i \in (-2, -d)$ and $x_i \in F(\sqrt{d})$. Then $v_\rho q v_\rho = \sum_i a_i \otimes \rho(x_i)$ since ρ acts trivially on (-2, -d). Thus, the isomorphism ϕ commutes with conjugation by v_ρ (-1, -1). This allows us to calculate the elements $v_\rho w_i v_\rho$ as follows: $v_\rho w_i v_\rho = v_\rho \tilde{\phi}(u_i) v_\rho = \tilde{\phi}(v_\rho u_i v_\rho) = -w_{4-i}$. Now we calculate

$$v_{\rho}Cv_{\rho} = 1 + v_{\rho}(v_{1}^{-1}j_{1})v_{\rho} + v_{\rho}(b_{2}^{-1}j_{2})v_{\rho} + v_{\rho}(v_{3}^{-1}j_{3})v_{\rho}$$

= $1 + v_{\rho}(v_{1}^{-1}\xi_{1}w_{1})v_{\rho} + v_{\rho}(v_{2}^{-1}\xi_{2}w_{2})v_{\rho} + v_{\rho}(v_{3}^{-1}\xi_{3}w_{3})v_{\rho}$
= $1 + (-v_{3}^{-1})\rho(\xi_{1})(-w_{3}) + (-v_{2}^{-1})\rho(\xi_{2})(-w_{2})$
+ $(-v_{1}^{-1})\rho(\xi_{3})(-w_{1}) = C$

since $\rho(\xi_i) = \xi_{4-i}$. Thus, $\gamma^{\rho} = (NC)^{\rho} = N(v_{\rho}Cv_{\rho}) = NC = \gamma!$ One can further verify that if $\mu_{\sigma} = v_{\sigma}C^{\sigma}C^{-1}$ for $\sigma \in \{1, (12)(34), (13)(24), (14)(23)\}$ and $\mu_{\rho\sigma} = \mu_{\sigma}^{\rho}\zeta_{\rho,\sigma}$, the μ_{σ} verify the cocycle relation $\mu_{\sigma}\mu_{\tau}^{\sigma}\mu_{\sigma\tau}^{-1} = \zeta_{\sigma,\tau}$ for all σ , $\tau \in D_4$ and therefore $\text{Gal}(K(\sqrt{\gamma})/F) = \tilde{D}_4$ and $K(\sqrt{\gamma}) \in E(F, K, D_4, \tilde{D}_4)$. Lemma 1 suffices to conclude.

We remark in particular that the γ constructed in this way is in fact an element of $F(\alpha_1)$.

EXAMPLE. Let $P(X) = X^4 - X^2 + d$, where d, 1 - 4d, and d(1 - 4d) are not squares in F. In this case, $(2b, -d(b^2 - 4d)) = (-2, -d(1 - 4d))$, so the condition for the existence of L becomes $(-2, -d(1 - 4d)) \sim (-2, -d)$, or $(-2, 1 - 4d) \sim 1$ in the Brauer group of F. This is equivalent to the condition

there exist $u, v \in F$ such that $-2u^2 + (1-4d)v^2 = 1$.

Suppose this condition is satisfied. Then a matrix $Q = (q_{ij})$ as above is given by

$$Q^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/v(1+4d) & u/v(1-4d) \\ 0 & 2u/v(1-4d) & 1/v(1-4d) \end{pmatrix}$$

and this gives

$$P = \begin{pmatrix} 1/2va_1 + 1/2 & u/va_1 & 1/2va_1 - 1/2 \\ u/v & 1/v & u/v \\ 1/2va_3 - 1/2 & u/va_3 & 1/2va_3 + 1/2 \end{pmatrix}.$$

Thus we can take

$$\gamma = 1 + \left(\frac{1}{2} + \frac{1}{2va_1}\right)\xi_1 + \left(\frac{1}{v}\right)\xi_2 + \left(\frac{1}{2} + \frac{1}{2va_3}\right)\xi_3$$
$$= 1 + \alpha_1 - \frac{1}{v\sqrt{1 - 4d}} - \frac{\alpha_1}{v\sqrt{1 - 4d}}.$$

If Q(X) is the minimal polynomial of this element, then $Q(X^2)$ is a polynomial having Galois group \tilde{D}_4 .

4. The Group $\tilde{A}_4 \simeq SL_2(\mathbf{F}_3)$

Let P(X) be a polynomial over F having splitting field K such that $Gal(K/F) = A_4$. Let $\Gamma = \{1, (12)(34), (13)(24), (14)(23)\} \subset A_4$, and let $R \subset K$ be the fixed field of Γ . Then [R : F] = 3 and $Gal(K/R) = \Gamma$, so over R we are in the quaternion case of Witt. Let $\tau = (234) \in A_4$, so τ fixes $F(\alpha_1)$.

THEOREM 5. Suppose there exists an element $\gamma \in K$ such that $K(\sqrt{\gamma})$ is Galois over R with Galois group H_8 . Set $\beta = \gamma \gamma^{\tau} \gamma^{\tau^2}$. Then $E(K, F, A_4, \tilde{A}_4) = \{K(\sqrt{r\beta}) | r \in F^*\}$.

Proof. In order to show that Gal $(K(\sqrt{\beta})/F) = \tilde{A}_4$, we must show that $\beta\beta^{\sigma}$ is a square for all $\sigma \in A_4$. Now, $A_4 = \Gamma \rtimes \{1, \tau, \tau^2\}$, so we can write $\sigma = \delta\omega$ with $\delta \in \Gamma$ and $\omega \in \{1, \tau, \tau^2\}$. Then $\beta\beta^{\sigma} = (\gamma\gamma^{\tau}\gamma^{\tau^2})(\gamma^{\delta\omega}\gamma^{\delta\omega\tau}\gamma^{\delta\omega\tau^2}) = (\gamma\gamma^{\tau}\gamma^{\tau^2})(\gamma^{\delta\gamma}\gamma^{\delta\tau}\gamma^{\delta\tau^2})$ since ω permutes 1, τ , and τ^2 . But $\Gamma = \text{Gal}(K|R)$, so $\gamma\gamma^{\delta}$ is a square in K for each $\delta \in \Gamma$. Moreover, by writing $\delta\tau = \tau\delta_1$ and $\delta\tau^2 = \tau^2\delta_2$, we find that δ_1 and δ_2 are in Γ , so

$$\beta\beta^{\sigma} = (\gamma\gamma^{\delta})(\gamma^{\tau}\gamma^{\delta\tau})(\gamma^{\tau^{2}}\gamma^{\delta\tau^{2}}) = (\gamma\gamma^{\delta})(\gamma^{\tau}\gamma^{\tau\delta_{1}})(\gamma^{\tau^{2}}\gamma^{\tau^{2}\delta_{2}})$$
$$= (\gamma\gamma^{\delta})(\gamma\gamma^{\delta_{1}})^{\tau}(\gamma\gamma^{\delta_{2}})^{\tau^{2}},$$

which is a square. The usual remark on the cocycle relation satisfied by the μ_{δ} shows that $\operatorname{Gal}(K(\sqrt{\beta})/F)$ is really \tilde{A}_4 and Lemma 1 suffices to conclude.

We remark that the β obtained in this way is an element of $F(\alpha_1)$.

EXAMPLE. Let $P(X) = x^4 - 12X^2 - 8X + 9$. The the discriminant of P is 1008² and it is easy to check that the Galois group of P over Q is A_4 . Let $\alpha_1, \alpha_2, \alpha_3$, and α_4 be the roots of P(X). Let $\xi_1 = \alpha_1 + \alpha_3, \xi_2 = \alpha_1 + \alpha_4$, and $\xi_3 = -(\alpha_1 + \alpha_2)/8$. Then $\xi_1\xi_2\xi_3 = 1$, and together with 1, these elements form Witt's basis over the field $R = Q((\alpha_1 + \alpha_3)^2)$. Let K be the splitting field of P(X). For $1 \le i \le 3$, let $\alpha_i = \xi_i^2$. Witt's methods give the following expression for an element γ such that $K(\sqrt{\gamma})$ is Galois over R of Galois group H_8 :

$$\gamma = 672 + (-8 - 192a_2a_3 + 4a_1)\xi_1 + (-192 + 320a_1a_3 + 12a_2)\xi_2 + (1472 - 8a_1a_2 - 4096a_3)\xi_3.$$

Let τ be the permutation of the roots given by the 3-cycle (234), and let $\beta = (\gamma \gamma^{\tau} \gamma^{\tau^2})/(2^{11}7^2)$. Then if Q(X) is the minimal polynomial of β , $Q(X^2)$ has Galois group \tilde{A}_4 over **Q**: we have

$$Q(X^{2}) = X^{8} - 12884X^{6} + 41492682X^{4}$$

- 7985480580X² - 5051798406522
= X⁸ - 2² · 3221X^{6} + 2 · 3³ · 7 · 11 · 17 · 587X^{4}
- 2² · 3⁷ · 5 · 7 · 11 · 2371X² - 2 · 3⁶ · 7 · 494983187.

5. The Group $\tilde{S}_4 = GL_2(\mathbf{F}_3)$

The argument is analogous to that for A_4 , using D_4 instead of Γ . Let $\operatorname{Gal}(K/F) = S_4$, and let $D_4 \subset S_4$ be given by $\{1, (12)(34), (13)(24), (14)(23), (13), (24), (1234), (1432)\} \subset S_4$. Let R be the fixed field of D_4 . Then [R:F] = 3, but R is not Galois over F. Let $\tau = (234) \in S_4$. Then $\tau^{-1}D_4\tau = \operatorname{Gal}(K/R^{\tau})$ and $\tau D_4\tau^{-1} = \operatorname{Gal}(K/R^{\tau^2})$.

THEOREM 6. Suppose there exists $\gamma \in K$ such that $K(\sqrt{\gamma})$ is Galois over R with Galois group D_4 . Let $\beta = \gamma \gamma^{\tau} \gamma^{\tau^2}$. Then $K(\sqrt{\beta})$ is Galois over F with Galois group \tilde{S}_4 , and therefore $E(K, F, S_4, \tilde{S}_4) = \{K(\sqrt{r\beta}) | r \in F^*\}$.

Proof. As before, we must show that $\beta\beta^{\sigma}$ is a square in K for all $\sigma \in K$. We first suppose that $\sigma \in S_3 = \{1, (234), (243), (23), (24), (34)\}$, i.e., the set of elements of S_4 fixing $F(\alpha_1)$. Now, by the argument for D_4 , we know that $\gamma \in R(\alpha_1)$ and therefore $\beta \in F(\alpha_1)$, so $\beta\beta^{\sigma} = \beta^2 \in K$. Next we let $\sigma \in \Gamma = \{1, (12)(34), (13)(24), (14)(23)\}$. This subgroup is normal in S_4 and therefore $\beta\beta^{\sigma}$ is a square in K by the same argument as that in the case of A_4 . Now, $S_4 = \Gamma \rtimes S_3$, so any $\sigma \in S_4$ can be written $\sigma = \delta\omega$ with $\delta \in \Gamma$, $\omega \in S_3$, Then $\beta\beta^{\sigma} = \beta\beta^{\delta\omega} = \beta\beta^{\delta}\beta^{\delta}\beta^{\delta}\beta^{\delta\omega}(\beta^{\delta})^{-2} = (\beta\beta^{\delta})(\beta\beta^{\omega})^{\delta}(\beta^{\delta})^{-2}$, which is a square in K.

LEILA SCHNEPS

We note that we may use these methods to derive Serre's theorem directly for n = 4 (see [3]).

LEMMA 7. Let P(X) be a polynomial over F with splitting field K and Galois group S_4 : we assume P has the form $X^4 + bX^2 + cX + d$. Let $W_2(P)$ be the Witt invariant of the quadratic form $\operatorname{Tr}_{K/F}(x^2)$. Then there exists a quadratic extension L of K such that L is Galois over F with Galois group \widetilde{S}_4 if and only if the algebra $B = W_2(P) \otimes_F (2, D)$ splits in $\operatorname{Br}(F)$, where D is the discriminant of P.

Proof. Let α_1 , α_2 , α_3 , and α_4 be the roots of P(X), and let $Y = (\alpha_1 + \alpha_3)^2$. Let R be the field F(Y). Then [R:F] = 3, and a polynomial over R having K as splitting field and D_4 as Galois group is

$$X^{4} + (2Y - 4b)X^{2} + (16d - 4bY - 3Y^{2}),$$

obtained by taking $Q(X^2)$, where Q(X) is the minimal polynomial of $(\alpha_1 - \alpha_3)^2$ over R. Let $W_2(Q)$ be the Witt invariant of $\operatorname{Tr}_{K/R}(x^2)$. By Theorem 5, in order to show existence of L, it suffices to prove the existence of some L' containing K such that $\operatorname{Gal}(L'/R) = \tilde{D}_4$. In Section 3, we saw that L exists if and only if $A = W_2(Q) \otimes_R (2, D_Q)$ splits in Br(R), where D_Q is the discriminant of $Q(X^2)$. But $W_2(Q) = W_2(P) \otimes_F R$ and $(2, D_Q) = (2, D) \otimes_F R$, so $A = B \otimes_F R$. But if A splits, either B splits or R is a neutralising field for this B. Since [R:F] = 3, R cannot be isomorphic to a maximal commutative subfield of B, so B must split over F.

COROLLARY. Suppose P(X) has the form $X^4 + cX + d$. Let D be the discriminant of P. Then the condition for L to exist is that (-2, -D) must split, i.e., there exist elements u and v in F such that $-D = 2u^2 + v^2$.

Proof. In this case the polynomial over R whose splitting field is K is given by

$$X^4 + 2(\alpha_1 + \alpha_3)^2 X^2 + (16d - 3(\alpha_1 + \alpha_3)^4).$$

It is easy to see that up to squares in R, if we let $Y = (\alpha_1 + \alpha_3)^2$, then $Y = Y^2 - 4d$ and $D = 16d - 3Y^2$. An extension L of K with $Gal(L/R) = \tilde{D}_4$ exists if and only if (-2, -D)(Y, -DY) splits; but in this case, $(Y, -DY) = (Y, D) = (Y^2 - 4d, 16d - 3Y^2)$ splits because $4(Y^2 - 4d) + (16d - 3Y^2) = Y^2$, which is a square in R. So L exists if and only if (-2, -D) splits.

$GL_2(\mathbf{F}_3)$ as galois group

References

- 1. I. REINER, "Maximal Orders," Academic Press, London/New York/San Francisco, 1975.
- 2. I. SCHUR, Ueber die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250.
- 3. J-P. SERRE, L'invariant de Witt de la forme $Tr(x^2)$, Comment. Math. Helv. 59 (1984), 651-676.
- E. WITT, Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung p^f, J. Reine Angew. Math. 174 (1935), 237–245.