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0. INTRODUCTION 

Let E be an elliptic curve defined over a quadratic imaginary field K, 
with complex multiplication by K, and let p be a prime different from 2 and 
3, where E has good reduction, and which splits in K, say (p) = /zp*. Let 
F, be the field obtained by adjoining to K all b”-division points on E 
(n = 1, 2,...), and let M, be the maximal abelian p-extension of F, 
unramified outside p. Write A’, for the Galois group of M,, over F, , 
endowed with its natural action of the Galois group Gal(F, /I(). Let 
r= Gal(F,JF,), where F, = K(E,). It is well known that X, is a finitely 
generated z’,[ [r]]-trosion Z,[ [r]]-module. The aim of this paper is to 
prove that the p-invariant of X, is zero. 

Our methods have been inspired by the recent work of Sinnott [9] in 
the cyclotomic case. The same result has been obtained independently and 
simultaneously by Gillard [IS]; the key difference between his approach 
and the one in this paper is in the proof of algebraic independence 
(Theorem III here, I.2 in [5]). In particular, Gillard studies the schematic 
closure of a certain subvariety of E”, whereas here we consider the Zariski 
closure of a certain subgroup of the formal group of 6”, E being the curve 
reduced mod p. which permits us to establish the theorem by elementary 
methods. This is the only point in Sinnott’s article which does not 
generalize easily to the elliptic case. It is also noteworthy, however, that in 
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applying the results to the p-adic L-functions, Gillard used those construc- 
ted by himself in an earlier article [lo], whereas here we follow the con- 
struction of the p-adic L-functions L,,, for 1 6 i < p - 2 given in [ 11. 

1. NOTATION 

Let K be an imaginary quadratic field of class number 1, with ring of 
integers 0. Let E be an elliptic curve defined over K, with complex mul- 
tiplication by 0, and let 9 be the Grossencharakter of E over K. We fix an 
algebraic closure R of K and an embedding R G @. Let S be the set contain- 
ing 2, 3, and rational primes q such that E does not have good reduction 
for at least one prime lying over q. Let p be a rational prime which is not in 
S, and such that p splits in K: (p) = fib*. Let z = $(j). Let Kj be the com- 
pletion of K at p and let Zj be the ring of integers of the completion of the 
maximal abelian unramified extension of EC,,,. We fix a Weierstrass model 
for E, 

y2 = 4x3 - g,x - g, (1) 

such that g,, g, E 0, and gi - 27g: are minimal at all primes of K not lying 
above a prime in S. Let L be the period lattice of the Weierstrass 
p-function associated with this model. Since K has class number 1, there is 
an QE L such that L=QO. 

Let L($k, s) be the complex Hecke L-function of $“. Let Qr be a p-adic 
period of E. We follow the notation of [ 1 ] in reviewing the construction of 
the p-adic L-functions L,,i(s) for 1 d i < p - 2, such that for each integer 
k>l,kri(modp-1), 

QjykL,,Jk)= (k- I)! (1 - (t,bk(j)/Np)) WkL(i+Fk, k). 

Note that the interpolated L-function is the primitive one. 

(2) 

Let &z, L) = (&g(z L), ~‘(2, L)). Let o be the Teichmiiller character on 
Z,, and for each XE Z:, let (x) =x/o(x). Let .!? denote the formal group 
giving the kernel of reduction modulo j. on E: a local parameter for ,!? is 
given by t = -2.x/y. If we consider z to be the parameter for the additive 
formal group C?‘,, then t= -2@(z)/@‘(z) gives the exponential map from 
c, to 2. If we let w  be the parameter for the multiplicative formal group 
G,, then since ,?? has height 1 (since p is split), there exists a power series 
6(w) E wZ,[[w]] which gives an isomorphism of formal groups 6: c?,,, -+ i?. 
The p-adic period is, by definition, the coefficient of u’ in 6: it is determined 
up to a unit in Z$. 

We now introduce the basic rational functions on E (see [2] for details). 
Let c( E f9, a # 0 or a unit, and let E, denote the kernel of u on E. For each 
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i, 0 < i d p - 2, such that f, # 1, let Q, be a primitive ji-division point on E. 
Define 

t,(p) = n (x(P) -x(R)) and 5x.&?= n UP+ Qr), (3) 
REEz 1 t G/, 
R#O 

where G,; = Gal(K(IZJ/K). We have the following equation [ 11. For any 
ideal 8 of 0 prime to a and to fi, 

n L.p,V + S) - Sa,p,c,($(4~)~ (4) 
s e E, 

where 6, is the Artin symbol of & relative to K(E,)/K, and the symbol - 
means that the quotient of the two functions is a constant in K*. 

We now consider the development of the rational functions in (3) in the 
parameter z of the additive formal group, and define 

R%,i(Z, L 1 = 
ir,(4(& L)) if J; = 1, 

L.Q,MZ> L)) otherwise. 

Let IM; = card(Gal(K(E,;)/K)) f or each i. Consider the set ~2 of maps p: 
A -+ Z, where A is the set of elements of 0 prime tof, and to b, and where 

p(a) = 0 for almost all CI E A and 1 p(a)(Na- l)=O. 
2 t .A 

For p E %, let &(z, L) = n,.. .d (a2’ntRz,i(z, 15.))“‘~‘. Then (d/dz) log i?,,, 
(z, L) has a Laurent series expansion in t which is an integral power series 
in Z,[[t]], and for a suitable choice of p, this is the series underlying the 
construction of the J~~,~(s) (see [l, 31). 

In order to complete the construction, we need to introduce several basic 
facts about gamma-transforms (for more details see [9]). Let /1, be the 
space of I,-valued measures on Z,, and let C denote a compact-open sub- 
set of 77,: 

(a) There is an isomorphism A, --f Zp[[w]] given by %t-+ Hi(w), 
where H,(w)=C,,,(S,~(~)~~)W’I=S,~(~+MJ)’:~~. 

(b) Letf(x) = xi ai[; be the characteristic function of C, where ii are 
p-power roots of unity [9]. We define a measure 2 1 c‘ by restricting ,I to C 
and extending by zero. Then the power series H,,,.(w) associated to I Ic is 
given by 

1 aiWA(ii(l + M’) - l). (5) 



~-INVARIANT OFP-ADIC L-FUNCTIONS 23 

In particular, if C = ZT, we write A* for 1 Iz; and H:(w) for H,,(w). We 
then have 

Hf(w)=Hj,(W)-i 5 Hj,(i(l +W’)- 1). (6) 
C” 1 

(c) We define the measure IO y for y E Zz by A o y(C) = A(yC). Then 
Hj,..,(w)=Hj.(WY -I), and we have the formula 

/2oy(,. =iI.;(.oy. (7) 

(d) We now discuss the gamma-transform. Let J(t) E Zfi[ [t]], and 
set ~(w)E~/,[[w]] equal to J(~(w)) viewed as a power series in MI. Let i, be 
the measure associated to the series $KI). For each i, 0 <i,< p-2, we 
define 

and we may thus speak of the gamma transform of a measure associated 
with a power series in t. Clearly T:.‘)(s) is an Iwasawa function, i.e., if u is a 
topological generator of 1 + pZ,, then there exists a power series 
Gi(w) E Z,[[w]] such that Gi(uS- 1) = T:;)(s). Let 4: Z, --f U = 1 + pZ,, be 
the isomorphism given by y+-+ UI’. Then as a power series, G,(P,,) 
corresponds to the measure in A, given by 

(9) 

where the sum is over the (p- 1)th roots of unity in Z,, (see [9]). By (c) 
above, we may write (9) as 

(10) 

We now apply the gamma-transform of (d) to the measure whose 
associated power series in t is the Laurent expansion of (d/dz) log fi,,Jz, L). 
Up to multiplication by units in the Iwasawa algebra, this gives the 
functions Lfi,i(~) for 1 d i < p - 2 (see Cl] for the complete construction). 
Now, the p-invariant of fjl)(s) is considered by definition to be the 
p-invariant of the associated power series G,(w), i.e., the inlimum of the 
valuations of its coefficients. Thus it clearly suffices to study the p-invariant 
of the gamma-transform to determine the p-invariant of f,,,i(s). 
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2. ~INVARIANTS OF CERTAIN GAMMA-TRANSFORMS 

Let E be an elliptic curve as in Section 1, and let R(P) be a rational 
function on E: by a slight abuse of notation we write R(t) for the expansion 
of R as a Laurent series in t, where t = -2x/u/l is a local parameter at zero 
on &. We suppose that R(r)~Z~[[f]l. 

Let 6: 6, --f .!? be the isomorphism of formal groups as in Section 1, and 
consider a measure 1, on Z, with values in I, whose associated power series 
in I/[ [ w]] has the form R(d(w)) for R(P) as above. Let W denote the set 
of roots of unity in K. The aim of this section is to apply the methods used 
by Sinnott in the cyclotomic case (see [9]) to prove 

THEOREM I. For each i, 0 < i < p - 2, we have the ,formula 

p 
( 

c o’(v) 1* p (v) = p(ry’(.T)). 
IF M’ i 

Before the proof of Theorem I, we need several preliminary remarks. Let 
r be the number of roots of unity in K, m = (p - 1 )/r, and /I, ,..., /I,? be a 
basis for the &module generated by the (p - 1 )th roots of unity in Z,. For 
1~ j < m, let E, be representatives of the (p - 1) th roots of unity modulo 
W. Then 

for 1 d j < m. 
Now, since we are considering p-invariants, we will wish to consider the 

reduction of our power series R(h(w)) modulo +. To this end, we denote by 
8(w) the power series 6(w) modulo +, so s(w) has coefficients in F,,, the 
algebraic closure of IF,. Letting i? denote the curve reduced mod #, we see 
that a(w) gives a formal group isomorphism from the multiplicative formal 
group in characteristic p to the formal group of ,!?, which we denote by 6. 
But since the points of ,!? all reduce to 0 mod h, we let B = F,[ [ T]] for an 
indeterminate T, and we extend the field of definition of E to the quotient 
field of B. We also consider B to be the underlying set for 6,,, in charac- 
teristic p. Then $ converges to a value on E  ̂whenever w  has its value in the 
maximal ideal of B, which is the ideal generated by T. 

We now recall that for each element /? E Z,, there exists a unique power 
series, usually denoted [B] (t), such that [Q(t) = j3t (mod deg 2) and 
[P](t) is an endomorphism of I? (see [S]). We use the notation 
qp(t) = [b](t) and write q8(t) for the reduction of q&t) mod p. 

Now, let E” be the abelian variety consisting of the product of n copies of 
E, and let 1, ,..., t, be the copies of I coming from the n coordinate projec- 
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tions E” 4 E. Let K(E”) denote the field of rational functions on E” 
developed out in their Laurent expansions at I, ,..., t,, and let A = K(E”) n 
~firrt,,...~ t,]]. In the same vein, we write 2 = K(E”) n B[ [t, ,..., t,]] for 
rational functions on the reduced abelian variety. 

We now state two independence results which are fundamental to the 
proof of Theorem I. For the a, as in (1 1 ), we have 

THEOREM II. For 1 6 j < m, let Qi: i?’ -+ E be the map given by 

@j(P,,..., P,,)=C ai,P,. 

and suppose r, ,..., r,, are rational .functions on ,? such that ,?l ,g, ri(@i(-y)) = O for a1’ x E E,l. 
Then each r, is a constant ,function on I!? 

THEOREM III. Let 0: B[ [t, ,..., t,,]] -+ B[ [t]] be the map giuen bl 
@(ti) = q,{,(t). Then the restriction of 0 to 2 is injective in the sense that !‘f 
r62 and r(ij,],(t) ,..., Lf,Jt))=O, then r=O identically. 

Theorems II and III will be proven at the end of this section. We now 
proceed to the proof of Theorem I. Let j. be a measure on Z, as before 
whose associated power series has the form R(~(M~))E~~[[~v]] for REA. 
We have 

PROPOSITION. Let C be a compact-open set in R,. Then the power series 
associated to d ) (. has the form R,.(6( M!)), rzyhere R, is also a rational function 
OF1 E. 

Proof: We may write 1, b;[;‘ for the characteristic function of C, as in 
Section l(b). Then the power series associated to A Ic is given by 
x, biR(G(ii( 1 + ~1) - 1)). Now, since 6 is an isomorphism of formal groups, 
and ii - 1 is in the maximal ideal of I,, we see that ii - 1 corresponds 
under 6 to the t coordinate of a n-power division point P’, on E. Thus, 

c b,R(H1,(1 + WI- 1)) = c b,R(b(i, - 1 JOE d(w)) 

= 1 b,R(t( VI)OEt), 

which is the expansion of Ci biR( Vi OEP) in t. By definition, this function 
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is R,(P). But R, is a rational function on E since addition on E is rational, 
and A(, is associated to R,(b(w)), which concludes the proof. 

NOW, for each i, 0 < i < p - 2, define a measure 

K; = ,& w’(u) I”* c (u). 
1 ’ 

We first remark that K, is associated with a rational function in 6(w) on E. 
For by the preceding proposition, i* is associated with a rational function 
R*(d(w)), and then by Section l(c), A* n (u) is associated to 
R*(S((l +w)‘-’ -l))=R*([om’](6(w)))=R(op1P) on E. Now, we are 
considering the p-invariant of a measure to be the p-invariant of its 
associated power series; this is how we investigate the ,u-invariants in the 
statement of Theorem I, which we recall as 

p 
i 

(12) 
rtw 

In fact, proving the simpler formula 

Ak.,) = P(cyS)) (13) 

is equivalent to proving (12) for the left-hand sides are the same by 
definition, and for the right-hand sides we have 

= L,JH,wi(u) w’(u~ ‘) jz, (x)‘o’(x) di 

= VW(S). 1. 

Thus, since we have stipulated that p # 2 or 3, and Y must always be 2, 4, 
or 6, we have 

p(f!“(s)) = p(f?(s)) ,. h, . 

To prove (13) we prove that divisibility by 7~ of xi (i.e., of its associated 
power series) implies that of Q!,‘(s) and vice versa, thus, cancelling the fac- 
tors of rt from both sides gives (13). The first implication is evident, since if 
1~ divides tci then it certainly divides C, E’K, 0 F ( [, (Eq. (9)), so T:,)(s), by 
Section l(d). The second implication is not trivial. Suppose n divides 
C, siti; 0 E I(,. Then rr divides r cJ’?=, E,:‘K; ( ,t,-- lo, 0 (E,- I), reformulating as in 
(10). 
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Let r,(@w)) be the power series corresponding to the measure 
&,:Gci IcEmtUj. We may then write the assumption that z divides the gamma- 
transform as 

i$~i(~((l+*)~-I))=O(modnl,[[r]]). (14) 

Considering the rational functions Y”, on ,!? and the whole situation in 
characteristic p, we have 

f ?,([E,] &v))=O. (15) 
.i= 1 

Thus using the notation G,,(t) for [am] reduced mod +z, we have 

Now, in the notation of Theorem II, let Qi: p --) E be defined by 

(16) 

for the ai, as in (11). Then (16) may be written 

Now, by Theorem III, this statement implies that the function J$!, Tj 0 Gi 
on 6 is identically zero, and by Theorem II, we obtain that each Fj is then 
a constant function on ,$ so that CT= 1 Fi = 0, or equivalently, J$‘!! 1 r, = 0 
(mod ~Z,ClIwll). 

Finally, recalling that rj(P) was the rational function on E associated to 
the measure 6,:'~~ I(c,m~u,, we obtain 

= c ( i r,luP)) r0 (mod j), 
L’E w  /=I 

so K~ is divisible by rc, which concludes the proof. 
We note that since the p-adic L-function is constructed by taking the 

gamma-transform of a measure whose power series is exactly the develop- 
ment in w  of a rational function on E, we may apply Theorem I to obtain 
information on their p-invariant. This is done in Section 3. We now prove 
Theorems II and III. 
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Proof of Theorem II. First, note that since aj = CT=, atiP, and 
@jtpl 9*..2 P,) = C?=, aUP;, we must have the condition 

a”@i=bo@ioa=b=Q 

for a, b E 0, and i # j, since this is clearly true of the E,. This and 
algebraicity are the only conditions on the Qj which are needed in the 
proof of Theorem 2. The algebraicity of the @, means that since they are 
certainly not constant maps, they must be surjective onto E. Now, let 
K, = Ker Qj. We will show that whenever i # j, @, 1 K, is still surjective onto 
E. If it were not, it would be constant, so its image would be e, the identity 
element of E. Now, obviously, Qj I4 = e, so we have induced maps 

2$:E”/K,A and 6,: E”/K, --t i?. 

Thus, Gi 0 8;- ’ is an endomorphism of E, so some y E 0. But then 10 @; = 
y 0 @,, which is not possible. So Qi lK, is surjective. 

Now, let P, E ,!? be a point at which r,, has a pole. Then r,,( PO @;P) has 
a pole at e. Choose R, in j?’ such that @JR,) = P,; then we still must 
have 

,f rioQj(R, + R)=O QRci?‘, 
/=I 

SO it suffices to know Theorem II for the functions ri(Gi(Ro) @,P), i.e., we 
may suppose that r, has a pole at e. 

Let 0, be the set of poles of rj; then Q,:‘(L),) n K,,,, for 1 < j 6 m, must 
have codimension 1 in K,,,, otherwise Qj would be constant on K,, which 
is not the case. So ~J’=-,’ Gjm ‘(0,) n K, has codimension 1 in K,. Thus, we 
can choose an R, in K, such that Qi(R,)$Di, I < j<m- 1. We can now 
write 

mm-1 
rm 0 Q,,,(R) = rm o@,(R, + R)= - 1 r,f>@?(R, +R). 

/=I 

But the right-hand side is regular, implying that r, has no pole at e! 
Evidently, the procedure works for each of the Y, in the same way, so they 
are all constant functions on ,!? This concludes the proof of Theorem II. 

Proof of Theorem III. We need a long series of lemmas. 

LEMMA 1. Let H be a Zariski-closed subgroup g ,!?“. Then there exists a 
non-trivial homomorphism @: i?’ + E such that H c Ker @. 

ProoJ Let Ii: ,!? + J?” be inclusion of the ith factor for 1 d id n. Then 
since H is a proper subgroup, there exists j between 1 and n such that 
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Im Ii & H. Thus the composition r: .!? -+ 4 E” -+ En/H is non-trivial, and 
since H is closed, .C?‘fH is an abelian variety. So the dual r*: (p/H)* -+ 6 
(as abelian varieties) is non-trivial. But p/H is isogenous to (p/H)*, so 
choosing an isogeny f: i?/H -+ (g/H)*, we have t* 0 f: p/H -+ I? non- 
trivial. Then @: p -+ p/H + ‘* ’ ,!? is non-trivial and H c Ker @. 

LEMMA 2. Let @: i? -+ i? be a homomorphism. Then @ has the,form 

@(Q,,..., Q,,= f a,Qi, ai E LP”. 
r=l 

Proof In the notation above, set cli = @ 0 Ii: E + E. Then 

@(Q,,..., Qn) = @ (,c, li(Qi)> = ;$, %jQl 

LEMMA 3. If G is a subgroup of ,!?‘, and H is its Zariski closure, then H 
is also a subgroup. 

Proof It suffices to show that H is closed under addition and inverses. 
Let A: H x H -+ H’ be addition. For any algebraic map ~,4 which is zero on 
G, we know 4 must be zero on H. But then 40 A is zero on H x H since it is 
zero on G x G and H x H is the Zariski closure of G x G. But this means q5 
is zero on H’, so H’ c H. The argument for inverses is analogous. 

LEMMA 4. Let /I, ,..., /3,, be elements of Z, which are linearly independent 
over 0, and write t = J(w) as usual. Let F be the algebraic closure of the 
quotient field of the ring B, R the ring qf integers of F, and M the maximal 
ideal of R. Let 

G= {(&(t) ,..., &Jt)) ( t=&v), WEM). 

Then G is Zariski dense in E” (considered to be defined over F). 

Proof Recall that whenever w  is in h4, then T(w) converges to an 
actual value on the formal group of E. Let H denote the Zariski closure of 
G. Then by Lemma 3, H is a subgroup of E”. If H # E”, then by Lemmas 1 
and 2, there exist elements CC, ,..., c(, E 0, not all zero, such that 

,$ UiQi =O YQ, ,..., Qn, E H. 

But then, we may write this as 

i$, %4/l,(t) = f: ~iCm0) = [ i dq (t) = 0 
,=I i= I 
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for all t on the formal group of E, so C;=, criBi = 0. But this is not possible, 
so we must have H = ,?‘. 

We may conclude the proof of Theorem 3. Suppose that for some Y E 2, 
we have O(r) = 0. This means 

r(q,,(tL, 4p,m = 0. 

But r is continuous in the Zariski topology, so it must be zero on all of ,!?“. 

3. THE ~-INVARIANT OF THE p-ADIC L-FUNCTION 

The aim of this section is to apply the results of Section 2 to the measure 
associated to the p-adic L-function, as discussed in Section 1. In particular, 
we prove 

THEOREM IV. p(X, ) = 0. 

In order to do so, we show that the p-invariant of each L/.Js) is zero. 
Indeed, it is shown in [ 1 ] that the l-invariant of X, is equal to the sum of 
the p-invariants of the L/,;(s) for 1 < i < p - 2. 

Recall from Section 1 that for each i, 1 < i < p - 2, and for a suitable 
choice of CL, the integral power series expansion of the rational function on 
the curve 

-$ log R,,.ik L) = -$ log n (ceR&, L)y2) = 1 (18) 

is exactly the power series which gives the measure associated to L,.,(s) as 
in Section 1 (a). 

LEMMA 1. For each i, 1 f i < p - 2, we have ,u(A,) = 0, where the series 
associated to Ai is the development in w of (d/dz) log w,Jz, L). 

Proof. We show that as a rational function on E, (d/dz) log &Jz, L) 
does not reduce to zero mod #, in fact, we exhibit its poles on E. Recall 
that r = # W. 

Let S= {aoA ( p(c~)#O}, and 9 = (R E E ( R is a point of m-division for 
some a E Sj. Now, since all c( E S are prime to fi and prime to each other 
(see [ 1, Lemma 11.7; 3, Lemma 28]), we have that reduction mod+ is injec- 
tive on 4”. We separate the proof into two cases. 

Case 1. f, = 1, i.e., r divides i. We explicitly write down the rational 
function on the curve from (18): 
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(19) 

from which it is easy to see that the poles must come from the points 0 and 
R E 9. Now, in fact, the residue at 0 is exactly C,, A p(tx)(Ncc - 1) = 0, so 
there is no pole there. However, the residue at each R is -2p(cx), and since 
~(a) = f 1 (see Cl]), this does not reduce to zero mod p. Moreover, since 
reduction mod +Z is injective on Y, all the points in 9 give poles of the 
reduced function on E. 

Case 2. f, # 1. The only difference with Case 1 is in the explicit 
expression of the function associated to 2;: 

=;;p -24'(p+Qf) 
x(P+Q;)-x(R)’ 

Here again, the poles come from the points -Q; and R - Q; for all r E G,t 
and RELY. Now, the residue of each pole at -et is again 
C, p(cr)(Ncr - 1) = 0, so there are actually no poles there. But the poles 
coming from the R - Q; have residue -2@(a), which as before is prime to 
fi for each CI (see [3, Lemma 281). Moreover, since each R-Q; is a 
primitive crf;-division point, again reduction mod p is injective on this set, 
so each R - Q; gives a pole of the reduced function on E. This concludes 
the proof. 

LEMMA 2. The p-invariant cfl$ is zero. 

ProoJ In fact, we show that the p-invariant of & lpLp is not zero, from 
which the result follows. Note that the characteristic function of piZ, is 
(l/p) &P=, [“. Now, the power series associated with ii is the development 
in w  of C,, A p(cr)(d/dz) log <,,o,( P) when f, # 1, so by Section l(b), the 
power series associated with 4 lpzp is ILEA /4~)(4dZ) 
log ns, En <,,e,(P + S), which by the functional equation (4) given in Sec- 
tion 1, can be written 
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Now, by the chain rule, we can write C,, ,,u(~)(rr/p)[(d/&) 
1% 5 I.B,Or]( [rc] P) for (20), which allows us to reduce modulo +. The poles 
of this function come from the points -@‘p + S and R - Q;Oj + S for all 
T E G,;, R E 9, and SE E,. But all the S reduce to zero mod #z, so evidently 
the residue of each pole is a multiple of p, and thus reduces to zero mod /z. 
Thus the rational function in (20) is divisible by p, which concludes the 
proof. 

LEMMA 3. The p-invariant of the measure 

is zero. 

ProoJ: As usual, we divide into two cases. 

Case 1. f, = 1, i.e., r divides i. In this case, the measure in the lemma 
becomes simply C,, ,,, 1: 0 (v), since &(v) = 1 for each v E W. But the poles 
of &+ are given by the points R E 9, and the u are isomorphisms of E, so 
they only permute the poles. So ,XT 0 (v) = A,+ for each v, and the measure 
can be written rA,+. Now the result of Lemma 2 concludes the proof. 

Case 2. f, # 1. Let us consider the set of poles of the form 

P,= {R-Q:) TEG,,). 

We attach a P, to each R E Y. For each P,, let up ‘PR denote the set 
(v- ‘( R - Q’) 1 T E G,}. Now, since the orbit of Qi under the z lies entirely 
in one congkence class module W, the u- ‘P, are completely disjoint sets 
for R fixed and v varying in W. We show, moreover, that if 
v-‘P,, =vm1PR2, then R, = R2. For first of all, R, and R, would have to 
be points of a-division for the same CC But then, lettingJi act on both sides 
of the equality, we would have R, = R,. This shows that for u fixed, the 
poles of A,* ‘3 (u) are given by the u - ‘P, for R E 9, and that all these poles 
are distinct. It remains to be shown that no pole of I,? ‘3 ( v1 ) can be a pole 
of E,,+o(v,) if v, #vZ. Suppose we had R,, Rz, t,, and r2 such that 
v;‘(R, -Q:‘) = v;‘(R2 -Q;?). First, we see immediately that R, and R, 
must be points of cl-division for the same a. But then, letting tx act on both 
sides, we obtain 

v;'( -Q;')=v;'( -Q;l), 

which is impossible if v, # v2 since the two points would be in different 
congruence classes mod W. 

We have now proved that all the poles of C,-, u, W’(V) Af 0 (v) come from 
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up ‘P, for all v E W and R E 3’. Applying the methods in the proof of 
Lemma I to these points, we easily compute that the residues all have the 
form up(a) for some VE W, and as before, that this is never congruent to 
0 mod +: similarly, we see again that reduction mod ;I; is injective on the 
entire set of poles. This s&ices to prove that the rational function 
associated with C Ot W oi(u) A,* 0 (v) does not reduce to zero mod fi. 

Now, for 16 iG p - 2, up to units in the Iwasawa algebra, L,Js) is 
given by the (i- 1)th gamma-transform of 2, (see [l] for details), and 
L/,,(s) is itself given by a unit in the Iwasawa algebra. Thus, applying the 
result of Theorem I in Section 2 permits us to conclude that the 
p-invariants of the L,,,(s) are zero for O< id p- 2. This concludes the 
proof of Theorem IV. 
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