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A GENERAL THEORY OF FIBRE SPACES
WITH
STRUCTURE SHEAF

INTRODUCTION. When one tries to state in a general algebraic
formalism the various notions of fibre space: general fibre space
(without structure group, and maybe not even locally trivial); or fibre
bundle with topological structure group G as expoundcd in the book of
Steenrod (The Topology of Fibre Bundles, Princeton University Press);
or the "differentiable" and "analytic" {(real or complex) variants of
these nolions; or the notions of algebraic fibre spaces (over an abstract
field k) - one is led in a natural! way to the notion of fibre space with a
structure sheaf G. This point of view is also suggested a priori by the
possibility, now classical, to interpret the (for instance "topological")
classes of fibre bundles on a space X, with ahelian structure group G,
as the elements of the first cohomology group of X with coefficients
in the sheaf g of germs of continuous mapse of X into G; the word
"continuous" being replaced by "analytic" respectively "regular" if
G is supposed an analytic respectively an algebraic group (the space
X being of course accordingly an analytic or algebraic variety). The
use of cohomological methods in this connection have proved quite
useful, and it has become natural, at least as a matter of notation,
even when G is not abelian, to denote by HI(X, G) the set of classes
of fibre spaces on X with structure sheaf G, G being as above a
sheaf of germs of maps (continuous, or differentiable, or analytic,
or algebraic as the case may be) of X into G. Here we develop
systematically the notion of fibre space with structure sheaf G, where
G is any sheaf of (not necessarily abelian) groups, and of the first
cohomology set Hl(X, G) of X with coeificients in G. The first four
chapters contain merely the first definitions concerning general fibre
spaces, sheaves, fibre spaces with composition law (including the
sheaves of groups) and fibre spaces with structure sheaf. The functor

aspect of the notions dealt with has been stresced throughout, and as



it now appears should have been stressed even more. As the proofs of
most of the facts stated reduce of course to straightforward verifications,
they are only sketched or even omitted, the important point being merely
a consistent order in the statement of the main facts. In the last chapter,
we define the cohomology set Hl(X, G) of X with coefficients in the sheaf
of groups G, so that the expected classification theorem for fibre spaces
with structure sheaf G is valid. We then proceed to a careful study of
the exact cohomology sequence associated with an exact sequence of
sheaves e —> E — 9 > E —> e. This is the main part, and in fact
the origin, of this paper. Here G is any sheaf of groups, F a subsheaf
of groups, H = _q_/ F, and according to various supplementary hypotheses
on F {such as F normal, or F normal abelian, or F in the center) we

get an exact cohomology sequence going from HO(X, F) (the group of
sectxons of F) to H (X G) respectively H (X H) respectively

H (X, H). with more or less additional algebraic structures involved.
The formalism thus developed is quite suggestive, and as it seems
useful, in particular in dealing with the problem of classification of

fibre bundles with a structure group G in which we consider a sub-

group F, or the problem of comparing say the topological and ana-

lytic classification for a given analytic structure group G. However,

in order to keep this exposition in reasonable bounds, no examples have
been piven, Some complementary facts, examples, and applications

for tiic nolions developed will be given in the future. This report has
..o writcen mainly in order to serve the author for future reference;

it is hoped that it may serve the same purpose, or as an introduction

to the subject, to somebody else.

Of course, as this report consists in a fortunately straightforward
adaptatior of quite well known notions, no real difficulties had to be
overcome and there is noclaim for originality whatsoever. Besides,
at the moment to give this report for mimeography, I hear that results
analogous to those of chapter 5 were known for some years to Mr. Frenkel,
who did not publish them till now. The author only hopes that this
report is more pleasant to read than it was to write, and is convinced

that anyhow an exposition of this sort had to be written,



Remark (added for the second edition). It has appeared that the
formalism developed in this report, and'specifically the results of Chapter
V, are valid (and useful) also in other situations than just for sheaves on a
given space X, A generalization for instance is obtained by supposing that
a fixed group TCis given acting on X as a group of homeomorphisms, and
that we restrict our attention to the category of fibre spaces over X (and
especially sheaves) on whichTC operates in a manner compatible with its
operations on the base X, (See for instance A, Grothendieck, Sur le
mémoire de Weil; Généralisation des fonctions abéliennes, Sé€minaire
Bourbaki Décembre 1956), When X is reduced to a point, one gets
(instead of sheaves) sets, groups, homogeneous spaces etc, admitting a
fixed group TU of operators, which leads to the (commutative and non-
commutative) cohomology theory of the group T{. One can also replace
TC by a fixed Lie group (operating on differentiable varieties, on Lie
groups, and homogeneous Lie spaces). Or X,TC are replaced by a fixed
ground field k, and one considers algebraic spaces, algebraic groups,

homogeneous spaces defined over k, which leads to a kind of cohomology

theory of k. All this suggests that there should exist a comprehensive
theory of non-commutative cohomology in suitable categories, an
exposition of which is still lacking. (For the '"commutative'' theory of
cohomology, see A. Grothendieck, sur quelques points d'Algébre Homo-
logique, Tohoku Math, Journal, 1958),
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CHAPTER I

GENERAL FIBRE SPACES

Unless otherwise stated, none of the spaces to occur in this report

have to be supposed separated.

1.1 Notion of fibre space.

Definition 1,1,1. A fibre space over a space X is a triple (X, E, p) of

the space X, a space E and a continuous map p of E into X.

We do not require p to be onto, still less to be open, and if p is onto,
we do not require the topology of X to be the quotient topology of E by the
map p. For abbreviation, the fibre space (X, E, p) will often be denoted
by E only, it being understood that E is provided with the supplementary
structure consisting of a continuous map p of E into the space X. X is
called the base space of the fibre space, p the projection, and for any
x € X, the subspace p"l(x) of E (which is closed if {_x} is closed) is the
fibre of x (in E).

Given two fibre spaces (X, E, p) and (X', E', p'), a homomorphism

of the first into the second is a pair of continuous maps f: X—> X' and

g: E —> E', such that p'g = fp, i.e, commutativity holds in the diagram

—& S

| P
f >x

———— '

o
5 Cm—iT]

Then g maps fibres into fibres (but not necessarily gnto! ); furthermore,
if p is surjective, then f is uniquely determined by g. The continuous map
f of X into X' being given, g will be called also a f~-homomorphism of E

into E'. If, moreover, E' is a fibre space over X', f' a continuous map

3



X!'——> X' and g'; E'—> E'' a f'-homomorphism, then g'g is a
f'f~-homomorphism. If f is the identity map of X onto X, we say also
X-homomorphism instead of f-homomorphism. If we speak of
homomorphisms of fibre spaces over X, without further comment, we
will always mean X-homomorphisms.

The notion of isomorphism of a fibre space (X, E, p) onto a fibre

space (X', E', p') is clear: it is a homomorphism (f, g) of the first into

the second, such that f and g are onto-homeomorphisms.

1.2 Inverse iinapc of a fibre space, inverse homumorphisms. Let

(X, E, p) be a fibre spacc over thc space X, and let f be a continuous
map of a space X' into X. Then the inverse image of the fibre space E
by f is a fibve space E' over X'. E' is defined as the subspace of X' >< E
of points (x', y) such that {x' = py, the projection p' of E' into the base
X' being given by p'(x', y) = x'. The map g(x', y) = y of E' into E is

then an f-homomorphism, inducing for each x'€ X' a homeomorphism of

the fibre of E' over x' onto the fibre of E over {'x'.

Suppose now, moreover, given a continuous map f': X'"'— X' of a
space X'' into X'. Then there i8 a canonical isomorphism of the fibre
spacce ' over X', inverse image of the fibre space E by ff', and the
inverse image of the fibre space E' (considered above) by f' (transitivity
of inverse images). If (x'', y)e E" (x"'e€ X'', yE E, f{f'x'' = py), it is

mapped by this isomorphism into (x'', (f'x'', y)).
L.et Y be a subspace of the base X of a fibre space E; consider the

injection f of Y into X; the inverse image E' of E by f is called fibre-

space induced E}' E onY, or the restriction c_)_f_ E to Y, and is denoted by

E IY. This is canonically homeomorphic to a subspace of E, namely the
set of elements mapped by p into Y; the projection of E|Y into Y is
induced by p. By what has been said above, if Z is a subspace of Y, the
restriction of E|Y to Z is the restriction E|Z of Eto Z.

Again let (X, E, p) and (X', E', p') be two fibre spaces, f a con~

tinuous map X—>X'. An inverse homomorphism associated with { is an

X-homomorphism g of the fibre space E_ into E, where E denotes the

inverse image of the fibre space E' by f. That means that g is a



continuous map, of the subspace E of X >< E! of pairs (x, y') such that
fx = p'y', into E, mapping for any x € X the fibre of x into D (homeo-
morphic to the fibre of fx in E!' !) into the fibre p~ (x) of x in E For
instance, if E is itself the inverse image of E! by f, then there is a
canonical inverse homomorphism of Z! into E associated with {; the
identity ! (Though somewhat trivial, this is the most important case of

inverse homomorphisms.)

1.3 Subspace, quotient, product. Let (X, E, p) be a fibre space, E'

any subspace of E, then the restriction p' of p to E', defines E' as a

fibre space with the same basis X, called a sub-fibre-space of ©. So the

sub-fibre~spaces of E are in one to one correspondence with the subsets
of E; in particular, for them the notions of union, intersection etc. are
defined. (Of course, in most cases we are only interested in fibre
spaces the projection of which is onto; this imposes then a condition on
the subspaces of E considered, which may be fulfilled for two subspaces
and not for the intersection,)

Let now R be an equivalence relation in E compatible with the map p,

i.e, such that two elements of £ congruent mod R have the same image
under p. Then p defines a continuous map p' of the quotient space
E' = E/R into X, which turns E! into a fibre space with base X, called

a quotient fibre space of E, So the latter are in one-to-one correspondence

with the equivalence relations in E compatible with p. A quotient fibre
space of a quotient fibre space of E is a quotient fibre space,

Let (X, E, p) and (X', &', p') be two fibre spaces, then (p, p')
defines a continuous map of E >< E! into X >< X!, so that E >< E! appears
as a fibre space over X >< X!, called the product of the fibre spaces E, E',
The fibre of (x, x!) in E >< E! is the product of the fibres of x in E,

respectively x' in E', Suppose now X = X!, and consider the inverse

image of E >< E' under the diagonal map X ~» X >< X, we get a {ibre
space over 2_{_, called the {ibre product 9_f the fibre spaces E, E! over X,

denoted by E >< E!', The fibre of x in this fibre-product is the product of
(X)

the fibres of x in E respectively E'. Of course, product of an arbitrary

family of fibre spaces can be considered, and the usual formal properties
hold.



1.4 Trivial and locally trivial fibre spaces. Let X and F be two spaces,

E the product space, the projection of the product on X defines E as a

fibre space over X, called the trivial fibre space over X with fibre F.

All fibres are canonically homeomorphic with F. Let us determine the
homomorphisms of a trivial fibre space E = X >< F into another

E' = X >< F'. More generally, we will only assume that the projection
of X >< F onto X is the natural one and continuous for the given topology
of X >< F, which induces on the fibres the given topology (but the topology
of X >< F may not be the product topology, for instance: X and F are
algebraic varieties with the Zariski topology); same hypothesis on

X>< F'. Then a homomorphism u of E into E', inducing for each x€ X
a continuous map of the fibre of E over x into thr tibre of E' over x,
defines a function x —> f(x) of X into the set of all continuous maps of
F into F', and of course the homomorphism is well determined by this

map by the formula
(1.4.1) u(x, y) =(x, f{x).y) (xeX, yEF).

So the homomorphisms of E into E' can be identified with those maps {
of X into the ~=t of continuous maps of F into F' such that the map (1.4.1)
is continuous. If the topologies of E and E' are the product topologies,
this means that (x, y)—> f(x).y is continuous; as is well known, if
moreover F is locally compact or metrizable, this means also that { is
continuous when we take on the set of all continuous maps from F into F'
the topology of compact convergence, If we consider a homomorphism

v from E' into E'' = X >< F'' given by a map g of X into the set of all
continuous maps of F' into F'' the homomorphism vu is niven by the

map x —> g{x)f(x). In crder that the map (1.4.1) be injective (respec-
tively surjective, bijective) it is necessary and sufficient that for each

x €X, f(x) bas the same property. In the bijective case, the inverse map
is then defined by the function x —> f(x)‘l. It follows that u is an iso-
morphism onto if and only if for each x € X, f is 2 homeomorphism of

F onto F', and the map (x, y')—>(x, f(x)_l. y') continuous. So we get in

particular (coming back to the case of trivial fibre spaces):



Proposition 1.4.1, LetE = X >< F and E' = X >< F! be two trivial fibre

spaces over X, then the isomorphisms of E onto E' can be identified with

the maps f of X into the set of homeomorphisms of F onto F! such that
f(x).y and f(x)']. y' ke continucus functions from X >< F into F!
respectively X >< F' into ¥, If E = E', this identification is compatible
with the group structures on the set of automorphisms of E respectively

the set of mapa of X into the group of automorphisms of F.

Two {ibre spaces E, E! over X are said to ke locallz iig_morphic if
each point x of X has a neighborhood U {which can be assumed open) such
that the restrictions of E and E' to U 2re isomorphic. This is clearly an

equivalence relation. A fibre space E over X is said locally trivial with

fibre F (F being a given space) if it is locally isomorphic to the trivial

space X >< F,

1.5 Definition of fibre spaces by coordinate transformations.

Let X be a space, (Ui) a covering of X, for each index i let Ei be a
fibre space over Ui' and for any couple of indices i, j such that

- ~i i T .
Uy uinuj $ 4, let f;; be a U ;-isomorphism of E, lLij onto EiIUij
On the topological sum € of the spaces Ei' let us consider the relation

(1.5.1,) Y€ Ei IUij and yje EjIUij are equivalent means y, = fijyj'
This is an equivalence relation, as easily checked, if and only if we have,
for each triple {i, j, k) of indices such that Uijk - Uin Uj n Uk 1 ¢, the

relation

(1.5. 2.) fik = fijfjk

(where, in order to abbreviate notations, we wrote simply fik instead of:
the isomorphism of Ekluijk onto Eiluijk induced by £, ; and likewise for
fij and fjk)' Supposing this condition satisfied, let E be the quotient
space of € by the preceding equivalence relation. The projections P, of
Ei into Ui define a continuous map of the topological sum Z into X, and

this map is compatible with the equivalence relation in €, so that there



is a continuous map p of E into X (which is onto if the pi's are all onto).

Definition 1. 5.1. The fibre space over X just constructed is called the

fibre space defined by the "coordinate transformations" (fij) between the

fibre spaces Ei'

The identity map of E, into & defines a map ?i of Ei into E, which
by virtue of (1.5.1.) is a one to one Ui-homomorphism of Ei onto E IUi'
The topology of E (by a well known transitivity property for topologies
defined as the finest which ...) is the finest topology on E for which the

maps P. are continuous. Moreover, it is easy to show that in case the

interiors of the Ui's already cover X, the maps @, are homeomorphisms

into. Henceforth, for simplicity we will only work with open coverings

of X, so that the preceding properties are automatically satisfied. Then

¢; can be considered Eg_e_l_Ui-isomorphism of Ei onto E IUi’ Clearly

(1.5.3.) fij =P, gvj

(where again, in order to abbreviate, we wrote cpi instead of the restriction
of q?i to EilUij’ L}’J instead of the restriction of CPJ to E_] IU]_]) Conversely,
let E be a fibre space over X, and suppose that for each i there exists a

U, —isomorphism P, of E onto E|U , then (1. 5. 3.) defines, for each pair
(1. j) such that U, nU U #}I aU, -1somorphlsm of E. |U j onto

E. |U i’ and the system (f ) satlsfxes obv1ously (1.5.2.). Therefore we
can consuler the fibre space E' defined by the coordinate transformations
f,; Then it is obvious that the map of & into E defined by the maps 9’;

is compatible with the equivalence relation in E, therefore defines a
continuous map f of E' into E which is of course an X-homomorphism.

Let q:" be the natural isomorphism of E onto E' |U defined above; it

is checked at once that the map of E' |U into E |U induced by f is

?i CP , hence an isomorphism onto. It follows that f itself is an
isomorphism of E' onto E, by virtue of the following easy lemma (proof

left to the reader):

Lemma 1_ Let E, E!' be two fibre spaces over X, and f an
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X-homomorphism of E into E', such that for any xe X, exists a neigh-
borhood U of x such that f induces an isomorphism of E IU onto(respec-
tively, into) E'|U, Then f is an X-isomorphism of E onto (respectively,
into) E',

What precedes shows the truth of:

Proposition 1.5.1. The open covering (Ui) and the fibre spaces Ei over

Ui being given, the fibre spaces over X which can be obtained by means
of suitable coordinate transformations (fij) are exactly those, upto

isomorphism, for which E |Ui is isomorphic to Ei for any i.

Consider now two systems of coordinate transformations (fij)' (fij)
corresponding to the same covering (Ui)' and to two systems (Ei), (Ei)
of fibre spaces over the Ui's. Let E be the fibre space defined by (fij)
and E' the fibre space defined by (f' ij); we will determine all homomor-
phisms of E into E'. 1If f is such a homomorphism, then for each i,
£, = ‘Pi-lf P, (where.f stands for the restriction of f to E IUi) is a
homomorphism of Ei into Ei. and the system (fi) satisfies clearly, for
each pair {i, j) such that Uij #ﬂ

(1. 5. 4) ff.. =11,
i) i

{where we write simply f. instead of the restriction of £, to Eiluij'
and likewise for f.). The homomorphism f is moreover fully
determined by the system (fi) since fi determines the restriction of
to E |Ui; and moreover the eystem (fi) subject to (1. 5. 4) can be chosen
otherwise arbitrarily, for this relation expresses exactly that the map
of the topological sum E of the Ei's into the topological sum T of

the E; 's transforms equivalent points into equivalent points, and
therefore defines an X-homomorphism { of E into E'; and it is clear
that the system (fi) i8 nothing else but the one which is defined as
above in terms of the homomorphism {. Of course, in view of

lemma 1, in order that f be an isomorphism onto, (respectively, into)

it is necessary and sufficient that each fi be an isomorphism of E; onto

9



(respectively, into) E; Thus we get:

Proposition 1. 5.2, Given two fibre spaces over X, E and E', defined by

coordinate transformations (fij) respectively (fij) relative to the same
open covering (Ui)’ the X-homomorphisms f of E into E' are in one to
one correspondence with systems (fi) of Ui-homomorphisms Ei——>E;
satisfying (1.5.4.). f is an onto-isomorphism if and only if the fi's

are, i.e. E' is isomorphic to E if and only if we can find onto-
isomorphisms fi:Ei——aEi such that, for any pair (i, j) of indices satisfying
Uij } @, we have

-1

(1.5.5.) f£l.= .10 1
ij = iij

{where as usual fi and fj stand for restricted maps).

We proceed to the comparison of fibre spaces E, E' defined by
coordinate transformations corresponding to different coverings, (Ui)
and (Ui). in particular to the determination of the homomorphisms of E
into E' and hence of the X-isomorphisms of E and E', and therefore to the
determination of whether E and E' are isomorphic. Let (Vj) be an open
covering of X which is a refinement of both preceding coverings; we will
show that E and E' are isomorphic to fibre spaces defined by coordinate
transformations relative to this same covering (Vj)' so that the problem
is reduced to one already dealt with.

So let (Ui)iel and (Vj)j <] be two open coverings of X, the second
finer than the first, that is, any V., is contained in some Ui’ i.e. there
exists at least one map 77 :J —> I such that Vjc-: U7(j) for any j= J.

For each i€ 1, let Ei be a fibre space over Ui’ and let (fii’) be a system
of coordinate transforms relative to the system (Ei)' For each je J,

let Fj = E T(j)lvj' and let gjj' be the restriction of ff(j),T(j') to Fj |ij,i
so gjj' is an isomorphism of Fj Iij, onto Fj Iij“ and the system (gjj,) is

a system of coordinate transformations, as follows at once from the
definition and (1. 5.2, ) applied to the system (fii,). Let F be the fibre

space defined by the system of coordinate transformations (gjj.)i we

10



shall define a canonical X~isomorphism of F onto E. For je J, let gi be
the injection map of F) into E'T( ), it is hence a map of F. into the
topological sum & of the E 's; the system (g.) defines a continuous map g'
of the topological sum Tof the fJ's into £ R Ja,nd as easily seen g' maps
equivalent points into equivalent points. Hence g' induces a continuous
map g of F into E, which clearly is an X-homomorphism. Moreover,

for any j, g induces an isomorphism of F |V, onto E IVj, for if we compose
it with the natural isomorphism of E IUi onto Ei' we get the injection

map of E |Vj into Ei (we put i =7(j)). Now applying lemmaz 1, we see that

g is an isomorphism of F onto E.

1.6 The case of locally trivial fibre spaces. The method of the preceding

section for constructing fibre spaces over X will be used mainly in the
case where we are given a fibre space T over X, and where, given an
open covering (U, ) of X, we consider the fibre spaces E =T IU over
u, and coordmate transformations (f .} with respect to these Then

fij is an Uij-automorphism of T }Uij' The fibre space defined by the

system (f.J) of coordinate transformations will be loca'’ly isomorphic

(cf. 1.4.) to T, and in virtue of proposition 1. 5.1., we obtain in this

way exactly {up to isomorphism) all fibre spaces over X which are

locally isomorphic to T {(by taking the open sets Ui small enough, and

then a suitable sy.?tem (fii)).

In cacse T is a trivial fibre space, T = X >< F, we have Ei = Ui >< F,
and Eiluij = Uij ><F. Thus fij is an automorphirm of the trivial
fibre space Ui' >< F, and therefore. in view of proposition 1. 4.1. given
by a map x—> fij(x} of Uij into the group of homeomecrphisms of F onto
itself, The equations {1.5.2.) expressing that {fij) is a system of

coordinate transformations then translate into
=f .
(1.6.1.) fik(x) .ij(x)fjk(x) for xcUijk

Moveover, it must not be forgotten that x—> f{.(x) is submi‘ted to the
continuity condition of proposition 1.4.1. Such a system then defines in
a natural way a fibre space E over X, and by what has been said it

follows that this fibre bundle is locally isomorphic to X >< F,

n



i.e. locally trivial with fibre ]_._7‘_. and that (for suitable choice of the cov-

ering and the coordinate transformations), we get thus, up to isomorphism,

all locally trivial fibre spaces over X with fibre F.

Let in the same way T' = X >< F', and consider for the same
covering (Ui) a system (fij) and a system (fij) of coordinate transfor-
mations, the first relative to the fibre F and the second to the fibre F'.
Let E and E' be the corresponding fibre spaces over X. The homomor-
phisms of E into E', by proposition 1. 5. 2., correspond to homomor-
phisms fi of E, = Ui >< F into E; = Ui >< F', satisfying conditions
(1.5.4.). Now, (proposition 1.4,1,) such a homomorphism fi is deter-
mined by a map x —> fi(x) of Ui into the set of continuous maps of F
into F!' by fi(x, y) = (x, fi(x). y), subject to the only requirement that
fi(x). y is continuous with respect to the pair (x, y)eUi >< F. Then the

equation (1.5, 4.) translates into
(1.6.2.) fi(x)fij(x) = fij(x)fj(x) (x é-‘Uij)

Thus are determined the homomorphisms of E into E'. In particular,
the isomorphisms of E onto E' are obtained by systems (f ) such that
f, (x) be a homeomorphism of F onto F' for any xe U, i and that
x——*-f (x) satisfies the same continuity requlrement as x —> f{, (x)

The compatxbxhty condition (1. 6. 2.) can then be written
-1
' =
(1.6.3.) fij(x) fi(x)fij(x)fj(x) (xe Uij)

1. 7 Sections of fibre spaces.

Definition 1.7.1. Let (X, E, p) be a fibre space; a section of this fibre

space (or, by pleonasm, a section of E over X) is a map x of X into E
such that ps is the identity map of X. The set of continuous sections
of E is noted H°(X, E).

It amounts to the same to say that s is a function the value of
which at each x€ X is in the fibre of x in E (which depends on x !).

The existence of a section implies of course that p is onto, and

12



conversely if we do not require continuity. However, we are primarily

interested in continuous sections. - A section _<_)_f_ E over a subset Y of X

is by definition a section of E |Y. If Y is open, we write HO(Y, E) for
the set HO(Y, EIY) of all continuous sections of E over Y.

HO(X, E) as a functor, Let E, E' be two fibre spaces over X, f an
X-homomorphism of E into E'. For any section s of E, the composed
map fs is a section of E', continuous if 8 is continuous. We get thus a
map, noted f , of _1;10(2_(. E_)_)_iltglio()_i. E'). The usual functor properties

are satisfied:

a. If the two fibre spaces are identical and f is the identity,
then so is f

b. if fis an X-homomorphism of E into E! and f' an X-homomor-
phism of E!' into E" (E, E', E" fibre spaces over X) then
(f'f)) =1 f

Let (X, E, p) be a fibre space, f a continuous map of a space X'
into X, and E' the inverse image of E under f. Let s be a section of E!'
consider the map s' of X' into E' given by s8'x' = (x', sfx') (the second
member belongs to E', since fx' = psfx' because px = identity), this
is a section of E', continuous if s is continuous. Thus we get a
canonical map of H%(X, E) into H°(X', EY) (E' being the inverse image
of E by f). In case X' X and f is the inclusion map, therefore

E'=E |X', then the preceding map is nothing but the restriction map
(of HO(X, E) into HO(X', E) if X' open). - We leave to the reader

statement and proof of ar. evident property of transitivity for the

canonical maps just considered.

The two sorts of homomorphisms for sets of continuous sections are
compatible in the following sense. Let P be a fixed continuous map of a
space X' into X, then to any fibre space E over X corresponds its
inverse image E' under ?; , which is a fibre space over X'; moreover,
given an X-homomorphism f: E — F, it defines in a natural way an
X'-homomorphism f' of E' into F'. (We could go further and state that,
for fixed CF » E' is a "functor" of E by means of the preceding definitions. )

13



Then the following diagram
H(X, E)—%> HO(X, F)
'
HO(X', Eu)__fi&_> HO(X', F')

is commutative, where the vertical arrows stand for the canonical
homomorphisms defined above. The checking of course is trivial.
Particular case: replacing X by an open subset U of X, and taking for
X' an open subset V of U and ¢ the inclusion map V—> U, we get that
for any two fibre spaces E, F over X and X-homomorphism f: E—> F,

the following diagram is commutative:

(1.7.2.) H°(U, E)—> H°(U, F)

!

H°(V, E)—> H%(V, F)

where the vertical arrows are the resiriction maps, and the horizontal
arrows are the maps defined by f (or, strictly speaking, by the restric-
tions of f to E |U respectively E|V). In words: the "homomorphisms"
between spaces of sections over open sets defined by X-homomorphisms

f fibre spaces commute with the resiriction operators.

Dctermination (_)_£ sections. Let us come back to the conditions of the

definition 1. 5. 1. ; we keep the notations of that section. Let s be a
. . . -1 .
section of the fibre space E, and for any i let 5, = ?i s; then s, is a

section of E. over U,, and from s = $.8, = §.8; over U.. we get
i 1 ii i ij

13

-1
8, = @, .8, =f,,8.:
17 %1 93%5 7 N5
(1.7.3.) s, =f{,.s,

where again we write 8., S, instead of: restriction of 5., 8. to Uij'
Of course, s is entirely determined by the system (si), for s is given

over Ui by 8 = P;8;- On the other hand, the system (Si) subject to

14



(1. 7. 3.) can be otherwise arbitrary, for these conditions express
precisely that for x€ X, the element pisi(x) of E obtained by taking a
Ui containing x does not depend on i, and may therefore be denoted by
s(x): Then the @ i-ls determined by the above definition are of course
nothing else than the si's we started with, Let us note also that in

order that the section s be continuous, it is necessary and sufficient that

each si be continuous. We thus obtain:

Proposition 1, 7.1, Let E be the fibre space defined by coordinate

transformations (fij) relative to an open covering (Ui) of X and fibre
spaces Ei over Ui' Then there is a canonical one to one correspondence
between sections of E and systems (si) of sections of Ei over Ui'
satisfying conditions (1. 7.3.). Continuous sections correspond to

systems of continuous sections.

Let again, as in section 1.5, be given two systems (Ei) and (Ei) of
fibre spaces over the Ui‘s and two corresponding systems of coordinate
transformations (fij) and fij)’ let E and E' be the corresponding fibre
spaces, and f an X-homomorphism of E into E', defined by virtue of
proposition 1.5.2., by a system (fi) of Ui-homomorphisms of Ei into

E; satisfying (1. 5.4.). Let 8 be a section of E, given by a system

(si) of sections of Ei over Ui' Then the system (fisi) of sections of

E; over Ui defines the section fs (trivial).

The reader may check, as an exercise, how the canonical maps
of spaces of sections considered above in this section, can be made

explicit for fibre spaces given by means of coordinate transformations,
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CHAPTER II

SHEAVES OF SETS

Throughout this exposition, we will now use the word "section" for

"continuous section".

2.1 Sheaves 9_£ sets,

Definition 2.1.1. Let X be a space. A sheaf of sets on X (or simply a

sheaf) is a fibre space (E, X, p) with base X, satisfying the condition:
each point a of E has an open neighborhood U such that p induces a

homeomorphism of U onto an open subset p(U) of X.

This can be expressed by saying that p is an interior map and a
local homeomorphism. It should be kept in mind that, even if X is
separated, E is not supposed separated (and will in most important
instances not be separated).

With the notations of definition 2.1.1, let x = p(a). If f is a section of
E such that fx = a, thenV = f-l(U) Np(U) is an open set containing x, and
on this neighborhood V of x, f must coincide with the inverse of the

homeomorphism p|U of U onto p(U). In particular

Proposition 2.1.1. Two sections of a sheaf E defined in a neighborhood

of x and taking the same value at x coincide in some neighborhood of X.
Corollary: Given two sections of E in an open set V, the set of points

where they are equal is open, (But in general not closed, as would be the

case if E were separated!)
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2.2 HO(A, E) for arbitrary A€ X, First let E be an arbitrary fibre space
over X, Let A be an arbitrary subset of X; the open neighborhoods of A,

ordered by 2, form an ordered filtering set., To each element U of this
set is associated a set H°(U, E): the set of sections of E over U, and if
U S V (U and V open neighborhoods of A), we have a natural map qv U
H°(U, E) —» H°(V, E) (restriction map), with the evident transitivity
property qu qVU = Qwu when U2 V 2 W, Therefore we can con-
sider the direct limit of the family of sets HO(U, E) for the maps ?VU'

Definition 2.2.1. We put H°(A, E) = l_1_£n, HO(U. E), (U ranging over the
open neighborhoods as explained above). If A = {x} (x € X) we simply
write Ho(x, E). The elements of HO(A, E) are called germs .Ef_ sections
of E in the neighborhood of A.

If A is open, we find of course nothing else but the set of continuous
sections of E over A, already denoted by H°(A, E). -If A D B, there is
a natural map, again noted @ ,, of H°(A, E) into H°(B, E), (definition
left to the reader). When A and B are both open, this is the usual
restriction map (therefore it will in general still be called restriction
m_ap); when A is open, then this is the natural homomorphism of HO(A, E)
into the direct limit of all H°(A!, E) corresponding to open neighborhoods

Al of B, Of course A D B 2 C implies ?CBQBAz ?CA'

Let I (A, E) be the set of continuous sections of E over the arbitrary
set AC X, then the restriction maps H°(U, E) = " (U, E) — I (A, E)
(U, open neighborhood of A) define a natural map of lim E°(U, E) = H°(A, E)
into ™ (A, E), In particular, there is a natural map H (x, E)}—»E_,

where E_ is the fibre of x in E (value at x of a germ of section in a

neighborhoodg_{_:_c_). This of course, though frequently an onto-map, will

seldom be one-to~one. However:

Proposition 2,2.1, If E is a sheaf on X, then for x €X, the canonical
map H°(x, E) —+ Ex is bijective (i.e. one-to-one and onto). If A is any
subset of X, then the canonical map H°(A, E) —» T (A, E) is one-to-one;

it is moreover onto if A admits a fundamental system of paracompact

neighborhoods,
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The one-to-one parts are contained in Proposition 2,.1.1 and its
corollary. The first onto-assertion results at once from definition 2, 1.1,
Now let f be a continuous section of E over A; for any x e A let g, be
a continuous section of E on an open neighborhood Vx of x in X, such that
gx(x) = f(x) (these exist by first part of proposition 2.2.1.). Moreover,
by the first part of proposition 2.1.1. applied to E|A, we can suppose v
small enough so that on Vxn A, g, and f coincide. We can suppose
that U = U Vx is a paracompact neighborhood of A. Let (Vi)i €1 be an
open locally finite covering of U finer than (Vx), that is each Vi is
contained in some Vx. Then for each Vi exists gié: Ho(Vi. E) such that
g; and { coincide on '\1’i Na, U being paracompact, we can find an open
covering (Vi) of U such that the relative closure of V!1 in U be contained in
Vi' For each x € A, there exists an open neighborhood Wx of xin U
meeting only a finite number among the Vi's; taking Wx small enough, we
can assume that x %VT implies V! N W= ﬂ and xé_‘-\Tlr implies
Wx - Vi‘ Moreover, by virtuc of proposition 2.1.1., we can suppose
that the corresponding gi's are identical on Wx since they take the same
value f(x) at x. Therefore whenever a V; encounters Wx, then g; is
defined on Wx and does not depend on the choice of i, so that we can
denote it by h_. It follows that in W_1 LA h_and hy are the same,
therefore, the hx are the restrictions of a unique section h of E over
W = wa' This is a continuous section of E on an open neighborhood of
A, and we see at once that its restriction to A is f. This ends the proof.
Remark. The last part of proposition 2.2.1. beccomes fzalse if we drop
the paracompactness restriction. Let for instance X be an infinite set,
with the topology in which the open sets are the complements of all finite
sets (such spaces are significant in algebraic topology, for instance:
irreducible algebraic curve with the Zariski topology). Let F be a discrete
space; consider the trivial fibre space X><¢F, This is a sheaf; its sections
on a set A are the locally constant maps of A into F (cf. section 2.6. below,
example a). Let A be a finite subset of X; it is seen at once that any open
neighborhood of A is homeomorphic to X and hence connected; therefore
a section of E on such a neighborhood is constant; but sections on A can
have arbitrary distinct values at the poirts of A and therefore will notin

general be restrictions of sections defined in a neighborhood of A.
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2.3 Definition of a sheaf by systems of sets.

As we noticed in the preceding section, any fibre space E (and in
particular any sheaf) determines sets HO(U, E) (for instance for any
open U C X) and maps Ho( U, E)—> HO(V, ES for U DV, satisfying an
evident transitivity property. Proposition 2.2.1, suggests that conversely
such a system should define a sheaf. Indeed, let Vbe an open covering
of X, and suppose defined a function U—> EUon the set of open sets
which are small of order 7/’(1. e. contained in some set element of 71,"),
each EU being a set. Suppose given moreover, if U and V are 2/”-small

and UDYV, a map ?VU: EU — EV, these maps satisfying the transi-
tivity condition

(2.3.1.) ?WV qDVU = ?WU (if UODVIOW),
For any x e X, let E_ = lim EU' U ranging over the ordered filtering set
X >

of open neighborhoods of x (ordered by =@). Let E be the union of the Ex's
and p the map of E into X mapping Ex in x. Define in E a topology as

follows: for any f€ EU, and x€ U, we consider the canonical image fx of
f in the direct limit Ex of the sets Eﬁ corresponding to all open neighbor-
hoods U' of x. Let O(f) be the set of all elements fx€. E when x ranges
over U, When U and f éZ.EU vary, we get a family of subsets O(f) of E,
which generate a topology on E. It is easily checked that (E, X, p) form

a sheaf, that is that p is continuous, interior and a local homeomorphism.

Definition 2. 3.1. The sheaf E thus defined is called the sheaf defined by
the system of sets EU amd maps qDVU'

Consider now an open set U< X, {/-smalljfor any f € EU. the map
x —> fx is clearly a section of the sheaf E, and moreover continuous,

. A
which we denote by?: We get thus a natural map f —> { of EU into
H°(U, E).

~
Proposition 2.3.1. In order that f —> { be a one-to-one map, it is

necessary and sufficient that for any open covering (xU‘i) of U, and two
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elements f, g of EU' ?UiUf = ?UiUg for each i implies f = g. In order

that f —> T be onto, it i8 necessary and sufficient that for any open

covering (Ui) of U, and any system (fi)e 1 EU satisfying
i

(2.3.2.) f, = f. when U, N U,
?Uin Uj’ Ui i ?Uin Uj, Uj Jj i j *%

there exists a f € EU such that fi ?UiUf for each i.

Corollary. In order that f—> T be bijective, it is necessary and sufficient

that for any open covering (Ui) of U, the natural map EU-——)r\ EU (the
. i

components of which are the maps ?UiU) be a one-to-one map of LU

onto the subset of the product of all (fi) satisfying condition (2.3.2.).
Proof left to the reader, as well as the proof of the following:

Proposition 2.3.2. Let E be a sheaf on X, consider the system of sets
HO(U. E) and of restriction maps ?VU: H°(U, E) —> HO(V. E) for
UDV (U, V open sets). Then the sheaf E' defined by these data

(definition 2.3.1.) is canonically isomorphic to E, this isomorphism,

transforming for each x € X, E! = lim HO(U, E) = Ho(x, E) into
x

Ex’ being the isomorphism considered in proposition 2. 2. 1.

The two preceding propositions show essential equivalence of the
notion of sheaf on the space X, and the notion of a system of sets (EU)
(U openC X) and of maps SO VU for U DV, satisfying conditions (2. 3.1.)
and the condition of corollary of proposition 2.3,1. Both pictures are of
importance, the second more intuitive, but the first often technically

more simple.

Exercise. Given a system of sets EU (U open and 1/”-small) and of
homomorphisms C.?VU (U D V) satisfying (2. 3.1.), prove that if we restrict
to those U which are 2/ '-small (where 2/”' is an open covering of X finer

than 2/”), the sheaf defined by this new system is canonically isomorphic
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to the sheaf defined by the first,

2.4 Permanence properties.

Let E be a sheaf on the space X, and let f be a continuous map of a
space X' into X, then the inverse image of the fibre space E by { (cf 1.2.)
is again a sheaf. In particular, if X'C X, E induces a sheaf on X',
IfE is a sheafon X, F a sheaf on Y, then E X< F is a sheaf on X X Y;

therefore, if E and F are two sheaves on X, then their fibre-product

E X< F (cf. 1.3) is again a sheaf; this extends to the product of a finite
X

number of sheaves.

Under the conditions of 1.5. suppose that the fibre spaces Ei on the
open sets Ui are sheaves, then the fibre space E obtained by means of
coordinate transforms fij is again a sheaf. This results at once from the
more general remark: if E is a fibre space such that each x € X has a

neighborhood U such that E |U be a sheaf, then E is a sheaf (trivial).

2.5 Subsheaf, quotient sheaf. Homomorphisms of sheaves.

Proposition 2. 5.1. Let E be asheaf on the space X. In order that a

subset F of E, considered as a fibre space over X, be a sheaf, it is
necessary and sufficient that it be open. In order that the quotient of E

by an equivalence relation R compatible with the fibering, be a sheaf, it

is necessary and sufficient that the set of equivalent pairs (z, z') be
open in the fibered product E X E.
X
These conditions can be stated also equivalently: if a section f of E
in a neighborhood of x€ X is such that fx€F, then fy€F for y ina
neighborhood of x; if two sections f, g of E in a neighborhood of x&X
are such that fx and gx are equivalent mod R, then fy and gy are

equivalent mod R for y in a neighborhood of x.

Proposition 2.5.2. Let E be a sheaf on X, E' a sheaf on X', f a continuous

map of X into X' and g a map from E into E' such that p'g = fp (p, p' being

the projections of E, e'}). In order for g to be an f-homomorphism (i.e. to

be continuous) it is necessary and sufficient that for any section s of E
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over an open set U, gs be a section of E' over {(U).

Corollary 1. Let f be a bijective X~-homomorphism of a sheaf E in a sheaf

F, then f is an isomorphism of E onto F.

Corollary 2. liet E, F be two sheaves on X, f an X-homomorphism of
E into F. Then f is an interior map, and f{E) is a subsheaf of F. The
quotient of E by the equivalence relation defined by the map f is again a

sheaf, and f defines an isomorphism of this quotient onto the sheaf {(E).

Consider now a system (EU, SQVU) as in section 2. 3,, defining a

sheaf E  Supposc given for each U a subset Eb of EU, such that U DV
v Let (_Q' be the map of E'U into E{/ defined
by SDVU’ then the system (Ej{; gO VU) defines a sheaf E'. For any

iwplics ’g (E! )C_ B!
x€ X, the fibres of x in E respectwely E' are given by

E =1lim E E!' = lim E!
x U X U

the direct limit being taken in the ordered {iltering set of open neighbor-
hoods of x, Therefore, we have a natural injection Ei{ - Ex' and hence
E'— E. It is easily checked that the injection of &' into E is a homomor-
phism, (a particular case of a general characterization of homomorphisms
subsheaf of E. Suppose that the conditions of propos1t10n 2.3.1.

corollary, are satisfied, which insure that EU = HO(U E). Then

clearly the canonical maps Eb-—-—-;» H° (U, E'Y © H (U E) are one-to-one.
Proposition 2. 3.1. yields that in order that they be onto, it is necessary
and sufficient that any f € EU. such that each x & U has an open neighbor-
hood V in U such that SDVUfé.E' , be contained in EU, or shortly
speaking that the property, for an element f of an EU to belong to the

subset E'U » be a property of local character. If conversely we start

] the subset

with an arbitrary subsheaf E' of E, and denote by E[
= H° (U, E), then these E!. clearly satisfy to the

H(U, E') of Ey; Y
conditions ?V'UE C Ey;, and the subsheaf of E defined by them is
nothing else but E',.
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Now let E, F be two sheaves on X defined by systems (EU. SDVU) and
(FU. ’l}/ VU)' Suppose given for any U a map fU: EU —_ FU' such that
U DV implies WVUfU = fU ?VU' Then this system of maps defines,

for each x € X, a map fx of Ex = lim EU into Fx = lim FU' hence a
——y _

map f of E into F, It is checked easily (using for instance proposition
2.5.2.) that f is a homomorphism of E inte F. Moreover, f(E) is nothing
else but the subsheaf of F defined by the subsets fU(EU) of the F For

any open U, the following diagram is commutative:

U

fu

L

H°(U, E)—*—> H°(U, F)

In particular, if the vertical maps are bijective, we see that the maps

fU can be identified with the maps fee‘.Ho(X, E) -—->H°(X, F) defined by the
homomorphism f. Conversely, if we start with an arbitrary homomorphism
f of E into F, then the homomorphism defined by the system of maps

fy of E;; = H°(U, E) into F = H°(U, F) is precisely f.

2.6, Some examples,

a., Constant and locally constant sheaves Let F be a discrete space,

then the trivial fibre space X >< F is clearly a sheaf on X; a sheaf
isomorphic to such a sheaf is calied constant. The sections of this sheaf
on a set A< X are the continuous maps of A in the discrete set F, i.e. the
maps of A in F which are locally constant. If for instance A is connected,
these reduce to the constant maps of A into F. Inverse images and products
of simple sheaves are simple.

A sheaf E on X is called locally simple, if each x€. X has a neighbor-
hood U such that E |U be simple. Thus a locally simple sheaf on X is

nothing else but a covering space of X in the classical sense (but not

restricted of course to be connected). Inverse images and products of

locally simple sheaves in finite number are locally simple.
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b. Sheaf of germs of maps. Let X be a space, E a set. Consider for
any open U C X the set ? (U, E) of all maps of Uinto E; if UD V, we
have a natpral map of f(U, E) into 3” (V, E), the restriction map. The

transitivity condition of section 2. 3 is clearly satisfied, and also the
condition of proposition 2.3, 1., corollary. Therefore the sets F (U, E)
can be identified with the sets of sections HO(U, T) of a well determined
sheaf 3-/, the elements of which are called germs of maps of X into E,
If AT X, then the elements of HO(A, 3/ ) are called germs of maps of a

neighborhood of A into E. If now E is a topological space, we can consider
for any U the subset C(U, E) of E}J (U, E) of the continuous maps of U into

E. As continuity is a condition of local character, it follows by section 2.5
that the sets C(U, E) are the sets of seciions of a well determined subsheaf

of 3/, which is called the sheaf of germs of continuous maps of X into E.

(If we take on E the coarsest topology, we find again the first sheaf.)
Suppose now that E is a fibre space over X, then consider for any U the
subset HO(U, E) of C(U, E) of continuous sections of E. The property of
being a section is again of local character, so we see that the sets HO(U, E)
are sets of sections of a well determined subsheaf of the sheaf of germs of
continuous maps of X into E: the sheaf of germs of sections of the fibre

space E. If this sheaf is denoted by E, then H(A, E) is nothing else but

the set of germs of sections of I in the neighborhood of A, as defined in
definition 2, 2. 1.

Of course, specializing the spaces X and E, we can define a great
number of cther subsheaves cf the sheaf of germs of maps of X into E
{(germs of differentiable maps, germs of analytic maps, germs of maps
which are I_.;_p etc. ).

c. Sheaf of germs of homomorphisms of a fibrz space into another.

Let E and F be two fibre spaces over X, and for any open U C X let HU
be the set of homomorphisms of E|U into F|U. If V is an open set
contained in U, there is an evident natural map of restriction H 13 -3 HV'
The condition of transitivity as well as the condition of proposition 2. 3.1,

corollary, are satisfied, so that the sets H_. appear as the sets HO(U, H)

9)
of sections of a well determined sheaf on X, the clements of which are

called germs of homomorphisms of E into F. A section of this sheaf

over X is a homomorphism of E into F,
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d. Sheaf of germs of subsets. Let X be a space, for any open set
UC X let P(U) be the set of subsets of U, If U 2.V, consider the map
A—> AfIV of P(U) into P(V). Clearly the conditions of transitivity,
and of proposition 2.3.1. corollary, are satisfied, so that the sets P(U)

appear as the sets H°(U, P(X)) of sections of a well determined sheaf on X,

the elements of which are called germs of sets E_x X. Any condition of a

local character on subsets of X defines a subsheaf of P(X), for instance

the sheaf of germs of closed sets (corresponding to the relatively closed

sets in U), or if X is an analytic manifold, the sheaf of germs of analytic
sets, etc.
Other important examples of sheaves will be considered in the next

chapter.
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CHAPTER II1

GROUP BUNDLES AND SHEAVES OF GROUPS

3.1 Fibre spaces with composition law.

Let E be a fibre space cver X, provided with the supplement of
structure defined by a homomorphism of the fibre product E 2{< E

(cf. 1.3.) into E, or what is the same, a law of composition defined
in each fibre Fx such that the corresponding global map E >X E —> E be

X
continuous. This will be called chortly "fibre space with composition law".

If E and F are fibre spaces with composition law, then their fibre product

E >< F is in a natural way a fibre space with COmposit'ion law, the compo-
X
sition law in each fibre being the product of those in the fibre of E and of

F. (This extends for products of arbitrary families of fibre spaces.) In

the same way, if E is a fibre space with compcsition law on X, its inverse
image under a continuous map f of a space X' into X is again in a natural

way a fibre space with composition law on X', the fibre at x' being isomor-
phic to the fibre af E at fx'. Associativity of the pruduct, and transitivity

of inverse images, clearly hold in this modified context. Let E (respectively,
E') be a fibre space with composition law on X (respectively, X'), f a con-

tinuous map of X into X', An f-homomorphism of E into &'is an f-

homomorphism in the sense of 1.2,, with the supplementary condition
that it be, for each x € X, a homomorphism of the fibre ' of E over x
(provided with its composition law) into the fibre of E' over x' = fx. The
product of two homomorphisms between fibre spaccs with composition law
is again a homomorphism. In particular, if X' = 3] and f is the identity,
we have the notion of X~-homomorphisin, or zimply homomorphism, of

a fibre space with composition law on X into another. Let again X' and f

be arbitrary$ an inverse homomorphism assoaciated with f of E' into E is

by definition a homomorphism of the inverse image of E' under { into E;
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for each x € X, it hence defines'a homomorphism of the fibre of E! over
fx into the fibre of E over x.

If E is a fibre space with composition law on X, then HO(X, E) is
provided with a natural composition law HO(X, E) >< HO(X, E)—> HO(X. E);
of course the first member is nothing else than HO(X, E >< E), and there-
fore the homomorphism E >< E—> E gives the desired map. We conclude

X
at once that more generally, for each AcCX, H°(A, E) is provided with a

natural composition law., If B A, then the restriction map

HO(A, E) —> HO(B, E) is a homomorphism. Also the natural maps

Ho( {x} , E}—> Ex (Ex the fibre of E over x) are homomorphisms, and
hence onto-isomorphisms if E is a sheaf (proposition 2,2.1.). If now {

is a homomorphism of E into a second fibre space with composition law F,
then the maps f : H°(A, E)—> H°(A, F) are homomorphisms.

Under the conditions of 2. 3., suppose that the sets E,. are provided

U
with a composition law, and that the maps ?VU are homomorphisms.

Take on E_ = lim E., (U open neighborhood of x) the composition law
x s §)

which is obtained in terms of those in EU. By what has been said at the

end of section 2.5., the map of E >X< E into E obtained by these composition
laws is a homomorphism, therefore E appears as a sheaf with composition
law. The natural maps EU-—-> HO(U, E) are homomorphisms, and hence
isomorphisms onto in case the system (EU. (E?VU) satisfies the conditions
of proposition 2. 3.1., corollary, In particular, if E is any fibre space
with composition law, then the sheaf of germs of sections of E, defined

by the sets HO(U, E), is again a sheaf with composition law, the set of
sections of which on the open set U is HO(U, E); this identification being
compatible with the composition laws. Again, suppose given a second
system of sets FU with composition laws, and of homomorphisms

FU-—> Fv for VC U, thus defining a sheaf F with composition law, and
suppose given for each U a homomorphism E. . —>F . satisfying the

U U
commutativity condition as at the end of section 2. 5. Then the corresponding

homomorphism of E into F (same reference) is a homomorphism in the
sense of sheaves with composition law,

A fibre space with composition law is called trivial if it is isomorphic
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to a fibre space X >< F, where F is a topological space with a continuous
composition law F >< F——> F (the composition law on the fibres of X ><F
being of course the one given on F). Hence also the notion of locally

trivial fibre space with composition law.

3.2 Group bundles and sheaves of groups.

Definition 3,2.1. A group bundle E over the topological space X is a fibre

space with composition law over X (cf. 3.1.) such that for each xe X,
the fibre Ex of E be a group, the unit of which depends continuously on x,
and that the map of E into itself which on each f{ibre Ex reduces to z —> z-1

be continuous. If E is moreover a sheaf, E is called a sheaf of groups.

The definition implies that each Ex contains at least one element,
the unit element e, Xx—>e_ is a section of E simply noted e (or O if
the groups are written additively). Besides, in the case E is a sheaf, it
is easily seen that the conditions that x—> e be a section, or z—> z-1
continuous, are equivalent,

With the defiritions introduced in 3.1., we see at once that the
product of group bundles is a group-bundle, therefore the product of a
finite number of sheaves of groups is a sheaf of groups; the inverse image
of a group bundle by a continuous map is a group bundle, in particular the
inverse image of 2 sheaf of groups i¢ @ sheaf of groups. If E is a group
bundle, then H°(A, E) is a group for any non void Ac X. Conversely,

under the conditions of 2. 3. suppose that the sets E . are groups and the

maps SPVU are group-homomorphisms, then the cogresponding sheaf E,
with the composition Jaw defined in the last section, is a sheaf of groups.
For instance, if [? is a topological group, the sheaf C (x, /7) of germs
of continuous maps of X into [" can be considered as a sheaf of groups.
Now consider again the construction of 1.5. With the notations of
this section, suppose that the fibre spaces Ei are fibre spaces with
composition law, and the isomorphisms fij are isomorphisms for this
structure. Then on each fibre Ex of the fibre space defined by the Ei
and fij' there is a natural compositicn law, obtained from the fibre Eix'

over x, of any Ei such that x € Ui' by the natural map of Eix onto Ex
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{and this law does not depend on the choice of i). It is seen at once that
E becomes in this way a fibre space with composition law. If the Ei's
are group bundles, then E is a group bundle, for E IUi is isomorphic to
Ei' in particular, if the Ei's are sheaves of groups, so is E. In order
that a trivial fibre space X >< F (ct. end of section 3.1.) be a group
bundle, it is necessary and sufficient that F be a topological group. If F

is a discrete group, then X >< F is a sheaf of groups; a sheaf of groups

isomorphic to such a product is called a constant sheaf of groups.

Hence the notion of a locally constant sheaf of groups.

3.3 Sub-group-bundles and quotient-bundles. Subsheaves and quotient

sheaves,

Let G be a group-bundle over X. A sub-group-bundle of G is by

definition a subspace F of G such that for each x € X, Fx = F ﬂGx be a
subgroup of Gx (fibre of G over x). Then the induced fibre space structure,
and the group-law induced on each fibre Fx of F by Gx. turn F into a group-
bundle. This structure can also be characterized by the iact that the
injection F—> G be a homomorphism of group bundles. Hence for each
AcX, there is a natural bomomorphism HO(A, G)—> HO(A, G), and of
course HO(A. G) is even a subgroup cf HC(A, G). Letz, z2'e€ G, we will

call z and z' congruent mod F, if and only if they belong to the same fibre

Gx’ and if 2' € z.Gx. This is clearly an equivalence relation compatible
with the fibering of G, (cf. 1 3.) the quotient is a fibre space over X

denoted by G /F. Thus for any x& X, the fibre of G/ F is the homogenous
space Gx/ Fx' The natural maps G;——) Gx/ Fx combire inte a natural
homomorphism of the fibre space G into the fibre space G / F, hence for
any non-void AC X a natural map HO(A, Gy——> HO(A, G/ F). There is a
distinguished element in each HO(A, G /' F), namely the image of the unit
element e of HO(A, G), this image is still denoted by €. The inverse image
of the distinguished element of H°(A, G /F) is nothing else than H°(A, F.).
We express this fact by saying that the sequence of maps (between sets each

of which has a distinguished element)

(3.3.1,) H°(A, F)—> H%(A, G)— H°(A, G/ F)
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is exact. More generally, two elements of HO(A, G) have the same image

in H%{A, G /F) if and only if they are congruent mod the subgroup HO(A. F).
We say that the sub-~group-bundle F is normal, if each Fx is normal in G-

Then on each fibre Gx/ Fx of G /F we can consider the structure of quotient

group; as seen at once, this turns G/ F into a group-bundle, such a group-

bundle is called a quotient group-~bundle of G. The natural homomorphism

G—» G/F is a homomorphism of group-bundles, therefore the corresponding
map H°(A, G)—> H%A, G/ F) is a homomorphism. Besides, the distinguished
element of HO(A, G/F) is nothing but its unit element, so that exactness of
3.3.1. means that the kernel of the second homomorphism is the image of the
first, i.e. here HO(A, F) itself; in particular the latter is a normal subgroup
of H%(A, G).

Suppose now that G is a sheaf of groups. A subset of G which is at the
same time a subsheaf (i.e. an open subset, cf. proposition 2.5.1.) and a sub-

group-bundle is called a subsheaf of groups or simply a subsheaf (if no confu-

sion can arise) of G. It follows readily from proposition 2. 5.1, that then G/ F

is also a sheaf, and hence, if F is normal, G/ F is again a sheaf of groups.

Let us consider again the conditions of 2. 3., supposing now that, as in
3 2., the sets EU are groups and the maps SDVU homomorphisms, so
that the corresponding sheaf E is a sheaf of groups. Let for any U be given
a subgroup FU of EU such that ?VUFUC FV for VC U. Then on the one
hand these FU

F can be considered itself as a sheaf of groups in the same way as E. It

define a subsheaf ¥ of E as seen in 2. 5., on the other hand

is seen at once that F' is a subsheaf of groups of E, and the induced structure
is the one just considered. This gives an interpretation of the notion of
subsheaf of groups in the second aspect of the nction of sheaf. If the sub-

groups FU are normal in EU’ then F is normal in £, Moreover, let then

HU = EU/ FU’ and consider for any pair VC U the homomorphism
HU-—--‘» HV obtained from ?VU by passing to the quotient., The usual
condition of transitivity is satisfied, so that we get a sheaf of groups H.
On the other hand, the homomorphisms E .. —> HU define a natural

U
homomorphism E—H (cf. end of 2.5.). This is an onto-homomorphism

the kernel of which is F. By proposition 2.5.2. this proves that H is

isomorphic canonically to the quotient sheaf G/F. However, it should be

noted that even if the systems (EU) and (FU) salisfy the conditions of the
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corollary of proposition 2.3.1, i.e. even if E; = H'(U, E), Fy; = H (U, F),
the same will not be true for the system (HU), i.e. in general the natural
homomorphism HO(U, E)/HO(U, F)——> HO(U, E/ F) (which is injective

by virtue of exactness of 3,3.1) is not surjective. The study of the exact

extent to which this is so is the starting point of the theory of sheaves and

their cohomology groups.

3.4. Fibre space with group bundle of operators.

Definition 3.4.1. Let G be a group bundle on X, and A any fibre space

on X. We say that G operates at left on A, or that A is a fibre space with

l_e_g group bundle of operators, if we are given a homomorphism of fibre

spaces G >§ A——> A such that for each xe X, the corresponding map

Gx > A;—-a A (where Gx and Ax are respectively the fibres of G and

A at x) defines Ax as a set with group Gx of left operators.

If the map in question is denoted by (g, a)—> g.a, this means that
g.(g'.a) =(gg').a, ande.a=a (g, g'< Gx, a &€ Ax, e the unit of Gx).
In the analogous way we define the notion of fibre space A with right
group bundle of operators G: this means that we are given a homomorphism
of fibre spaces A >< G— A, which for each x &€ X defines Ax as a set
with group Gx of right operators, i.e. such that (a.g).g' = a(gg') and
a.e = a (where the map A >< G’E—-> A_ is now noted by (a, g) — a. g).
The qualification of "left" or "right" is omitted when no confusion can
arise, and we restrict our statements for either sort of operations, the
symmetric statement being left to the reader. It should be noted that

definition 3. 4.1. implies that the fibres A all have at least one point.

Suppose A is a fibre space with bundle G of left operators. Then the
homomorphiem G >< A—> A defines, for any non empty subset U of X,
a map H°(U, G >< A)—> H°(U, A), i.e. H°(U, G) >< H°(U, A)—> H°(U, A),
X

and it is seen at once that this map defines HO(U. A) as a set with group
HO(U, G) of left operators.
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Definition 3.4.2. Let A be a fibre space with group bundle G of operators,

We say that G operates faithfully in A (or A is a fibre space with faithful

group bundle G of operators) if for any xe X, Gx operates faithfully in

A . We say that G is trapsitive in A if for each x & X, G is transitive
—_— X

X
in Ax. A is called principal in the large sense if G 1s faithful, and if the

map from the subspace M of A >x< A of pairs (a, a') of elements of Ax
congruent mod. Gx into G, mapping (a, a') into the unique g e Gx such
that a' = g.a (respectively a' = a. g, according as G operates at left or
at right) is continuous. A is called principal if it is principal in the

large sense, and if G is transitive on A.

For instance, if G and A are sheaves, and if G is faithful, then A is

principal in the large sense. For from 2, 5.1, follows that M is a subsheaf
of A >X< A, and from 2.5.2. that the map M—> G is a homomorphism.

Let again A be any fibre space with group tundle G of (for instance
left) operators. Two elements a, a' of A are called congruent mod G, if
they are in the same fibre Ax and there are congruent mod Gx‘ This is
clearly an equivalence relation compatible with the fibering (cf. 1.3.),
the quotient fibre space is denoted by A /G. Consider the natural
homomorphism A—> A/ G, it defines for any non-empty subset U of X a

natural map
(3.4.1.) H°(U, A)—> H°(U, A/G)

and it is trivial that two elements of H°(U, A) contruent mod the group of
permutations H°(U, G) have same image in H°(U, A /G). The converse
is true for open U if A is principal in the large sense (definition 3.4.2.),
and hence in particular if A and G are both sheaves, and G is faithful,
Moreover, it follows from proposition 2.5.1. that then A/ G is itself a

sheaf. Thus we get:

Proposition 3.4.1. Suppose A is a sheaf with a faithful sheaf G of operators

Then A is principal in the large sense {definition 3.4.2.) and A /G is again

2 sheaf. Moreover two elements of H°(U, A) have same image under the
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map (3.4.1.) if and orily if they are congruent under the group HO(U. G).
Let A be a fibre space with group-bundle G of operators. A section { of
'A/G is well determined when we know its "inverse image" A in A
(identifying of course, in this terminology, the section f with its image
f(x) c A/ QG). Af is stable under G, which operates transitively on Af;
this is also a sufficient condition for a subspace A'«c A of A to be obtained

from a section f of A/.g! provided we admit also discontinuous sections.

Suppose now A and G are sheaves, then any Ag (f section of A /G) is a
subsheaf of A on which G operates transitively; and conversely, it is seen

at once that a subsheaf A' of A, on which G operates transitively, defines a
section of A /G. Supposing now G faithful, and applying proposition 3. 4.1.,

we get

Proposition 3.4.2. Let A be a sheaf with faithful sheaf G of operators.

Then there is a one-to-one correspondence between sections of A/G, and
subsheaves of A stable and principal under G (to the section f corresponding

its inverse image in A ).

Particular case: the regular representation. Let G be a bundle of

groups, F a sub-bundle of groups, then the homomorphism F > G — G
defined by the multiplication in G defines G as a fibre space with F as left
group bundle of operators, and the analogous homomorphism G > F—— G
defines G as a fibre space with F as right group bundle of operators; the
corresponding operations of F on G are called left and right regular
representations of F into G (by "abus de langage"). For both, G is a

fibre space with group bundle F principal i_r_x_‘_t_ﬁg_a large sense (definition 3.4.2.),
and hence principal if and only if F = G. The quotient of G by F operating
at right is nothing else but the fibre space G/ F of 3.3. Moreover, G/F

taking the homomorphism G >< G/F—> G /F which in each fibre reduces
to the natural map G >< Gx/ F)—(—-—;» Gx/ F_ (it is trivial that the map
G><G/F—> G/'F thus obtained is continuous, hence a homomorphism);
G is of course transitive on G/ F, but in general not faithful. (It is easy to
see that when G is a sheaf of groups, then any sheaf A on which G operates
transitively and in which there is given a fixed section e. i8 isomorphic
canonically to a quotient G/ F.)
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3.5 The sheaf of germs of automorphisms.

Let A be any fibre space on X. Consider as in 2, 5. the sheaf E of
germs of endomorphisms of E. For any open set Uc X, H°(U, E) is the
set of endomorphisms of A |U, and therefore provided with a natural
associative composition law, moreover the restriction maps
HO(U, E)—> HO(V, E) {for VC U) are clearly homomorphisms for this
composition law. Therefore, as has been seen in 3.1. , E can be considered

as a sheaf with composition law. H®(X, E) has a unit e: the identity

endomorphism of A, therefore each E has a unit. Consider now for any

non-empty UC X the subset GU of EU fHO(U, E) of all automorphisms

of A|U, clearly this is a subgroup of H°(U, E) and the restriction map
H°(U, E}—> H°(V, E) maps Gy into Gy, (V=U), and the conditions of
proposition 2. 3.1. corollary are satisfied. The latter and section 3. 3.
show that GU is the HO(U. G) of a well determined subsheaf G of E, which
is a sheaf of groups for the induced structure, called the sheaf of germs of

aulomorphisms of A.

There is a natural homomorphism E >< A— > A, which in each {fibre
is defined as follows: let fx € Ex and a & Ax, let f be an endomorphism
of A|U (U open neighborhood of x) such that fx be the class of f, consider
f. axe Ax' this does not depend on the particular choice of f and may
therefore be noted fx. a_. It is obvious that the map E >< A——> A thus
defined is continuous, i.e. a homomorphism. Consider the homomorphism
induced in G >< A; this obviously defines A as a fibre space with G as sheaf

of left operators (definition 3.4.1.). Thus any fibre space A is canonically

a fibre space with a sheaf G(A) of left operators, where G(A) is the sheaf

of germs of automorphisms of A.
Now let G be any group bundle on X, lct w e tbe sheafl of erms of
sections of G, which again is a sheaf of groups, Let A be any fibre space

on which G operates at left, we will define a corresponding homomorphism

of G into the sheaf G(A) of germs of automorphisms of A, Let Uc X be open

non-empty; we must define a homomorphism of HO(U, Q) = HO(U, G) into the
group HO(U. G{A)) of automorphisms of A|U, such that for VU, the usual
commutativity condition be satisfied. Therefore, with g& HO(U, G) we
associate the map a—> g.a of A|U onto itself which on each fibre A_

reduces to a —> By 2 (where g, is the value of g at x), this map is
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clearly continuous, hence an endomorphism, and as the same is true for

1

the map defined by g~ € HO(U, G) and as these two endomorphisms

compose to the identity, we see that a—> g.a is an automorphism of E |U,

Clearly we thus get a homomorphism of the group H°(U, G) into the group

of automorphisms of A |U, and also the commutativity relation for a Vo U
clearly holds. Clearly if the natural maps G—x—> Gx are onto, (for instance
if G is itself a sheaf (i.e. G = G) the homomorphism G—> G(A) already
determines the operations of G on A). Moreover, if G is a sheaf, any
homomorphism of G into G(A) can be defined in this way, for we have seen
that G(A) operates at left on A, and therefore a homomorphism G =-> G(A)

defines G as a sheaf of left operators on A, So we get:

Proposition 3.5.1. Let G be a sheaf of groups and A any fibre space on X,

then it is equivalent to give a homomorphiam of G into the sheaf G(A) of
germs of automorphisms of A; or to define on A a structure of fibre
space with G as sheaf of left operators., The homomorphism G—> G(A)

is injective if and only if G operates faithfully on A.

Suppose still that G is a sheaf of groups operating at left (for instance)

on a fibre space A. Then G operates also in a natural way at left on the

sheaf K_o_f germs of sections of A. To define this we must for any open

non-empty U, define a homomorphism of HO(U, G) into the group of
automorphisms of KlU, the cbvious details are left to the reader.

Putting together the definitions of the two preceding paragraphs we jet:
if A is any fiber space with group bundle 3 of left (for instance) operators,
then the corresponding sheaf A of germs of sections has G as sheaf of left
operators. We have a natural homomorphism A —> (A / G), associated
to the canonical homomorphism A—> A /G, and obviously two elements

of A congruent under G have the same image, hence a natural homomorphism

A/G—(A/GY.

It follows from what was said previous to proposition 3.4.1. that this map
is injective if A is principal in the large sense (definition 3.4.2). It may

not be surjective; surjectivity here means that any germ of a section of
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A /G can be lifted into a germ of a section of A. This will be true in the

most important cases.

3.6 Particular cases,

a The sheaf of germs of isomorphisms of a fibre space onto another.

Let A, A' be two fibre spaces on X, and E the sheaf of germs of homomor-
phisms of A into A' (cf. 2.5 ), we can consider as in 3. 5. the subsheaf

G(A, A'j of germs of isomorphisms of A onto A'. This is not a sheaf of

groups if A #A'. However, let G{A) respectively G(A') be the sheaves of
germe of astomorphisms of A respectively A', and suppose A and A’
locally 1somorphic. Then G(A, A') is both a sheaf with G(A) as sheaf of

right operators and G{A') as sheaf of left operalors, and principal

{dcfinition 3.4.2.) in both structures. The operations are respectively

composition of germs of homomorphisms at right, or at left; the formal
definitions are obvious and left to the reader, as well as the fact that
G{A, A') is principal.

b On certain subsheaves of the shcaf G(A) of germs of automorphisms

of A, 'nthe rext chapter, we will be interested in a given subsheaf of
G({A) when A i3 some standard reference fibre space. We will take here
for A a product space X >< F (where F is a topological space). If as
usual we take on X >< F the product topelogy, then an automorphism of
A|U can be identified with a map g of U into the group /" (f) of homeomorphisms
of { onto itself such that the maps (x, y)—> gi{x}).y and (x, y) —> g(x)-ly
of U >< T into F be continuous. {<f, 1.4.1.} Anyhow, whatever the
topology of A - X >< F, inducing on the fibres the Lopoiogy of F, an
'somorphism oi A IU is defined by a map g of U into /-' , by the formula
above Therefore an elernent of G(A) is a germ of 2 map into r , and
any subsheaf of G{A) may be considered as a sheaf of germs of maps of
¥ into [ (F).

Suppose for instarnce that X and F are manifolds of class
Cm( () s m s + o), then we can take the subsheaf Gm(A) the sections of
which; or each open non-empty U, are the homomorphisms of
AU = U >< F which are isomorphisms of class m of the manifold U >< F.
This definition extends if "class C™" is replaced by "real analytic", or

"complex analytic", or"algebraic". In the laiter case, we take algebraic
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varieties over an arbitrary field, with their usual Zariski topology, (but
it should be noted that the topology of U >< F is then no longer the product
of the topologies of U and F).

One can suppose also that we are given a topological group r operating
onF (i.e. there is given a continuous map [’ >< F——> F such that this map
defines I" as a set with group 7 of left operators), then any continuous map
f of U into I" defines an endomorphism of U >< F, namely (x, y)— f(x).v;

f is uniquely determined by the latter i{ and only if r operates faithfully
on F. Thus is defined a natural homomorpkism of the sheaf C (X, F) of

germs of continuous maps of X into r' {which is a sheaf of groups because

G is a topological group) into a sheaf G(A), injective if and only if [ is
faithful on F, the image of which will be noted G,—. (A). Any subsheaf of
c (X, F) therefoxre operates on A and defines a subsheaf of G(A).

Definition 3.5.1, Let F be a topological space with a faithful topological

groupr' of operators. Corsider the product space A = X >< F as a fibre
space over X, suppose given a sheat of operators G of A, We say that the

fibre space A with sheaf of operators G has the structure group N, if G is

a subsheaf of the sheaf C(X, I ) of germs of continuous maps of X into r,
conta:ring the germs of constant maps of X into r’ (i. e. the constant sheaf
X >< G}, (the given homomorphism of G into the sheaf G(A) of germs of
automorphisms cif A being the one ‘nduced by the natural homomorphism
of C(X, M) into G(A)).

Of course, G determines already the image of I" in the group " (F)
of automorphisms of F, but maybe not the topology on this image which
corresponds to the ftopology of " We now give some examples of sheaves
of operators corresponding to 3 structure group M;i.e. interesting
special! subsheaves of @(X, i ), containing X >< r {germs of constant maps
of X irtoM}, wkere M is a given topological grovp. There are of course
these tx0 extveme sheaves. if now ! is a Lie group and X a manifold of
class C™, we can consider the sheaf Cm(x. " ) of germs of maps of
class C™ of X into 7 . Of course, if (Y opexates differentiably on a
manifold F of class C™, the sheaf of germs of automorphisms of X >< F
corresponding to cm(X, ') is countained in the sheaf Gm(X >< F) defined

above. If X is real analyt:c we con consider also the sheaf of germs of
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analytic maps of X into [" ; and if Mis a complex Lie group, X complex
analytic, we can consider the sheaf of germs of complex analytic maps

of X into I, Analogous definitions for algebraic varieties hold with the
only difference that we cannot suppose here [ >< F —> F to be continuous
for the product topology on [’ >< F, it has only to be assumed a regular
map (i.e. rational and defined everywhere}; Then the sheaf G of germs of
regular maps from X into the algebraic group / operates as sheaf of
germs of automorphisms on the algebraic trivial fibre space X >< F,

The fact noted above that f@m(X, " ) is mapped into G™(A) extends in an

obvious way to the three further examples.
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CHAPTER IV

FIBRE SPACES WITH STRUCTURE SHEAF

4,1 The definition., Let@ be a fibre space with faithful sheaf G of groups
of left operators on the space X, Let E be a fibre space on X locally
isomorphic to®d . As seenin 3.6. a., the sheaf G(@. E) of germs of
isomorphisms of(ﬁ onto E is a principal sheaf under the sheaf G(é) of
germs of automorphisms ofcb. and therefore a principal sheaf in the
large sense (definition 3. 4. 2) under the given sheaf G (which can be
considered as a subsheaf of G( o) })). We can therefore consider the
quotient sheaf G( @ , E)/G.

Definition 4.1.1. Let® be a fibre space with faithful sheaf of groups of

left operators G on the space X. A fibre space of structure type P is a fibre

space E on X, locally isomorphic to the fibre space ®, together with a
section of the sheaf G( & , E) /G quotient of the sheaf G(@ y E) of germs
of isomorphisms oié onto E by the sheaf G of right operators. G is
called the structure sheaf of E,

By what has been said in 3. 4., given E locally isomorphic to§ , it is
equivalent to give a section of G( @ , E)/(i, or a subsheaf P of G(® , E)
which is stable under G and principal under G, i.e. such that given a section
fof P over an open set U, the other sections of P over the same U are
exactly those of the type f.g, where g is a section of G over U; or

equivalently, calling an isomorphism f: a3 |U——> E |U compatiblé . with

the structure sheaf G or a coordinate map, when it is a section of P, this

means that if f is admissible then all other admissible isomorphisms of

é |U onto E|U are those of the type f.g, where g is an automorphism of
P |U "belonging" to G (i.e. defined by a section of G on U).
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Definition 4, 1.2. The subsheaf P of G(@ » E) defining the structure of type
® on E is called the principal sheaf associated with E (remember this is
a principal sheaf under G).

The notion of isomorphism of a fibre space E with structure of type &

onto another E' is clear; we will not discuss here the notion of homomor-
phism. Now let U be a subset of X, then & |U has g_lU as a sheaf of right
operators, and if E is a fibre space with struzture type & over X, then
E|U can be ccnsidered as a fibre space of structure type P IU, structure
sheaf (_3__]0, called the restriction of E to U. (More generally the notion

of inverse image of a fibre space of structure type @. under a continuous
map X'—> X, is defined in an evident way.) l.et E, E' be two fibre spaces
of structure type ®, fan isomorpbism for the underlying structures of
fibre spaces only of E onto E', then in orcder that f be also an isomorphism
with respect to the structures of type P, itis necessary and sufficient
that each x € X hzs an open neighborhood U such that the restriction of

f to E|U be an isomorphiem in this stronger serse of E|U onto E'|U.

Thus the notion of isomorphism oi E onto E' is of local nature, or
equivalently: we can consider the sheaf G(E, E') of germs of isomorphisms
of E onto E', which is a subsheaf of thz sheaf GiEo, E‘o) of germs of

— - c—

isomorphisms of Eo onto E:), {(where Eo’ E'o arc the vnderlying fibre
spaces - without structure sheaf - of E, E'}), and ior any open UcC X, the
isomorphisms of E |U onto E' IU are exartly thes sections of G(E, E').

Let G' be the sheaf of germs of automorphiams of the fibre space $
which commute to G; this is a subsheaf of groupz of the sheaf G(® ) of
germs of automorphisms of the fibre space & . For notational
convenience, however, we will corsider g' zs 2 sheaf of right operators,
by pvtting z. g' = g’”l. z for z éx, g'e (“3';( (x €« X), Thus the com-
mutation with G means that {g.z).g' = g.(z.g') for z & éx’ g E g—x’

g'e G_'x. Let now E be any fibre space of structure type D, let Eo be

the underlying fibre space, we will define on an canonical structure of

fibre space with G’ g._:_s_shea_f 9_}; groups g_f right opevators, i.e. define
a right representation of G' into the sheaf G{E ) of germs of automorphisms
- o

of Eo' Therefore we only nzed define, for each open U C X, a right

representation of H%(uU. G') into the group of germs of automorphisms
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of Eo IU, such that the compatibility condition with respect to the restriction
maps be satisfied (cf. 3.1.). We can also restrict to open set,s U small
enough in order that there exist a coordinate map f:  |U—> E|U; now

such a coordinate map, being an isomorphism of P | U onto EOIU,

transforms the sheaf g_'IU of right operators on P |U intoa sheaf of right
operators on E |U, and the right representation of G'|U into G(E |u)

thus obtained does not depend on the particular choide of f, be cause another
coordinate map is of the form f. g (g section of G on U) and g commutes with
G'. It should be noted that the operations of G' on E commute with the germs

of automorphisms of E.

4.2.Some examples.

a. Let again@be a fibre space with faithful sheaf G of left operators.
Then & itself is provided in a natural way with a structure of fibre space
of structure type P : a section of G{ @ , CP ) /G is defined by taking the
image of the identity section of G{ @ , @ ) (i. e. the identity automorphism
of @ ). & will always be considered as fibre space of structure type @ in
the above way; a fibre space E of structure type @ is called trivial if it is
isomorphic to &> (this notion should be distinguished from that introduced
inl.4. !). Obviously G (considered as a sheaf of germs of automorphisms
of the underlying fibre space of @ ) is nothing else but the sheaf of germs
of automorphisms of o (considered with its structure of type @ ). The
principal bundle associated with @ is g—r (i.e. G on which G operates
by the right regular representation). More generally, let E be any fibre

space of structure type P , then the associated principal bundle is nothing

else but the sheaf of germs of isomorphisms of @ onto E (isomorphism in

the sense of the structures of type & on P and E).

b. Let G be any sheaf of groups, consider P = G, i.e. G on which G
operates by the left regular representation. We will interpret the notion
of fibre space of structure type (_3_1. Therefore, we notice that the sheaf
G' of germs of automorphisms of the underlying fibre space Go of G which
commute to the operations of G on Go (by left translations) is isomorphic
to G operating on C}0 by the right regular representation; and Go is clearly
a principal fibre space under the sheaf of groups G operating by right

translations. Therefore, as seen at end of section 4.1., for any fibre
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space E of structure type 94* G operates on the right on E, thus E turns
into a fibre space with G as sheaf of right operators, denoted by EG. Of
course EG will be principal too (being locally isomorphic to Gr as a fibre
space with sheaf G of right operators). Conversely, this structure of
principal {ibre space under G determines the structure of type G of E,

for it is seen at once that the principal associated bundle P of E is nothing
else but the sheaf of germs of isomorphisms of Gr onto EG; and moreover,
given any principal fibre space EG under G, the sheaf P of germs of
isomorphisms of (_33_r onto EG defines on E a structure of type (_}.1. So we

see that the notion of fibre space of type G, is equivalent to the notion of

principal fibre space over G {(operating at right).

c. Let ® be any fibre space on X, and G the sheaf of germs of all
automorphisms of ® . Then a fibre sparce Eo on X is ' ¢ . derlying fibre
space of a fibre space E of structure type ® if and only if Eo is locally
isomorphic to P , and ther E is obviously unique; thus the notion of fibre
space of structure type ® here reduces to the notion of fibre space on X
locally isomorphic to ® . f, at the opposite, G reduces to the sheaf of
unit groups, then a structure of type ® on E, i,e. a section of
G( CID, E)/g =G ( @ , B}, is nothing else but an isomorphism of & onto E.

d. Let F be a topological space, and let @ = X ><F. Then each of the
special sheaves of automorphisms considered in section 3.6.b. defines a

corresponding notion of fibre space with structure sheaf; in particular, we

have notion of fibered manifold of class Cm, of analylic {(real or complex)

fibre spaces, of algebra.c fibre spaces. Let I be a topological group

operating on F; suppose that we define on @ 2 structure of fibre space

with sheaf G of left operators, admitting M as a structure group

{definition 3, 5.1.); then I’ is called also a structure group of zny fibre space
E of structure type ® . Of course, the mere giving of the group of operators
r‘ in F is not sufficient to determine the type of structure we are considering;
but most frequently it will be clear from the context what the sheaf G is for a
given " : the sheaf of germa3a of continuous maps of X into ", orof
differentiable maps if X is differentiable manifold and M a Lie group, etc.)

We get thus, in particular, the notions of fibre bundle with topological

structure group " (here G is the sheaf of germs of continuous maps of

X into [ ), which is exactly the notion of the book of Steenrod; of
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differentiable fibre bundle of class C™ with Lie structure group r (here

G is the sheaf of germs of maps of class C™ from the manifold X into the

Lie group M)y; of analytic fibre bundle (over an analytic manifold X} with

structure Lie group _C_ ; of complex analytic fibre bundle (over a complex

analytic manifold X) with a complex Lie group I as structure group; and

likewise of algebraic fibre bundle (over an algebraic manifold, with its

Zariski topology) with an algebraic group r as structure group.

4,3. Definition of a fibre space of structure type & by coordinate maps

or coordinate transforms. Let again ® ve a fibre space with faithful

left sheaf G of operators. Let E be a fibre space of structure type <) H
clearly this structure is entirely determined when we give a family

(Ui. fi) of coordinate maps of E {(cf. 4.1.) over open sets Ui which
cover X, Given such a family, we have for any two indices i, j such that

Ui =U.N U, g
(4.3.1) f.=f..1_. on U..
J 1)

where fij is a well determined section of G over Uij (as usual, we simplify
the notations by writing fi and fj for the restrictions of fi and fj to P IUij)‘
Conversely, given a fibre space E over X, and a family (fi, Ui) of isomor -
phisms £ : 65} ]Ui——> E lUi' the Ui's covering X, this system is a system
of coordinate maps for a suitable structure of type P on E if (and only if)
the relations 4.1. 1. are satisfied or, as we will say, if the maps fi are
compatible with the sheaf G. Moreover, given a second such family

(f.'i' Ua), this defines on E the same structure of type D as thefirst if

and only if the sum of the two families of maps still defines a structure of
type @ on E. The relation thus introduced between certain families of
maps is hence an equivalence relation, and the structures of type P onE

correspond exactly to equivalence classes of such families of maps. Taking

sets of maps instead of families with arbitrary sets of indices, it is

obvious that a set of maps (fi, Ui) defining a structure of type P is
contained in one and only one maximal set of maps compatible with G
(take the set of all coordinate maps on E provided with the structure

of type @ defined by the fi's). which is clearly equivalent to the given set
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(£, U.). Thus, a structure of type @ could be equivalently defined as a
maximal set of isomorphisms fi : & IIJi —>E IUi' such that the Ui cover
X. We thus rejoin the classical definition of fibre bundles (see Steenrod,
The Topology of Fibre Bundles).

Now 1eﬁ'(Ui) be an open covering of X, and for each pair (i, j) of

indices such that U, . } 4, let fij be a section of G on Uij’ which can also
be interpreted as an automorphism of the fibre space @ IUij = I)l
We can then consider the fibre space E defined by the system (fij) of
coordinate transformations (cf. definition 1.5.1.), provided the usual

coherence property

(4.3.2.) fik = fijfjk on Uijk
is satisfied for each triple (i, j, k) of indices such that Uik = u.n U, U, 34
Moreover, as seen in section 1. 5., there is for each i a natural isomorphism

f. of b |Ui onto E 'Ui’ and on any non-empty Uij we have

By what has been said above, this implies that there is on E a unique
structure of type P such that the fi be coordinate maps for this structure.
Thus we will always consider the fibre space E defined by coordinate
transforms (fij) as above as a fibre space of structure type @ (hence
with structure sheaf G). Besides, any fibre space E on X of structure type
® is isomorphic to a fibre space defined in the preceding way; more
precisely, if (Ui, Ii) is any family of coordinate maps of E, with (Ui)
covering X, then defining sections fij of G over Uij by formula (4.3.1.),
we get a system of coordinate transformations, and as seen in 1. 5,
(cf. proposition 1, 5.1.) the fibre space E' defined by these is canonically
isomorphic to E; as this isomorphism transforms the given coordinate
maps of E! into those of E, this is also an isomorphism for the structures
of type P,

Consider two systems of coordinate transformations (f ) and (f')
relative to a same covering (Ui) of X, let E and E' be the cclilrresponlging

fibre spaces of structure type ® . Then there is a one-to-one correspondenc
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between isomorphisms of E onto E' (isomorphisms in the sense of fibre

spaces with structure sheaf) and systems (fi) of sections of G on the U,'s

—_——— e e e——— i
such that

' £, 671

(4.3.3.) £l = £f00

Of course, by proposition 1. 5.1., the isomorphisms for the underlying
structures of fibre spaces of E and E' are given by such systems, but where
the fi's are arbitrary automorphisms of the restrictions P |Ui’ satisfying
to4.3.3. But it is trivial that, in order that such an isomorphism be an
isomorphism also for the structures of type P, itis necessary and
sufficient that each f, be an automorphism of & |Ui considered a fibre
space with structure sheaf, which means that fi is given by a section of
9 on Ui'- In particular, the necessary and sufficient condition for E and E'
to be isomorphic is the existence of at least one system (fi) of sections of
G on the sets Ui' satisfying the conditions (4. 3. 3.).

What has been said in 1. 5. on the comparison of fibre spaces defined

by coordinate transformations relative to two different converings, carries

over at once in this more special context. This allows us to determine in
principle whether any two fibre spaces given by two arbitrary systems of
coordinate transformations (with respect of course to the same P , G) are
isomorphic (compare chapter 5° below for the general classification

of fibre spaces with structure sheaf G).

4,4, The associated fibre spaces.

Let again @ be a fibre space over X with faithful sheaf G of left
operators, E a fibre space of structure type D . Let (Ui, fi) be the set
of all coordinate maps f: 45) lUi_ >E|U, of E, (fij) the corresponding
system of coordinate transformations.

Now consider any other fibre space\y with G as left group bundle of
operators, or what is the same (proposition 3.5.1.) a homomorphism
'p of G into the sheaf of germs of automorphisms of the fibre space T .
When we wish to recall that ‘1/ is provided with the supplement of structure
by the giving of P. we will write 'Q} (P) instead of merely 7. pmay not

be faithful, but in any case F determines an injective homomorphism
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of (_}_/Kerp into the sheaf of germs of automorphisms of ]Z/, (Ker P is the
Kernel of the homomorphism /o, therefore is a normal subsheaf of G),
thus ]l;’ (P) can also be considered as a fibre space with faithful sheaf
G /Ker p of left operators. In particular, the notion of fibre space of

structure type ’I‘II(P) is therefore determined, the structure sheaf of such
a f{ibre space is G /Kerp.

Definition 4.4.1. Given as above a fibre space E of structure type o,

structure sheaf G, and a representationp of G in the sheaf of germs of
automorphisms of a fibre space ¥, we call fibre space associated to E,
and to P’ the fibre space of structure type ‘Q’(P) (where ¥ (/b) stands
for ¥ with G/Kelras faithful sheaf of operators) defined by the coordinate

transformations F(fij)' where (fij) is the system of coordinate transforma-

tions for E defined by the set (Ui’ fi) of all coordinate maps of E.

This definition of course makes sense, i.e. the conditions of the
type (4.3.2.) for coordinate transformations are satisfied by the system
(F(fij)), as results at once from the fact that they are satisfied for
({ij) itself, and that fis a representation.

Functorial behavior. We write 11/ ( P )E (or simply '&E if no confusion

can arise) for the fibre space of structure type 11’( P) associated to E and
the representation f’ Let J \( P‘) be a second fibre space with G as a
group bundle of left operators, corresponrding to a representation f)',

whence an associated fibre space \J'( P‘)E of structure type Ul'(fﬁ‘).

Consider a G-homomorphism u of U—[(/o') into J'( F‘). by which we mean
a homomorphism of {f into ¥ ' which commutes to the operations of G,
more precisely such that for any x € X, ge,(_}_x, ze J < Ve have

u(g. z) = g.(u(z)) or more explicitly

(4.4.1.) u( Plg).z) = p'(g)- (ulz)).
Let u.: ‘!7 |Ui-—-> 7If lUi be the restriction of u to ¥ lUi' the foregoing

formula implies P '(fij)uj = u; F (fij), in virtue of proposition 1. 5. 2. this

means that the system (ui) defines a homomorphism of the fibre space
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defined by the coordinate transformations P(f .) into the one deﬂned by
the coordinate transformations P (f ), i.e. of 117(/:) into J Y fb')

Definition 4.4.2. Given a G-homomorphism u of a fibre space U8 (F ) with
G as group bundle of left operators into another such ‘@'(F'). and a fibre
space E of structure type D (structure sheaf G), the above constructed

homomorphism uF : }F(P)E —> Y P')E of the associated fibre spaces

is called associated to E and u.

It is checked easily that the usual functor properties hold: a). If
}F (F ) "IP(P) and u_ is the identity, so is uE.b. If we have two G-
homomorphisms (P) -*—>‘I/'( F ) Y ﬂ/"(?"), then (VI.I—)E-_;EUE.
From this follows: c). If uis an onto-isomorphism v )—~> \F‘(F )

8o is uE. As locally, for appropriate isomorphisms F) =~ (P)
and ' (F ) = " P IB uE can be identified with u, it shares with u any
"property of local character", for instance: d) If u is injective (surjective)
80 is uE. We now examine, for a fixed 11/( P). how ¥ { P)E varies with
E. It is trivial (by "transport de structure") that an isomorphism 7

of a fibre space E of structure type &P onto another E' defines canonically
an isomorphism 7 : YI/ (F )E————> QZ(JD)E'. Again the two basic functor
properties are verified: if E = E' and /# is the identity, so is 7p ; given

¢
two consecutive isomorphisms E—y% E'L> E", we have | v’ 7)19 =7)'°/7/'° .

In particular, we get for E = E' = E" the following

Proposition 4.4.1. Let E be a fibre space of structure type LT‘ , {structure
sheaf G), [" the group of automorphisms of E, !lf (F) a fibre space with G
as group bundle of left operators, gy(lﬂ E the fibre space associated to

E and P(w1th structure sheaf G/Ker p) Then there is a canonical
representation of [ into the group of automorphisms of Zp(f) (considered

as fibre space of structure type J (P))
The relations between the two ways of considering gp(/:u) as a functor

(either of W(fﬂ). or of E) are the following.

Proposition 4.4.2. Let E, E' be two fibre spaces of structure type & , ¥
an isomorphism of E onto E', ¥/ (P) and '(P') two fibre spaces with
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G as group-bundle of left operators, u a G-homomorphism of ﬂ’(fy) into
U/ P') Then the following diagram is commutative
E * \ E'
Vip)m —— V(o

E E'
u u

¥ F’)E RN 7 pe

(Proof left to the reader.)
Taking in particular E = E', we get the following

Corollary. Let E be a fibre space of structure type & , WE ( F) and

W " P') two fibre spaces with _(_} as group bundle of left operators, u a
G-homomorphism of the first into the second. By proposition 4.4.,1., the
associated fibre spaces VW ( P)E and J''( P')E both admit the group I of
automorphisms of E as a group of operators; then the associated homomor-

phism uE (definition 4, 4. 2, ) commutes with the operations of r.

The following transitivity property for associated fibre spaces is
obviously satisfied: Let £ be a representation of G into the sheaf of
germs of automorphisms of a fibre space Y, P' a representation of
G /Ker ’D into the sheaf of germs of automorphisms of a fibre space
g ' ,/'la the composition of these representations, E a fibre space with
structure of type & , F the fibre space associated to E and P F' the
fibre space associated to F and F ', then F' is canonically isomorphic to
the fibre space associated to E and P'F .

Functorial characterization of the associated fibre spaces. Consider the

category C( @ ) of fibre spaces on X with structure of type P , taking as
homomorphisms in this category the onto-isomorphisms (in the sense of
the structure of type ® of course!) A (covariant) functor F of this
category into the category of all fibre spaces over X is a "function"
associating to each E € C{ CP ) a fibre space F(E) over X, and to an
onto-isomorphism u: E —> E' (where E, E' are in C{{ )) a homomorphism
F(u): F(E)—> F(E'), in such a way that (i) if E = E' and u is the identity
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map, so is F(u); (ii) if uu E—> E' and v: E'—>E"are given onto-isomorphisms
(E, E' and E" being in C(@ )) then F(vu) = F(v)F(u). This implies (iii)
-1

For u: E~> E' as above, F(u) is an onto-isomorphism, and F(u)"l =F(u ).

Definition 4. 4. 3. A local functor on C{ @ ) is a law associating to each open

non-empty subset U C X a functor F; from the category C( $ |U) of fibre
spaces on U with structure of type P |U, into the category of all fibre spaces
over U, and to any open non-empty V< U an onto-isomorphism

FU(E)IV—> FV(E IV), in such a way that the last law defines a
"homomorphism" of the functor E —> FU(E) IV into the functor E —> FV(E |V)
(both functors being defined on C( P |U) with values in the category of all

fibre spaces on V), i.e. such that for any onto-isomorphism E = E'

(E and E' in C( (D ]U)), the diagram

(4.4.3.) FU(E)IV———9 FU(E')|V

l

F(E [V) —— F(E' V)

18 commutative.

For instance, let 11/( ,D') be a fibre space over X with G as group-
bundle of left operators, then for any open non-empty UCX, W.P(F)IU
is a fibre space over U with C_}lU as group-bundle of left operators, and
therefore we can consider the functor FU(E) = (1II(P) |U)E from the category
C( & |U) into the category of all fibre spaces over U; moreover, canonical
isomorphisms FU(E) |V~——> FV(E |V) are defined at once, and the com-
mutativity of (4. 4.3.) readily checked. Thus J ( ) defines in a canonical
way a local functor on C( (I)). Conversely, let F be any local functor on
C(@ ), let w: F( q? ), we will define a representation of G into the sheaf
of germs of automorphisms of "LF Therefore, we must for any non-empty
open U C X, define a homomorphism of the group H°(U, G) into the group
of automorphisms of J |U, in a way to satisfy the usual commutativity
requirement with respect to restriction maps relative to VC U. Now
HO(U. (1) is the group of automorphisms of @ |U (4.2.a.), hence a
representation of this group into the group of automorphisms of FU( @IU).
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but the latter is canonically isomorphic (in virtue of commutativity in
(4.4.3.), where U is replaced by X and V by U) to F( d)ju= T|u,

hence the desired homomorphism of HO(U, G) into the group of automorphisms
of "(F |U; the commutativity relation referred to above results easily from
commutativity of (4.4, 3.). Thus we have defined a representation Pof G
into the sheaf of germs of automorphisms of g_'/. so that llf'can be considered
as a fibre space (P) with G as group bundle of left operators. If now we
suppose that the functor F had already been obtained as explained above from
a fibre space Y'( 'P') with G as group bundle of left operators, then 1 is

the fibre space associated to the trivial fibre space 0 and the representation
P', and therefore canonically isomorphic to J'; the definition of this isomor-
phism is trivial from the definitions, moreover it is easily checked that this
isomorphism is even a G-isomorphism; thus a fibre space QF( f)) with G as
group bundle of left operators is determined, up to canonical isomorphism,
by the local functor it defines. Conversely, let F be any local functor, we
consider the fibre space 'Q'/( P) constructed above, let F' be the local functor
associated to the latter, we will define a canonical isomorphism of F' onto F,
i.e. for each U and each fibre spacc E in C( ) |U), an isomorphism of
Fb(E) onto FU(E), compatible with the funrtor maps associated to homomor-
phisms E —>» E' and with the maps associated to open sets VC U, We just
give the definition, letting the verification of the compatibilities to the
reader. Let (Ui, fi) be the system of all coordinate maps defining the
structure of E; (Ui) is an open covering of U, and fi an isomorphism of

) ‘Ui onto E IUi‘ This defines an isomorphism F(f,) of Fui( @ |Ul) onto

FUi(E “Ji) , or what amovunts to the same of Fx( P }‘IUi onto FU(E) lUi’ i.e. of

-1 -1 '
s lUi onto FU(E) IUi. Let as usual fij = fi fj (where fi and fj shortly stand

for their restrictions to E lUij respectively to @ lUij)' then F(fij) = F(fi)‘lr(fj]
so that the system F(fij)is the system of coordinate transforms of FU(E)
corresponding to the coordinate maps F(fi). But by the definition of the
associate fibre space, (F(fij” is also a system of coordinate transforms

for the fibre space F'(E) associated to E and the representation F of G

by germs of automorphisms of ‘47, hence the canonical isomorphism

F'(E) — F(E). Putting together the results obtained, we get:
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Proposition 4. 4. 3. Let P be a fibre space over X with faithful sheaf G

of left operators. There is a natural one-to-one correspondence between
the fibre spaces v ('F ) over X with G as sheaf of left operators, and the
local functors (definition 4.4. 3. ) defined on the category C{ @) of fibre
spaces with structure of type P . To Z_ﬁ(lb') corresponds the functor F
which, for any non-empty open Uc X and any fibre space E over U with
structure of type P |U, associates the fibre space associated to E and
'_llj (P) IU; and to a given local functor F corresponds the fibre space

_I[/ = F(®), where G operates as defined above.

It should be noted also that the notion of G-homomorphism of a space
?lf('P) into a space ¥/ ’(P') can be interpreted, in the above correspondence,
by an evident notion of homomorphism of local functor into another

{definitions left to the reader!).

Remark. In fact, a more abstract and general formulation of these results

should be given, by taking the values for F(E) in a more general category
than the specified category of all fibre spaces are open sets of X. For
instance, we could take funclors with values in the category of group
bundles, or of principal sheaves under G etc., obtaining a specific result

foreach iven caterory.

4.5 Particular cases of associated fibre spaces.

a. Associated principal sheatf. Let E be a fibre space with structure

of type ) . Take on the other hand }j/ = G, G operating on U by leit
regular representation (which is faithful), so thal we may write ‘5;’ (f.)) = (::'4
Then the fibre space associated to E and [3 is a fibre space with structure
of type (-}I' or what is the same (4.2., example b.) a principal sheaf under
G (operating on the right). Using for instance proposition 4.4.3. we get a

canonical isomorphism of GEI: with principal sheaf associated to E in the

sense of definition 4.1. 2. More generally, let F be a sub-sheaf of groups

of g_, and consider the fibre space g_/g‘ with g_ as a sheaf of left operators,
(see end of 3.4.). The fibre space of type g_/_l': associated to E is canoni-
cally isomorphic to the quotient sheaf P/ F where P is the principal sheaf

associated to E (in which sheaf G and hence F operates on the right, so
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that the quotient P/E is of course defined). Let again P be the principal
sheaf assoclated to a fibre space E of structure type @} it is readily
verified that conversely, the fibre space associated to P and the

given representation of G into G{ @ ) is canonically isomorphic to E.
And conversely, starting with an arbitrary principal sheaf P under G,

let E be the fibre space associated to P and the given representation of
G by germs of automorphisms of E; then P is canonically isomorphic to
the principal sheaf associated with E. (These statements follow at once
when considering the coordinate transforms. )

b. Case when Qf is a fibre space with composition law. As, with the

general notations of 4.4., Y/ (p) 1s locally isomorphic to Y, the
isomorphisms of Y |U onto Yo P’) | U being well detcrmined up to an
isomorphism of ﬂ:fdefmed by a section of (_}_ on U, it follows that, loosely
speaking, each supplementary structure "of loczl type" on '{If , which is
"invariant under G", carries over canonically into an analogous structure
on W ( P)E. In orde~ to give a clean statement of sufficient generality to
cover all cases effectively to be encountered, it would be necessary to
give a treatment of the notion of associated fibre spaces to a given E in a
more general context, as was alluded to in the {inal remark of 4,4, In
order not to make this already long report still longer, we will not make
this point of view explicit, and will restrict to the case where 1}_7 is a fibre
space with composition law (cf, 3.1.). By saying that the composition

law is invariant under (_;:. we mean that for each x € X, the composition
law in ’{[fx is invariant under the operations of Gx' or what is the same,
lhatF.sa representation of G irlo the sheaf of germs of automorphisms of 71/
considered as fibre space with composition law. Then it is obvious that
[/ [= )E itself is a fibre space with composition law, locally isomorphic
to g/ . Hence if '11_7' is a group bundle (respectively an abelian group bundle)
so is II/( P)E. As anyhow ﬂ_}'(P)E is a sheaf if and only if 1/ is a sheaf
(this notion being a local one) it follows for instance that if Il'/'is a sheaf of
groups (respectively of abelian groups) so is w(’o)E. Let now 11/'(P')
be another fibre space with composition law and G a group bundle of left
operators compatible with the composition law, let u: l‘F —_— ’;U' be a

G-representation which is also a homomorphism for the composition laws;
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then the associated uE: )/ )E——-> g UP ')E is also a homomorphism
for the composition laws,

¢. The sheaf of germs of automorphisms of E as associated fibre

space. Let G be any group bundle on X. For each x € X, gx operates on
C_}_x by interior automorphisms, to ge Gx corresponding the permutation
o (g) of (_}_x defined by o—(g). g' = gg’g-IT The map (g, g') - —> 7 (g). g' of

(_}_>x< G into G thus obtained is obviously continuous, so that c—defines on G

a structure of fibre space with group bundle G of (left) operators; and
more precisely even of a group bundle with G as group bundle of

automorphisms (automorphisms being understood with respect to the

structure of group bundle). Suppose now that G is a sheaf of groups, and
let $ as above be a fibre space with G as faithful group-bundle of left
operators, E a fibre space of structure type ® , consider the fibre space
Ci(d")E associated to E and the representation ¢, By what has been said

inb., G(o— )E is a sheaf of groups . Proposition 4.4. 3 yields naturally:

Proposition 4. 5.1, Let E be a fibre space of structure type @ , (structure

sheaf G) consider the representation o~ of G into the sheaf of germs of
automorphiems of G by interior automorphisms, and the fibre space
g(a")E associated to E ando— , As a sheaf of groups, Q(G‘)E is
canonically isomorphic to the sheaf of germs of automorphisms of E

(considered of course as fibre space of structure type P ).

In virtue of proposition 4.5.1., we see that, just as 0 admits G as
faithful sheaf of left operators, so does E admit G(o~ )E as faithful sheaf
of left operators; (:_3_ can be considered as the sheaf of germs of automor-
phisms of  , when we consider @ as a fibre space with structure sheaf
G (namely as the trivial fibre space with structure of type & , cf. 4.2.
example a), and just so may G(o~ )E be considered as the sheaf of germs
of automorphisms of E considered as a fibre space with structure sheaf,

Moreover:

Proposition 4. 5.2. Let @ be a fibre space with G as faithful sheaf of

left operators, and E a fibre space of structure type P ; consider E as
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admitting G{o— )E (defined in proposition 4.5.1.) as faithful sheaf of left
operators. Let F be any fibre space on X. Then there is a canonical
correspondence between the structures of type @ (structure sheaf G) on
F for which the underlying fibre space is F, and the siructures of type E
(structure sheaf G(e~ )E) is F for which the underlying fibre space is F,
In order for F to be trivial for a given structure of the latter type, it is
necessary and sufficient that F be isomorphic to E for the corresponding

structure of the former type.

n chapter 5 we can restate this in a more condensed form by the
formula H](X, g)::Hl(X, (_S_(a")E), a canonical isomorphism transforming
the class ¢ of E in the first set, into the unit element e of the second).

We can suppose F to be locally isomorphic to (JP . The structures of .
the formervr type on F are the sections of the sheaf G( @ , F) / G, where
G{ @ v F) is the sheaf of germs of isomorphisms of @ onto F, on which
g_ operates on the right as explained in 4.1., and likewise the structures of
the second type are the sections of the sheaf G(E, F) / G', where for
abbreviation we put G' = G( o~ )E. Thus we only need exhibit a natural
isomorphism of the sheaves G({ , F),/G and G(E, F) /G'. Now an
element of the second quotient comes from a germ v of isomorphism of
E onto F at a point x € X, let u be any germ of isomorphism (i.e. of a
coordinate map} of @ onto E at the point x, and let w = vu, whichis a germ
of isomorphism of @ onto F at x. The class of w in the quotient
G( @ , F)/g_ does not change if u is replaced by another germ of
isomorphism u', for we have u' = ug{ge Gx' considered as a germ of
automorphism of P ) and hence vu' = (vu)g has the same class as vu;
neither does the class of vu change if we replace v by another representative
v' of the conzidered element of G(E, F) / G', for we have v' = vg'

(g' e .Ci;( considered as a germ of automorphism of E) hence v'u = vg'u,
but of course g'u being still a germ of an isomorphism of ® onto E is

of the form ug(g € gx) hence vV'u = v(ug) = (vu)g has the same class as vu,
We have thus defined a natural map G(E, F) / G'—> G( @ , F) / G,
and it is seen at once that this is an isomorphism of the first sheaf onto
the second. This concludes the proof of the first statement, and the

second is as easily checked.
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Of course, if F and F' are two fibre spaces with structure of type
@ , then the sheaf of germs of isomorphisms of F onto F' for these
structures, is identic to the sheaf of germs of isomorphisms for the
corresponding structures of type E{structure sheaf G' = (_]_(a"’)E), in
particular an isomorphism FF —> F' for the underlying structures of
fibre spaces, is an isomorphism in the sense of the structures of type
® involved if and only if it is one for the structures of type E. In
particular, the classification up to isomoxphism of fibre spaces is the
same for the structure sheaf G, or the structure sheaf (_3_'. It should,
however, not be thought that this is true whenever G' is a sheaf of groups
locally isomorphic to g_; it is quite essential that g‘ be obtained as
G' = C_}_(a—’)E for a suitable fibre space E with structure sheaf G.

d. The sheaf of germs of sections as associated sheaf. Admissible

sections.

If E is any fibre space over X, let E be the sheaf of germs of sections
of E. This can of course be considered as a functor of E, and even a local
functor in the sense that we may identify, for VCUC X (U and V non-empty
open sets), and a fibre space E over U, the fibre spaces E |V and (E[V).

If now we restrict E to be a fibre space with structure of type  |U
(defined on a non-specified open U € X) we have a fortiori a local functor
in the precise sense of definition 4.4, 3, Using proposition 4.4,3., we

get that E can be considered as the fibre space associated to E and the
sheaf & of germs of sections of & (on which G operates in a natural way).
The natural homomorphism E —> E is associated to the homomorphism
CE —> @ . Moreover, for every subsheaf A of the sheaf & , stable
under G, the associated sheaf AE can therefore be considered as a
subsheaf of E, which will behave as a local functor under isomorphisms

and restrictions of fibre spaces E (with structure of type & ).

4.6 Extension and restriction of the structure sheaf,
Let again be a fibre space with a faithful sheaf G of left operators.
Let F be a subsheaf of groups of G, then F operates also faithfully on & ;

in order to distinguish between P provided with either the sheaf E, or (_}_,

as sheaf of operators, we write respectively @F and x G Thus the
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notions of fibre space E with structure of type b F* °F with structure of

type QG’ are well defined and of course distinct; for the first the structure

sheaf is F, for the second it is G. Let E be any fibre space on X locally
isomorphic to @, G( ® , E) the sheaf of germs of isomorphisms of o))
onto E. _IE‘ and G operate faithfully on the right on G{ @, E), the
representation of F being induced by the one of G. Therefore we have a

natural onto-homomorphism

{4.6.1.) G(® ,E)/F —>G(Q, E)/G.

Definition 4. 6.1 Let § be a fibre space with G as faithful sheaf of left

operators, F a subsheaf of groups of G, E a fibre space with structure of

type CE)F ..e. a fibre space E locally isomorphic to {, provided with

a section of the sheaf on the left side of (4.6.1.). The canonical image of
this section yields a section of G( § , E)/G, i.e. on E a structure of

type ('f which is said obtained from the given structure {with structure

o’

sheaf G) by extension of the structure sheaf to G.

By this definition, if the structure of type P g of E is defined by

coordinate maps maps fi : @ IUi——> E IUi’ (subject to the condition that
the corrcsponding coordinate transforms fij be given by sections of F

on Uij' see 4. 3.), then its structure of type :@C is defined by the same
A

coordinatec maps (and hence corresponding to the same coordinate trans-
formations). 1t follows at once that if E is defined by a priori given
coordinate transformations (fij) (the fij being sections of F on Uij

satisfying the conditions 4. 3.2.), then the fibre space obtained by

extension of the structure sheaf to G is defined by the same coordinate
transformations, but now considered as sections of C_}_ rather than of _I:'_‘ .
This shows that the notion of associated bundle (4.4.) and of extension of
the structure sheaf, are both particular cases of the following more general
construction (where the notations are slightly changed with respect to 4. 4.).

Let @ be a fibre space with E as a faithful sheaf of left operators, J a
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fibre space with G as a faithful sheaf of left operators, E a fibre space
with structure of type & , p a homomorphism of F into G, then let

¥ ( P )E stand for the fibre space of structure type G obtained by taking
the set (Ui, fi) of all coordinate maps fi : |Ui-—~—-> E lUi for E and

the corresponding family (fij) of coordinate transforms, and considering
the fibre space of structure type Y defined by the coordinate transforms
P(fij) (which obviously satisfy fb(fik) = !a’(fij) ,o(fjk), r:being a
homomorphism). Of course, in the case F) is an onto-homomorphism, we
find the fibre space of definition 4.4 1,, and in the case = ¥,

F < G and F being the injection homomorphism, we have said that the
space just constructed is canonically isomorpbic to the ona of definition

4.6.1. We may thus call in the general case Y ( 'F )E the fibre space

with structure sheaf G associated to the homomorphism o or obtained

by extension of the structure shezf to G with respect to the homomorphism
Let us come back to the general conditions of the beginning of this

section, suppose now that we are given on E a structure S(G) of type

F

'@G , and we want to find those structures S(F ) of type O_ onE

such that S(G) be obtained from S(F) by extrnsion of the structure sheaf

(we then say that S(F') is obtained from S{(} by restriction of the structure

sheaf; of course such a S(E) may not cxist, and if it exists, not be unique).
If PG is the principal sheaf associated to S{G), i.e., the inverse image in
the Ssheaf G( @, E) of the section S(G) of G{ £, E) /G (which is a

principal sheaf under the operations of G), then of course P_ / Fis

G
the subsheaf of G( @ , E)/ F inverse image of §(G) under the homomor-
phism (4. 6.1.), and therefore the sectiorns f(F) we are looking for are

exactly the sections of PG / F P(‘;/E can also be described as the

fibre space of structure type G / F associated to E and the natural
representation of G as sheaf of operators in G /F (see 4 5. example a.).

Thus we finally get:

Proposition 4. 6.1, Let E be a fibre space with structure sheafG, F a

subsheaf of groups of G. Then there is a canonical one-to-one

correspondence between the structures on E obtained by restriction of



the structure sheaf to ¥, and the sections of the sheaf P /F (P the
principal sheaf associated to E), i.e. the sections of the sheaf associated

to E and the natural representation of G by operators in g_/E

If we remark that if _li‘ i8 reduc ed to the unit sheaf, a structure of

type @ F Oon E is identic with the giving of an isomorphism of & onto

E, we see

Corollarz. In order that a fibre space of structure type g'ﬁ be trivial,

it is necessary and sufficient that its principal sheaf P admits of a section.

This follows also trivially from the fact that P is also the sheaf of

germs of isomorphisms of @ onto E (4.2., example a.).

4.7 Case of fibre spaces with a structure group.

Let G be a topological group operating faithfully (at left) in a topological
space F, and G a sheaf of germs of continuous maps of X into G, containing
the germs of constant maps, so that G can be considered as a sheaf of
groups operating faithfully (at left) on the trivial fibre space X >< F,
and admitting G as a structure group (definition 3, 5.1.), and we say
that a fibre space of structure type X >< F (structure sheaf G) admits G

as a structure group (see 4. 2., examples d). Now let in the same way F'

be a topological space with a faithful topological group G' of operators,

G' a subsheaf of the sheaf of germs of continuous maps of X into G'. Let
P be a representation of the topological group G into G', such that for
each germ f € G, the composed germ fP.f be in G'; we will say that ’O

is a representation compatible with the sheaves G and G'. Then { —> P-f

is a homomorphism of G into G', which we will denote by )?_. Now let E
be a fibre space of structure type X >< F (fibre F, structure sheaf G, hence
structure group G), we can consider the fibre space of structure type

X >< F!', structure sheaf g‘ associated to E and the representation fl

(cf. 4.6.); in practice, when the sheaves G and G' are supposed fixed

once for all, this new fibre space is simply called the fibre space associated

to E (given fibre space with structure group G) and the homomorphism F..
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2{'9_ into G' (operating on F'). We may simply be given a representation
P of G by homeomorphisms of F' onto itself (without a group G' or a
sheaf G'}), such that the corresponding map G><F'—> F' be continuous.
We then take G' = G / Ker £, G' = image of G under /2, and get (for
any E with structure sheaf G) an associated fibre space with fibre F',
structure group G' (and even structure sheaf G'). For instance, taking
F' = G, and for P the left regular representation, we get an associated
fibre space P with fibre G, structure group G (operating by left regular
representation) and more precisely, with structure sheaf G: this is called

the associated principal bundle of the fibre space E with structure group G.

It can be given an interpretation analogous to the associated principal
sheaf (see definition 4,1. 2. and example 4. 5.a.): it is isomorphic, as a
fibre space, to the space of isomorphisms of F onto (variable) fibres

E_ of E, which are "compatible with the structure group G" i. e. which are

induced by a germ at x of a coordinate map from X >< F to E; this space
being topologized in the obvious way (we suppose, to fix the ideas, that

G >< F —> F is continuous for the product topology and that we take on

X >< F the product topology): for each coordinate map U ><F > E|U,
defining in an evident way a bijective map U >< G -—> P|U, we take on

P |U the topology deduced from the topology of U >< G, and then on P the
unique topology inducing on each P|U the given one. From this alternative
definition, we see easily that G operates on the right on P (the map

P >< G —> P being continuous) and that X is the quotient space P /G,
(this is the second well known aspect of the notion of principal fibre
bundle. All of these facts, which depend only on the giving of G operating
on F and not on g__ itself, are quite classical and it is therefore useless to

give more details.) Let P be the principal sheaf associated to the fibre

space E. There is a natural injective homomorphism 9_[? into the sheaf

P of germs of sections of P, since eachf & H°(U, P), being an isomorphism

of U >< F onto E |U, can be considered as a map x —>» f(x) which to each
x € U associates an admissible isomorphism of (U >< F)x = F onto the
fibre Ex of E over x, i.e. as a section of P. The sections of P thus

obtained will be called admissible sections (for structure sheaf G).

For any coordinate map U >< G -- > P|U (stemming from a coordinate

map U > F --> ElU) the sheaf (_3_’ U, considered as a sheaf of sections



of U >< G, is transformed into the sheaf PIU of admissible sections of
P|uU.

Mare generally, let F be a topological subgroup of G, and H = G/'H
the corresponding homogenous space, let F be the subsheaf of G of germs
of maps into F, and Hthe canonical image of G in the sheaf of germs of
maps of X into H, clearly we have H = G /F, thus H is stable under the
operations of G on the sheaf of germs of maps of X into G/H. If now E
is a fibre space with structure sheaf G, we can consider the fibre space
associated to E and the operations of G on H, which is a fibre space
of type X >< H, and structure sheaf C_}_' a quotient of G. As easily seen,
this space can be identified to the quotient P/ F (if we remember that G
and hence F operate on the right on the principal fibre space P). The
sheaf H of germs of sections of X >< Il being stable under the structure
sheaf G', it follows that we can consider the sheaf associated to P/ F and
H, which is a sheaf of sections of P/ F, the sections of which are still

called admissible sections. The germs of admissible sections of P/ F

are exactly those which are canonical images of admissible sections of
P.

If for example G is a Lie group, F a closed subgroup (and hence itself
a Lie group), X a manifold of class c™ (respe ctively an analytic manifold),
G the sheaf of germs of maps of class c™ (respectively of analytic maps)
of X into G, then E and _I-_I are the sheaves of germs of maps of X into F,
respectively of X into H, which are of class Cm(respectively analytic).
This is of course trivial for E, and for H it follows from the well known
fact that through each point of G {and in fact it is sufficient to know it
for the neutre element e) passes an analytic section (G being considered
as a fibre space over H, with group F). If E is a fibre space with
structure sheaf G, i.e. a fibre space of class c™ (respectively an analytic
fibre space) with structure group G, it is checked at once that the
admissible sections of the associated fibre space P/ F are exactly the
sections which are of class C™ (respectively analytic). The analogous
remarks apply when G and F are complex Lie groups, X being a complex
analytic variety. Same results in the abstract algebraic case, X being an

algebraic variety and G and F algebraic groups, but with the important
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difference that here we must explicitly include in the hypotheses that G
considered as fibered over G/ F admits a local regular cross-section,
which implies that each germ of a regular map from X into H can be
lifted to a germ of regular map of X into G.
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CHAPTER V

THE CLASSIFICATION OF FIBRE SPACES
WITH

STRUCTURE SHEAF

5.1 The functor HI(X, G) and its interpretation.

Let G be a sheaf of groups (not nccessarily abelian) on X. Let

U= (Ui)ic 1 be an open covering of X, as usual we write Uioil‘ o ip

for the intersection Ui Nn ... nNn Ui , for any p-tuple (io, cees ip) e 1P * 1.

o P

We define the group of p-cochains of the covering U with coefficients in

the sheaf of groups G as the product group

’

P _ o
(5.1.1.) TR e PLCARR R

(We recall that for any open U < X, HO(U, G) is the group of sections of
G on U). Thus an element of CP(I_J_, G) is an arbitrary family (gi i)
o'"''p
of sections of G on the intersections U, i It is understood of course
= ieead

o P

that in the product (5.1. 1. ) we take for H(U, . G) the unit group if
i i g
. o ’
o

IJ.1 i = J, or what amounts to the same, that we restrict to systems
o+ ip

of indices (io, ceed ip) for which the intersection Ui ; 18 non-empty.
o i

Here we are interested mainly in CO(I_J_, G) = 1 Ho(Ui, G) and

1 _ o . . ip s
Cu, G) =M1 H (Uij’ G). A l-cochain (gij) is called a l-cocycle if it
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satisfies the conditions

{(5.1.2.) on Ui

ik ~ &ij8jk jk
whenever Uijk $ 2. The set of l-cocygles in Cl(g_. G) (which set in general
is not a subgroup however) is denoted by Zl(g_. G). It should be noted that

the relations (5.1.2.) imply

-1 . .
(5.1.3.) gji = gij ’ g - e (unit section)

(the second relation is obtained in taking i = j = k, and the first relation
then follows in taking k = i in (5.1.2)). Let g° = (g,) € C°(U, G),

g = (g;)) € c!(U, G), we define an element D(g°). g' of C{(U, G) by

o, 1, _ -1
(5.1.4.) (D(g ). g )i.i = gigijgj .

With this definition, D is a representation of the group CO(L_I_, G) by
permutations of the set Cl(l_J_, G); it is moreover trivial that Zl(ll, G) is
stable under the operations of CO(I_J_, G). We can therefore take the

quotient set Zl(l_l, _(.})7D(Co(g_o G)), which we denote by Hl(g_, G):
(5.1.5.) H'(U, G) = (U, G)/ DIC°(U, G)).

Let now V=(V)

i I be another open covering of X, finer than U. We will

define a canonical map
(5.1.6) Py y:HU, G—>H(Y, G).

Let T : J—> I be such that for each j € J, Vj - UTj’ Then for each
natural integer p, in particular for p = 0 and p = 1, we have a corresponding

natural homomorphism
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PP cPu, g)— cPy, a)

transforming the cochain gp = (g i Y Cp(g_, G) into

o lp

i
PLefe CP(V, G) given by

P_P - < e
(5.1.7.) (CFTg )j oy T restriction to Vj o of gj S
o P o p o p

It is obvious that for, goe Co(g, (_}_) gls Cl(I_J_, _(:‘:), we have
1 o 1 oo 11
(5.1.8.) P,(D(g).g) = D(Prg ). ( Prg)

and on the other hand that 90-(](2‘1“1' G)) c Zl(_Y, G), so that CP,;defines
a map of Zl(ll, G) into Zl(\_/, G) compatible with the equivalence relations
defined respectively by the groups of permutations D(Co(ll, G)) and

D((_Io(\_/, G)), hence a well determined homomorphism (5. 1. 6.). We have
only to show that this does not depend on the choice of 7. This is quite
easy directly, we prefer, however, Lo give a geornetric argument, which
at the same time will show us the meaning of our constructions. Let  be
a fibre space admitting G as faithful sheaf of left operators: we can always
find sucha d , e.g. G itself operating by the left regular representation.
By what has been said in 4. 3. 3., we see that there is a one-to-one

natural correspondence between those classes (for isomorphism relation)
of fibre spaces E of structure type 0 such that for each L,E |Ui be

trivial, i, e. isomorphic (in the sense of the structures of type @ ) to
®|Ui (i.e. such that for each Ui there is a coordinate map for E defined
on lUi)’ and classes of systems (gij) of coordinate transformations
(relative to the covering U and the sheaf G) modulo the equivalence
relation found in section 4.3. (cf. (4.3.3.)); now a system of coordinate
transformations relative to Il is nothing but an element of Zl(I_J_, g_), and
the equivalence relation in question is the one defined by the group
D(Co(g_. G)) operating as defined by formula (5.1.4.), therefore the

classes of such systems are exactly the elements of Hl(g_, G).

64



On the other hand, as remarked in 4.3. as a consequence of the general
considerations of 1. 5., the map ¢,(l Zl(g_. G) —> Zl(\_/_, G) transforms a
system of coordinate transformations for a fibre space E into a system of
coordinate transformations for a fibre space isomorphic to E; thus by
passing to the quotient, we obtain a map HI(L_I_, G) —>Hl(_\_/_, G) which,
interpreted as a map on sets of classes of fibre spaces of type @ , 1s
nothing but the inclusion map, hence canonically defined, and moreover
injective. Let now W= (Wk)ke K be a third open covering of X, finer

than X, then we have

(5.1.9.) Pw.u® Pw,v Pv. U

as is seen at once either directly, or as a trivial consequence of the
geometric interpretation. Let 0l be the set of all trivially indexed open
coverings of X, preordered by the refinement relation which turns it into

a preordered filtering set. The maps (5.1, 6.) satisfying (5.1. 9.) define

the system of sets (Hl([_]. g—))Ué(R as an inductive system on the preordered

set % . Therefore, we can take the inductive limit of this inductive

system, which only depends on G and is denoted by Hl(X. G):

(5.1.10.) H(X, G) = lim H\(U, G).

—
u

Definition 5.1.1. Let G be a bundle of groups on X. We denote by
HI(X, G) (and call first cohomology set of X with coefficients in G), the
inductive limit (5.1.9.) of the sets H(U, G) defined by (5.1. 5.),

corresponding to all open coverings of X, under the homomorphisms defined

above.

An element of this inductive limit is a class of elements in the union
of the sets Hl(tl, Ci), an element in Hl([_l, G) being equivalent to an element
in Hl(_Y. 9) if and only if for a suitable common refinement w of L_I_ and l/,
the canonical images of these elements in Hl(\_I_V. G) are the same. If we
now interpret the sets HI(L_I, G) as sets of classes of fibre spaces, we see

at once that HI(X, G) can be canonically identified with the set of all

65



isomorphism classes of fibre spaces of type @ (structure sheaf G) on X,

Thus we have obtained:

Proposition 5,1.1, Let U = (U, ) be an open covering of X. Then

H (U G) is in canonical one-to-one correspondence with the set of
isomorphism classes of fibre spaces with structure of type @ (structure
sheaf G) the restriction of which on each U is trivial, H (X. G) is in
canonical one-to~one correspondence with the set of all isomorphism
classes of fibre spaces with structure of type @ . With these
identifications, the maps (5.1, 6.) and tt;e natural maps of the sets of
Hl([_I, G) into their inductive limit, are the inclusion maps for sets of
isomorphism classes of fibre spaces. (In these statements, @ is any

fibre space admitting G as sheaf of left operators.)

In particular, we see that in the classification problem, @ itself
does not play any part; only the structure sheaf G is significant.

Let now g_ be a fixed open covering, and let u: (_‘:_ ——>g_' be a homomor-
phism of a sheaf of groups into another. This defines corresponding
homomorphisms uP:Cp(g_, G) — Cp((_{, G') by putting

(5.1.11.) (wPleP), ;o Tuwete )
o P o P

where u, is the homomorphism on the sets of sections deduced from u

{cf. 1.7.). Of course
1 1 o 11
u(D(g?).g") = D(u%). (u'g)
and moreover ul transforms cocycles into cocycles, so that by passing

to the quotient we obtain a map

(5.1.12.) o ulv, o) —s vy, .

This map clearly depends on u in a way to satisfy the usual two functor
requlrements. a) if G G' and u the identity, the corresponding

ul + H (U, G)—> H (U. G') is the identity; b) is we have two homomorphisms
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of sheaves of groups: Ci—g——a 9'——!—9 G'', then (vu)l = v1 ul . On the
other hand, these maps are compatible with the restriction maps corre-
sponding to a pair (U, V) of a covering U and a refinement V. More
precisely, given such a pair, and a homomorphism of sheaves u: G —> G/,

the following diagram of maps

1
vy, o) - H\y, ¢

1
H(Y, ) ———> H\(Y, &)

{(where the vertical arrows are the "restriction maps" ?V U) is
—' —

commutative. From this follows that for a fixed u: G —> G', the maps
Hl(g, G)— HI(I_J_, G') corresponding to all open coverings of X define a
natural map of the inductive limit Hl(x, G) of the sets Hl(g, G) into the
inductive limit H'(X, G') of the sets H{(U, G'), map which we will still
denote by u1 :

(5.1.13.) u HI(X. G)—> Hl(x. G');

and that these maps, for varying u, satisfy again the functor properties:

(5.1.14.) u = identity implies u1 = identity; (vu)1 = vlul.

Thus HI(X, g_), for variable G, is defined as a functor of G.

Let & be a fibre space with G as faithful sheaf of left operators, ¢
a fibre space with G' as faithful sheaf of left operators, u a homomorphism
_q--—% (_3_'. then we have defined in section 4. 6. for each fibre space E with
structure of type @ the fibre space o8 (u)E associated to E and the
homomorphism u, and we have seen that if (gij) is a system of coordinate
transformations for E, then (ugij) is a system of coordinate transformations

of the associated fibre space. Hence, if the isomorphism class of E is

defined by an element c Hl(}_(‘. Q), then the isomorphism class of the

associated fibre space is defined by urc = Hl(}_(_, G'). .
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Connection with the classical notion of cohomology with coefficiencs in an

abelian sheaf. As well known, if C_}_ is an abelian sheaf, one defines for

every integer p 2 0 the p.th cohomology group of X with coefficients in

G, HP(X.‘Q). There are different axiomatic or constructive approaches

to this notion, see in particular H. Cartan, Seminaire de Topologie
Algébrique, 1950-51. The most convenient approach in the present

context is the definition by the éech covering method, cf. J. P. Serre,
Faisceaux algelbriques cohe/rents, 1, Annals of Mathematics, vol. 61,

No 2, 1955. It is obvious that the definitions given here for H° (X, G) and
H (X G) for any sheaf of groups G, coincide with those given there when G
is abelian. In this case, H (X, (_}_) is even an (abelian) group; this will be
generalized below (5. 5.) to a somewhat more general situation. Now we
only remark that if G is not commutative, there is no natural way of defining
a group structure in H (X, G). However, we can define in this set a privileged

element, the trivial or neutre or unit element of H (X, G), which can either be

defined as the class defined by a cocycle (gij) such that gij = e for each (i, j)

(e being 2 unit section), or as the class of the trivial fibre space (4. 2.

example a).
The remainder of this chapter consists in the step by step development
according to the stringency of the hypotheses implied, of the definition and

properties of a generalized exact cohomology sequence.

5.2 The first coboundary map.

The following terminology will be useful:

Definition 5.2.1. A sequence of two consecutive maps

(5.2.1.) A > B > C

where A, B, C are sets and C is provided with a "neutre element" e,

is called exact if v_l(e) = u(A). I B is also provided with a "neutre
element" (again denoted e by "abus de langage"), if A is a group (hence
also a "neutre element" in A) and if we are given a left or right
representation £ of A by permutations of B, the system (A, B, C, u, v,)@)
(where A is understood with its group structure, and B and C with their

neutre elements) is called exact if (i) either ux =): (x).e for any x, or
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ux = )O(x_l). e for any x; (ii) tworelements of B have the same image in C if
and only if they are congruent mod the group A of permutations,
(iii) v(e) = e.

Exactness of such a system implies obviously exactness in the sequences
of maps (5.2.1.), in the sense of the first part of the definition. If A, B, C
are groups, the neutre elements of B and C their unit elements, and u and v
homomorphisms, we can let A operate on B by composition of u and either
the left or the right regular representation of B; then the two notions of
exactness are the same, and mean that the image of u is the kernel (in the
usual sense) of v. Suppose now given a sequence of arbitrary length of
maps between sets Ai each of which is provided with a neutre element:

Ao——-;n A

—>... A ----—)An-—-%....

1 n-1

{this sequence may of course be infinite); some of the A; may be given
group structures (we then assnme that the given neutre element is precisely
the unit element), and may operate moreover on the following set Ai +1
(on the left or on the right). We say that the system thus defined is an

exact sequence, if each sub-system A—>A —>A,, Al—>A,—> A

1 2’ 2 3
etc, is an exact sequence in the sense of definition 5.2.1.

Let G be any sheaf (not necessarily a sheaf of groups) on X, F. a

faithful sheaf of right operators on G. We have a natural homomorphism
o o

(5.2.2.) H (X, G)—> H (X, H) where H=G/F

on the other hand the group HO(X, F) operates on the left-hand side of

{(5.2.2.) and two elements are congruent if and only if they have same

right-hand image (proposition 3,4.1.). We will now define a natural map

(5.2.3.) 4 : HO(X, H)—> HY(X, F)

the coboundary map d . Let h € H°(X, H) be a section of H, let (Ui' gi)
be the set of all systems (Ui, gi) of open set Ui and a g;€ HO(X, G) the

image of which under the map corresponding to (5.2.2.) is hlUi' Then
(U.) is an open covering of X. If Uij 4 0, then giIUij and g; IUij define the
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same element of H® (Ui ’ H), hence by what has been said above (applied
to U ij instead of X), we see that there exists a unique f, Jé H (U iy’ F) such
that

(5.2.4.) gj = gifij on Uij .

The system (fij) thus obtained obviously satisfies to the condition fik fi ka,
and can therefore be considered as a system of coordinate transforms for

a fibre space with structure sheaf F (which space is well determined for
everychoice of a faithful representation of F by germs of automorphjsms

of a fibre space ). The class of this fibre space, i.e. the element of
Hl(x, F) defined by the cocycle (Iij), is by definition & h. It should be

noted that in this definition, we can clearly replace (Ui, fi) by a subset,
provided the Ui's considered still cover X; the corresponding fibre space is

indeed canonically isomorphic to the first, a fortiori its class is the same.

Proposition 5.2.1. Let F be a sheaf of groups operating faithfully on the

right on a sheaf G, let H be the quotient sheaf. Then

J
H%(X, G) —2-> HO(X, }_1)._{.; H(x, F)

is an exact sequence (definition 5.2.1,) i.e. the image of the first map is

the "kernel" of the second.

Let indeed g be a section of G the image of which is h, then on each

Ui we must have g = gifi with a well determined fié: Ho(Ui. E), writing

J
which means that the element of HI(X, F).defined by the cocycle (fij) is

gifi = gjfj on Uij and using (5.2.4.), we get fi = fijfj i.e. fij = fi' e.f,

the same as the one defined by the unit coaycle, i.e. the neutre element
of HI(X, _];7_‘) Conversely, if this is so, then we see at once that the
sections gifi are the restrictions of a single section g of G, because gifi

and gjfj have same restriction to Uij; this g of course has image h,
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Corollary Suppose given a "neutre element" e of HO(X, G) and take its
image in HO(X, I:I_) as neutre element in the latter set. Define

HO(X, F)—> HO(X, G) by f —> e.f. Let also e be the unit group,
e—>> HO(X. E) the trivial homomorphism. Then, with respect to the
natural operations of e in HO(X, F) and of the group HO(X,' F) on the set

HO(X. G), and the given neutre elements, the sequence
(5.2.6.) e —> H(X F)—> HO(X, G)—> H(X, H) —> H(X, F)
is exact (definition 5.2.1.)

We have only to show exactness in HO(X, G) and in HO(X. F). For the
former, this results from the definition of the map HO(X, F)— HO(X, G),
and that we already noticed that two elements of HO(X, G) have the same
image in HO(X, H) if and only if they are congruent under the group
HO(X. F); for the latter, this means nothing else but that HO(X, Ij‘_)-——-—> HO(X, G)
is injective, which is trivial because of the faithfulness of F.

Suppose now that G is itself a sheaf of groups, F a subsheaf of groups
operating on G by the right regular representation, then H is the usual
quotient C_}—/F_‘ (cf. 3.4.). Here HO(X, G) will be considered as a group;

As such, first, it has a neutre element, so that corollary ]l applies; on
the other hand, it operates on the left on HO(X, H) because G operates on
the lefton H (cf. 3.4.), and when now considering the sequence (5.2.6.)

this additional structure will be kept in mind.

Corollary 2. If G is itself a sheaf of groups and F a subsheaf of groups
(operating on G by the right regular representation), the sequence
(5.2.6.) is still exact if we take into account the operations of HO(X,(_}_) on
HO(X, H) and if moreover we complete it by the map HI(X, F)— HI(X, G)
arising from the injection F—-—> G:

jo 4

i
(5.2.7.) e—> HO(X, F)—2> H°(X, G) 2> H%X, H)-%> H'(X, F)

gy 1
—> H{X, G).
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We have to show again exactness in the more restricted sense in
HO(X, H), and moreover exactness in HI(X F). For the first, itis
obvious that the image of a g€ HO(X, G) is g. e (e being the neutre element
of HO(X, H)), so we only must prove that two elementsh, h' of H (X, H)
have same image underdif and only if they are congruent under G . Now
let (Ui) be an open covering of X fine enough that for each i we can find
g € Ho(Ui, G) the image of which in Ho(Ui, H) be h|U,, then 5.2.4. can

be written as

(5.2.8.) fij:'gi g. inU,_.
and Jdh is defined by the cocycle (fij) thus defined. Taking (U,) fine
enough, we can suppose that in the same way we can find liftings

gi €H°(U G) for the h' IU so that the cocycle (f'J) = (g g ) defines
dht. Suppose h' =g.h w1th g e HX, G), then we may take g’ = gg.
hence f'J = f.j and a fortlon dh = <Sh' conversely, suppose d h = dh',

hence (as H(U, F) — H (X F) is 1n_]ect1ve) there exists a O-cochain

-1 -1 . -1
e n = ; 1 1 =
(fi) (fi H° (U F)) such that f flf JfJ » i.e. g gj figi gjfj ,
which can be written also g f, lgi-1 = g.fj lg.'j-l on Uij’ and means that
there is a unique section g of G such that g|U. = g.f.-lginl. i. e, gifi'l = gg(

on U, i which implies (by taking the images in H (U H) that h = gh - We
now only have to prove exactness in H (X F). Fxrst we note that any
element d h (he H° (X, H)) has as image in H (X, G) the trivial element,
this resulting from the very form (5. 2. 8. ) of the cocycle defining dh (and
thus defining at the same time the image of dh in Hl(X, G)). Conversely,
consider an element c of HI(X, F) having as image in HI(X, G) the trivial
element, we prove that c is of the form dh. c is defined by a cocycle

(f. J) for a suitable open covermg U= (U ) of X, by hypothesis this defines

the trivial element of H (X G) i. e. can be written fij g; lgj, where

g; = H° (Ui’ (_}_). Let hi be the image of g; in Ho(Ui, I-_I), then the preceding
relation implies that hi = hj in Uij’ thus there is a unique h& HO(X, I:I_) such
that hlUi = h,, and by its definition we see that d h = c. This ends the

proof of corollary 2.
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Of course, in (5.2.7.), the map HO(X, F)y—> HO(X, G) is also the
map which corresponds to the inclusion map F —> G. The exact sequences
(5.2.6.) and (5.2.7.), and their extensions to be defined below, will be
referred to as the exact cohomology sequences corresponding to the exact

sequence of sheaves e-— F 45 G 4 H——> e. The reader may have

remarked that information of the exactness type in our cohomology
sequences was partially incomplete, for in (5.2.6.) we did not give a
characterization of the image of the last homomorphism

HO(X H) > Hl(X F), and in (5.2, 7.) we did not give a criterion

whether two elements of H (X F) have same 1mage in H (X G), neither

a characterization of the image of H (X F)—>H (X G). Now for the
latter such a characterization has already been given in corollary to propo-
sition 4. 6, 1. . The two former questions will be answered in section 5. 6.

Functorial character of the coboundary operator and of the exact

cohomology sequences. Consider two exact sequences of same set of

indices A > A > A > ... and A' —> A!'— > A'——> ... where the
o 1 2 o 1 2

Ai and A:.: are, as explained above, either sets with a neutre element, or

groups, which may then operate on the left or on the right on the consecutive
set. We suppose that the structures involved in the two sequences are
gimilar (i.e. if Ai is a group so is A!, and if A. operates on the left
respectively on the right on A 1,so does A' on A' + 1) We then call

homomorphism of the first exact sequence 1nto the second a system of

maps u, = Ai-—-> A!1 such that (i) u, transforms unit into unit (ii) if Ai
and hence Ai is a group, u, is a homomorphism (iii) if moreover Ai
operates on A + 1 on the left for instar.ce, then

u ]( Pi(xi).xi + 1) = pPilux). (ui + 15 4 1) for any x, € A, and

' . - .
X, , 1€ A, (where . and f>; denote the given reprecentations of

A respectively A! ) {iv) commutativity holds in each of the diagrams



(This notion could be developed without assuming the given se‘quences to
satisfy the exactness requirements’.) When all sets Ai are groups and all
mappings involved are homomorphisms, we find of course the usual notion

of exact sequences of groups, and homomorphisms between such.

Proposition 5.2.2. Let G be a sheaf with faithful sheaf Fof right operators,

G' a sheaf with faithful sheaf F' of right operators, /@ homomorphism of
F into F' and u a homomorphism of the fibre space G into the fibre space

G' compatible with (7. Then the diagram

°x, 6 F)—9 > Hx, F)
! 1

H
H(x, 6 E)—9 >ulx, £y

{(where the vertical arrows are the functor maps stemming from the map

(_S_/E—> G' /_F_" obtained from u) is commutative.
The straightforward verification is left to the reader.

Corollarz. Let C_}_ be a sheaf of groups, _F_’ a subsheaf of groups, and same
for G' and F', let H=G /]_?_, H' =_C_}_'_/Eh Let u be a homomorphism

of G into G' mapping F into F', and hence defining also a homomorphism
of fibre spaces G/ F —> (_'_j_'/ F', hence corresponding maps from the

terms of the exact cohomology sequence of F, G into those for ', G':

e—> HO(X, F)—> H°(X, G)—-> H(X, H}—> H'(X, F) —> H(X, G)

1 1

e—> H°(X, F')—> H’(X, G') —> H°(X, H)—> H (X, F)—> H(X, Q).

These maps define a homomorphism of the first exact sequence into the

second.

In the following sections, for each new structure in the cohomology
sequence a statement of the type of the preceding corollary on the

"functorality”" of the new construction should be made, and of course is
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indispensable for applications. But as these statements and their

proof are entirely mechanical, we let them once for all to the reader.

5.3 Case when F _1__3_ normal in _C_}

Let e—F: i G i H —> e be an exact sequence of sheaves as in
5.2., where G is a sheaf of groups and F a subsheaf of groups, but suppose
now F normal, so that H = g_/_I_.-" is itself a sheaf of groups, the map
G —> H being a homomorphism of sheaves of groups, and therefore
defining a map Hl(x, G)—> HI(X, H) which can be added after the last

term of sequence (2.5.7.) so we get:

i J
(5.3.1.) e—> HIX, F) -2 H(X, G)—2-> H'(X, 5)—i—> uix, F)

i
—1, 4, o) = H'(x, ).

On the other hand, HO(X, H) is now also a group, and the map

jo: HO(X, G)—> HO(X, H) a group homomorphism, the operations of the
first group on the set HO(X. H) is obtained by composing this homomorphism
with the left regular representation of HO(X, H). We will now define a
representation of the group HO(X, H) by permutations of HI(X, F). Let

he HO(X H), let U = (U } @ covering fine enough that for each i there

exists a 8; €& = H° (X, G) the image of which in H (U H) be h|U let

g = (gi) € C (g, G), and define the operation pP(g) of gonC (l_)_. F) by

(g). (f.. = (g.f..g. l); the second member is a cochain with coefficients

1135

in F, and not only in G, for glfugj -l (g1 IJ )(g g ), and the two

right-hand factors are sections of F, the first because E is normal in C_}_,
the second because the image gigj:r in Ho(Uij, H) is the unit section. It

is obvious that ((g) transforms a cocycle into a cocycle, and on the other
4

hand transforms a cocycle (fij) equivalent to (fij), i.e. of the form
(£1f13f3 ) {(where (f.) € CO(U F')) into a cocycle equivalent to p(g). (fij)’

-1.,-1 . : .
] - - l
for P (g). (f ) (glflfu f ) ({ 1g1 ij J J } which is equivalent to

-1 . .
P(g) (f ) = (glfngJ ) (we put i; = gifigi » which is a section of F on Uij
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because F is invariant)., Therefore P (g) defines an operation in the
quotient H (U. F), which will also be denoted by fD(g) Moreover, if
for the same h we take another system of lifting sections g' = (g )s then
F(g) and )O(g ) in H (U, F) are the same, for we must have

1

g = f.g. with f. € H (U F), hence}O(g') .(f ) =(f.g.f..g. ) defines

1®174j%j

the same element of H (U F) then p(g) (f ) = (g1 i J 1), Therefore, we

may write pO(h) for the operation in H (Ii, F) thus defined. Obviously
F\(e) is the identity, and P(hh') = (h)/~(h'), whenever h and h' are such
that they can both be lifted on each U Moreover, if V is a covering finer
than U, it is still obvious that the operatlons ,o(h) on H (U, F) and on

H (V, F) agree. We have therefore defmed a representation of

H (X H) by permutations of the set H (X, F), and this supplementary

structure will now be kept in mind when speaking of the sequence (5.3.1.).

Proposition 5.3.1. Two elements of Hl(X F) have same image in

H (X, G) if and only if they are congruent under the group of permutations
F(}?(X, H)) defined above; an element of H (X G) is in the image of

H (X F) if and only if it is in the kernel of the map_] H (X G} —H (X H).
The sequence {5.3.1.), provided with the different structures explained

above, is still exact, (definition 5.2.1.),

Taking into account proposition 5.2.1, corollary 2, exactness is
equivalent to the first two statements of the proposition, together with

the formula
(5.3.2.) dh= p(h™l).e.

The latter results trivially from the definitions. Consider now elements
c E HI(X. F) and he H(X, H), then F(h). c is defined, for a sufficient
fine covering U = (Ui) of X, by a cochain (gifijgj-l), where (fij) is a cocycle

defining c, and the g; € Ho(Ui. G) lift hIUi; the image of ¢ respe ctively
f:(h). c in Hl(x, G) are defined by the same cocycles (f.lj) and

(g. fijg ) as c¢ and F(h). c, and thus obviously define the same element of
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HL(X. G). Conversely, supposec, c'€ HI(X, F) have same image in

Hl(X G); for a sufficiently fine covering U = (U.), c and c! are defined
respectively by cocycles (f ) and (f'J) on U, and as these cocycles define

the same element of H (X G) we must have (f' ) = (glfugj ) for a

suitable (gi)e C (g. G). But f' g. implies, if h is the image of

7] ij

g; in Co(Ui. H), that hi and hj are the same on Uij'

unique h € HO(X, H) such that hi = hlUi for each i, and by definition of

fp(h) we see that c¢' = p(h).c. - We now only have to prove that the image

gf

hence there exists a

of HI(X. ]_L'_"_) in Hl(X, G) is the kernel of Hl(X, G)—> HI(X, H); this could
be done very easily directly, but we can also remark that for a fibre space
E with structure sheaf G, the associated fibre space of type G / F is a
principal sheaf with structure sheaf H the class of which is the image c'
of the class ¢ of E under the map H (X G)—> H (X H); in order that the
structure sheaf of E may be restricted to E‘_, it is necessary and sufficient
that the associated bundle admits of a section (proposition 4. 6.1.) but this
is also the condition for this associated bundle to be trivial (proposition
4.6.1., corollary). This completes the proof.

G operates in itself by interior automorphisms (4.5., example c.),
in particular every section g € HO(X, G) defines an automorphism of the

sheaf of groups G, which will be called the interior automorphism defined

by g, and denoted by o—(g). As F is invariant, o—(g) defines also an
automorphism of the sheaf of groups F, and hence induces a bijective
map of HI(X, F) into itself. We thus get a representation of HO(X, G)
by permutations of the set HI(X, F), which will still be denoted by
g—> o—(g).

Proposition 5.3.2. Let g~ be the representation of HO(X, G) by permutations

of Hl(X, E) deduced from the representation by interior automorphisms

of G. Let g € H(X, G), and h = j_g its image in H°(X, H), then
(5.3.3.) pli g) = o (g).

This results trivially from the definitions. An important particular
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case is

Corollary. Suppose that j : HO(X, G) —> HO(X, H) is surjective, and
that H® (X, G) is the product of H (X, F) and the centrahsator of

H (X, F). Then H (X. H) operates trivially on H (X, F), i.e. the
map 1 : H (X, F)—>H (X, G) is injective.

In section 5. 6. we will give a criterion for two elements of
HI(X. G) to have the same image in Hl(X. H), and in section 5.7. we
will {(at Jeast when F is abelian) characterize the image of the map
iy nix, 6)—s ulx, H).

5.4, Case when 1- 1s normal and abohan

— v—

In this case, as recalled in 5. 1., H (X, F) is itself an abelian group,

the product of course being defined in terms of the product of two cocycles
) (f' - 1f, Jf' .) (which is still a cocycle because F is abelian). We will

soe h(mm,nr that the map 4: H® (X H)} ——> H (X I} is in general not

A homomorphism. Moreover, H (X, F) does not opcrate on H (X. G)

ns could he expected from the foregoing, and neither can we define at

this stage a second coboundary map HI(X, H)——=> I—IZ(X, F); for this F

should be supposed in the center of G a< in the next rection, In section

5. 8. however, we will define in the present context a suitable

substitute for the second coboundary mzap. Here we will develop a

convenient intcrpretation of the representation P of HO(X, H) defined in 5. 3.

F being abeliar, the germ of automovphism of F indu. ed by the germ
of interior automorphism defined by a g€ G which is in F, is triviel,
therefore for general g € G the germ of automorphism of F defired by g

depends only on the image of g in H, so that we have thus defined a

representation + of the sheaf H into the sheaf of a.itomorphisms of the

abelian sheaf 1_7‘_; from this results a representation, sfill denoted o—,

of the group HO(X, H) into the group of au*omorphisms of the abeljan

sheaf F, which again defines a reprpsentatlona of H° (X, H) by

automorphxsms of the abelian group H (X,, F). Let now, for any

c€H (X. F), T(c) stand for the operation ¢'—> c' + c of translation

by c. *
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Proposition 5.4.1. The coboundary operator J, the represenation 2
of H (X H) by permutations of the set H (X. F) considered in 5. 3,,
and the representatxon o~ of HO(X, H) by automorphisms of the abelian

group H (X. F) defined just before, are related by

(5.4.1.) plh) = T( dh ) (h) (neHOAX, H).
This formula results at once from the definitions and the
-1 . .
formula (glf JgJ ) = (gi 13 )(g g ). It shows that p is representation

of the group HO(X, H) by_gf&_t_‘_n_e transformation in the abelian group

HI(X. F), the "linear representation" associated with it being o~ . In
order to simplify the notations, let d '(h) for o (h-l). and write

the composition law in the abelian group HI(X. F) additively as usual, then

using formula (5.4.1.) and expressing that p is a representation, we get

(5.4.2.) d'(hh')= 4'h + o—(h). d'n’ d'e=0

(h, h'e HYX, H), 4'(h) = d (b)),

Using classical notions of the cohomology of groups (see for instance

the forthcoming book "Homological Algebra" by Cartan-Eilenberg),

these formulae mean that d' is a normalized 1 cochain of the group

HO(X, H), with coefficients in the abelian group HI(X, F) where

HO(X, H) operates by ~. - We see on (5.4.2.) that d is a homomorphism

if and only if ¢~ is the identity on the image of ¢ , which in general of course

is not the case.

5.5 Case when F is in the center of G.

Then of course F is invariant and abelian, so that 5.4. applies.
Moreover here the representation o~ of H into the sheaf of germs of
automorphisms of ¥ is trivial, a fortiori the same is true for the
correspondmg representation of H (X, H) by automorphisms of

H (X, F). Hence by formula (5.4.2.) and (5.4.1.) we get:

Proposition 5.5.1, If F is in the center of G, the coboundary map d"

o ——— P ——— S—— —




is a homomorphlsm and the representation F of H® (X, H) by permutations
of H (X, F) is obtained by composing the repreeentation d' = -d with the
regular representation of the abelian group H (X. F).

Corollary, The kernel of the map Jl H (X G) —3> H (X H) is canonically
isomorphic with the quotient group H (X F) /J(H (X, H)).

This results at once from the foregoing, and exactness of the
sequence (5.3. 1.)

Let U = (U ) be an open covering of X, { = (f ) a cocycle of F and

= (g ) a cocycle of G relative to this covering, then we see at once that

fg = (f g ) is again a cocycle, and the class of the latter in H (U G)
depends only of the classes c and ¢' of f and g in H (U, F) respectively
H (U. G), and can therefore be denoted by f(c) c'. It is obvious then
that ©(e) is the identity operation or\ I—I (U, G) and pP(c cz) = ﬁ(cl) f’(cz).
so that we get a representation of H (U. F) by permutations of the set
H (U, G). lf V is an open covering of X finer than U, and if we identify
H (X. U) with a subset of H (X, V}, we see aleo at once that for
c €H (U, F) the operations /D(c) defined on H (U G) and H (V. G)
agree, so that we get ain a natural way a representation of the abelian

group HI(X, F) by permutations of the set HI(X, G).

Proposition 5. 5.2. Suppose F in the cente: of G . In order that two

elements of Hj(X G) have sam' image in H (X, H), it is necessary and
sufficient that they be congruent nnder the group of permutations
P(HI(X, If_)) defined above; in other words, the cohomology sequence
(5.3.1,) still remains exact {(definition 5, 2.1.) if we add to its structures
the operations of H/(X, F) on HY(X, G).

Of course, both statements are equivalent, for we have of course
(5.5.1.) ic= ple)e (¢ e H(X, ).

The proof of proposition 5.5.2. is of the same entirely mechanical

character as in the preceding sections, and therefore left to the reader.
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As stated already, we can complete here the exact sequence
HI(X, H) (at least in general cases as: X paracompact) by a second
coboundary map HI(X, H}— HZ(X. F); as we will define an analogous

map under more general conditions in section 5. 7. below, the reader is

referred to that section.

5.6. Transformation of the exact sequence of sheaves.

Let again
(5.6.1.) e—>F25>GlsH—>e

be an exact sequence of sheaves, where E and g_ are sheaves of groups
and i is a homomorphism of sheaves of groups, so that F can be
identified with a subsheaf of groups of G (not necessarily normal, i.e.

H itself is not assumed to be a sheaf of groups). Now G operates on
itself by interior automorphisms, and this representation of G induces a
representation of F by germs of interior automorphisms of G; let

G(o—) be G considered as a group bundle with sheaf of left operators F.
F asa subsheafis stable under the operations of¢y(F), and therefore we
can consider F = F (¢—) as group bundle with sheaf of left operators F
(the representation of F thus obtained being of course the "adjoint
representation” by interior automorphisms). Of course, the operations
of F on H obtained by passing to the quotient are trivial, we write however
H(+) for H provided with F acting (trivially) as sheaf of left operators.
(5.6.1.) can now be written as an exact sequence of sheaves with sheaf
of left operators F (the homomorphisms i, j being compatible with these

structures):
(5.6.2.) e ——> lj’_(r)—-i—-—>g_(a—')—-j-—-> H(~)—> e.

Let now E be any fibre space with structure sheaf F_, consider the fibre
spaces associated to E and the different terms of (5.6.2.), (cf. 4.4.),

then the latter sequence is transformed into an exact sequence:

(5.6.3.) e —> lj‘_(a-)E--—i—-> g(a—‘)E_—-i—-a Ii(d")g—————)e
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where of course the first two terms are still sheaves of groups and the
first homomorphism a homomorphism of sheaves of groups (cf. 4.5.b.),
the last term being here canonically isomorphic to H (because F operates
trivially on H). Let us now write the exact cohomology sequence relative
to (5.6.3.):

(5.6.4.) e~—> ﬁ°(x, 1-_“_(:r~)E)—-> H%(X, g_(r)E)——> HO(X, Ij(cr")E)

—_ Hl(x, E‘_(r‘)E)——-> HI(X, (_3_(0")E)

Hy(x, F)—— Hi(x, G).

The vertical arrows are the canonical isomorphisms established in
proposition 4, 5.2. This of course applies without further comment to

the first arrow; for the second, we simply notice that, in virtue of the
transitivity principle explained at the end of section 4.4., G (a-')E is
canonically isomorphic to g_(d—‘)E'. where now G(s™) stands for G with G
as sheaf of left operators (acting by interior automorphisms) and where E'
is the fibre space with structure sheai G associated to E. Thus the second
vertical arrow is defined in virtue of the same proposition 4. 5.2., and
moreover it is easily checked that the square of homomorphisms thus
obtained is commutative (this being contained in an eviant functor
property of the isomorphism of proposition 4. 5, 2. ; for obvious reasons,
one never states all functor properties which are actually currently
needed, relying on the somewhat vague but intuitive fact that all maps
defined in a reasonably "canonic" way have the obvious functor properties,
i, e. that all diagrams constructed with such maps are commutative;
which truth, once admitted, will save a considerable amount of ink in
many an expository work). Therefore, in the exact cohomology sequence,
we may replace the last two terms by Hl(x, F) and HI(X, G), provided

we take now, as new unit elements, the class c of E in H (X, F)
respectively its image c' in HI(X, G), according to proposition 4. 5.2.
Interpretation of the first three terms of the cohomology sequence is
readily obtained: the first two are the groups Aut(E) and Aut(E') of

automorphisms of E respectively the associated E' with structure sheaf G
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(in virtue of proposition 4.5.1.), the third is identic to H’(X, H), so
that we finally get the

Proposition 5. 6.1. Given an exact sequence of sheaves (5. 6. 1. )s where

i is a homomorphism of sheaves of groups, and a fihre space E with
structure sheaf I_"‘_, let E' be the associated fibre space with structure
sheaf G. Then we have a (canonical) exact sequence:
io do o dE 1
(5.6.5.) e —> Aut(E)-———> Aut{E') —— H (X, H)——— H(X, F)
i

—Ls Hlix, g)

where we take as unit elements in HI(X. F) and HI(X, G) the class c of

E respectively the class c' of E'.

Of course, "exact sequence" involves also the operations of
Aut(E') on HO(X, I_-l_) defined in 5.2., and moreover, if F is normal (and
hence E‘_(""‘)E of course normal in g(r)E), the operations of HO(X, H) in
HI(X, F) as defined in 5.3. We let the interpretation of the first
homomorphisms of (5.6.5,) to the reader; it should be noted that the
coboundary operator in (5. 6.5.) is relative to (5. 6. 3.) and not to (5.6.1.),
and therefore has been denoted by JE rather than f . As a consequence of

exactness in HI(X, F), we get a result promised in 5.2.:

Corollary. Under the conditions of proposition 5. 6.1., the elements of
H(X, F) which bave the same image c' in HI(X, G) as c are exactly those
which are in the image of HO(X, H) by the coboundary operators d E
associated with E. Therefore, the set of these elements is in one-to-one
correspondence with the set of classes of intransitivity of HO(X, H) under

the operations of the group Aut (E').

(The Jast statement of course results from exactness of (5.6.5.)
in H°(X, H)).
Suppose now that F is normal in G. Let now G(¢~) stand for G

provided with G as sheaf of left automorphisms (by interior automorphisms),
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then F being normal is stable under the operations of G and we can
consider F as group bundle with G as a sheaf of left automorphisms,
denoted by F(¢~). H is now itself a sheaf of groups, and the operations
of G on G pass to the quotient, so that H can be considered as group
bundle with G as sheaf of left automorphisms, denoted by H(¢). With
these new notations, the exact sequence (5.6.2.) still holds. Let now E'
be a fibre space with structure sheaf G, then (5. 6.2.) gives rise to an

exact sequence of associated sheaves of groups:
LI 1 1
(5.6.6.) e — F(—)P s g(—) T s H—) 2> e.

If E" is the fibre space with structure sheaf H associated to E', the last
term in this sequence is canonically isomorphic with {-I_(r’)E", where now
H(o~) stands for H provided with H as sheaf of left automorphisms (H
acting by interior automorphisms). (5.6.6.) now gives rise to an exact

sequence of cohomology (proposition 5.3.1.):
!
(5.6.7.) e —> HO(X, Fir—)F' )= HX, G(oF) — HO(X, H(—)E)

—> HI(X, F(F)—> HI(X, (T )—> B (X, H)F)

v

H(X, G) ——>H (X, &)

where the two vertical arrows are defined as above and give rise to the
same remarks. If E'is obtained from a fibre space E with structure sheaf
E by extension of the structure sheaf to G, then H(c~ )E' is of course
canonically isomorphic to H, and Fg~ )E. to the E‘_(W)Econsidered in

the beginning, so that (5.6.7.) is nothing but (5. 6. 5.) with the
supplementary map HI(X, G) -—-—)-Hl(X, H) added. In the general case
however, HI(X, F(a—‘)E‘) is in no direct relation with Hl(X. F), and has

no interpretation other than its definition. The second and third term in
(5.6.7.) are canonically isomorphic with Aut(E') respectively Aut{E") in
virtue of proposition 4,5.1. {making use of the isomorphism I—_I_(a-’)E' = I_:I_(o-’)E").
As to HO(X, F_(P’)E.), it appears as a privileged normal subgroup of

Aut(E') corresponding to the given normal subsheaf F of the structure
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sheaf G of E'; it can be defined alternatively as the set of those automor-
phisms of E' which are expressed, when E is given by a system (g .) of
coordinate transforms as explained in 4. 3., by a system (g ) (thh .

g = g,8;:8 ) where g; is a sectian of F (and not only G) on U We will

ij=)
denote this subgroup of- Aut(E') by AutF(E') and call it the group of F-

automorphisms of E; when the structure sheaf can be restricted to F,

AutF(E') is nothing else than the group of automorphisms of E' provided
with the structure sheaf F. We thus get the:

Proposition 5. 6.2 Consider an exact sequence (5.1.1.) of sheaves of

groups F, G, H, let E' be a fibre space with structure sheaf G, E" the
associated fibre space with structure sheaf H. Then we have a
{canonical) exact sequence:

io Jo

(5.6.7.) e —> AutF(E')——-) Aut(E') > Aut(E")

_SE , ulix, F(ﬂ") )—an(x G)—J—->H(x. H)

where Aut F(E') is the group of F -automorphisms of E, and where we take
as unit elements in H (X G) and Hl(X. H) the class c' of E' respectively

the class c" of E",

Of course the first two maps are group homomorpbisms, and the
exactness statement is understood with respect to the structures referred
to in proposition 5. 3.1., in particular takes into account the natural
representatlon. now denoted by £ ; of Aut{E") by permutations of

H (X F(a-’) ). Thus we get a result promised in section 5. 3.:

Corollary. Under the conditions of proposition 5. 6.2., the elements of
H(X, G) which have the same image c" as c' are exactly those which are
in the image of HI(X, F(o— )E') in (5.6.7.). Therefore, the set of these
elements is in one-to-one correspondence with the set of classes of
intransitivity in HI(X, E(O“)E') under the group of permutations

PE (Aut(E),
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This gives us the characterization of the inverse image of an
element of Hl(x, H) when this inverse image is non-empty. Together
with corollary to proposition 5,6.1., it allows to a certain extent to
reduce the classification of {ibre spaces with structure sheaf G to the
classification with structure sheaves F and H = (_}_/F_‘

The case F normal abelian is particularly simple. As explained
in 5. 4., the representation of G by germs of automorphisms of F is then
induced by a representation o of H, therefore in virtuec of the transitivity
principle F(o-")E' is canor.ically isomorphic to F(cr’)E ". where now
F(s—) stands for F with H as sheaf of germs of left automorphisms, and
therefore F(o—) '_depends only on the flb!’e space E" W1th structure sheaf

H associated to E'. On the other hand, H {xX, F(o’) 5 is an abelian group,

which we will denote by M{E") or simply M,and we efaw in 5. 4. that the
operations of Aut{E") on M a:e affine and can be expressed in terms of
the coboundary map JE':Aut(E") -- > M and the representation -—of
Aut{E") by automorphisms of M associated with the exact sequence
(5.6.6.), so that the inverse image of the class ¢ of E" appears as the
quotient of the abelian group M by the group ;’E'(Aut{E")) of affine
transformations of M. However, though M does depend only on E", the
representation PE' depends in general on the fibre space E' (with
structure sheaf G) we started with. We will rapidly give some precisions
in this direction. First, in virtue of proposition 4.4.1, there is a canonical
representation of Aut (E") by automorphisms of lj‘_(cf’)E", and it is checked
at once that this is the same as the representationo— associated with the
exact sequence (5.6.6.), where F(O"DE’ = F(d")E" is abelian invariant.

Therefore the representatlon o~ of Aut{E") by automorphisms of the group

M=H (X F(o7) ) considered above is also the n_a_iura, representation

stemming from the operations of Aut{(E") on F(a") ; it therefore depends
only on E"., As we have (5.4.1.):

(5.6.8.) Poite) = T(SE (g (e) (g € Aut(E")

(where T(m) is the translation operator in M corresponding to m € M),
1
in order to see how f’E (g) depends on the manner in which E" has been

obtained from a fibre space E' with structure sheaf I, we only need
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1
investigate the behavior of the coboundary operator d E . More precisely,

suppose given a priori a fibre space E" with structure sheaf H (to fix

the ideas, all fibre spaces will be supposed principal sheaves), the class
c" of which is in the image of H{(X, G), i.e. such that there is at least
one fibre space E! with structure sheaf g_, such that the associated fibre
space E' with structure sheaf H be isomorphic to E". For any such E'
and any isomorphism u: E'—> E", the representatton P of Aut(E'")
by automorphisms of M(E') and the map d’ : Aut(E'Y)——> M(E') are
transformed into a representation Pu of Aut(E") by automorphisms of
M(E") and a map d Y. Aut(E")—> M(E") and clearly we have, in

virtue of (5.6.8.):

(5.6.9.) pUE = TS Mg .o (e) (g € Aut(E")).

As already noticed, if we introduce P'u(g) = Fu(g-l). F' “isa
normalized cochain of degree 1 of Aut(E") with coefficients in M(E")
considered as a group with Aut(E") as group of operators (under ¢ ).
On the other hand, in virtue of proposition 5.6.2., and using the
isomorphism of M(E') onto M(E") corresponding to u, we have an

onto isomorphism:

“ M(E")/ p Y(AuE") —> j, ")

(5.6.10.) i
of the set of classes of intransitivity of M(E") under F onto the set of
classes c' € H (X G) such that jc' = c". We now mvesngate how

S (and hence F Y) and i vary with u (for a fixed c" € H (X H)).

First, let P be an isomorphism of E" onto a second fibre space Ei'

with structure sheaf H, hence a corresponding isomorphism

g —> Pg CP.I of Aut(E") onto Aut(E") and an isomorphism

F(o«')E—'—-—-) F(—) El defining an isomorphism o ( P ): M(E") —> M(E”).

Then it is evident by "transport de structure" that

(5.6.11.) J9‘1"‘(5;) = (p)p (@ o )rf‘(<}>)'l (g € Aut(E}))
which implies
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u _ u u - u, -1
(5.6.12.) & P =( 4 ) Where (& g ® )1 d e 5¢)
(8 € Aut(EY)).

In virtue of (5.6.11.) 0"’(?) transforms Pu(Aut(E")) into a.u(Aut(E'l')),
and hence defines a map on the sets of classes of intransitivity, and of

course the diagram

(5.6.13.)  M(E") //)u(Aut(E")) —> 5,7 e

la*(f) |

MEp) [/ pUsutE]) — 3, e

is commutative, Let us take now E'l' = E", hence fé Aut(E'"). Then the
second part of (5.6.12,) defines quite generally operations of the group
[ = Aut(E") on the group of normalized cocycles in M = M(E") (on which
[* operates by ¢), ¢ € [" defining the operation &' —» §! defined by
this formula; and it is seen at once that the cocycles homologous to zero
form a stable subgroup, so that I operates on the quotient Hl( M,M)-all
this being of course defined whenever a group r operates in an abelian
group M: then P operates in a natural way on all groups Hi( [,™m).
However, it is easily checked that these operations are always trivial,

It follows at once that H1 (Aut(E"), M(E")) is a set which is intrinsically
determined by the class c', more precisely: if E" and Ei: are of the same
class c", then the bijective maps H' (Aut(E"), M(E")) — H! (Aut(E}), M(E])
defined by the isomorphisms of E' onto E'l' are all the same, thus the two
quotient-sets above are canonically isomorphic (and these isomorphisms
satisfy of course the obvious transitivity property). So we may denote
this set symbolically by H! (Aut(c"), M(c")). Now formula (5.6.12.)
shows that, given &! and E'" and an isomorphism u of E! onto E'", the
element in Hl(Aut(c"), M(c'')) defined by the cocycle J'u does not
depend on E'" or u, but only on E!, and of course even only on the class
c! of E'. We will now see that it does not even depend on the choice of
c!, i,e. does not change if we replace E! by another fibre space E'1 with

structure sheaf G, class ci such that jl(c'l) = ¢!, Indeed, in virtue
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of exactness of {5.6.7.), such a fibre space is isomorphic to the fibre
space associated with a fibre space E with structure sheaf F(o-') 80
that we can suppose that E’1 =G (0-') is this associated fibre space. Then
we have a canonical isomorphism u of I;I.(a-)Ei = Ei onto E" =E', hence a
corresponding cocycle d Aut(E") — M(E") = M; it is seen at once
that this cocycle does only depend on the class c € HI(X, F(o— )E) = M
of E, and may therefore be written d '“. This is one of the cocycles
which correspond to the different isomorphisms of E'1 onto E"., We now
compare d 'c with the c cycle J'E' of (5.6.7.) (i.e. thed v corre-
sponding to the identity isomorphism E'—> E"). An easy direct
computation by coordinate transforms, which being entirely mechanical

is left to the reader, shows:
(5.6.14. ) (€ - B = g).c-c  (ge Aut(EM)

i.e. ch - J'E' is the "coboundary" of the normaljzed O-cochain
¢ € M. (It may be remarked that this means also that the affine
representation ¢ corresponding to J'c is obtained by transforming
P E! by the translation T{c) with c € M). So (5.6.12.) together with
(5.6.14.) show that for given E", the cocycles J'u corresponding to
all possible isomorphisms u onto E" of fibre spaces Ei associated with
fibre spaces Ei with structure sheaf G, form exactly one class of the
quotient H (Aut(E“), M(E")), which class is therefore
canonically determined by the class o' € H](X, H) alone. Putting

together the results obtained, we get:

Proposition 5.6.3. Let G be a sheaf of groups, F an abelian normal

subsheaf, H = 9/_1‘_‘_ the quotient. Then in virtue of the representation
o-of H by germs of automorphisms of F deduced from the interior
automorphisms of G, each fibre space E" with structure sheaf H gives
rise to an associated abelian sheaf F (o~ )E" on which the group Aut(E")

of automorphisms of E" operates as group of automorphisms (representa-
tion still denoted d"‘), Fence Aut(E") operates also on the groups

H (X, F(a—*) ) =M (E"), and we can consider in the usual way the
associated cokomology groups HJ(AutlE"), M (E",))
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which are intrinsically determined by the class c*' € H'(X, H) of E". I
now E! is a fibre space with structure sheaf G and u an isomorphism of
the associated fibre space E! with structure sheaf H onto E", then to the
map J'E' of the sequence (5,6.7.) corresponds a map J"u: Aut(E")—)Ml(E")
which is a normalized l-cocycle, The set of all such cocycles (for all
possible choices of E and u) is exactly one class in

Hl(aut®"), M (E") = H(Aut(c"), M!(c")), which is thus canonically
determined by the class c'' € H1 (X, H) and the given extension G of H
by F. Given any u as above, and taking the affine representation fu of
Aut(E'") defined by the corresponding cocycle A"u by formula (5.6.9.),
the inverse image of ¢'" in I-I1 (X, _(_}) is canonically isomorphic to the

quotient set MI(E”) //)u(Aut(E")).

We intend to give elsewhere a general cohomological interpretation
of the invariant just obtained for a fibre space E'" with structure sheaf
H and an extension ofﬂ with abelian kernel F. For the sake of shortness,
we will neither give here the special remarks which apply to the case
when the representation of Aut(E') by automorphisms of M(E") is trivial
(which generalizes the case when F is in the center of G) or when the
class of Hl(Aut(E”), M(E")) obtained above is the ''zero!''.

#
5.7. The second coboundary map (F normal abelian in G).
Suppose still F normal abelian in G, H = _C_}_/__lf‘_, let E'" be any fibre
space with structure sheaf H, consider again the associated abelian sheaf

E(O")E", which we will write shortly F(E'"), Under general conditions,
for instance if X is paracompact, we will define an element

§'E" € H%(X, F(E"), such that this be 0 if and only if E" can be obtained
as fibre space associated with a fibre space E! with structure sheaf G.

* Footnote (added for the second edition): A general definition of the second
coboundary map, without any paracompactness assumptions, and an
application of the latter to a question of algebraic geometry, is given in

A. Grothendieck, Sur quelques points d'Algébre Homologique, Chapter 3,
paragraph 4, Tohoku Math, Journal, 1958, It should be noticed that this
definition is possible only using the ''true'' cohomology groups of a space
(and not Cech cohomology), as defined by using injective resolutions., See
also Roger Godement: Théorie des Faisceaux, Act. Scient. et Ind. Paris
1958, for the general theory of the cohomology of sheaves,

90



However, in order not to let escape the fibre spaces occuring in

algebraic geometry, we will not restrict to the case X paracompact;
this will give rise to some mild technical complications. We follow
closely the exposition of the coboundary map (for the case of abelian

sheaves) given by Serre in the paper cited in 5. 1.

We will first define a variant for the set HI(X, H). Let
= (U ) be an open covering of X, let c® (U, H) and EI(U H) be the
subsets of C°(U, H) respectlvely C (U H) images of the sets
C (U G) and (—Z-I(U G). Let Z (U H) = Z2(U, H)I)C (U, H) be the
gset of cocycles in C™(U, H) Coming bdck to the def1n1nons of 5.1., we
see that C (U H) is a group operating on the set C (U H) and letting

invariant the subset of cocycles, thus we can consider the quotient
1 1 o
(5.7.1.) H(U, H)_ =2°(U, H)_ / D(C°(U, H) ).
Of course, we have a canonical isomorphism
(5.7.2.) u'(u, B —H'(U, H)_.
On the other hand. if Visa covermg finer than U, we define as in 5,1,

a canonical map H (U, H) —-)H (v, H) » and the diagram

(5.7.3.) ul(u, H, —H'(y, H)

| |

B'(v, ), —H'(Y, H)

is commutative. These maps define the system of sets Hl(U. H)
(U variable covering) as an inductive system of sets, hence we can take
the inductive limit, which we denote by H (X, I-I) The maps (5.7.2.)

and commutativity of (5.7.3.) define a canomcal map

(5.7.4.) u'(x, 1), —> H (X, H).

Lemma 5.7.1, The map (5.7.4.) is injective., It is bijective in each of
the following two cases: a) X is paracompact b) X is an algebraic

irreductible curve with the Zariski topology.
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Consider two elements of Hl(x H) having same image, we will prove
that they are identic. We can find an open covering U = (U, )1 e1?
that both elements be def{ined by cocycles (h ) and (h'J) in Zl(U H) ’

and the hypothesis means that we can find (h )e, C (U H) such that
hij hih th l. Now it is obvious that we can find a covering

V= (VJ)JG_ 3 finer than U, and a map ‘T: J —> 1 such that Vu C U’T.i
for any j, and such that for each j, th can be lified into a section of (_}_
over V. : it is sufficient to take J ~ X, and to associate with each j an
element TJ € 1 such that j UT ., and then to take an open neighborhood
V_ of jJ contained in U T and small enough that h T can be lifted on

this set. 'I‘hen the cochain q),(((h' 3 in Z (v, H) is transformed of

the cochain ? ((h )) by the O- cor*ham ?T(‘b )N, which he‘ongf-_» to

C (V H) , and they therefore define the same element of H (v, H‘

and a fortlon of H (X, H) , which proves the first statemenrt of the lemma.
In order for (5.7.4.) to be sur jective, it is obviously sufficient to find for
any cocycle (hij)e' Zl(l_‘{. H), a covering V finer than U and 2 map

T :J—>1 such that V. C U’[" for each j, and such that for ea<h pair

{j» j') of elements of J the section h , of I;I_ can be lifted into a

section of G on ij, . ltis easily seer’f—i;)arzt—'ll.his condition is satisfied in

the two cases considered in the lemma, the defails are left to the reader.
For each U, we have a canonical map H (I* G)—> Hl‘(l;c’, I;I_}o

(derived from the map Z (U, G)—> 2 (U }1)0). These maps, for variable

U, are compatible with the restriction maps, so that we get 2 natural map

aw

(5.7.5.bis)  HYX, G)-—> H'(X, H). .

Of course, the composition of this map with {5.7.4.} is nothing but the
functorial map HI(X G)—~> HI(X, H) defined in 5. 1.

Let now E" be a fibre space with strncture sheaf H the class c" of
which belongs to the subset H (X, H) of H (X, H), we will define an
element JE" of H (X E"(F)). Let (h J) be a system of coordinate
transforms of E", we can suppose (h )€ Z (U, H) We denote by

P; the natural coordinate maps HIU — E IU and by (? the
coordinate maps F IU — F(E"\IU . so we have
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-1 - -1
(5.7.5.) hy= Py o n) = P

13
Recall also thzt hik = hijhjk’ therefore, if we take for every hij a
lifting & € H (Uij, G), we can choose them such that

-1
(5.7.6.) gij = gji
and moreover we must have g, Jng 8k mod F, i.e. {using (5.7. 6.)) we
have
o
(5.7.7.) f = 288 € H (Uijk. F).
We now define
- B - = O, e

I claim that (fgjk) is an alternated cocycle of dimension 2 for U and the

abelian sheaf F(E") (see the paper of Serre cited in 5.1. for the definitions).
Indeed, (5.7.6.) and (5.7.7.) imply f., . = {.. -1, hence taking the image

ikj = Tiik
by qu:

-1
] =
fﬂq ijk

_1 . —
1 | = f! 3 s .
Also fkji fijk » which means (by transforming with ?i ):

== =f = i
P Hegy) = G e T legdfgy = Gy e

-1 .
gikgkjgjkgikgik = fik_) g. kngg which is of course true. And again we

-1 . . — =1
o £1 - £1 -
hav\. J.Jik - fiJ] ’ Wthh means (Lansformlng by ? 1

= -1 = -1, _ .
?i ?jfjik = fijk i.e. a"(gij)fjik = fikj i.e.
-1 . .
83; 8i8ik Bxj gij = 2;18k;8ji which follows indeed from (5.7.6.). Thus
we have proved that (fijk) is an alternating 2-cochain, we now prove that

it is a cocycle, i.e. that we have

93



1 ] 1 - :
Bafia fi]lf Jk =ein U

This is proved as above by transforming with ?} i-l. the verification

is only some lines longer (of course, the fact that F_ is abelian and
invariant has to be used throughout) Therefore, this cochain defines an
element of the cohomology group H (U, F(E")), and hence of

H (X F(E"). It is easily checked that this does not depend on the
choice of the system of coordinate transforms defining E", and
therefore may be denoted by d E". It should be noted that in this
general context, however, it is not possible to define the d c" of the
class c" of E" for F(E") is not defined by the mere class of E", and
neither is H (X F(E")). If a map defined on 'rhe set H (X H) itself

is desned one can notice that the quotient M (E")/Auf(E") of

M (E") = H (X, F(E")) by the group of automorphisms of E" {acting in
the usual way on M(E")) is intrinsically determined by the class c", and
so is the class of ¢ E" in this quotient, so that we may define

symbolically a dc"€ Mz(c")/ Aut{c"), and the second coboundary map

is defined on Hl(X, H)o and takes its values on a set depending on the
argument considered.— We now come to an important exactness property

connected with this second coboundary map:

Proposition 5.7.2. Let F be an abelian normal subsheaf of the sheaf of

groups g, let I;I = g/ 1_7‘_, let E" be a fibre space with structure sheaf l_-I_,
F(E") the associated sheaf (corresponding to the natural operation of
Hon F), Let c" € H (X H) be the class of E". In order that c“ be in
the image of H (X, G), it is necessary and sufficient that c"e H (X H)
(as defined in 5.7.1.) and that the J E" € HZ(X, F(E")) defined above
be equal to 0.

Necessity . We can assume that E" is the fibre space associated to a
fibre space E' with structure sheaf G, let (g ) be a system of coordinate
transforms of E', let h, J€ H (U i’ H) be the 1ma.ge of gi]' then (hlJ) is a
system of coordinate transforms for E". In particular this shows

ch e.Hl(X, Ii)o, and by definition < E" is defined by the 2~-cocycle of

formula (5. 7. 8.), which js now the unit cocycle, hence & E" = 0,
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Sufficiency. We can assume that E" is defined by coordinate transforms
(hij). where h,. can be lifted into gij’ and following the notations above,
d E" defined by (5. 7. 8.) is supposed zero, which means that there
exists an alternated l-cochain (f'ij) e Cl(l_l, F(E")) such that

— t }
(5.7.9.) fijk = f'jkf kif ij
- B L o . - -1
Let fij = Cj)i (fij)e-_‘, H (Uij’ F), then the relations fij = f"ii and
(5.7.9.) yield
-1 _
(5.7.10.) fij = a-"(gij)fji and fijk = cav-‘(gij)fjk a'--(gik)fkifij

i.e., taking into account that the first relation (by substituting k to j)

-1 cepionn
yields r-'(gik)fki = fik and substituting in the second:

1 1

81;8k8ki = &8y ik fij e

-1 1, -
(e fid CBy5 L) = & T

¢ -1

Letting gij = ij gij

and taking the inverses of both members of the above formula, we get

g;k = gijg_.jk' which means that (gij) is a l-cocycle € Zl(g, G). The
1
element of Z"(EI_. H) image of (g;j) is the same as the image of the

cochain (gij)’ i. e, (hij), which completes the proof.

Corollary. Under the conditions of lemma 5. 7.1, in particular if X is

paracompact, the element JE"€& HZ(X, F(E")) is defined for any fibre
space E" with structure sheaf H, and in order that E" be isomorphic to
a fibre space associated to a fibre space with structure sheaf G, it is

necessary and sufficient that J E" = 0.

It should be noted that, H being any sheaf of groups and E" a fibre
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space with structure sheaf H, an element d E" is defined whenever we
are given an extension of H by an abelian sheaf F in which H operates

(so that F(E") is defined and hence HZ(X, F(E")). We intend to give
elsewhere the charactgrization ofd E'in terms of the cohomological
invariant characterizing the extension G of H by F. In the case the
sheaves involved are defined in terms of structure groups F, G, H, when
either these are discrete of H is connected and G is a covering group,

E" can be expressed in terms of classical cohomological notions.

Particular case: F is in the center of G. This means that H operates

trivially on ¥, so that F(E") = F, therefore the second coboundary map
is a map HY(X, H) —> H%(X, F), which can be added to the exact

cohomology sequence (5. 3.1.) to yield a sequence:

(5.7.11.) - e—»> HX, F)—> HIX, G)—> H°(X, H) I> H'(x, F)

—s 1%, 69— H(x, 5L H4x, F).

Proposition 5. 7. 2. here means that this new sequence is s&till exact.
Of course, in the usual cases referred to in lemma 5.7.1., H(X, H)
can be replaced by H (X, H) itself.

A characterization of the image in H (X F) of the last homomorphxsm
is lacking. However, if G itself is abelian, then H (X, G) and H (X, H)
are also defined, and (5. 7.11.) fits into the classical exact cohomology

sequence for abelian sheaves (see cited paper of Serre):

(5.7.12.) e—s> H(X, F)—> ... —> H'(X, H) —> H(X, F)

HY(X, G)—> HY(X, H) —> .

5.8. Geometric interpretation of the first coboundary map. Let G be a

topological group, F a topological subgroup, H the quotient space, f a
subsheaf of groups of the sheaf of germs of continuous maps of H into

F containin the constant germs. G can be considered as a fibre space
over H, all fibers being homeomorphic to F (the projection map being by
definition the canonical map of G onto the quotient G / F). We suppose
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now that we are given on G a structure of fibre space of type H >< F,
structure sheaf f (F operating on the fibre F by left regular representation).

This of course implies that G fibered over H is locally trivial, which here

means also that there exists a germ of a section of G (fibered by F over
H) passing through the unit element (for then by translation, we see that
there is a section over a neighborhood of any point of H, which classically
and trivially implies local triviality). If {f is the sheaf of all germs of
continuous maps of H into F, then existence of a local section is also
sufficient for a structure with structure sheaf f on G to exist, and this
is unique. Other examples: Suppose G is a Lie group and F closed
(hence itself a Lie group) then taking into account the analytic structure
on G and using the well known fact of the existence of analytic local
sections of G over H, we see that G can be considered as analytic

fibre bundle over H with Lie structure group F (fibre F on which F
operates by regular left representation), hence we may take in the
foregoing f = sheaf of germs of analytic maps of H into F. A fortiori

for any sheaf f'.2 f, G is provided with the structure sheaf {f' by
"extension of the structure sheaf f"; for instance, we can take for f'
the sheaf of germs of infinitely differentiable maps of H into F etc,
Analogous remarks if G is a complex analytic Lie group and F a complex
subgroup, then G is a complex fibre bundle with complex structure group
F over the complex manifold H; we need only the well known fact of the
existence of complex analytic sections of G over H. As a last example,
suppose that G is an algebraic group over an arbitrary ground field Kk,

F an algebraic subgroup, so that H is an algebraic variety without
singularities; as usual, we take on algebraic varieties the Zariski
topology. Let f be the sheaf of germs of regular (i.e. rational and
"defined" at the given point) maps from H into F. Then G can be
considered as a fibre space of type H >< F, structure sheaf f, provided

there exists a regular section of G over a neighborhood of the neutre

element of H. As such a section is the restriction of a "rational section"
of G over H (i. e, a rational map H —> G which, composed with the
projection G— H, gives the identity), the preceding hypothesis is

equivalent to the existence of a rational section of G over H. In case F is

discrete or an abelian variety, this appears to be a very strong condition,
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for as easily seen a rational section is even regular, and thus the
fibering should be trivial with respect to the structure skeaf £, which

of course is seldom the case. However, if F is a connected linear

algebraic group, it seems very likely that there must exist a rational
section of G over H; this can at least be checked directly in the most
important cases, and it has been proved by Rosenlicht (forthcoming
paper) in case F is moxeover solvable.

Let us now come back to the general case of a topological group G
fibered by a subgroup F, and provided with a structure of type H >< F,
structure sheaf f. Let moreover X be 2 topological space, suppose
given sheaves F_, G, H of germs of continuous maps of X into F
respectively G, respectively H, Suppose the maps it F—> G and
j: G=> H compatible with these sheaves, i.e. the composition of i with
a germ in F is in G, and the composition of j with a germ in G is in H.

Then we have a sequence of homomorphisms of sheaves

(5.8.1.) e—>F—>G-—>H-—>e

where F —> G is a homomorphism also for the structures of sheaves of
groups. This sequence is exact if and only i%: (i) if a gevm in G is a germ of
maps into F, it belongs to F (ii) any germ in H can be lifted into a germ
in G. We will assume this, and moreover (iii) the composition of a

germ in H and a germ in f is in F. From the exactness of the sequence
(5.8.1.) follows an exact sequence of cohomology (5.2.7.). From (iii)
follows that for any fibre space E on H with structure sheaf f, and any

map h of X into H belonging to HO(X, H), we can consider on the inverse
image of E under h(which is a fibre space on X) in a natural way a structure
with structure sheaf F (via a general definition of inverse images of

fibre spaces with structure sheaf, which was not given in 4.1, and is left

to the reader). Now we supposed G itself a fibre space with structure
sheaf f , hence its inverse image is a fibre space with structure sheaf

F on X, determined canonically by he HO(X, H). Then the proof of the

following statement is straightforward and equally left to the reader:

Proposition 5.8.1. Let G be a topological group, F a subgroup,
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H = G/F, £_ a sheaf of germs of continuous maps of H into F, we
suppose given on G, considered as fibre space over H, (fibre F) a
structure of type H >< F, structure sheaf f. Let X be a topological space,
E, g_, Ii three sheaves of germs of continuous maps of X into F
respectively G respectively H, satisfying conditions (i) (ii) and (iii)
above. Then the sequence (5.8.1.) is exact. Let h be a map X —s H
belonging to HO(X, I_-_I_), and E the fibre space with structure sheaf F
(fibre F) on X inverse image of the fibre space G over H by the map h.
This fibre space is canonically isomorphic with the fibre space defined
by means of h in 5.2. (F operating on X >< F in the usual way), and
therefore its class in Hl(X. F) is the image of h under the coboundary

operator associated with (5.8.1.).

Corollary, In order that a fibre space with structure sheaf F be
trivial in the sheaf G, it is necessary and sufficient that the associated
principal bundle (cf. 4.7.) be isomorphic to the inverse image of the
fibre space G over H by a suitable map h€ HO(X, H) of X into H; this

h determined up to an operation of H(X, G).

This follows at once from proposition 5. 8.1. and the exactness of
the cohomology sequence.

It covld be remarked that the different supplementary structures
involved in the exact cohomology sequence defined in a rather algebraic
way in 5.3,, 5.4, and 5.5, namely the operatlonS/O of HO(X, H) on
H (X F) if F is normal in G, the operations o—of H° (X H) on HI(X F)
when moreover F is abelian, and the operations Fof H (X F) on

(X G} when F is even in the center of G, could have been dealt with
in a more geometric way, by defining in the first instance, for each
he HO(X. H) and each fibre space E with structure sheaf F, a fibre
space: P(h).E with structure sheaf F (via the system of all coordinate
maps for E), and proceeding in an analogous way in the other two instances.
Then statements like: (h). ¢ and ¢ have same image in HI(X, G)
(where c € HI(X, F)) could be stated in a more geometric and slightly

more precise form: there is a canonical isomorphism between the fibre
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spaces f(h) .E and E, where E is any fibre space with structure
sheaf F. It does not seem that the exposition would be much heavier
if in each possible instance the geometric point of view were thus taken

into account,
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