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Chapitre 1

Arithmétique de Z et des polynômes

1. Généralités sur les groupes

1.1. Groupes. Partant d’un ensemble, il s’agit de l’enrichir avec des structures supplé-
mentaires, telles que des opérations.

Définition 1.1.1. Soit un ensemble E, une loi de composition interne (LCI) sur E est une
fonction ˚ : E ˆ E Ñ E. Cette loi est généralement notée entre deux éléments.

Exemple 1.1.2. Pour px, yq P R2, px, yq fiÑ x ` y est une loi de composition interne. Si E
est un ensemble non-vide et PpEq l’ensemble de ses parties, alors pA,Bq fiÑ A X B est une
LCI sur PpEq.

Définition 1.1.3. Soit ˚ une LCI sur E. On dit que pE, ˚q est un monoïde si :
1. @ px, y, zq P E3, px ˚ yq ˚ z “ x ˚ py ˚ zq (Associativité).
2. D e P E,@ x P E, e ˚ x “ x ˚ e “ x (Existence d’un élément neutre).

Si pour toute paire px, yq P E2, on a x ˚ y “ y ˚ x, on dit que E est un monoïde commutatif
ou abélien.

Remarque 1.1.4. L’utilité de l’associativité est qu’elle permet d’écrire x ˚ y ˚ z sans se
préoccuper du parenthésage. Toutes les lois de composition interne ne sont pas nécessairement
associatives. La soustraction sur R est un exemple de loi non associative. 4 ´ p3 ´ 2q “ 3 ‰
p4 ´ 3q ´ 2 “ ´1.

Exemple 1.1.5. pN,`q ou pN,ˆq sont des monoïdes abéliens, pMnpRq,ˆq est un monoïde
non-commutatif.

Définition 1.1.6. Soit ˚ une LCI sur E. On dit que pE, ˚q est un groupe si c’est un monoïde
et qu’il vérifie :

@ x P E, D y P E, xy “ yx “ e(Existence d’un inverse).
C’est un groupe abélien si de plus pE, ˚q est un monoïde abélien.

Exemple 1.1.7. pZ,`q est un groupe abélien, pGLnpRq,ˆq est un groupe non-commutatif.
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Lemme 1.1.8. Soit pE, ˚q un ensemble avec une LCI, si elle admet un élément neutre,
alors il est unique. De plus, si pE, ˚q est un groupe, alors il y a unicité de l’inverse.

Démonstration. En effet, si e et e1 sont deux éléments neutres, on a e ˚ e1 “ e et
e ˚ e1 “ e1. Pour la deuxième assertion, soit x P E, supposons qu’il admette deux inverses
y, y1 P E. On a alors :

y “ ypxy1q “ y1.
⇤

Ainsi, si pE, ˚q est un groupe, pour tout x P E, il résulte du lemme que l’on peut définir
x´1, l’inverse de x. On note immédiatement que pour toute paire px, yq P E2 :

px ˚ yq´1 “ y´1 ˚ x´1

Dans la suite, on note la LCI de manière multiplicative, sauf mention explicite et l’élément
neutre 1. Pour n P N˚, si l’on multiplie n fois x, on note xn. Attention, en général :

pxyqn ‰ xnyn.

C’est vrai seulement si la loi est commutative (pensez aux matrices). En effet, on a :

x2y2 “ xxyy et pxyq2 “ xyxy.

1.2. Sous-groupes. On se donne dans la suite pG, .q un groupe.

Définition 1.2.1. Une partie non-vide H de G est un sous- groupe si :

@ px, yq P H2, xy´1 P H.

Remarques.
1.2.2. On remarque que comme H est non-vide, on a automatiquement 1 P H . En effet, il

suffit de choisir x P H et par hypothèse, on a 1 “ x.x´1 P H.
1.2.3. Dans les applications, pour montrer que quelque chose est un groupe, il est souvent

plus commode de montrer que c’est un sous-groupe d’un groupe de « référence ».

Exemple 1.2.4. pQ˚,ˆq est un sous-groupe de pR˚,ˆq, Un :“ tz P C |zn “ 1u est un
sous-groupe de pC˚,ˆq.

1.3. Morphismes de groupes. Soient pA, .q et pB, .q deux groupes.

Un morphisme de groupes est une fonction entre groupes f : A Ñ B telle que :

fp1Aq “ 1B, fpxyq “ fpxqfpyq.

Remarque 1.3.1. On a automatiquement fpxqfpx´1q “ fpxx´1q “ 1 soit fpx´1q “
fpxq´1.
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Exemple 1.3.2. z fiÑ |z| de pC˚, .q Ñ pR˚, .q ou x fiÑ ex de pR,`q sur pR˚, .q sont des
morphismes de groupes.

Vocabulaire usuel sur les morphismes :

Définition 1.3.3. Soit f : G Ñ H, un morphisme de groupes. On dit que :

1. f est un endomorphisme si G “ H.
2. f est un isomorphisme si c’est un morphisme de groupes bijectif.
3. f est un automorphisme si c’est un endomorphisme bijectif.

Exemples.

1.3.4. x fiÑ x2 est un endomorphisme de groupes de pR˚,ˆq.
1.3.5. x fiÑ ex est une bijection de pR,`q sur pR˚

`,ˆq. On dit que ces groupes sont
isomorphes.

aut-int Exemple 1.3.6. Pour un groupe G et x P G, �x : G Ñ G donné par y fiÑ xyx´1 est un
automorphisme de G. On appelle un tel automorphisme, un automorphisme intérieur. Si
x “ 1, on obtient l’automorphisme identité IdG donné par y fiÑ y.

Exemple 1.3.7. Soit G un groupe, alors l’ensemble AutpGq des automorphismes de G avec
la composition des applications comme LCI est un groupe.

Démonstration. La loi de composition est clairement associative et pour tout � P
AutpGq, on a IdG ˝� “ � ˝ IdG “ �. De plus comme � est bijective, soit �´1 son inverse,
alors on a bien � ˝ �´1 “ �´1 ˝ � “ Id. Il suffit donc de vérifier que �´1 est aussi
un morphisme de groupes. On a �p1q “ 1 donc �´1p1q “ 1. Soit px, yq P G2, alors
�p�´1pxq�´1pyqq “ �p�´1pxqq�p�´1pyqq “ xy “ �p�´1pxyqq, soit �´1pxq�´1pyq “ �´1pxyq
par injectivité de �. ⇤

1.4. Image et noyau d’un morphisme. Soit � : G Ñ H un morphisme de groupes.

Lemme 1.4.1. Soient G1 Ä G, H 1 Ä H des sous-groupes, alors �pG1q et �´1pH 1q sont aussi
des sous-groupes.

Démonstration. e P G1 comme G1 est un sous-groupe et �peq “ e1 P �pG1q. De plus,
�pxq�pyq´1 “ �pxy´1q et xy´1 P G1 donc �pG1q est un sous-groupe. On a l’équivalence :

x P �´1pH 1q ñ �pxq P H 1.

Comme �p1q “ 1 P H 1, 1 P �´1pH 1q. Si x, y P �´1pH 1q, alors �pxq�pyq´1 P H 1. Or
�pxq�pyq´1 “ �pxy´1q, donc on obtient xy´1 P �´1pH 1q, ce qui conclut. ⇤
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Définition 1.4.2. 1. On définit l’image de �, notée Im� par le sous-groupe �pGq Ä H .
On a Im� “ H si et seulement si � est surjective.

2. On définit le noyau de �, noté Ker�, par le sous-groupe �´1pteuq Ä G.

Exemple 1.4.3.

� : C Ñ R, donné par z fiÑ Repzq est surjectif, donc Im� “ R. De plus, Ker� “ iR.

� : pR,`q Ñ pU,ˆq, donné par x fiÑ eix est surjectif de noyau 2⇡Z.

Proposition 1.4.6. Soit � : G Ñ H un morphisme de groupes. Alors, � est injectif si et
seulement si Ker� “ t1u.

Démonstration. Sens direct : soit x P G tel que �pxq “ 1 alors �pxq “ �p1q et x “ 1.

Sens réciproque : Si pour px, x1q P G2, on a �pxq “ �px1q, alors �pxq�px1q´1 “ 1, d’où
�pxx1´1q “ 1. Comme Ker� “ t1u, on obtient xx1´1 “ 1 et x “ x1. ⇤

Proposition 1.4.7. Soit � : G Ñ H un morphisme de groupes finis de même cardinal, alors
on a l’équivalence :

� injective ñ � surjective ñ � bijective.

Démonstration. On montre p1q ùñ p2q ùñ p3q ùñ p1q. Si � est injective, cardpGq “
cardp�pGqq “ cardpHq donc �pGq “ H et � est surjective. Si � est surjective, alors �pGq “ H
et si � n’est pas injective, on aurait cardpHq “ card�pGq † cardG, donc � est injective
donc bijective. La dernière assertion est triviale. ⇤

fin Lemme 1.4.8. Soit G un groupe fini, alors pour tout x P G, il existe n P N˚, xn “ 1.

Démonstration. En effet si tel n’est pas le cas alors on obtiendrait un morphisme de
groupes injectif :

Z Ñ G

donné par k fiÑ xk. Or, G est fini, contradiction. ⇤

1.5. Anneaux.

Définition 1.5.1. Soit pA,`, .q un ensemble muni de deux LCI, on dit que A est un anneau
si :

1. pA,`q est un groupe abélien.
2. pA, .q est un monoïde.
3. @ px, y, zq P A3, on a x.py ` zq “ x.y ` x.z et px ` yq.z “ x.z ` y.z (distributivité) .

Enfin, A est un anneau commutatif, si pA, .q est un monoïde commutatif.
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Exemple 1.5.2. pZ,`,ˆq, pC,`,ˆq sont des anneaux commutatifs, pMnpRq,`,ˆq est un
anneau non-commutatif. Si A et A1 sont deux anneaux alors le produit direct de A ˆ A1 est
aussi un anneau en faisant les opérations composantes par composantes. Pour un anneau A,
on a l’anneau des polynômes à coefficients dans A :

ArXs “ t
nÿ

d“0

adX
d, n P N, ai P Au,

avec l’addition et la multiplication habituelle des polynômes. Plus généralement on dispose
de l’anneau ArX1, . . . , Xrs en r indéterminées, qui consiste en les expressions de la forme∞
iPNr

aiX
i1
1 . . . Xir

r avec les ai presque tous nuls. On vérifie en développant que

pArXsqrY s “ ArX,Y s “ ArY srXs,
(admis ou laissé en exercice).

Définition 1.5.3. Un sous-anneau B de A vérifie :
— pB,`q est un sous-groupe de pA,`q.
— pB,ˆq est un sous-monoïde de pA,ˆq.

1.6. Groupes des inversibles et Corps. Soit un anneau pA,`,ˆq. Tout élément
x P A n’est pas nécessairement inversible.

inv-ring Lemme 1.6.1. Soit pAˆ,ˆq l’ensemble des éléments inversibles pour ˆ, alors c’est un
groupe. On l’appelle le groupe des inversibles.

Démonstration. pAˆ,ˆq est un sous-monoïde de pA,ˆq et par définition tout élément
est inversible. ⇤

Exemple 1.6.2. Zˆ “ t˘1u, Qˆ “ Q˚.

Définition 1.6.3. Soit un anneau A, on dit que c’est un corps s’il est non-réduit à t0u et si
tout élément non-nul est inversible. Un sous-corps est un sous-anneau qui est un corps.

Remarque 1.6.4. Dans ce cours, on ne considèrera que des corps commutatifs, i.e. tels que
A soit un anneau commutatif.

Exemple 1.6.5. Les ensembles Q,R,C sont des corps.

1.7. Espaces vectoriels. On rappelle la définition suivante.

Définition 1.7.1. Soit K un corps. On appelle K-espace vectoriel un ensemble E, muni
d’une LCI + telle que :

(i) pE,`q est un groupe abélien.
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(ii) Il existe une application . : K ˆ E Ñ E, appelée loi externe telle que :

(a) @ x P E, 1.x “ x.

(b) @ p�, µq P K2, x P E, p�.µq.x “ �.pµ.xq.
(c) @ p�, µq P K2, px, yq P E2, p� ` µq.px ` yq “ �.x ` µ.x ` �.y ` µ.y.

Remarques.

1.7.2. Nous n’allons pas refaire toutes les définitions qui sont déjà connues. On a surtout
rappelé celle-ci pour bien mettre l’accent que l’on travaille avec K un corps arbitraire
et pas seulement K “ R ou C.

1.7.3. Ces données peuvent être rassemblées en une seule. Si l’on note EndpEq l’anneau des
endomorphismes de groupes abéliens de E, muni de l’adddition et de la composition
des endomorphismes, alors la donnée d’une structure de K-espace vectoriel revient
à la donnée d’un morphisme d’anneaux � : A Ñ EndpMq, donné par a fiÑ �a où
�a : E Ñ E est donnée par x fiÑ a.x.

On a ensuite les notions usuelles de sous-epaces vectoriels, morphisme d’espaces vectoriels,
qui sont précisément les applications linéaires, et de noyau et d’image d’applications linéaires.

1.8. Morphismes d’anneaux et de corps. Un morphisme d’anneaux est une fonction
entre anneaux f : A Ñ B telle que :

— f : pA,`q Ñ pB,`q est un morphisme de groupes.
— f : pA,ˆq Ñ pB,ˆq est un morphisme de monoïdes.

Un morphisme de corps est un morphisme d’anneaux entre corps.

Exemple 1.8.1. Le morphisme ev : FpR,Rq Ñ R donné par f fiÑ fp0q est un morphisme
d’anneaux. La conjugaison complexe ¯p´q : C Ñ C est un automorphisme de coprs, i.e. un
morphisme de corps bijectif.

Définition 1.8.2. (i) Soit � : A Ñ B un morphisme d’anneaux, on définit le noyau et
l’image de � :

Kerp�q “ �´1p0q, Imp�q “ �pAq Ä B.

(ii) Soit un anneau A, pI,`q Ä pA,`q un sous-groupe abélien, on dit que I est un idéal
si pour tout a P A, on a aI “ tax, x P Iu Ä I.

Remarques.

1.8.5. Si I est un idéal et 1 P I, alors I “ A, car a “ a.1 pour a P A.
1.8.6. Si a P A, aA “ tax, x P Au est idéal de A. On le note paq.
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Définition 1.8.7. Un anneau est dit principal s’il est intègre et tout idéal I Ä A est de la
forme I “ paq pour a P A. On verra que Z et KrXs pour K un corps sont aussi principaux
(cf.

sgZsgZ
2.1.2,

princprinc
4.2.1).

Remarque 1.8.8. Un corps K est principal. En effet, si I ‰ 0, alors soit x P I non-nul,
alors 1 “ xx´1 P I, donc I “ A.

Lemme 1.8.9. Soit � : A Ñ B un morphisme d’anneaux, alors Kerp�q est un idéal et Imp�q
est un sous-anneau.

Démonstration. Comme � est un morphisme de groupes abéliens, alors Kerp�q est
un sous-groupe abélien et de plus si a P A, x P Kerp�q, on a �paxq “ �paq�pxq “ 0, donc
ax P Kerp�q et Kerp�q un idéal. Pour la deuxième assertion, on sait déjà que pImp�q,`q est un
sous-groupe abélien et pImp�q,ˆq est un sous-monoïde, donc Imp�q est un sous-anneau. ⇤

root Exemple 1.8.10. Soit K un corps, � : KrXs Ñ K donné par P fiÑ P p0q, alors Kerp�q “ pXq.
En effet, on a clairement pXq Ä KrXs. De plus, si P p0q “ 0, alors en écrivant P “ ∞

aiXi,
si P p0q “ 0, alors a0 “ 0 et X|P .

1.9. Anneaux quotients. Soit un anneau commutatif A, I Ä A un idéal, on considère
la relation de congruence modulo I :

a “ b mod I ñ a ´ b P I.

quot1 Proposition 1.9.1. La relation de congruence modulo I est une relation d’équivalence. On
note A{I l’ensemble des classes d’équivalence, il admet une structure d’anneau donnée par :

ā ` b̄ “ a ` b mod I, ā.b̄ “ ab mod I,

telle que la projection p : A Ñ A{I est un morphisme d’anneaux de noyau Kerppq “ I.

Démonstration. La symétrie et la réflexivité sont évidentes, pour la transitivité si
a “ b mod I et b “ c mod I, alors c ´ a “ pc ´ bq ` pb ´ aq P I. Passons à la structure
d’anneau, il faut s’assurer que la définition ne dépend pas du choix du représentant, soit si :

a “ a1
mod I, b “ b1

mod I, alors a ` b “ a1 ` b1
mod I, ab “ a1b1

mod I.

On a donc pa ´ a1q, pb ´ b1q P I d’où comme pI,`q est un groupe abélien :
pa ` bq ´ pa1 ` b1q P I, soit a ` b “ a1 ` b1

mod I.

De plus, comme I est un idéal :
ab ´ a1b1 “ apb ´ b1q ` b1pa ´ a1q P I, soit ab “ a1b1

mod I.

On obtient donc que le produit et la somme sont bien définis et on vérifie immédiatement à
partir des propriétés d’anneau de A que A{I l’est aussi et que :

p : A Ñ A{I
13



est un morphisme d’anneaux. De plus si x “ 0 mod I, alors x P I, donc Kerppq “ I. ⇤

Les deux exemples fondamentaux pour la suite de ce cours d’anneaux quotients sont les
suivants :

Exemple 1.9.2. nZ Ä Z est un idéal et on note Z{nZ l’anneau quotient. Dans ce cas la
relation de congruence modulo I se récrit comme :

a “ b rns ñ n|b ´ a.

Le deuxième vient des polynômes :

Exemple 1.9.3. Soit un anneau A, P P ArXs et I “ pP q, alors on peut former l’anneau
quotient ArXs{pP q. La relation de congruence est donnée par :

R “ Q mod pP q, si P |R ´ Q.

Un cas particulièrement intéressant est pour construire les complexes, sur lequel on reviendra
plus tard quand on étudiera les polynômes :

RrXs{pX2 ` 1q – C
donnée par P fiÑ P piq. (On peut également prendre le membre de gauche comme la
construction des nombres complexes.)

uquot Proposition 1.9.4 (Propriété universelle du quotient). Soit � : A Ñ B un morphisme
d’anneaux tel que I Ä Kerp�q, alors il existe une unique application �̄ : A{I Ñ B telle que
� “ �̄ ˝ p avec p : A ⇣ A{I.

Démonstration. En effet si x̄ P A{I, on choisit x P A qui relève et on pose
�̄px̄q “ �pxq.

Il s’agit de voir que cela ne dépend pas du choix du relèvement, or si x1 P A est un autre
relèvement, alors x ´ x1 P I de telle sorte que :

�pxq “ �px1 ` px ´ x1qq “ �px1q,
puisque que I Ä Kerp�q. Le fait que �̄ soit un morphisme d’anneaux se déduit alors de la
définition de l’addition et du produit sur A{I et du fait que � est un morphisme. ⇤

2. Arithmétique de Z

2.1. Sous-groupes de Z.

eucl Proposition 2.1.1. [Division euclidienne] Soit pa, bq P NˆNˆ, alors il existe un unique
couple pq, rq P N2 tel que :

a “ bq ` r

avec r † b.
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Démonstration. Unicité :

Si bq ` r “ bq1 ` r1, alors bpq ´ q1q “ r ´ r1, or 0 § r, r1 § b ´ 1 d’où :
´pb ´ 1q § r ´ r1 § b ´ 1

et b|pr ´ r1q donc r ´ r1 “ 0 et r “ r1.

Existence : Par récurrence sur a, b étant fixé. Si a “ 0 et a “ 0.b. Sinon par récurrence,
on a a “ bq ` r avec r § b ´ 1, soit a ` 1 “ bq ` r ` 1. Si r ` 1 † b, on prend le couple
pq, r ` 1q, sinon r ` 1 “ b et on a alors a ` 1 “ bpq ` 1q, donc pq ` 1, 0q marche. ⇤

sgZ Proposition 2.1.2. Soit G un sous-groupe de pZ,`q, alors il existe un unique élément
n P N tel que G “ nZ. Ce sont également les idéaux de Z. En particulier, Z est principal.

Démonstration. Si G “ t0u, c’est clair. Sinon, soit n “ minpG X N˚q. Le minimum
est bien défini car, soit x P Gzt0u qui est non-vide par hypothèse alors comme G est un
groupe tx,´xu P G, de telle sorte que GXN˚ est non-vide donc admet un plus petit élément.
Comme G est un groupe, on a clairement nZ Ä G, montrons la réciproque. Soit x P G, à
nouveau quitte à changer x en ´x, on peut supposer que x P N et on effectue la division
euclidienne

eucleucl
2.1.1 de x par n, il existe donc un couple pq, rq tel que :

x “ bn ` r, 0 § r † n, soit r “ x ´ bn P G X N
et donc par minimalité de n, r “ 0 et G “ nZ.

Montrons l’unicité. Si nZ “ mZ avec n,m ‰ 0, alors n “ km et m “ ln avec k, l P N˚, soit
n “ kln d’où kl “ 1 et k “ l “ 1. Comme les nZ sont clairement des idéaux, on en déduit
que tous les idéaux de Z sont de cette forme puisque qu’en particulier les idéaux sont des
sous-groupes abéliens. ⇤

2.2. PGCD.

Lemme 2.2.1. Soient a, b P Z, alors aZ ` bZ “ tak ` bl, k, l P Zu est un sous-groupe de Z,
il existe donc un unique m P N tel que :

aZ ` bZ “ mZ.
On dit que m est le pgcd de a et b, noté a ^ b.

Démonstration. En vertu de
sgZsgZ
2.1.2, il suffit de montrer que aZ`bZ est un sous-groupe

de Z. On remarque alors que c’est l’image du morphisme de groupes :
Z2 Ñ Z

donné par px, yq fiÑ ax ` by. ⇤

Remarque 2.2.2. On notera que même si a et b sont des entiers relatifs, le pgcd est toujours
un entier positif.
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gcd2 Lemme 2.2.3. Soient a, b P N, on note d “ a ^ b.
1. On a d|a et d|b.
2. Il existe un couple pu, vq P Z2 tel que d “ au` bv. On appelle une telle relation, une

relation de Bezout.
3. Si m|a et m|b, alors m|d.
4. �a ^ �b “ |�|d.

Démonstration. (i) On a a, b P aZ ` bZ “ dZ, donc il existe k, l P Z tels que a “ kd
et b “ ld.

(ii) On a d P dZ “ aZ ` bZ, d’où l’existence de pu, vq P Z2 tel que d “ au ` bv.

(iii) Si d “ au ` bv est une relation de Bezout, si m|a, m|b, alors m|au ` bv “ d et m|d. Ce
qui justifie l’appelation de plus grand diviseur commun.

(iv) �aZ ` �bZ “ |�|paZ ` bZq “ |�|dZ et on conclut par unicité du pgcd. ⇤

2.3. Entiers premiers entre eux.

Définition 2.3.1. On dit que a, b P N sont premiers entre eux si a ^ b “ 1.

Théorème 2.3.2. (i) Si a|bc et a ^ b “ 1, alors a|c (Lemme de Gauss).
(ii) Si a ^ b “ 1 et a ^ c “ 1, alors a ^ bc “ 1.

Démonstration. (i) On écrit une relation de Bezout, au ` bv “ 1, soit auc ` bvc “ c
et donc comme a|bc, on trouve a|c.
(ii) On écrit deux relations de Bezout, au ` bv “ 1 et aw ` ct “ 1, on a alors :

pau ` bvqpaw ` ctq “ apupaw ` ctq ` bvwq ` bcptvq “ 1.

⇤

Corollaire 2.3.5. Si a ^ b “ 1, alors am ^ bn “ 1 pour tout m,n P N.

2.4. Algorithme d’Euclide.

Lemme 2.4.1 (Lemme d’Euclide). On a a ^ pb ` �aq “ a ^ b.

Démonstration. On a aZ ` pb ` �aqZ “ aZ ` bZ ` �aZ “ aZ ` bZ. ⇤

Application : On se sert du lemme d’Euclide pour calculer le pgcd, sans avoir à connaître
les facteurs premiers de a et b, ce qui peut être difficile à déterminer pour des grands
nombres.

En changeant a en ´a, on peut supposer a, b • 0.
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— Si b “ 0, alors a ^ b “ a.
— Si b ‰ 0, on fait la division euclidienne de a par b et on a a “ bq ` r0 avec r0 § b´ 1

et a ^ b “ pbq ` r0q ^ b “ r0 ^ b. On fait alors la division euclidienne de b par r0
et on trouve b “ q1r0 ` r1. En itérant, on a donc une suite d’entiers strictement
décroissante prkq jusqu’à trouver un n tel que rn “ 0 et on a alors :

a ^ b “ rn´2 ^ rn´1 “ rn´1,

où la dernière égalité vient du fait que rn “ 0.

Exemple 2.4.2. On a 155 ^ 4 “ p4.38 ` 1q ^ 4 “ 1 ^ 4 “ 1.

Application pour calculer une relation de Bezout : Calculons 153 ^ 35, on a alors :

153 “ 4.35 ` 13, 35 “ 2.13 ` 9, 13 “ 9 ` 4, 9 “ 2.4 ` 1.

Ici c’est plus rapide d’utiliser la décomposition en nombres premiers pour trouver le pgcd,
mais on va voir que c’est tout de même commode pour trouver une relation de Bezout. Pour
trouver une relation de Bezout, il suffit de « remonter » l’algorithme d’Euclide. On écrit
alors :

13 “ 153 ´ 4.35, 9 “ 35 ´ 2.13 “ 35 ´ 2.p153 ´ 4.35q “ 9.35 ´ 2.153,

4 “ 13 ´ 9 “ p153 ´ 4.35q ´ p9.35 ´ 2.153q “ 3 ˚ 153 ´ 2.35,

1 “ 9 ´ 2.4 “ p9.35 ´ 2.153q ´ 2.p3 ˚ 153 ´ 2.35q “ 13.35 ´ 8.153.

2.5. Nombres premiers.

Définition 2.5.1. Un entier p P N˚ est premier s’il admet exactement deux diviseurs, 1 et
lui-même.

Remarque 2.5.2. En particulier, 1 n’est pas premier.

prime Lemme 2.5.3. Soit p premier, soit r non-divisible par p, alors r ^ p “ 1. En particulier,
pour tout d P J1, p ´ 1K, d ^ p “ 1 et si r ^ p ‰ 1, on a p|r.

Démonstration. Soit d “ r^p, alors d|p, donc d “ 1 ou d “ p. Si d “ p, alors comme
d|r, r serait un multiple de p, ce qui n’est pas, donc d “ 1. ⇤

Théorème 2.5.4 (Euclide). Il y a une infinité de nombres premiers.

Démonstration. Par l’absurde, s’il y en a un nombre fini p1, . . . , pn, soit N “
p1 . . . pn ` 1, alors N ne peut être premier, il est donc divisible par un des pi, mais cela
forcerait alors par définition de N , pi|1, une contradiction. ⇤

On note P l’ensemble des nombres premiers.
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decomp Théorème 2.5.5. [Décomposition en nombres premiers] On a :

@ n P N˚, D!p↵pqpPP , n “
π

pPP
p↵p ,

où la famille p↵pq est nulle sauf pour une nombre fini de premiers.

Démonstration. Montrons l’existence par récurrence sur n. Si n “ 1, on prend
p↵pq “ 0. Supposons le résultat vrai pour tout k § n, montrons le résultat pour n ` 1. Si
n ` 1 est premier, il n’y a rien à montrer, sinon n ` 1 “ ab avec a, b § n. On écrit alors :

a “
π

pPP
pap , b “

π

pPP
pbp , soit n ` 1 “

π

pPP
pap`bp .

Pour l’unicité, on a : π

pPP
pap “

π

pPP
pbp .

Soit p0 P P , par symétrie, on peut supposer que ap0 § bp0 et on divise par pap0 , on obtient :

G :“
π

p‰p0PP
pap “ p

bp0´ap0
0 p

π

p‰p0PP
pbpq,

Si p ‰ p0, on a p ^ p0 “ 1, soit p0 ^ G “ 1 donc ap0 “ bp0 et l’unicité en découle. ⇤

Remarque 2.5.6. Pour n P N˚ et un premier p, on note alors vppnq la puissance maximale
de p qui divise n, on l’appelle la valuation p-adique.

p-ad Proposition 2.5.7. (i) On a vppabq “ vppaq ` vppbq.
(ii) On a a|b ñ @ p P P, vppaq § vppbq.
(iii) Si c “ a ^ b, alors c “ ±

pPP
pminpvppaq,vppbqq

Démonstration. (i) On a :

a “
π

pPP
pvppaq, b “

π

pPP
pvppbq,

il suffit alors de multiplier et d’identifier les valuations p-adiques par unicité.

(ii) Si b “ ac, alors pour tout p P P , vppbq “ vppaq ` vppcq ce qui donne le sens direct. Pour
la réciproque, on a :

b “ a ˆ
π

pPP
pvppbq´vppaq.

(iii) Soit D “ ±
pPP

pminpvppaq,vppbqq, par construction, on a D|a et D|b donc D|c. Réciproquement

si c|a, b alors vppcq § vppaq, vppbq, ce qui conclut. ⇤
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Définition 2.5.11. Pour a, b P N, on définit le plus petit commun multiple par :

ppcmpa, bq “
π

pPP
pmaxpvppaq,vppbqq.

ppcm2 Proposition 2.5.12. Soient a, b P N, on a :

(i) pa ^ bqppcmpa, bq “ ab. En particulier, si a ^ b “ 1, on a ppcmpa, bq “ ab.

(ii) Si m|a, n|a, alors ppcmpm,nq|a.

Démonstration. (i) est immédiat à partir de
p-adp-ad
2.5.7(iii) et du fait que

@ p P P,minpvppaq, vppbqq ` maxpvppaq, vppbqq “ vppaq ` vppbq.
(ii) Les deux conditions et

p-adp-ad
2.5.7(ii) donnent que pour tout p P P , vppmq, vppnq § vppaq et en

passant au max, on en déduit que ppcmpm,nq|a. ⇤

3. Les anneaux Z{nZ
Soit n P N˚, rappelons que a et b sont congrus modulo n si :

a “ b rns ñ n|b ´ a.

On a vu que Z{nZ est un anneau commutatif.

cong Lemme 3.0.1. On a cardpZ{nZq “ n.

Démonstration. On a une application :

� : t0, . . . , n ´ 1u Ñ Z{nZ
donnée par k fiÑ k̄, la classe d’équivalence correspondante. Montrons que c’est une bijection.
Si k̄ “ m̄, alors n|m ´ k et on a :

´pn ´ 1q § m ´ k § n ´ 1, soit k “ m.

Montrons la surjectivité, si x P N, on écrit la division euclidienne par n, soit x “ bn ` r
avec 0 § r † n, soit x “ r rns. Enfin, si x P Z†0, alors l’argument ci-dessus donne que
x “ ´r rns avec 0 § r † n et on a alors :

x “ n ´ r rns, et n ´ r P J0, n ´ 1K.

⇤

Exemple 3.0.2. Z{2Z “ t0̄, 1̄u “ t ¯250, ¯251u.
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3.1. Quand Z{nZ est-il un corps ?

Définition 3.1.1. Un anneau est intègre si pour tout x, y P A non-nuls, on a xy ‰ 0.

Exemple 3.1.2. (i) Un corps est un anneau intègre.
(ii) Z{6Z n’est pas intègre, car 2.3 “ 0 r6s.

pfiel Proposition 3.1.5. Soit n P N˚, les assertions suivantes sont équivalentes :
(i) Z{nZ est un corps.
(ii) Z{nZ est un anneau intègre.
(iii) n est premier.

Démonstration. piq ùñ piiq est clair. Montrons piiq ùñ piiiq par contraposée si n
non premier, alors n “ dr avec 0 † d, r † n et donc dr “ 0 rns, donc Z{nZ n’est pas intègre.
Il reste piiiq ùñ piq, soit 0 † r † n, comme n est premier, alors r ^n “ 1 par

primeprime
2.5.3, on écrit

alors une relation de Bezout ru ` dn “ 1 et en réduisant modulo n, on trouve :

ru “ 1 rns
et r est inversible donc Z{nZ est un corps. ⇤

3.2. Arithmétique et congruences. On note Fp “ Z{pZ.
3.2.1. Le petit théorème de Fermat.

fermat Théorème 3.2.2. Soit x P Fp, alors xp “ x rps.

Démonstration. On procède par récurrence sur k P N, si k “ 0, 1, c’est clair.

Montrons donc que :
pk ` 1qp “ kp ` 1 rps,

puisque par induction, on aura kp “ k rps. On applique alors le binôme de Newton pour
obtenir :

pk ` 1qp “
pÿ

k“0

ˆ
p

k

˙
kl “ kp ` 1 `

p´1ÿ

k“1

ˆ
p

k

˙
kl.

Pour conclure, il suffit d’établir le lemme suivant :

Lemme 3.2.3. Pour tout 1 § k § p ´ 1, on a p|
`
p

k

˘
.

Démonstration. On a :ˆ
p

k

˙
“ p!

k!pp ´ kq! “ ppp ´ 1q . . . pp ´ k ` 1q
k!

,
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soit k!
`
p

k

˘
“ ppp ´ 1q . . . pp ´ k ` 1q “ 0 rps, or p ^ k! “ 1, donc inversible modulo p et on

trouve : ˆ
p

k

˙
“ 0 rps,

comme souhaité. ⇤

⇤
3.2.4. Théorème des restes chinois.

Théorème 3.2.5. Soient m,n P N tels que m ^ n “ 1, alors l’application canonique :

� : Z{mnZ Ñ Z{mZ ˆ Z{nZ,
est un isomorphisme d’anneaux.

Démonstration. On a un morphisme d’anneaux Z Ñ Z{mZ ˆ Z{nZ qui envoie mnZ
sur 0 donc induit par passage au quotient un morphisme :

� : Z{mnZ Ñ Z{mZ ˆ Z{nZ.
Comme la source et le but ont même cardinal, il suffit de montrer l’injectivité, soit identifier
Kerp�q. Soit x P Kerp�q, alors x “ 0 rns et x “ 0 rms, donc m|x et n|x et comme m et n
sont premiers entre eux alors par

ppcm2ppcm2
2.5.12 mn|x et x “ 0 rmns et � injective. ⇤

3.2.6. Application : Groupe des inversibles de Z{nZ.

phid Proposition 3.2.7. Soit x̄ P pZ{nZqˆ ñ x ^ n “ 1.

Démonstration. On a :

x ^ n “ 1 ñ Dpk, lq P Z2, kx ` ln “ 1 ñ x̄ P pZ{nZqˆ.

⇤

On pose alors �pnq :“ cardppZ{nZqˆq, on appelle la fonction � : N Ñ N la fonction d’Euler.

phic Proposition 3.2.8. Si m ^ n “ 1, alors �pmnq “ �pmq�pnq. De plus, si p est premier et
k P N˚, �ppkq “ pk ´ pk´1.

Démonstration. Pour la première assertion, il suffit de passer aux inversibles dans le
théorème des restes chinois et on obtient :

pZ{mnZqˆ – pZ{mZqˆ ˆ pZ{nZqˆ.

Calculons �ppkq, il resulte de
phidphid
3.2.7 que :

�pnq “ tk P J0, n ´ 1K, k ^ n “ 1u.
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Calculons le complémentaire de pZ{nZqˆ ; pour n “ pa, dans ce cas si k ^ pk ‰ 1, comme p
est premier, on a p|k par

primeprime
2.5.3, en particulier le complémentaire consiste en les multiples de

p dans Z{paZ, il y en pa´1 donc en passant au complémentaire, on obtient :

�ppaq “ pa ´ pa´1.

⇤

Corollaire 3.2.9. Pour tout n P N˚, on a :

�pnq “ n
π

p|n
p1 ´ 1

p
q

Démonstration. En effet, on écrit n “ ±
p|n

pvppnq. La proposition précédente donne

alors :
�pnq “

π

p|n
�ppvppnqq “

π

p|n
pvppnqp1 ´ 1

p
q “ n

π

p|n
p1 ´ 1

p
q.

⇤

Voyons un application au problème dit « de Sunzi » qui remonte à l’époque des Six Dynasties
(220-589) en Chine.

Exemple 3.2.10. Supposons qu’on ait un nombre inconnus d’objets. S’ils sont comptés par
3, il en reste 2, s’ils sont comptés par 5, il en reste 3 et par 7, il en reste 2. Combien y-a-t-il
d’objets au minimum ?

Il s’agit de chercher le plus petit n tel que n “ 2 r3s, n “ 3 r5s, n “ 2 r7s.
On se ramène à deux équations. On cherche d’abord une relation de Bezout entre 3 et 5
soit :

1 “ 3a ` 5b, soit 3a “ 1 r5s, 5b “ 1 r3s, (3.2.10.1) {beZ}

et on multiplie par les résidus respectifs modulo 5 et 3 pour se ramener à une équation
modulo 15 par le théorème des restes chinois, soit 3.(3a)+2.(5b) modulo 15. Notez qu’en
utilisant (

beZbeZ
3.2.10.1) :

3.p3aq ` 2.p5bq “ 3 r5s et 3.p3aq ` 2.p5bq “ 2 r3s.
Ici on a par exemple a “ 2, c “ ´1, d’où l’on se ramène à :

n “ 18 ´ 10 “ 8 r15s.
Maintenant on utilise l’équation n “ 2 r7s, une relation de Bezout est :

1 “ 15c ` 7d “ 15.1 ´ 7.2

et on obtient n “ 2.15 ´ 8.14 r105s “ 23 r105s. Le plus tel entier est donc n “ 23 !.
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On a la généralisation suivante du théorème de Fermat

Théorème 3.2.11. Pour tout x P pZ{nZqˆ, on a x�pnq “ 1 rns. Si n est premier, on
retrouve le petit théorème de Fermat via

phicphic
3.2.8.

Démonstration. Soit R “ tx1, . . . , x�pnqu un système de représentants de pZ{nZqˆ,
Soit a P pZ{nZqˆ, alors la multiplication x fiÑ ax est une bijection de pZ{nZqˆ, on a donc :

�pnqπ

i“1

xi “
�pnqπ

i“1

axi “ a�pnq
�pnqπ

i“1

xi rns,

soit en simplifiant comme les xi sont inversibles :

a�pnq “ 1 rns.
⇤

4. Arithmétique de krXs
4.1. Idéaux de krXs. Soit un anneau A, on dit que P P ArXs est unitaire s’il s’écrit

sous la forme P “ Xd ` ad´1Xd´1 ` ¨ ¨ ¨ ` a0.

Si P “
d∞

i“0
aiXi P ArXs avec ad ‰ 0, on note degpP q “ d et on appelle adXd le terme

dominant de P . Par convention degp0q “ ´8.

Pcal Lemme 4.1.1. Soient P,Q P ArXs, alors :

(i) degpP ` Qq § maxpdegpP q, degpQqq
(ii) On a :

degpPQq § degpP q ` degpQq
avec égalité si A intègre (e.g. si A est un corps) ou P ou Q unitaires.

Remarque 4.1.4. Si l’anneau n’est pas intègre, il faut faire attention avec les degrés. En
effet si A “ Z{6Z, alors p2Xq.p3.Xq “ 0 P Z{6ZrXs.

Démonstration. Si adXd et brXr sont les termes dominants respectifs de P et Q
alors adXd ` brXr et adbrXd`r sont les termes dominants respectifs de P ` Q et PQ, le
résultat suit. On notera que dans (ii) on a bien égalité si A est intègre ou P,Q unitaires car
comme ad ‰ 0, br ‰ 0, ces deux conditions assurent que adbr ‰ 0. ⇤

Voyons un petite application de ci-dessus :
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