Algébre linéaire M A122

Alexis Bouthier






Table des matiéres

[Chapitre 1.  Arithmétique de Z et des polynémes............cooviiiiiiiiiiiinanni .. 7
[I. Généralités sur les groupes | ...ttt 7
.................................................................. 7
1.2, SOUS-EIOUPES [+ vttt ettt et e e e e e e 8
1.3. Morphismes de groupes |. ...t 8
1.4. Tmage et noyau d’un morphiSme ..................coiiiiiiiiiieeaiinnn .. 9
B ANNeatx | ..o 10
1.6. Groupes des inversibles et Corps |.........cooiiiiiiii i 11
1.7. Espaces vectoriels | ... 11
1.8. Morphismes d’anneaux et de corps |- ... 12
1.9. Anneaux qUOLIENTS . . ..ottt e 13

[2. Arithmeétique de Z |....... ... .. 14
2.1, Sous-groupes de Z . ...t 14
5T e C TG 1 15
2.3. Entiers premiers entre BUX |- ...ttt e 16
2.4. Algorithme d’Euclide |........ .. ... . . . 16
2.5. Nombres premiers |. ... e 17

[3. Les anneaux Z/nZ |....... ... 19
3.1. Quand Z/nZ est-il un corps? |. ... .. 20
3.2. Arithmétique et CONGruences | . ..... ..ottt 20
[3.2.1.  Le petit théoréme de Fermat]............. ... ... ... .. L. 20
[3.2.4. Théoréme des restes chinoIS . ... v.vvvvie i 21
[3.2.6.  Application : Groupe des inversibles de Z/nZ|............................ 21



Leonardo





Chapitre 1

Arithmétique de Z et des polynémes

1. Généralités sur les groupes

1.1. Groupes. Partant d’'un ensemble, il s’agit de I'enrichir avec des structures supplé-
mentaires, telles que des opérations.

Définition 1.1.1. Soit un ensemble E, une loi de composition interne (LCI) sur E est une
fonction % : £ x E — E. Cette loi est généralement notée entre deux éléments.

Exemple 1.1.2. Pour (x,y) € R?, (z,y) — z + y est une loi de composition interne. Si £
est un ensemble non-vide et P(E) 'ensemble de ses parties, alors (4, B) — A n B est une

LCI sur P(E).

Définition 1.1.3. Soit * une LCI sur E. On dit que (E, *) est un monoide si :
1. V (2,9,2) € B3, (z+y) * 2 = v % (y * z) (Associativité).
2.Jee E\Vxe FE,exx =uxx*e=x (Existence d'un élément neutre).

Si pour toute paire (z,y) € E?, on a z %y = y * x, on dit que E est un monoide commutatif
ou abélien.

Remarque 1.1.4. L’utilité de 'associativité est qu’elle permet d’écrire x * y * z sans se
préoccuper du parenthésage. Toutes les lois de composition interne ne sont pas nécessairement
associatives. La soustraction sur R est un exemple de loi non associative. 4 — (3 —2) = 3 #
(4-3)—2=-1.

Exemple 1.1.5. (N, +) ou (N, x) sont des monoides abéliens, (M, (R), x) est un monoide
non-commutatif.

Définition 1.1.6. Soit * une LCI sur E. On dit que (E, ) est un groupe si ¢’est un monoide
et qu’il vérifie :
VazeFE,Jye E,xy = yr = e(Existence d’un inverse).

C’est un groupe abélien si de plus (F, *) est un monoide abélien.

Exemple 1.1.7. (Z,+) est un groupe abélien, (GL,(R), x) est un groupe non-commutatif.
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Lemme 1.1.8. Soit (E,*) un ensemble avec une LCI, si elle admet un élément neutre,
alors il est unique. De plus, si (E,x) est un groupe, alors il y a unicité de l'inverse.

DEMONSTRATION. En effet, si e et ¢’ sont deux éléments neutres, on a e e’ = e et
e* e = ¢'. Pour la deuxiéme assertion, soit x € E, supposons qu’il admette deux inverses
v,y € E. On a alors :

/

y=ylzy') =1y
O

Ainsi, si (F,*) est un groupe, pour tout x € E, il résulte du lemme que 'on peut définir
271, T'inverse de z. On note immédiatement que pour toute paire (x,y) € E? :

(x y)*l = yil !

Dans la suite, on note la LCI de maniére multiplicative, sauf mention explicite et 1’élément
neutre 1. Pour n € N*  si 'on multiplie n fois z, on note z™. Attention, en général :

(zy)" # z"y".
C’est vrai seulement si la loi est commutative (pensez aux matrices). En effet, on a :

22y? = zxyy et (zy)? = zyzy.
1.2. Sous-groupes. On se donne dans la suite (G, .) un groupe.

Définition 1.2.1. Une partie non-vide H de G est un sous- groupe si :

Y (z,y) e H?, 2y ' e H.

Remarques.

1.2.2. On remarque que comme H est non-vide, on a automatiquement 1 € H. En effet, il
suffit de choisir z € H et par hypothése, on a 1 = z.2~ ' € H.

1.2.3. Dans les applications, pour montrer que quelque chose est un groupe, il est souvent
plus commode de montrer que c’est un sous-groupe d’un groupe de « référence ».

Exemple 1.2.4. (Q*, x) est un sous-groupe de (R*, x), U, := {z € C |z" = 1} est un
sous-groupe de (C*, x).
1.3. Morphismes de groupes. Soient (A4,.) et (B,.) deux groupes.

Un morphisme de groupes est une fonction entre groupes f : A — B telle que :

f(la) = 1p, f(ay) = f(z)f(y)-

Remarque 1.3.1. On a automatiquement f(z)f(z7!) = f(zaz~!) = 1 soit f(z71) =
fla)™t.



Exemple 1.3.2. z — |z] de (C*,.) - (R*,.) ou z — €® de (R, +) sur (R*,.) sont des
morphismes de groupes.

Vocabulaire usuel sur les morphismes :

Définition 1.3.3. Soit f : G — H, un morphisme de groupes. On dit que :
1. f est un endomorphisme si G = H.
2. f est un isomorphisme si ¢’est un morphisme de groupes bijectif.

3. f est un automorphisme si c’est un endomorphisme bijectif.

Exemples.
1.3.4. z +— 22 est un endomorphisme de groupes de (R*, x).

1.3.5.  — €” est une bijection de (R,+) sur (R¥, x). On dit que ces groupes sont
isomorphes.

Exemple 1.3.6. Pour un groupe G et z € G, ¢, : G — G donné par y — zyz~' est un
automorphisme de GG. On appelle un tel automorphisme, un automorphisme intérieur. Si
x = 1, on obtient I'automorphisme identité I'dg donné par y — y.

Exemple 1.3.7. Soit G un groupe, alors 'ensemble Aut(G) des automorphismes de G avec
la composition des applications comme LCI est un groupe.

DEMONSTRATION. La loi de composition est clairement associative et pour tout o €
Aut(G), on a Idg oo = 0 oIdg = 0. De plus comme o est bijective, soit c~! son inverse,
1 Lo o = Id. Il suffit donc de vérifier que o~ ! est aussi

alors on a bien c oo™ = o~

un morphisme de groupes. On a o(1) = 1 donc o~ !(1) = 1. Soit (z,y) € G?, alors
o(c™H(@)o H(y)) = olo™H(@))a(o™(y)) = 2y = o(0 ™ (ay)), soit o~ ()0 (y) = 07" (a)
par injectivité de o. g

1.4. Image et noyau d’un morphisme. Soit ¢ : G — H un morphisme de groupes.

Lemme 1.4.1. Soient G' = G, H' < H des sous-groupes, alors ¢(G") et ¢~ (H') sont aussi
des sous-groupes.

DEMONSTRATION. e € G’ comme G’ est un sous-groupe et ¢(e) = €’ € ¢p(G’). De plus,
d(x)p(y) "t = gp(xy™1) et 2y~ € G’ donc ¢(G’) est un sous-groupe. On a 1’équivalence :

re¢ Y(H) < ¢(x) e H'.

Comme ¢(1) = 1 € H', 1 € ¢~Y(H'). Si 2,y € ¢~'(H'), alors ¢(z)p(y)~' € H'. Or
é(x)p(y) =t = ¢(xy~1), donc on obtient zy~ € ¢~1(H'), ce qui conclut. O
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Définition 1.4.2. 1. On définit I'image de ¢, notée Im ¢ par le sous-groupe ¢(G) < H.
On a Im ¢ = H si et seulement si ¢ est surjective.

2. On définit le noyau de ¢, noté Ker ¢, par le sous-groupe ¢~ ({e}) c G.

Exemple 1.4.3.
¢ : C - R, donné par z — Re(z) est surjectif, donc Im ¢ = R. De plus, Ker ¢ = iR.
é: (R, +) — (U, x), donné par x — €@ est surjectif de noyau 277Z.

Proposition 1.4.6. Soit ¢ : G — H un morphisme de groupes. Alors, ¢ est injectif si et
seulement si Ker ¢ = {1}.

DEMONSTRATION. Sens direct : soit z € G tel que ¢(z) = 1 alors ¢(z) = ¢(1) et = = 1.

Sens réciproque : Si pour (z,2') € G2, on a ¢(z) = ¢(z'), alors ¢(z)p(z')~! = 1, d’oir
(xx’~1) = 1. Comme Ker ¢ = {1}, on obtient z2'~' =1 et z = /. O

Proposition 1.4.7. Soit ¢ : G — H un morphisme de groupes finis de méme cardinal, alors
on a l’équivalence :

¢ injective < ¢ surjective < ¢ bijective.

DEMONSTRATION. On montre (1) = (2) = (3) = (1). Si ¢ est injective, card(G) =
card(¢(G)) = card(H) donc ¢(G) = H et ¢ est surjective. Si ¢ est surjective, alors ¢p(G) = H
et si ¢ n’est pas injective, on aurait card(H) = card ¢(G) < card G, donc ¢ est injective
donc bijective. La derniére assertion est triviale. O

Lemme 1.4.8. Soit G un groupe fini, alors pour tout x € G, il existe n € N*, " = 1.

DEMONSTRATION. En effet si tel n’est pas le cas alors on obtiendrait un morphisme de
groupes injectif :
7 — G
donné par k — z*. Or, G est fini, contradiction. O

1.5. Anneaux.

Définition 1.5.1. Soit (A, +,.) un ensemble muni de deux LCI, on dit que A est un anneau
si:
1. (A, +) est un groupe abélien.
2. (A,.) est un monoide.
3.V (n,y,2)eA3 onan(y+z2)=zy+arzet (z+y).z=x2+y.z (distributivité) .

Enfin, A est un anneau commutatif, si (A4,.) est un monoide commutatif.
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Exemple 1.5.2. (Z,+, x), (C, +, x) sont des anneaux commutatifs, (M, (R),+, x) est un
anneau non-commutatif. Si A et A’ sont deux anneaux alors le produit direct de A x A’ est
aussi un anneau en faisant les opérations composantes par composantes. Pour un anneau A,
on a I'anneau des polyndémes & coefficients dans A :

A[X] = {)] aaX? neN,aq e A},

d=0
avec I’addition et la multiplication habituelle des polynémes. Plus généralement on dispose
de 'anneau A[X7,..., X, ] en r indéterminées, qui consiste en les expressions de la forme

'ZNT a; X7' ... X! avec les a; presque tous nuls. On vérifie en développant que
i€

(AXDIY] = A[X, Y] = A[Y][X],

(admis ou laissé en exercice).

Définition 1.5.3. Un sous-anneau B de A vérifie :
— (B, +) est un sous-groupe de (A, +).
— (B, x) est un sous-monoide de (A, x).

1.6. Groupes des inversibles et Corps. Soit un anneau (A, +, x). Tout élément
x € A n’est pas nécessairement inversible.

Lemme 1.6.1. Soit (A*, x) l’ensemble des éléments inversibles pour x, alors c’est un
groupe. On appelle le groupe des inversibles.

DEMONSTRATION. (A*, x) est un sous-monoide de (A4, x) et par définition tout élément
est inversible. O

Exemple 1.6.2. Z* = {£1}, Q* = Q*.

Définition 1.6.3. Soit un anneau A, on dit que c’est un corps s’il est non-réduit a {0} et si
tout élément non-nul est inversible. Un sous-corps est un sous-anneau qui est un corps.

Remarque 1.6.4. Dans ce cours, on ne considérera que des corps commutatifs, i.e. tels que
A soit un anneau commutatif.

Exemple 1.6.5. Les ensembles QQ, R, C sont des corps.
1.7. Espaces vectoriels. On rappelle la définition suivante.

Définition 1.7.1. Soit K un corps. On appelle K-espace vectoriel un ensemble E, muni
d’'une LCI + telle que :

(i) (E,+) est un groupe abélien.
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(ii) Il existe une application . : K x E — E, appelée loi externe telle que :
(a) Vze E,lx =x.
b)Y (\p)eK2 xe E,(Ap).o = \(uz).
() V(\p) eK2 (2,y) € B2, A+ p).(x +y) = A\x + px + Ay + p.y.

Remarques.

1.7.2. Nous n’allons pas refaire toutes les définitions qui sont déja connues. On a surtout
rappelé celle-ci pour bien mettre ’accent que I'on travaille avec K un corps arbitraire
et pas seulement K = R ou C.

1.7.3. Ces données peuvent étre rassemblées en une seule. Si I’on note End(E) 'anneau des
endomorphismes de groupes abéliens de E, muni de ’adddition et de la composition
des endomorphismes, alors la donnée d’une structure de K-espace vectoriel revient
a la donnée d’un morphisme d’anneaux ¢ : A — End(M), donné par a — ¢, ou
¢q 1 E — E est donnée par = — a.zx.

On a ensuite les notions usuelles de sous-epaces vectoriels, morphisme d’espaces vectoriels,
qui sont précisément les applications linéaires, et de noyau et d’image d’applications linéaires.

1.8. Morphismes d’anneaux et de corps. Un morphisme d’anneaux est une fonction
entre anneaux f : A — B telle que :

— [:(A,+) — (B, +) est un morphisme de groupes.

— f: (A, x) = (B, x) est un morphisme de monoides.

Un morphisme de corps est un morphisme d’anneaux entre corps.

Exemple 1.8.1. Le morphisme ev : F(R,R) — R donné par f — f(0) est un morphisme
)

d’anneaux. La conjugaison complexe (—) : C — C est un automorphisme de coprs, i.e. un

morphisme de corps bijectif.
Définition 1.8.2. (i) Soit ¢ : A — B un morphisme d’anneaux, on définit le noyau et
I'image de ¢ :
Ker(¢) = ¢~'(0), Im(¢) = ¢(4) < B.
(ii) Soit un anneau A, (I,+) < (A, +) un sous-groupe abélien, on dit que I est un idéal

si pour tout a € A, on a al = {ax,x eI} c I.

Remarques.
1.8.5. Silest unidéal et 1 €I, alors I = A, car a = a.1 pour a € A.
1.8.6. Sia€ A, aA = {ax,x € A} est idéal de A. On le note (a).

12



root

Définition 1.8.7. Un anneau est dit principal s’il est intégre et tout idéal I < A est de la
for pour a € A. On verra que Z et K[X] pour K un corps sont aussi principaux
(ct. PT2fZT).

Remarque 1.8.8. Un corps K est principal. En effet, si I # 0, alors soit € I non-nul,
alors 1 =zt e I, donc I = A.

Lemme 1.8.9. Soit ¢ : A — B un morphisme d’anneauz, alors Ker(¢) est un idéal et Im(p)
est un sous-anneau.

DEMONSTRATION. Comme ¢ est un morphisme de groupes abéliens, alors Ker(¢) est
un sous-groupe abélien et de plus si a € A, x € Ker(¢), on a ¢(az) = ¢(a)p(x) = 0, donc
ax € Ker(¢) et Ker(¢) un idéal. Pour la deuxiéme assertion, on sait déja que (Im(¢), +) est un
sous-groupe abélien et (Im(¢), x) est un sous-monoide, donc Im(¢) est un sous-anneau. O

Exemple 1.8.10. Soit K un corps, ¢ : K[X] — K donné par P — P(0), alors Ker(¢) = (X).
En effet, on a clairement (X) < K[X]. De plus, si P(0) = 0, alors en écrivant P = > a; X",
si P(0) =0, alors ap = 0 et X|P.

1.9. Anneaux quotients. Soit un anneau commutatif A, I < A un idéal, on considére
la relation de congruence modulo I :

a=b modl <=a—-bel.

Proposition 1.9.1. La relation de congruence modulo I est une relation d’équivalence. On
note A/I l’ensemble des classes d’équivalence, il admet une structure d’anneau donnée par :

a+b=a+b modI,a.b=ab mod I,

telle que la projection p : A — A/I est un morphisme d’anneaux de noyau Ker(p) = 1.

DEMONSTRATION. La symétrie et la réflexivité sont évidentes, pour la transitivité si
a=>b modIetb=c modI, alors c—a = (¢c—b)+ (b—a) € I. Passons a la structure
d’anneau, il faut s’assurer que la définition ne dépend pas du choix du représentant, soit si :

a=a modI,b=0V modI, alors a+b=ad +b modI,ab=db/ mod I.
On a donc (a — '), (b—V) € I ot comme (I, +) est un groupe abélien :
(a+b)—(a+b)el, soit a+b=d +b mod .
De plus, comme [ est un idéal :
ab—ad't =ab—-V)+b(a—d)el, soit ab=ab mod I.

On obtient donc que le produit et la somme sont bien définis et on vérifie immédiatement &
partir des propriétés d’anneau de A que A/I 'est aussi et que :

p: A— A/l
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est un morphisme d’anneaux. De plus si = 0 mod I, alors z € I, donc Ker(p) = I. ]

Les deux exemples fondamentaux pour la suite de ce cours d’anneaux quotients sont les
suivants :

Exemple 1.9.2. nZ < Z est un idéal et on note Z/nZ 'anneau quotient. Dans ce cas la
relation de congruence modulo [ se récrit comme :

a="b[n] < nlb—a.
Le deuxiéme vient des polynomes :

Exemple 1.9.3. Soit un anneau A, P € A[X] et I = (P), alors on peut former ’anneau
quotient A[X]/(P). La relation de congruence est donnée par :

R=Q mod (P), si P|R—-Q.
Un cas particuliérement intéressant est pour construire les complexes, sur lequel on reviendra
plus tard quand on étudiera les polynémes :
R[X]/(X?+1)=C

donnée par P — P(i). (On peut également prendre le membre de gauche comme la
construction des nombres complexes.)

Proposition 1.9.4 (Propriété universelle du quotient). Soit ¢ : A — B un morphisme
d’anneauz tel que I < Ker(¢), alors il existe une unique application ¢ : A/I — B telle que

¢p=c¢opavecp: A— A/l

DEMONSTRATION. En effet si Z € A/I, on choisit 2 € A qui reléve et on pose
¢(z) = o().

I1 s’agit de voir que cela ne dépend pas du choix du relévement, or si 2’ € A est un autre
relévement, alors x — 2’ € I de telle sorte que :

¢(z) = ¢(a' + (x — 2')) = o(a'),
puisque que I < Ker(¢). Le fait que ¢ soit un morphisme d’anneaux se déduit alors de la
définition de 'addition et du produit sur A/I et du fait que ¢ est un morphisme. O

2. Arithmétique de Z
2.1. Sous-groupes de Z.

Proposition 2.1.1. [Division euclidienne] Soit (a,b) € N x N* alors il existe un unique
couple (q,r) € N? tel que :

a=bqg+r
avec r < b.

14



sgZ

DEMONSTRATION. Unicité :

/

Sibg+r=0b¢ +1" alorsb(¢g—¢)=r—1",or0<r
—b-1)<r—7"<

et b|(r —r') doncr —7' =0etr=1r'

Existence : Par récurrence sur a, b étant fixé. Si a = 0 et @ = 0.b. Sinon par récurrence,
onaa=>bg+ravecr <b—1,soita+1=0bg+7r+1.Sir+1<b, onprend le couple
(g,7+1),sinonr+1=>bet on aalors a+ 1 =b(q+ 1), donc (¢ + 1,0) marche. O

Proposition 2.1.2. Soit G un sous-groupe de (Z,+), alors il existe un unique élément
n €N tel que G = nZ. Ce sont également les idéaux de Z. En particulier, Z est principal.

DEMONSTRATION. Si G = {0}, c’est clair. Sinon, soit n = min(G n N*). Le minimum
est bien défini car, soit € G\{0} qui est non-vide par hypothése alors comme G est un
groupe {z, —z} € G, de telle sorte que G " N* est non-vide donc admet un plus petit élément.
Comme G est un groupe, on a clairement nZ < G, montrons la réciproque. Soit x € G, a
nouveau quitte a changer x en —zx, on peut supposer que x € N et on effectue la division
euclidienne Z.T.1 de x par n, il existe donc un couple (g, r) tel que :

r=b+r,0<r<n, soit r=x—bmeGnN
et donc par minimalité de n, r = 0 et G = nZ.

Montrons l'unicité. Si nZ = mZ avec n,m # 0, alors n = km et m = In avec k,l € N*, soit
n==kin dou kl =1 et k =1 = 1. Comme les nZ sont clairement des idéaux, on en déduit
que tous les idéaux de Z sont de cette forme puisque qu’en particulier les idéaux sont des
sous-groupes abéliens. O

2.2. PGCD.

Lemme 2.2.1. Soient a,b € Z, alors aZ + bZ = {ak + bl,k,l € Z} est un sous-groupe de Z,
il existe donc un unique m € N tel que :

aZ + bZ = mZ.
On dit que m est le pged de a et b, noté a A b.

DEMONSTRATION. En vertu de ﬁl il suffit de montrer que aZ + bZ est un sous-groupe
de Z. On remarque alors que c’est 'image du morphisme de groupes :

/iy
donné par (z,y) — ax + by. O
Remarque 2.2.2. On notera que méme si a et b sont des entiers relatifs, le pged est toujours
un entier positif.
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Lemme 2.2.3. Soient a,be N, on note d = a A b.
1. On ad|a et d|b.

2. 1l existe un couple (u,v) € Z2 tel que d = au + bv. On appelle une telle relation, une
relation de Bezout.

3. Simla et m|b, alors m|d.

4. da A b= |)\|d.
DEMONSTRATION. (i) On a a,b € aZ + bZ = dZ, donc il existe k,l € Z tels que a = kd
et b=1d.
(i) On a d € dZ = aZ + bZ, d’ot1 'existence de (u,v) € Z? tel que d = au + bv.

(iii) Si d = au + bv est une relation de Bezout, si m|a, m|b, alors m|au + bv = d et m|d. Ce
qui justifie ’'appelation de plus grand diviseur commun.

(iv) AaZ + AbZ = |A|(aZ + bZ) = |\|dZ et on conclut par unicité du pged. O
2.3. Entiers premiers entre eux.
Définition 2.3.1. On dit que a,b € N sont premiers entre eux sia A b = 1.

Théoréme 2.3.2. (i) Sialbc et a Ab=1, alors a|lc (Lemme de Gauss).

(ii)) Sianb=1etanc=1, alorsa A bc = 1.
DEMONSTRATION. (i) On écrit une relation de Bezout, au + bv = 1, soit auc + bvc = ¢
et donc comme albc, on trouve alc.

(ii) On écrit deux relations de Bezout, au + bv =1 et aw + ¢t = 1, on a alors :

(au + bv)(aw + ct) = a(u(aw + ct) + bvw) + be(tv) = 1.

O
Corollaire 2.3.5. Sia A b =1, alors a™ A b" =1 pour tout m,n € N.
2.4. Algorithme d’Euclide.
Lemme 2.4.1 (Lemme d’Euclide). On a a A (b+ Xa) =a A b.
DEMONSTRATION. On a aZ + (b+ Xa)Z = aZ + bZ + XaZ = oZ + V. O

Application : On se sert du lemme d’Euclide pour calculer le pged, sans avoir & connaitre
les facteurs premiers de a et b, ce qui peut étre difficile & déterminer pour des grands
nombres.

En changeant a en —a, on peut supposer a,b = 0.
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— Sib=0,alorsa A b=a.

— Si b # 0, on fait la division euclidienne de a par b et on a a = bg+rg avec rg < b—1
et a nb=(bq+ry)Ab=ry b On fait alors la division euclidienne de b par g
et on trouve b = q179 + r1. En itérant, on a donc une suite d’entiers strictement
décroissante (r) jusqu’a trouver un n tel que r, = 0 et on a alors :

aANb=Typ 9 ANTp_1="Tp1,

ou la derniére égalité vient du fait que r, = 0.

Exemple 2.4.2. Ona 155 A4 =(438+ 1) Ad=1r4=1.
Application pour calculer une relation de Bezout : Calculons 153 A 35, on a alors :
153 =435+13,35=2.134+9,13=9+4,9=24+1.

Ici c’est plus rapide d’utiliser la décomposition en nombres premiers pour trouver le pged,
mais on va voir que c’est tout de méme commode pour trouver une relation de Bezout. Pour
trouver une relation de Bezout, il suffit de « remonter » 1’algorithme d’Euclide. On écrit
alors :

13 =153 — 4.35,9 = 35 — 2.13 = 35 — 2.(153 — 4.35) = 9.35 — 2.153,

4=13—-9= (153 —4.35) — (9.35 — 2.153) = 3 » 153 — 2.35,
1=9—24=(9.35—2.153) — 2.(3 % 153 — 2.35) = 13.35 — 8.153.

2.5. Nombres premiers.

Définition 2.5.1. Un entier p € N* est premier s’il admet exactement deux diviseurs, 1 et
lui-méme.

Remarque 2.5.2. En particulier, 1 n’est pas premier.

Lemme 2.5.3. Soit p premier, soit r non-divisible par p, alors r A p = 1. En particulier,
pour tout de€ [1,p—1],dAp=1etsir Ap+#1, on ap|r.

DEMONSTRATION. Soit d = 7 A p, alors d|p, donc d = 1 ou d = p. Si d = p, alors comme
d|r, r serait un multiple de p, ce qui n’est pas, donc d = 1. ]

Théoréme 2.5.4 (Euclide). Il y a une infinité de nombres premiers.

DEMONSTRATION. Par I’absurde, s’il y en a un nombre fini py,...,p,, soit N =
P1...pn + 1, alors N ne peut étre premier, il est donc divisible par un des p;, mais cela
forcerait alors par définition de N, p;|1, une contradiction. ]

On note P I’ensemble des nombres premiers.
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[cons|

Théoréme 2.5.5. [Décomposition en nombres premiers| On a :
V neN* W ap)pep,n = Hpo"’,
peEP

ot la famille (o) est nulle sauf pour une nombre fini de premiers.

DEMONSTRATION. Montrons l'existence par récurrence sur n. Si n = 1, on prend
(ap) = 0. Supposons le résultat vrai pour tout k& < n, montrons le résultat pour n + 1. Si
n + 1 est premier, il n’y a rien & montrer, sinon n + 1 = ab avec a,b < n. On écrit alors :

a = Hpaf’,b = Hpbp, soit n+1= Hpap“’z’.

peP peP peP
Pour l'unicité, on a :
[T =[]
peP peP

Soit pg € P, par symétrie, on peut supposer que a,, < by, et on divise par p®o, on obtient :

G = H pa”=pgp07%0( H pbp)a

p#poEP p#po€P
Sip# po,onapAapy=1,soit pg A G =1 donc ap, = by, et I'unicité en découle. O

Remarque 2.5.6. Pour n € N* et un premier p, on note alors vp(n) la puissance maximale
de p qui divise n, on I'appelle la valuation p-adique.

Proposition 2.5.7. (i) On a vy(ab) = vy(a) + vy(b).
(ii) On aalb <=V pe P,v,(a) < vp(b).
(iii) Sic=a A b, alors ¢ = ] p™in(p(a)vp(b)
peP

DEMONSTRATION. (i) On a :
a = Hpvp(a)’ b — 1_‘[])”17(17)7
peEP peEP

il suffit alors de multiplier et d’identifier les valuations p-adiques par unicité.
(ii) Si b = ac, alors pour tout p € P, v,(b) = vy(a) + vp(c) ce qui donne le sens direct. Pour

la réciproque, on a :
b=ax Hpvp(b)—vp(a).
pEP
(iii) Soit D = [ p™r(@)vp(®) par construction, on a Dl|a et D|b donc D|c. Réciproquement

peP
si cla, b alors vy(c) < vp(a),vy(b), ce qui conclut. O
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Définition 2.5.11. Pour a,b € N, on définit le plus petit commun multiple par :

ppem(a,b) = [ | prexr@-0),
peP

Proposition 2.5.12. Soient a,be N, on a :
(i) (@ A b)ppem(a,b) = ab. En particulier, sia Ab =1, on a ppem(a,b) = ab.

(i1) Si mla, nla, alors ppcm(m,n)la.
DEMONSTRATION. (i) est immédiat a partir de E_g 7(iii) et du fait que
vV p € P,min(vp(a), vp(b)) + max(vy(a), vp(b)) = vp(a) + vp(b).
(ii) Les deux conditions et ﬁ(ii) donnent que pour tout p € P, v,(m),v,(n) < vy(a) et en

passant au max, on en déduit que ppcm(m,n)|a. O

3. Les anneaux Z/nZ

Soit n € N*, rappelons que a et b sont congrus modulo 7 si :
a="b[n] < nlb—a.

On a vu que Z/nZ est un anneau commutatif.

Lemme 3.0.1. On a card(Z/nZ) = n.

DEMONSTRATION. On a une application :
¢:{0,...,n—1} > Z/nZ

donnée par k — k, la classe d’équivalence correspondante. Montrons que c’est une bijection.
Si k =m, alors n|m — k et on a :

—(n—=1)<m—-k<n-1, soit k=m.

Montrons la surjectivité, si z € N, on écrit la division euclidienne par n, soit x = bn + r
avec 0 < r < n, soit x = r [n]. Enfin, si x € Z—g, alors 'argument ci-dessus donne que
x =—r [n] avec 0 <r <n et on a alors :

x=n—r[n], et n—rel0,n—1].

Exemple 3.0.2. Z/2Z = {0,1} = {250, 251}.
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3.1. Quand Z/nZ est-il un corps?
Définition 3.1.1. Un anneau est intégre si pour tout x,y € A non-nuls, on a xy # 0.

Exemple 3.1.2. (i) Un corps est un anneau intégre.
(ii) Z/6Z n’est pas intégre, car 2.3 = 0 [6].

Proposition 3.1.5. Soit n € N*, les assertions suivantes sont équivalentes :
(i) Z/nZ est un corps.
(ii) Z/nZ est un anneau intégre.

(iii) n est premier.

DEMONSTRATION. (i) = (i) est clair. Montrons (i) = (iii) par contraposée si n
non premier, alors n = dr avec 0 < d,r < n et donc dr = 0 [n], donc Z/nZ n’est pas intégre.
Il reste (iii) = (i), soit 0 < r < n, comme n est premier, alors 7 An = 1 par %L on écrit
alors une relation de Bezout ru + dn = 1 et en réduisant modulo n, on trouve :

ru=1 [n]

et 7 est inversible donc Z/nZ est un corps. O

3.2. Arithmétique et congruences. On note [, = Z/pZ.
3.2.1. Le petit théoreme de Fermat.

Théoréme 3.2.2. Soit x € F),, alors 2P = x [p].

DEMONSTRATION. On procéde par récurrence sur k € N, si k = 0, 1, c’est clair.

Montrons donc que :
(k+ 1P =kP+1 [p],

puisque par induction, on aura kP = k [p]. On applique alors le binome de Newton pour

obtenir :
p »\ ., p—1 P\ .,
k+1)P = K=k +1 k'
(k+1) Z@ ; +k§<k)

k=0
Pour conclure, il suffit d’établir le lemme suivant :

Lemme 3.2.3. Pour tout 1 <k <p—1, on ap|(}).

DEMONSTRATION. On a :

(p): b _plp=1)...(p=k+1)
k)~ kl(p—k)! k! ’
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soit k!(i) =p(p—1)...(p—k+1)=0[p], or p A k! =1, donc inversible modulo p et on
trouve :

comme souhaité. O

3.2.4. Théoréme des restes chinois.

Théoréme 3.2.5. Soient m,n € N tels que m A n =1, alors Uapplication canonique :
¢ : Z/mnZ — Z/mZ x Z/nZ,

est un isomorphisme d’anneauz.

DEMONSTRATION. On a un morphisme d’anneaux Z — Z/mZ x Z/nZ qui envoie mnZ
sur 0 donc induit par passage au quotient un morphisme :

¢ : Z)mnZ — Z/mZ x Z/nZ.

Comme la source et le but ont méme cardinal, il suffit de montrer I'injectivité, soit identifier
Ker(¢). Soit = € Ker(¢), alors x = Q [n] et x = 0 [m], donc m|x et n|x et comme m et n
sont premiers entre eux alors par mn|z et = 0 [mn] et ¢ injective. O

3.2.6. Application : Groupe des inversibles de 7/nZ.

Proposition 3.2.7. Soit € (Z/nZ)* < x Ann = 1.

DEMONSTRATION. On a :
zAan=1<=3kl)eZ kr+in=1<Te(Z/nL)*.
O

On pose alors ¢(n) := card((Z/nZ)*), on appelle la fonction ¢ : N — N la fonction d’Euler.

phic| Proposition 3.2.8. Sim A n =1, alors p(mn) = ¢(m)ep(n). De plus, sip est premier et
keN*, p(p*) = p* —pF1.

DEMONSTRATION. Pour la premiére assertion, il suffit de passer aux inversibles dans le
théoréme des restes chinois et on obtient :

(Z/ng)X ~ (Z/mZ)* x (Z/nZ)*.
Calculons ¢(p*), il resulte de % que :
¢(n) ={ke0,n—1],k An=1}.
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est premier, on a p|k par en particulier le complémentaire consiste en les multiples de
p dans Z/p®Z, il y en p®~ " donc en passant au complémentaire, on obtient :

o(p") = p* —p* .

Calculons le complémentTre de (Z/nZ)* ; pour n = p®, dans ce cas si k A pF # 1, comme p

Corollaire 3.2.9. Pour tout n € N*, on a :

1
¢(n) =n] [(1- o)

pln

DEMONSTRATION. En effet, on écrit n = Hpvp(”). La proposition précédente donne
pln

o(n) = [T ow™) = [[p™(1 - ;> —n]]0- ;»

pln pln pln

alors :

0

Voyons un application au probléme dit « de Sunzi » qui remonte & I’époque des Six Dynasties

(220-589) en Chine.

Exemple 3.2.10. Supposons qu’on ait un nombre inconnus d’objets. S’ils sont comptés par
3, il en reste 2, s’ils sont comptés par 5, il en reste 3 et par 7, il en reste 2. Combien y-a-t-il
d’objets au minimum ?

Il s’agit de chercher le plus petit n tel que n =2 [3],n =3 [5],n =2 [7].

On se raméne & deux équations. On cherche d’abord une relation de Bezout entre 3 et 5
soit :

1 =3a+5b, soit 3a=1][5],5b=1 ]3], (3.2.10.1)
et on multiplie par les résidus respectifs modulo 5 et 3 pour se ramener & une équation

modulo 15 par le théoréme des restes chinois, soit 3.(3a)+2.(5b) modulo 15. Notez qu’en
utilisant lm :

3.(3a) +2.(5b) =3 [6] et 3.(3a) + 2.(5b) = 2 [3].
Ici on a par exemple a = 2, ¢ = —1, d’ott 'on se raméne & :

n =18 —10 = 8 [15].
Maintenant on utilise I’équation n = 2 [7], une relation de Bezout est :
1=15¢+7d=151-7.2

et on obtient n = 2.15 — 8.14 [105] = 23 [105]. Le plus tel entier est donc n = 23 1.
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On a la généralisation suivante du théoréme de Fermat

Théoréme 3.2.11. Pour tout x € (Z/pZ)>*, on a z®™ = 1 [n]. Si n est premier, on

retrouve le petit théoréeme de Fermat via|3.2.8.
DEMONSTRATION. Soit R = {r1,...,%4()} un systéme de représentants de (Z/nZ)*,
Soit a € (Z/nZ)*, alors la multiplication = — ax est une bijection de (Z/nZ)*, on a donc :
b(n) ¢(n) b(n)
H T; = H az; = a®™ H x; [n],
i=1 i=1 i=1

soit en simplifiant comme les x; sont inversibles :

a®™ =1 [n].
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