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Introduction

Le but de ce cours est de proposer une première approche des structures algébriques de base. On se concentrera
sur le cas commutatif, même si parfois nous aborderons des notions plus générales.
Le fil rouge sera la structure quotient. Nous commençons par décrire l’anneau euclidien Z. Les sous-groupes de
Z, qui sont dans ce cas également des idéaux, sont monogènes. Les quotients Z/nZ sont les premiers exemples
de groupe quotient et d’anneau quotient. Ce sont aussi les modèles de groupes cycliques. L’anneau Z/pZ est
un corps si et seulement si p est un nombre premier. Nous abordons dans cette partie l’algorithme d’Euclide et
quelques applications.
Lorsque H est un sous-groupe de G, l’ensemble G/H est un groupe lorsque H est distingué dans G, ce qui



Structures algébriques - 3MA262 — P. -V. Koseleff 3

est le cas lorsque G est abélien. Nous abordons les théorèmes d’isomorphisme, outil essentiel pour étudier la
structure des groupes.
Nous abordons également la notion d’anneau (commutatif), et en particulier les notions d’anneaux factoriels,
principaux et euclidiens. Nous démontrons les théorèmes d’isomorphisme, en particulier, le théorème chinois.
Lorsque K est un corps, l’anneau K[X ] est naturellement un anneau euclidien. L’algèbre K[X ]/(P) est un corps
lorsque P est irréductible. De cette manière, nous construisons des corps finis comme des extensions algébriques
de Z/pZ et nous examinons plus généralement les extensions finies des corps finis Z/pZ ou du corps Q des
nombres rationnels.
Les lecteurs intéressés pourront lire avec intérêt les parties abordées dans ce cours et également traitées dans
les ouvrages suivants (liste non exhaustive) : [1, 3, 5].

1 Espace quotient

Nous présentons tout d’abord la notion d’espace obtenu par passage au quotient. Des espaces aussi usuels que
l’anneau Z/nZ, les espaces Lp, le groupe R/2πZ, le corps C'R[X ]/(X2 +1), par exemple, reposent sur cette
construction.

1.1 Quotient

Les deux notions importantes, indispensables à la manipulation des quotients, sont la surjection canonique et
la propriété universelle.

Relation d’équivalence

Soit E un ensemble.

Définition 1.1. Une relation d’équivalence R sur un ensemble E est une relation binaire sur E qui est à la fois
réflexive, symétrique et transitive.

On dit que R est réflexive si pour tout x de E, on a xRx. On dit que R est symétrique si pour tous x,y de E, on
a xRy si et seulement si yRx. On dit que R est transitive si pour tout x,y,z de E, on a[

(xRy)et(yRz)
]
=⇒ (xRz).

Exemple 1.2. Dans E un espace vectoriel normé, on peut définir la relation xRy⇔‖x‖= ‖y‖.
Si f ∈ FE est une application de E vers F, on peut définir xRy : f (x)= f (y). Deux éléments de E sont équivalents
si ils ont la même image par f . C’est le cas dans l’exemple précédent.
Dans l’anneau Z, on peut définir a∼ b⇔ a =±b.
Dans l’ensemble N×N, on définit (a,b)∼ (c,d)⇔ a+d = b+ c.
Dans l’ensemble Z×Z∗, on définit (a,b)∼ (a′,b′)⇔ ab′ = a′b.
Dans l’ensemble Rn+1−{0}, on définit x∼ y par ∃λ 6= 0;x = λy.

Définition 1.3. Si R est une relation d’équivalence, la classe d’équivalence (pour la relation R) de a, notée
π(a) ou a, ou cl(a) est

π(a) = {x ∈ E | xRa}.

La classe d’équivalence π(a) de a contient toujours a. π(a) = π(b) si et seulement si b ∈ π(a). Les classes
d’équivalence de E (pour la relation d’équivalence R) forment donc une partition de E.

Les deux outils fondamentaux pour étudier les espaces quotients sont

1. la surjection canonique, pour la manipulation des éléments du quotient,

2. la propriété universelle, pour créer des applications partant d’un quotient.
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Surjection canonique

On note E/R, l’ensemble quotient de E par R, c’est l’ensemble des classes d’équivalence de E, c’est un sous-
ensemble de P (E). On dispose à présent de l’application (surjective)

π :
{

E−→ E/R
x 7−→ π(x)

.

On peut voir ainsi les classes d’équivalence comme les pré-images des éléments de E/R par la surjection
canonique π. Réciproquement, si f ∈ FE est une application de E vers F, alors la relation

x∼ y⇔ f (x) = f (y)

est une relation d’équivalence. Ainsi f−({x}) = {y ∈ A | f (x) = f (y)} est la classe d’équivalence de x.
On obtient ainsi une partition de E

E = ∪
y∈F

f−({y}).

Ainsi, lorsque E est un ensemble fini, on obtient

|E|= ∑
y∈F
| f−({y})|.

Corollaire 1.4. Soit f une application de de E vers F, ensembles finis.

1. Si f est injective, alors |E| ≤ |F |.
2. Si f est surjective, alors |E| ≤ |F |.
3. Si f est bijective, alors |E|= |F |.

Mieux encore, on obtient le lemme des bergers, très utile en dénombrement
Lemme 1.5 (Lemme des bergers). Soit E et F des ensembles finis et f ∈ FE .
Si pour tout y ∈ F, |{x ∈ E | f (x) = y}|= m, alors |E|= m · |F |.

Applications en dénombrement

On déduit du lemme des bergers précédent (1.5) de nombreux résultats de dénombrement.
Disons tout de suite que deux ensembles A et B sont de même cardinal si et seulement si il existe une bijection
entre A et B. C’est une relation d’équivalence entre ensembles. A et B sont de même cardinal fini n si et
seulement si A et B sont en bijection avec J1,nK= {i∈Z | 1≤ i≤ n}. Si u et v sont des bijections, u∈Bij(A,A′)
et v ∈ Bij(B,B′) alors BA et B′A

′
sont en bijection par l’application :

BA → B′A
′

f 7→ v◦ f ◦u−1.

Ainsi, le nombre d’applications (resp. injectives, surjectives, bijectives) de A vers B est égal au nombre d’ap-
plications (resp. injectives, surjectives, bijectives) de J1,nK vers J1,mK.

Nombre d’applications. Le nombre d’applications de J1,nK vers J1,mK est égal à mn : c’est le nombre
de m-uplets d’éléments de J1,mK. En effet, à toute application f de J1,nK vers J1,mK, on peut associer
de façon unique le n-upplet ( f (1), . . . , f (n)) de J1,mKn.

Nombre d’injections. Soit I (n,m) l’ensemble des injections J1,nK vers J1,mK. Considérons l’applica-
tion ϕn de I (n,m) vers I (n−1,m), qui à une injection f associe ϕn( f ) = g = f|J1,n−1K.
On voit alors que ϕ−n ({g}) est l’ensemble des injections f , qui vérifie f (1) = g(1), . . . , f (n−1) = g(n−
1) et f (n)∈ J1,mK−{g(J1,n−1K)}. Il y a donc une bijection entre ϕ−n ({g}) et J1,mK−{g(J1,n−1K)}.
On a donc, en vertu du lemme des bergers (1.5), I (n,m) = I (n− 1,m) · (m− n+ 1), lorsque m ≥ n et

I (n,m) = 0 lorsque m < n. On conclut alors que |I (n,m)|= m(m−1) · · ·(m−n+1) =
m!

(m−n)!
.



Structures algébriques - 3MA262 — P. -V. Koseleff 5

Nombre de bijections. On conclut aussi que le nombre de bijections de I (n,n) est n!.

Nombre de parties. À toute injection f ∈ I (k,n), on associe la partie (à k éléments) f (J1,kK) ∈
Pk(J1,nK). Le nombre d’injections ayant même ensemble d’arrivée A ∈ Pk(J1,nK) est précisément le
nombre de bijections entre J1,kK et A, c’est-à-dire, k!. Ainsi |Pk(J1,nK)|=

(n
k

)
. Le nombre de parties à

k éléments de J1,nK est donc
(n

k

)
.

1.2 Propriété universelle

La propriété universelle (appelée aussi propriété de factorisation) est l’outil fondamental pour créer des appli-
cations partant d’un quotient.
Théorème 1.6 (Propriété de factorisation). Soit E et F deux ensembles, R une relation d’équivalence sur E et
f : E→ F une application. Si f est compatible avec R (c’est-à-dire xRy =⇒ f (x) = f (y) ), alors il existe une
unique application f̃ : E/R→ F vérifiant f̃ ◦π = f .
Cette propriété se résume sur le diagramme commutatif suivant, typique du passage au quotient :

E F

E/R

f

π

f̃

On définit alors l’image par f̃ d’un élément de E/R comme la valeur commune prise par f sur tous les éléments
de cette classe d’équivalence. Notons que f et f̃ ont même ensemble image.
Corollaire 1.7. f̃ est une application injective, si et seulement si xRy⇔ f (x) = f (y). Dans ce cas là, f̃ est
une une bijection entre f (E) et E/R.

La relation d’équivalence x∼ y : f (x) = f (y) vérifie que xRy =⇒ x∼ y. On dit que R est plus fine que ∼. En
particulier il existe une application canonique entre E/R et E/∼, lui-même en bijection avec f (E).
C’est un cas particulier de la propriété de factorisation :
Proposition 1.8 (Factorisation d’une application). Soit f : A → B surjective et g : A → C. Supposons que
f (x) = f (x) =⇒ g(x) = g(y), alors il existe une unique application h : B→C telle que g = h◦ f .
Cette propriété se conçoit avec le diagramme

A C

B

g

f
h

Preuve. Si h existe, alors nécessairement pour tout z = f (x), on doit avoir h(z) = g(x). Cette application est
bien définie car f est surjective et si z = f (x) = f (x′) alors g(x) = g(x′), ne dépend que de z. C’est la seule
façon de définir h et la fonction ainsi définie vérifie bien g = h◦ f . CQFD

Le travail de construction est fait une fois pour toutes dans la démonstration de la propriété universelle.

Morphisme canonique

L’important pour effectuer des calculs dans le quotient est que la surjection canonique π soit un morphisme.
Pour certaines relations d’équivalence sur E, il est impossible d’imposer à π d’être un morphisme. La rela-
tion d’équivalence doit en fait vérifier certaines conditions : les notions de sous-groupe distingué et d’idéal
apparaissent.
Soit E un ensemble muni de lois (internes ou externes) et d’une relation d’équivalence R. On souhaite construire
sur E/R autant de lois que sur E telles que la surjection canonique π : E→ E/R soit un morphisme. La relation
d’équivalence doit pour cela être compatible avec les lois.

1. Si E est un groupe, les relations d’équivalence compatibles avec la loi de groupe sont de la forme
xy−1 ∈ H avec H un sous-groupe distingué de E
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2. Si E est un anneau, les relations d’équivalence compatibles avec les deux lois sont de la forme x−y ∈ I
avec I idéal de E.

3. Le cas des espaces vectoriels. Les relations sont de la forme x− y ∈ F avec F sous-espace vectoriel de
E.

Exemple : le tore

Soit R la relation d’équivalence définie sur R, par

xRy⇐⇒ x− y ∈ 2πZ.

Le quotient R/2πZ se note T (tore). Soit f une application de R dans F et π la surjection canonique de R sur
T. f est compatible avec la relation R signifie que f est 2π-périodique. Dans ce cas, le théorème 1.6 établit
qu’il existe une unique application f̃ : T→ F telle que f̃ ◦π = f . Ainsi, l’ensemble F (T,F) des applications
issues du tore s’identifie à l’ensemble F2π(R,F) des applications 2π-périodiques. Voir [7].
Le tore T est un groupe (c’est un sous-groupe de R). On montrera, dans la partie 3.2, que la surjection canonique
π, dans ce cas, est un morphisme de groupe Ainsi, par exemple la fonction exponentielle, tout morphisme de
(Z,+) dans (C∗,×), 2π-périodique donnera lieu à un morphisme de T vers C∗.
En revanche 2πZ n’est pas un idéal de R et il n’existe pas de structure d’anneau sur T telle que π soit un
morphisme d’anneau, voir la partie 4.1.

2 L’anneau des entiers relatifs

Nous rappelons ici quelques propriétés de l’anneau des entiers relatifs, certaines seront (re)démontrées ulté-
rieurement. (Z,+,×) est un anneau commutatif, unitaire et intègre. C’est un anneau euclidien :

Théorème. Division euclidienne.
Soit (a,b) ∈ Z×Z∗, il existe un couple unique (q,r) ∈ Z2 tel que

a = bq+ r, avec 0≤ r < |b|;

r est le reste, q est le quotient de la division euclidienne de a par b.

Par exemple, on a 17 = 3 ·5+2, 17 =−3 ·−5+2, −17 =−4 ·5+3, −17 = 4 ·−5+3.
Si a = bq et on dit que b divise a dans Z ou que b est un diviseur de a. On écrit b|a. On dit aussi que a est un
multiple de b. Si a = bq+ r avec 0≤ r < |b|, on notera r = a(mod b) le reste de la division (on dit a modulo b)
et on notera q = a÷b.
Z n’est pas un corps : les seuls éléments non nuls qui ont un inverse pour la multiplication sont +1,−1, i.e.
U(Z) = {−1,+1}.
Un diviseur de a distinct de 1, −1, a et −a - s’il en existe - est appelé diviseur propre de a.
Un nombre premier p est un entier > 1 dont les seuls diviseurs positifs sont 1 et p (autrement dit, un nombre
premier n’a pas de diviseur propre). On notera P l’ensemble des nombres premiers.

Théorème fondamental de l’arithmétique - Tout entier relatif n ∈ Z∗ s’écrit de manière unique sous la forme

n = ε ∏
p∈P

pnp , où np ∈ N∗, ε =±1.

Ce dernier résultat a un inconvénient majeur : on ne connaît pas d’algorithme “rapide” pour factoriser un entier
relatif. Cet inconvénient se révèle aussi un avantage, et il est à la base des méthodes de cryptographie à clé
publique.

Définition. Soit A un anneau, on note D(a) = {d ∈ A;d | n}, l’ensemble des diviseurs de a.

Le résultat suivant sert de point de départ à l’algorithme d’Euclide.
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Lemme. Pour tout a,b ∈ A et tout k ∈ A, on a D(a)∩D(b) = D(a− kb)∩D(b).

Preuve. Si d divise a et b, alors a = d ·a′ et b = d ·b′ donc a− kb = d(a′−b′) et d est un multiple de d. Donc
D(a)∩D(b)⊂D(a−kb)∩D(b). Mais D(a−kb)∩D(b)⊂D((a−kb)− (−kb))∩D(b) = D(a)∩D(b).
CQFD

On considère l’algorithme d’Euclide suivant, pour définir l’ensemble des diviseurs communs de a et b. Partons
de r0 = a, r1 = b. On définit par récurrence ri+1 = 0 si ri = 0, sinon ri+1 = ri−1 (mod ri).
Proposition 2.1. La suite (ri)i≥2 est décroissante puis nulle.
Preuve. Soit r2 = 0 et l’algorithme s’arrête. Sinon, tant que ri > 0 on a ri < ri−1 < r2− (i−2). On déduit que
pour i > r2, on a nécessairement ri = 0. Soit n le plus grand indice tel que rn 6= 0. La suite (ri)i≥2 est strictement
décroissante pour i≤ n+1 puis nulle. CQFD

À chaque étape, on a D(ri)∩D(ri+1) = D(ri−1)∩D(ri), donc D(a)∩D(b) = D(rn)∩D(rn+1) = D(rn).

???

Les diviseurs communs de a et de b sont donc exactement les diviseurs de rn. On appelle d = pgcd(a,b) = rn

le pgcd de a et b.
Exemple 2.2. pgcd(415,175)= pgcd(175,65)= pgcd(65,45)= pgcd(45,20)= pgcd(20,5)= pgcd(5,0)= 5.
Proposition 2.3. Soit a et b deux entiers non nuls tel que a ne divise pas b et réciproquement. Le plus grand
commun diviseur (pgcd, gcd en anglais) de a et b est le dernier reste non nul de l’algorithme d’Euclide. On le
note pgcd(a,b) ou (a,b) ou a∧b. On a donc D(a)∩D(b) = D(d) : tout diviseur commun de a et de b est un
diviseur de d.

(δ|a et δ|b)⇐⇒ δ|d.

A priori le pgcd de a et de b n’est pas unique. Si d et d′ vérifient D(d) = D(d′) alors il existe u inversible dans
Z, tel que d = ud′. Ici les inversibles de Z sont ±1.
On peut borner le nombre d’étapes dans l’algorithme d’Euclide :
Théorème 2.4 (Théorème de Lamé). Considérons la suite de Fibonacci, définie par F0 = 0, F1 = 1, Fn+1 =
Fn +Fn−1. Soit a et b deux entiers naturels tels que 0 < b < a. et d = (a,b). Si l’algorithme d’Euclide s’arrête
au bout de n pas, alors on a :

a≥ dFn+2, b≥ dFn+1.

Preuve. On raisonne par récurrence sur n. Si n = 1, alors b|a et b = d = dF2 et a ≥ b = dF1. Soit n > 1 et
supposons que l’algorithme s’arrête au bout de n+1 pas. Appliquant la récurrence à (b,r2 = a−qb), on obtient
b≥ dFn+2,r2 ≥ dFn+1. Mais a = r2 +qb≥ r2 +b≥ d(Fn+1 +Fn+2) = dFn+3. CQFD

Suite de Fibonacci

La suite de Fibonacci est une suite récurrente linéaire d’ordre 2. Elle vérifie l’équation (linéaire)

Fn+2 = Fn+1 +Fn,n≥ 0

dans RN. D’après le cours de seconde année, l’ensemble des suites réelles vérifiant cette équation forme un
sous-espace vectoriel de dimension 2. Une base de ce sous-espace est donnée par les suites géométriques
(rn)n≥0 où r est solution de l’équation caractéristique : r2 = r+1. On obtient le nombre d’or r = ϕ = 1

2(1+
√

5)

et r = − 1
ϕ

. On déduit ensuite que Fn =
1√
5

(
ϕn +(− 1

ϕ
)n
)
. Remarquons enfin par récurrence que ϕn = ϕFn +

Fn−1 pour tout n.
Corollaire 2.5. Soit 0≤ b < a. L’algorithme d’Euclide calcule (a,b) en n = logϕ b+1 étapes.

Preuve. On a ϕn+1 = ϕFn+1 +Fn et b≥ dFn+1 ≥ Fn+1 donc n+1 = logϕ(ϕFn+1 +Fn)≤ logϕ(ϕFn+1 +Fn+1) =

logϕ(ϕ
2Fn+1)≤ 2+ logϕ b. CQFD

On dira que l’algorithme d’Euclide a une complexité arithmétique O(logn), si |a|, |b| ≤ n.
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2.1 Identité de Bézout

Reprenons l’exemple précédent du calcul de (415,175). En effectuant des opérations élémentaires sur les lignes
(L0) : 415 = 1 ·415+0 ·175 et (L1) : 175 = 0 ·415+1 ·175, on obtient

(L0) 415 = 1 ·415 + 0 ·175
(L1) 175 = 0 ·415 + 1 ·175

(L2 = L0−2L1) 65 = 1 ·415 − 2 ·175
(L3 = L1−2L2) 45 = −2 ·415 + 5 ·175
(L4 = L2−2L3) 20 = 3 ·415 − 7 ·175
(L5 = L3−2L4) 5 = −8 ·415 + 19 ·175
(L6 = L4−4L5) 0 = 35 ·415 − 83 ·175

Cet algorithme s’appelle Algorithme d’Euclide étendu. Il permet de démontrer :
Théorème 2.6 (Bézout). Soit (a,b) ∈ Z2, non nuls et d = (a,b). Alors il existe (u,v) ∈ Z2, au+bv = d.
Preuve. r0 = a, r1 = b, étant définis, on construit qi et ri+1 comme le quotient et le reste de la division euclidienne
de ri−1 par ri : ri+1 = ri−1− qiri. En ayant posé u0 = 1, u1 = 0, v0 = 0, v1 = 1, on définit ensuite, ui+1 =
ui−1−qiui et vi+1 = vi−1−qivi. On a alors, par récurrence,

ri = uia+ vib, i = 0, . . . ,n+1.

En particulier rn = una+ vnb, rn+1 = 0 = un+1a+ vn+1b. CQFD

L’algorithme d’Euclide étendu fournit donc une identité de Bézout (rang n) et une solution de l’équation ho-
mogène ax+by = 0, dans Z2 (rang n+1).

Utilisant l’identité de Bézout, on déduit le lemme de Gauss.
Lemme 2.7 (Lemme de Gauss). Soit a, b et c trois entiers relatifs tels que a divise bc. Si (a,b) = 1 alors a|c.
Preuve. On écrit au+bv = 1. On déduit que a divise bc× v donc a×uc+b× vc = c CQFD

Corollaire 2.8. Soit a, b deux entiers divisant c. Si (a,b) = 1 alors ab divise c.
Preuve. Si c = λa = µb alors a divise µ d’après le Lemme de Gauss 2.7 et ab divise c. CQFD

Corollaire 2.9. Soit a et b deux entiers. Alors pour tout entier k, on a (k · a,k · b) = k · (a,b). En particulier
a/(a,b) et b/(a,b) sont premiers entre-eux (on dit étrangers).
Preuve. Posons d = (a,b) = au+ bv. Si δ divise ka et kb alors ka = δa′ et kb = δb′. Alors on obtient kd =
δ(a′u+b′v) et δ | kd. Réciproquement, si δ | kd, alors δ divise ka et kb et donc (ka,kb). CQFD

On peut alors définir le ppcm de deux entiers.

Définition 2.10. Soit a et b deux entiers, et d leur pgcd. N =
ab
d

est le ppcm(a,b). On a

(a|n et b|n)⇐⇒ (N|n)

Preuve. N =
a
d

b =
b
d

a est un multiple commun de a et de b. Si a et b divisent simultanément n, alors a/d et b/d

divisent n/d et, par conséquent (Lemme de Gauss 2.7) leur produit N/d divise n/d donc N divise n. L’ensemble
des multiples communs de a et de b est l’ensemble des multiples de N. CQFD

2.2 Résolution de l’équation diophantienne linéaire : ax+by = c

Commençons par remarquer que
Théorème 2.11. Soit a, b et c des entiers relatifs. L’équation ax+ by = c a (au moins) une solution si et
seulement si d = pgcd(a,b)|c.
Preuve. Si une solution particulière (x0,y0) existe, nous constatons que ax0 +by0 est un multiple de d et donc
d doit diviser c Réciproquement, si c = λd et (u,v) sont des coefficients de Bézout vérifiant ua+ vb = d, alors
(x0,y0) = λ(u,v) est une solution particulière. CQFD

Comme pour toute équation affine, toute solution de l’équation ax+by = c est la somme d’une solution parti-
culière (x0,y0), si elle existe, et d’une solution de l’équation homogène : ax+by = 0.
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Si (x,y) est solution de l’équation homogène ax+ by = 0 alors elle est aussi solution de a
d x+ b

d y = 0. Mais
alors a

d divise b
d · y, donc a

d divise y, d’après le corollaire du Lemme de Gauss 2.9. Donc y = k a
d et par suite

(x,y) = k(− b
d ,

a
d ) où k ∈ Z.

Écriture matricielle dans l’algorithme d’Euclide

Posons Ui =

(
0 1
1 −qi

)
, on peut alors écrire( ri ui vi

ri+1 ui+1 vi+1

)
=Ui

(ri−1 ui−1 vi−1
ri ui vi

)
=Ui ·Ui−1 · · ·U1 ·

(a 1 0
b 0 1

)
On en déduit en particulier :

1. Dans l’algorithme d’Euclide étendu, on a à chaque étape
∣∣∣∣ ui vi

ui+1 vi+1

∣∣∣∣= (−1)i.

2. un+1 =
b
d
(−1)n+1, vn+1 =

a
d
(−1)n.

3. |un| ≤
b

2d
, |vn| ≤

a
2d

.

Preuve.

1. On a en effet
( ui vi

ui+1 vi+1

)
=

(
0 1
1 −qi

)
·
(ui−1 vi−1

ui vi

)
, d’où le résultat en considérant le déterminant.

2. On a aussi
∣∣∣ri−1 ui−1

ri ui

∣∣∣ = (−1)i−1
∣∣∣r0 u0
r1 u1

∣∣∣, soit lorsque i = n+ 1 : dun+1 = (−1)n · (−b). On fait de
même avec vn+1.

3. De uk+1 = uk−1−qkuk, on déduit que la suite uk est de signe alterné, pour k ≥ 1, puis |uk+1|= |uk−1|+
|qkuk|> |uk|. Mais qn 6= 1 car rn−1 = qnrn > rn donc qn ≥ 2 et |un| ≤ 1

2 |un+1|.
L’algorithme d’Euclide étendu fournit donc une identité de Bézout et une solution de l’équation homogène
(dans Z2) : ax+by = 0. Il est remarquable, que la solution obtenue par l’algorithme d’Euclide étendu engendre
l’ensemble des solutions de l’équation homogène et que la solution particulière soit une solution particulière
minimale (les coefficients u et v sont les plus petits possibles).

2.3 L’anneau quotient Z/nZ

Tout sous-groupe de (Z,+), appelé aussi idéal de l’anneau Z (voire sous Z-module de Z), est de la forme nZ,
car Z est euclidien (voir aussi une démonstration dans l’exemple 3.5). On dit que Z est un anneau principal.
Exercice 2.12. En terme d’idéaux, si a et b sont des entiers relatifs et d et N sont leur pgcd et leur ppcm, on a
aZ∩bZ = NZ, aZ+bZ = dZ.
Soit n > 1 un entier. Dans Z, on définit la relation d’équivalence notée ≡

(a,b) ∈ Z2,a≡ b ⇐⇒ b−a ∈ nZ.

On note alors a ≡ b(mod n) et on dit que a est congru à b modulo n. Si a ∈ Z, la classe de a pour la relation
d’équivalence ≡ est le sous-ensemble de Z suivant

a = {a+nk, k ∈ Z}= a+nZ.

L’ensemble des classes d’équivalence est noté Z/nZ. L’ensemble Z/nZ contient exactement n éléments dis-
tincts :

Z/nZ = {0,1, . . . ,n−1}.
Par abus de notation on notera souvent de la même façon (quand il n’y a pas d’ambiguïté) un élément de Z et
sa classe. Donc on pourra écrire

Z/nZ = {0,1, . . . ,n−1}.
On définit deux lois internes dans Z/nZ (déduites de celles de Z et compatibles avec la relation d’équivalence
≡) :

a+b := a+b, a×b := ab.
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Proposition 2.13. (Z/nZ,+,×) est un anneau commutatif unitaire.

Groupe des inversibles

L’ensemble des inversibles de Z/nZ forme un groupe multiplicatif. Par exemple, pour n = 8. On remarque que
si x est est pair alors 4x = 0. Ainsi si x était inversible, on aurait xx′ = 1 et donc 4 = (4x) · x′ = 0 ce qui est
impossible. Les inversibles de Z/8Z sont donc impairs. On remarque que (2k+ 1)(2k+ 1) ≡ 1(mod 8) ainsi
tout élément impair de Z/8Z est inversible et vérifie x2 = 1.

Proposition 2.14. L’ensemble U(Z/nZ) des inversibles de Z/nZ est exactement l’ensemble des i+nZ tels que
(i,n) = 1.

Preuve. a ∈ Z/nZ est inversible si et seulement si il existe u ∈ Z/nZ tel que au = 1. On obtient au≡ 1(mod n),
c’est-à-dire, qu’il existe v ∈ Z tel que au−1 = nv. On déduit que (a,n) = 1. La réciproque est immédiate.
CQFD

Cet ensemble est en bijection avec {1≤ i≤ n−1;(i,n)= 1}. Le cardinal de U(Z/nZ) est noté ϕ(n). La fonction
n 7→ ϕ(n) est appelée fonction caractéristique d’Euler. En écrivant l’ensemble

{1
1 , . . . ,

n
n}= {

a
d ;(a,d) = 1,0 < a < d|n},

(voir [1]), on déduit la formule d’Euler :

∑
d|n

ϕ(d) = n.

Générateurs de Z/nZ

Le groupe (Z/nZ,+) est cyclique : il est engendré par 1. U(Z/nZ) est également l’ensemble des générateurs
du groupe (Z/nZ,+). En effet, si a engendre Z/nZ alors 1= ka= k ·a et a est inversible modulo n, et d’ailleurs
k est son inverse. L’identité de Bézout permet de déterminer si un entier m est inversible modulo n et le cas
échéant de trouver son inverse.

Le corps Z/pZ

On remarque en particulier que Z/nZ est un corps si et seulement si n est un nombre premier. Lorsque n = p
est un nombre premier, on note Fp le corps Z/pZ.

Théorème 2.15. Pour tout a de (Z/nZ)∗, on a aϕ(n) = 1.

Preuve. Considérons dans le groupe commutatif G = (Z/nZ)∗, la translation τa : x 7→ ax. C’est une bijection
d’inverse τa−1 . Considérons le nombre α = ∏

x∈(Z/nZ)∗
x. On a alors :

α = ∏
x∈(Z/nZ)∗

x = ∏
x∈(Z/nZ)∗

ax = aϕ(n)
α.

Ainsi aϕ(n) = 1. CQFD

On en déduit le

Théorème 2.16 (Théorème d’Euler). Soit n un entier naturel. Pour tout a ∈ Z, si (a,n) = 1 alors on a aϕ(n) ≡
1(mod n).

et le théorème de Fermat :

Corollaire 2.17 (Théorème de Fermat). Soit p un nombre premier. Pour tout a ∈ Z, on a ap ≡ a(mod p).

Une conséquence du théorème de Fermat est que l’inverse de a dans F ∗p est ap−2.
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3 Rappels - Théorie des groupes

Nous rappelons ici quelques propriétés des groupes, en particulier des groupes finis commutatifs. Nous ren-
voyons à [5] ou [2]
Définition 3.1. Soit G un ensemble et ∗ une loi de composition interne. (G,∗) est un groupe si et seulement si

— Il existe un élément neutre e dans G, tel que g∗ e = e∗g = g, pour tout g ∈ G.
— Pour tout a,b,c ∈ G, on a a∗ (b∗ c) = (a∗b)∗ c. la loi est associative.
— Pour tout g ∈ G, il existe g′ ∈ G, tel que g∗g′ = g′ ∗g = e.
— tout élément est inversible

On note souvent la loi de composition par + ou par ·, suivant qu’on préfère la notation additive ou multiplicative.
Dans le cas de la notation additive, l’élément neutre est souvent noté 0, et l’inverse (on dira l’opposé), de g sera
noté −g. Avec la notation multiplicative, on notera g−1, l’inverse de g.
Lorsque la loi est commutative (g∗h = h∗g pour tous h,g∈G), on dit que le groupe est commutatif ou abélien.
Remarque 3.2. Le fait que la loi soit associative entraîne que l’élément neutre est unique. En effet si e et e′ sont
neutres, alors e= e∗e′= e′. Si g′ est un inverse (à gauche) et g′′ un inverse à droite, alors on a e= g′∗g= g∗g′′,
donc g′′ = g′ ∗ (g∗g′′) = g′.
Exemple 3.3. (Z,+) est un groupe commutatif. (Q,+), (R,+), (D,+), (C,+) sont des groupes commutatifs.
(Q∗, ·), (R∗, ·), (C∗, ·) sont des groupes commutatifs infinis.
Un = {x ∈ C∗,xn = 1} est un groupe commutatif abélien (c’est en fait un sous-groupe de C∗).
GL 2(R) est un groupe non-commutatif. En effet les deux matrices de transvection a =

(1 1
0 1

)
et b =

(1 0
1 1

)
ne commutent pas.
Σ3, le groupe des permutations de l’ensemble {1,2,3} n’est pas commutatif. En effet, les deux transpositions
(12) et (23) ne commutent pas, puisqu’on a (12)(23) = (123) et (23)(12) = (132) = (123)2.
Définition 3.4. Une partie H de G est un sous-groupe de (G,∗) si (H,∗) est un groupe.
Pour montrer que H est un sous-groupe de G, il suffit de montrer que H n’est pas vide (il doit contenir au moins
l’élément neutre e) et que pour tous éléments a,b de H, on a ab−1 ∈ H.
Les sous-groupes {e} et G sont appelés sous-groupes triviaux de G.
Exemple 3.5. Si n∈Z, nZ est un sous-groupe de (Z,+). On montre également que tout sous-groupe de (Z,+)
est de cette forme. Soit H ⊂ Z un sous-groupe de Z. Si H 6= {0}, alors H+ = H∩Z est une partie non vide de
N∗ donc admet un plus petit élément n. Si m ∈ H, écrivons m = qn ·q+ r. Alors q ·n ∈ 〈n〉 = nZ ⊂ H et donc
r = m−qn ∈H. Si r 6= 0 alors 0 < r < n ce qui contredit la minimalité de n dans H+. Par conséquent m ∈ nZ.
On déduit donc que H = nZ.
Le groupe spécial linéaire SL n(k) est un sous-groupe du groupe (GL n(k), ·).
Si E est un k-espace vectoriel, alors SL(E) est un sous groupe de (GL(E),◦)
Un = {x ∈ C,xn = 1} est un sous-groupe de (C∗, ·). R+∗ = {x2,x ∈ R∗} est un sous-groupe de R∗. A3 =
{1l,(123),(132)}= 〈(123)〉 est un sous-groupe de (Σ3,◦).

Groupe engendré par une partie

Proposition 3.6. Soit (Hi)i∈I une famille de sous-groupes de (G,∗). Alors H = ∩
i∈I

est un sous-groupe de G.

Il ne faut pas croire que la réunion de deux sous-groupes soit un sous-groupe. Par exemple 3Z∪5Z ne contient
pas 8 = 3+5 donc n’est pas un sous-groupe de Z.
Soit G un groupe et P une partie de G. Le groupe engendré par P, 〈P〉, est le plus petit sous-groupe de G
contenant P. On a donc 〈P〉= ∩

P⊂H<G
H.

Lorsque P = {g} ⊂ G, on obtient le groupe 〈g〉= {gn,n ∈ Z}. En effet, 〈g〉 contient g donc tous les gn, n ∈ Z.
L’ensemble H = {gn,n ∈ Z}, contient l’élément neutre et si a = gn et b = gm alors ab−1 = gn−m ∈ H. Ainsi H
est un sous-groupe contenant g donc contient 〈g〉.
Considérons l’application Φ : Z 7→ 〈g〉,k 7→ gk. Φ est surjective. Lorsque 〈g〉 est fini, Φ n’est pas injective et il
existe k > l, tels que gk = gl , donc gk−l = eG. Ainsi H = {k ∈ Z,gk = eG} est un sous-groupe de Z, différent
de {0} et il existe n ∈N∗, tel que H = nZ. n est le plus petit entier naturel non nul tel que gn = eG. n est appelé
l’ordre de g.



Examinons la relation d’équivalence (kRl ⇔ gk = gl), alors k = k+ nZ. Ainsi l’ensemble quotient Z/R est
exactement Z/nZ et est en bijection avec 〈g〉, d’après le corollaire 1.7.
Lorsque 〈g〉 est infini, on dira que H = 〈g〉 est un groupe monogène, en bijection avec Z, car Φ est injective.
Lorsque 〈g〉 est fini, on dira que c’est un groupe cyclique.
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