
CHAPITRE 1

ARITHMÉTIQUE DES ENTIERS ET COMPLEXITÉ

D’un point de vue effectif, tous les protocoles cryptographiques que nous étudierons
se réduisent en dernière analyse à la manipulation d’entiers (ou de familles d’entiers)
et à la détermination explicite d’opérations arithmétiques entre eux. La conception de
nombreux cryptosystèmes se base le plus souvent sur la relative simplicité de certaines
de ces opérations (effectuées en phase de cryptage, qui se doit d’être rapide) ou, au
contraire, de leur difficulté (ce qui rend difficile le déchiffrement lors de la transmis-
sion du message chiffré). Nous allons commencer par un rapide rappel des porpriétés
algébriques et arithmétique des entiers. Ces constructions et résultats, essentiellement
contenus dans les Éléments d’Euclide, sont présentés dans le langage des anneaux,
ce qui permet, entre autre, de se familiariser avec ce formalisme et de passer en re-
vue quelques notions de base d’algèbre commutative. Nous étudierons ensuite l’aspect
effectif des opérations, en introduisant la notion de complexité.

1.1. Rappels sur l’arithmétique des entiers

1.1.1. Structure d’anneau euclidien — La plupart des propriétés arithmétiques
et algébriques des entiers, ainsi que l’effectivité de nombreux algorithmes découlent
de l’existence d’une division euclidienne, ce qui munit Z d’une structure d’anneau

euclidien, une classe d’anneaux particulièrement adaptés à des constructions effec-
tives. Le résultat ci-dessous nous accompagne depuis les bancs du collège (voire plus
loin).

Théorème 1.1.1 — Étant donnés deux entiers a et b, avec b non nul, il existe un
unique couple d’entiers q et r, appelés respectivement quotient et reste de la division
euclidienne de a par b, tels que

a = bq + r,

avec 0  r < |b|.
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Démonstration — L’ensemble

A = {a� bq | q 2 Z} \ N
est non vide (car il contient l’élément a + |ba| � 0) et possède donc un plus petit
élément r. Par construction, on a l’identité a = bq + r, avec q 2 Z. Si l’on avait
r � |b|, on obtiendrait les relations

r0 = r � |b| = a� b(q ± 1) 2 A

et r0 < r, ce qui est exclu. On a donc les inégalités 0  r < |b|. Finalement, si
qb + r = q0b + r0, avec 0  r, r0 < |b|, on obtient l’identité b(q � q0) = r0 � r. Pour
q 6= q0, on en déduit les relations

|b|  |b(q0 � q)| = |r � r0| < |b|,

ce qui est une fois encore exclu. On a donc q = q0 et, par suite r = r0, d’où l’unicité
du quotient et du reste.

D’un point de vue pratique, lorsque b est positif, en considérant la division eucli-
dienne a = bq + r, on a l’identité q = ba/bc, où bxc désigne la partie entière d’un
réel x, i.e. le plus grand entier n tel que n  x.

Remarque 1.1.2 — En procédant comme dans la démonstration ci-dessus, on
montre l’existence et l’unicité d’un couple d’entiers q et r tels que a = bq + r,
avec cette fois �|b|/2  r < |b|/2. Dans ce cas, on parle de division euclidienne

modifiée.

1.1.2. Idéaux — On rappelle qu’un idéal a d’un anneau A est monogène s’il existe
un élément a 2 A, appelé générateur de a, tel que

a = aA = {ab | b 2 A},

Le générateur d’un idéal monogène n’est généralement pas unique. Deux éléments a
et b de A sont associés s’ils engendrent le même idéal, i.e. si aA = bA.

Lemme 1.1.3 — Deux éléments a, b 2 A d’un anneau intègre A sont associés si et
seulement s’il existe un élément u 2 A⇥ tel que a = ub.

Démonstration — L’assertion étant immédiate lorsque ab = 0, supposons a et b non
nuls. Si aA = bA, on a en particulier b 2 aA et a 2 bA, ou encore b = ua et a = vb,
avec u, v 2 A, d’où les identités a = bv = auv et, par suite, a(1� uv) = 0. L’anneau
A étant intègre et a étant non nul, on a alors 1 � uv = 0, ce qui implique que u
est inversible, d’inverse v. Réciproquement, si b = ua, avec u 2 A⇥, on a b 2 aA
et a = u�1b 2 bA, d’où les inclusions bA ⇢ aA et aA ⇢ bA, qui sont alors des
égalités.

Un anneau A est principal s’il est intègre et si tous ses idéaux sont monogènes.

Théorème 1.1.4 — L’anneau Z est principal.
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Démonstration — L’anneau Z étant intègre, il suffit de vérifier que tout idéal a de
Z est monogène. L’assertion étant immédiate pour a = 0, on supose a non nul. L’en-
semble

a+ = {a 2 a | a > 0} ⇢ N
est non vide (car a possède un élément non nul a, auquel cas |a| = ±a 2 a+) et possède
donc un élément minimal n > 0. On a on alors l’inclusion nZ ⇢ a. Réciproquement
étant donné m 2 a, en considérant la division euclidienne m = nq+r, avec 0  r < n,
on obtient les relations r = m�nq 2 a. Pour r > 0, on obtiendrait r 2 a+, contredisant
la minimalité de n. On a donc r = 0, d’où m = nq 2 nZ et, par suite, l’inclusion
a ⇢ nZ, qui est alors une égalité.

Proposition 1.1.5 — Un idéal de Z possède un unique générateur positif. En par-
ticulier, l’application qui associe à un entier naturel n l’idéal nZ définit une bijection
entre N et l’ensemble des idéaux de Z.

Démonstration — L’identité Z = {±1} combinée avec le lemme 1.1.3 affirme qu’un
idéal de Z, qui est monogène (cf. le théorème 1.1.4), possède au plus deux générateurs,
opposés l’un de l’autre (qui coïncident si et seulement si l’idéal est nul), un seul d’entre
eux étant positif.

Remarque 1.1.6 — Par définition, un idéal d’un anneau A est un sous-groupe
(additif) de A mais la réciproque n’est généralement pas vraie. En effet, étant donné
h 2 H et a 2 A, rien ne permet d’affirmer que l’élément ah appartient à H. Par
contre, pour A = Z, le sous-groupe H est automatiquement un idéal. En effet, en se
réduisant au cas a � 0, on a les relations

ah = h+ · · · (a) · · ·+ h 2 H.

En d’autres termes, pour Z, la notion d’idéal et de sous-groupe coïncident. Dans la
proposition ci-dessus, il est par conséquent possible de remplacer le terme idéal par
sous-groupe.

1.1.3. Divisibilité, plus grand diviseur commun, identité de Bézout — De
manière générale, si a et b sont deux éléments d’un anneau A, on dit que b divise a,
ou que a est un multiple de b s’il existe c 2 A tel que a = bc. On utilise la notation b|a
pour indiquer que b divise a. Les idéaux sont l’outil le plus adapté dans toute question
liée à la divisibilité. Le résultat élémentaire suivant en est une première illustration.

Lemme 1.1.7 — Étant donnés deux éléments a et b d’un anneau A, on a b|a si et
seulement si aA ⇢ bA.

Démonstration — Si b|a, on a a = bc, avec c 2 A, d’où a 2 bA et, par suite, l’inclusion
aA ⇢ bA. Réciproquement, pour aA ⇢ bA, on a a 2 aA ⇢ bA, d’où a = bc, avec
c 2 A.
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Revenant aux entiers, le résultat ci-dessous complète la proposition 1.1.5.

Proposition 1.1.8 — Il existe une bijection naturelle entre l’ensemble des diviseurs
positifs d’un entier n et l’ensemble des idéaux de Z contenant nZ.

Démonstration — Il suffit de combiner la proposition 1.1.5 et le lemme 1.1.7

Remarque 1.1.9 — La divisibilité définit une relation d’ordre sur N (mais pas sur
Z). Par ailleurs, l’ensemble des idéaux de Z est naturellement ordonné par l’inclusion
(on pose ici a  b si et seulement si b ⇢ a). Le résultat ci-dessus affirme que l’appli-
cation qui associe à un entier naturel n l’idéal nZ est un isomorphisme d’ensembles
ordonnés, i.e. une bijection qui est compatible avec les relations d’ordre.

Exemple 1.1.10 — Les six idéaux de Z contenant 12Z sont Z, 2Z, 3Z, 4Z, 6Z et
12Z. La relation d’inclusion entre eux, qui correspond au treillis des diviseurs de 12
est décrite schématiquement dans la figure ci-dessous.

On rappelle que si a et b sont deux idéaux d’un anneau A, leur somme

a+ b = {a+ b | a 2 a, b 2 b},

est également un idéal de A, c’est d’ailleurs le plus petit idéal contenant a [ b. En ce
qui concerne les entiers, étant donnés a, b 2 Z, la somme

aZ+ bZ = {ax+ by | x, y 2 Z}

des idéaux aZ et bZ est monogène (cf. le théorème 1.1.4), engendré par un unique
entier naturel (cf. la proposition 1.1.5), appelé plus grand diviseur commun, ou
simplement pgcd de a et b. On le note généralement a ^ b. Par constructon, il existe
un couple d’entiers x et y vérifiant la relation

a ^ b = ax+ by,

appelée identité de Bézout.

Exercice 1.1.11 — Soient a et b deux entiers. Montrer qu’étant donné un entier
naturel d, les conditions suivantes sont équivalentes :

1. On a d = a ^ b.

2. L’entier d divise a et b et si c 2 Z est un diviseur commun à a et b alors c divise
d (cette propriété justifie le nom de plus grand diviseur commun).
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Deux entiers a et b sont premiers entre eux si a^ b = 1, ce qui revient à affirmer
qu’il existe une identité de Bézout ax+ by = 1.

Exercice 1.1.12 — Soient a, b et c des entiers, avec a ^ b = 1. Montrer le lemme

de Gauss : si a divise bc alors a divise c. En déduir que si a|c et b|c alors ab|c.

Le plus petit commun multiple, ou ppcm de a et b, noté a _ b est l’unique
générateur positif de l’idéal aZ \ bZ.

Exercice 1.1.13 — Soient a et b deux entiers. Montrer qu’étant donné un entier
naturel m, les conditions suivantes sont équivalentes :

1. On a m = a _ b.

2. L’entier m est un multiple de a et b et si c 2 Z est multiple commun à a et b alors
c est un multiple de m (cette propriété justifie le nom de plus petit commun
multiple).

De manière générale, étant donnés des entiers a1, . . . , an, leur pgcd, noté a1 ^ · · ·^
an est l’unique générateur positif de l’idéal a1Z + · · · + anZ. De même, leur ppcm
a1 _ · · · _ an est l’unique générateur positif de l’idéal a1Z \ · · · \ anZ.

Remarque 1.1.14 — Les définitions de pgcd et de ppcm proposées dans ce pa-
ragraphe ainsi que leurs propriétés s’appliquent en fait à tout anneau principal, si
ce n’est que dans le cas général, on ne dispose pas nécessairement d’un générateur
privilégié d’un idéal (on parle alors d’un pgcd plutôt que du pgcd de a et b).

Exercice 1.1.15 — Montrer qu’étant donnés des entiers a, b et c, on a les propriétés
suivantes :

1. a ^ (b+ ac) = a ^ b.

2. (ab) ^ (ac) = |a|(b ^ c).

3. (a ^ b)(a _ b) = |ab|.

1.1.4. Factorisation unique — Un nombre premier est un entier n > 1 tel que
ses seuls diviseurs (positifs) sont 1 et n lui-même.

Proposition 1.1.16 — Un entier naturel n > 1 est un nombre premier si et seule-
ment si l’idéal nZ est maximal. En particulier, on en déduit le lemme d’Euclide,
qui affirme que si un nombre premier divise le produit d’entiers alors il divise l’un des
facteurs.

Démonstration — La première assertion est une conséquence directe de la proposi-
tion 1.1.8. La seconde découle du fait que tout idéal maximal d’un anneau est premier
(cf. l’appendice).
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Théorème 1.1.17 — Un entier non nul n s’écrit de manière unique comme produit

n = ±

Y

p

pep ,

où p parcourt l’ensemble des nombres premiers, les entiers naturels ep étant presque
tous nuls (i.e. tous sauf un nombre fini d’entre eux).

Démonstration — On commence par montrer que tout nombre entier n possède une
telle écriture. On procède par récurrence sur |n| : l’assertion étant claire pour n = 1
(auquel cas il suffit de poser ep = 0 pour tout p), supposons |n| > 1 et la pro-
priété vraie pour tout entier m tel que |m| < |n|. Si |n| est premier, l’assertion est
clairement remplie. Si n est composé, on a n = ab, avec 1 < a, b < n et il suffit
d’appliquer l’hypothèse de récurrence. Concernant l’unicité, considérons deux écri-
tures n = ±

Q
p p

ep = ±
Q

p p
fp et supposons qu’il existe un nombre premier q tel que

eq 6= fq. On peut se réduire au cas eq < fq, ce qui amène à l’identité
Y

p 6=q

pep = ±qfq�eq
Y

p 6=q

pfp .

En particulier, le nombre premier q divise
Q

p 6=q p
ep et coïncide donc avec l’un des

facteurs, ce qui est exclu. On a donc ep = fp pour tout nombre premier p et le signe
dans les deux expressions est clairement le même, d’où l’unicité.

Remarque 1.1.18 — L’écriture (unique) décrite dans le résultat ci-dessus est en
fait valable pour tout rationnel non nul x, si ce n’est que les exposants ep peuvent
être négatifs. Dans le langage des groupes, le théorème fondamental de l’arithmétique
établit un isomorphisme entre Q⇥ et µ2 ⇥

L
p Z, où l’on a posé µ2 = Z⇥ = {±1}.

Exercice 1.1.19 — Étant donnés deux entiers non nuls a et b, considérons leurs
factorisations a = ±

Q
p p

ep et b = ±
Q

p p
fp . Montrer que l’on a a|b si et seulement si

ep  fp pour tout nombre premier p. En déduire les identités
8
>><

>>:

a ^ b =
Q

p p
min{ep,fp},

a _ b =
Q

p p
max{ep,fp}.

1.1.5. L’algorithme d’Euclide étendu — Le calcul de pgcd est omniprésent en
cryptographie algébrique. Il est par conséquent nécessaire de fournir un algorithme
efficace permettant de le déterminer explicitement. Soient donc a et b deux entiers,
que l’on suppose non nuls (dans le cas contraire, la calcul de leur pgcd est trivial).
Le pgcd ne dépendant pas du signe des entiers considérés, on peut se réduire au cas
0 < b < a (pour a = b, on a clairement a ^ b = a). Tout d’abord, on serait tenté de
considérer les factorisations de a et b en produit de nombres premiers, utilisant ensuite
l’expression du pgcd de l’exercice 1.1.19. Ne disposant à ce jour d’aucun algorithme de
factorisation réellement performant, cette démarche est à ecarter. Nous allons décrire
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une seconde méthode, le célèbre algorithme d’Euclide (étendu), qui s’avère bien
plus efficace. On construit une suite finie d’entiers naturels (ri)i�0, appelée suite des

restes (associée à a et b) par le procédé suivant :
• On pose r0 = a et r1 = b.
• Pour i � 1, si ri = 0 le procédé s’arrête, sinon ri+1 est le reste d’une division

euclidienne de ri�1 par ri.
Il existe alors un unique entier n � 1 tel que v(r0) � v(r1) > · · · > v(rn) et rn+1 = 0.
Pour tout i 2 {1, . . . , n}, en posant

ri�i = qiri + ri+1,

on obtient la suite des quotients (qi)1in. Finalement, on considère deux autres
suites (ui)0in et (vi)0in définies par

8
>><

>>:

u0 = 1,

u1 = 0,

ui+1 = ui�1 � uiqi pour i > 0,

et

8
>><

>>:

v0 = 0,

v1 = 1,

vi+1 = vi�1 � viqi pour i > 0.

Il peut être commode de présenter les étapes de calculs sous la forme du tableau
suivant

q1 q2 · · · qn�1 qn
a b r2 · · · rn�1 rn 0

1 0 u2 · · · un�1 un

0 1 v2 · · · vn�1 vn

Proposition 1.1.20 — Avec les notations et hypothèses ci-dessus, on a les identités

a ^ b = rn = aun + bvn.

Démonstration — Les relations a^ b = r0^ r1 et rn = rn^ rn+1 sont immédiatement
vérifiées. Pour tout i 2 {1, . . . , n}, le point 1 de l’exercice 1.1.15 amène alors aux
identités

ri�1 ^ ri = (ri�1 � qiri) ^ ri = ri+1 ^ ri,

d’où la première égalité. Concernant la seconde, montrons par récurrence que pour
tout i 2 {0, . . . , n}, on a la relation ri = aui + bvi. L’assertion étant trivialement
vérifiée pour i = 0 et i = 1, supposons qu’elle est vraie pour un entier i � 1. On a
alors les relations

ri+1 = ri�1 � qiri = aui�1 + bvi�1 � qi(aui + bvi) =

= a(ui�1 � qiui) + b(vi�1 � qivi) = aui+1 + bvi+1,

ce qui conclut la démonstration.

Remarque 1.1.21 — Dans ce procédé, on peut librement remplacer la division
euclidienne usuelle par sa version modifiée (cf. la remarque 1.1.2). Dans ce cas, les
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termes de la suite des restes (ri) n’étant pas n’écessairement positifs, on obtient l’iden-
tité |rn| = a^ b) (le nombre d’itérations n n’étant généralement pas le même qu’avec
la division euclidienne usuelle). Par contre, l’expression rn = aun + bvn reste valable.
La suite (|ri|) est strictement décroissante, car pour i > 0, on a |ri+1|  |ri|/2, d’où
la relation |ri|  |b|/2i�1. En particulier, on obtient n  log

2
(|b|) + 1, ce qui permet

de quantifier le nombre d’itération nécessaires pour que l’algorithme d’Euclide étendu
aboutisse (dans sa version modifiée). Une analyse similaire, faisant intervenir la suite

de Fibonacci, amène à une majoration semblable du nombre d’itérations nécessaires
avec l’agorithme usuel (non modifié).

Exemple 1.1.22 — Déterminons explicitement le pgcd des entiers 1071 et 2023. On
a le tableau

1 1 8

2023 1071 952 119 0

1 0 1 �1

0 1 �1 2

On en déduit la relation 1071 ^ 2023 = 119 et l’identité de Bézout

2 · 1071� 1 · 2023 = 119.

La division euclidienne modifiée amène au second tableau

2 �9

2023 1071 �119 0

1 0 1

0 1 �2

L’algorithme est donc plus rapide dans sa version modifiée.

1.2. Quelques notions de complexité

Ayant passé en revue les propriétés essentielles des entiers qui seront utilisés dans la
suite du cours, on s’interesse à présent à l’aspect effectif des opérations et constructions
présentées (somme, produit, division euclildienne, algorithme d’Euclide étendu,...).

1.2.1. Écriture d’un entier en base b — Nous allons brièvement rappeler une
notion qui remonte à nos souvenirs de jeunesse : la numération en base b.

Théorème 1.2.1 — Soit b > 1 un entier. Tout entier naturel n s’écrit de manière
unique sous la forme

n = a0 + a1b+ · · ·+ akb
k + · · · ,

où les entiers a0, a2, · · · 2 {0, . . . , b� 1} sont presque tous nuls (i.e. nuls à partir d’un
certain rang). Une telle expression est appelée écriture en base b de n.
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Démonstration — Concernant l’existence, on procède par récurrence sur l’entier n :
pour n < b, c’est immédiat. Soit donc n � b un entier et supposons que tout entier
m < n possède une telle écriture. En particulier, en considérant la division euclidienne
n = bm+ a0, avec 0  a0 < b, on a m < n d’où l’écriture m = a1 + a2b+ a3b2 + · · · ,
ce qui donne

n = a0 + b(a1 + a2b+ · · · ) = a0 + a1b+ a2b
2 + . . . .

Concernant l’unicité, il suffit de remarquer que a0 est le reste de la division euclidienne
de n0 = n par b ; il est donc unique. Dans ce cas a1 est le reste de la division euclidienne
de n1 = (n0 � a0)/b par b, qui est également unique. En itérant ce procédé, on en
déduit qu’il en est de même pour ai, qui est le reste de la division euclidienne de
ni = (ni�1 � ai�1)/b par b.

En suivant la notation et les hypothèses du théorème 1.2.1, notons ` = `b(n) le
plus grand entier naturel tel que a` 6= 0. On écrit alors n = (a` · · · a0)b pour indiquer
l’écriture en base b de n. Si aucune confusion n’est possible, on utilise également la
notation n = a` · · · a0.

Exercice 1.2.2 — Montrer que `b(a) est le plus petit entier ` tel que b`+1 > a, ce
qui se traduit par l’identité

`b(a) = blogb(a)c,

où bxc désigne la partie entière d’un réel x.

Exemple 1.2.3 — Le tableau ci-dessous contient les écritures de l’entier 2024 en
base b < 10.

2 3 4 5 6 7 8 9

11111101010 2210001 133222 31101 13214 5623 3752 2701

Exercice 1.2.4 — Soit b > 1 un entier. Montrer qu’un entier relatif n s’écrit de
manière unique sous la forme

n = a0 � a1b+ a2b
2 + · · ·+ ak(�b)

k + · · · ,

où les entiers a0, . . . , ak 2 {0, . . . , b� 1} sont presque tous nuls. Déterminer une telle
expression pour b = 2 et n = 2026.

Exercice 1.2.5 — Considérons un polynôme f 2 Z[X] et supposons que tous ses
coefficients sont des entiers naturels. Montrer que la donnée des entiers n = f(1) et
m = f(n+ 1) permet de déterminer f .
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1.2.2. La taille d’un entier en informatique — Ayant commencé à compter en
utilisant les dix doigts de nos mains, c’est l’écriture en base 10 qui s’est imposée au
fil des siècles. Cependant, d’un point de vue pratique, et particulièrement en ce qui
concerne les application en informatique, on utilise le plus souvent l’écriture en base
2. Dans ce contexte, un bit est une variable qui ne peut prendre que les valeurs 0
et 1. En considérant son écriture en base 2, un entier naturel peut être assimilé à
une suite de bits. De manière plus précise, étant donnée l’écriture n = (a` . . . a0)2,
l’entier naturel k = `2(n) + 1 est la taille de n, i.e. le nombre de bits nécéssaires
pour le mémoriser. On dit alotrs que n est un entier de k bits. On rappelle que l’on
a l’identité k = blog

2
(n)c + 1 (cf. l’exercice 1.2.2). En particulier, n est un entier à

` bits si et seulement si l’on a l’encadrement 2k�1
 n < 2k. Le bit a` est le plus

significatif et a0 est le moins significatif.

Exemple 1.2.6 — L’entier 2024 = (11111101000)2 est de taille 11. À ce jour, dans
les applications cryptographiques tels que le cryptosystème RSA (que nous verrons
dans le deuxième chapitre), on utilise des entiers de 1024 bits, ce qui correspond à
309 chiffres décimales.

Dans la pratique, on fixe la taille (maximale) k des entiers naturels considérés i.e.
la capacité de l’ordinateur avec sur lequel on envisage d’implémenter un algorithme.
Si n = (a` · · · a0)2 est l’écriture en base 2 d’un tel entier, on a alors `  k � 1 et
(0, . . . , 0, a`, . . . , a0) est le k-plet de bits correspondant à n (on complète par des 0).
Lors de l’implémentation de tout algorithme, il faut impérativement tenir compte de
la possibilité de dépassement de cette capacité, amenant à une erreur (overflow en
anglais).

Remarque 1.2.7 — Voulant encoder un entier relatif quelconque, on peut considé-
rer un bit supplémentaire correspondant à son signe. Il est important de signaler que
dans la pratique, on utilise plutôt la technique du complément à deux, qui permet
d’effectuer des soustractions de manière plus naturelle. Voulant éviter de s’éloigner
des objectifs du cours, nous ne détaillerons pas cette méthode.

1.2.3. Opérations élémentaires sur les bits et opérations arithmétiques
sur les entiers — Il existe quatre opérations élémentaires sur les bits :
NOT,OR,AND et XOR. Leur résultat est présenté dans les tableaux ci-dessous.

a NOT a

0 1

1 0

a b aOR b aAND b aXOR b

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0
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Étant donné un k-plet n = (ak, · · · , a1) de bits ou, ce qui revient au même, un
entier n < 2k, on introduit alors également l’opération élémentaire de décalage à

droite, définie par
RS(n) = (0, ak · · · , a2).

On remarquera que l’entier correspondant à RS(n) est le quotient de la division eu-
clidienne de n par 2 et a1 est son reste. On définit de manière analogue le décalage

à gauche en posant
LS(n) = (ak�1, . . . a1, 0).

On vérifie facilement que l’entier associé à LS(n) n’est autre que le reste de la division
euclidienne de 2n par 2k. En particulier, pour ak = 0, ce qui se traduit par l’inégalité
n < 2k�1, on a l’identité LS(n) = 2n.

Toutes les opérations usuelles entre entiers (comparaison, addition, soustraction,
multiplication et division euclidienne) peuvent être effectuées par une suite d’opéra-
tions élémentaires sur leurs bits. Décrivons par exemple un algorithme permettant
d’effectuer la somme de deux entiers naturels a et b à k bits correspondant respecti-
vement aux k-plets (ak, . . . , a1), et (bk, . . . , b1) :

r  0 (bit de retenue)
Pour i de 1 à k

ci  (ai XOR bi)XOR r

r  (ai AND bi)OR(ai AND r)OR(bi AND r)

ck  r

Cet algorithme nécessite 7k opérations élémentaires. Le résultat est le (k+ 1)-plet
de bits (ck+1, . . . , c1) et l’entier qui lui est associé coïncide avec la somme de a et
b. Le tableau ci-dessous indique le nombre (pas nécessairement minimal et arrondi
par excès) d’opérations élémentaires nécessaires pour effectuer les opérations usuelles
entre deux entiers naturels à k bits.

Comparaison 2k

Addition 7k

Soustraction 8k

Multiplication 8k2

Division euclidienne 13k2

1.2.4. Complexité d’un algorithme arithmétique sur les entiers — Comme
il a été souligné précédemment, tous les algorithmes considérés dans ce cours se ré-
duisent à une suite d’opérations arithmétique sur des entiers (comparaison, somme,
produit, division euclidienne). On peut associer à un tel algorithme deux types de
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complexités : la complexité en espace, qui mesure la mémoire (de l’ordinateur)
nécessaire à son execution, et la complexité en temps, qui est une évaluation de
sa durée d’exécution. C’est cette deuxième notion qui nous intéresse principalement.
Nous partirons du principe que toutes les opérations élémentaires sur les bits ont
la même durée d’exécution et qu’elles seules contribuent de manière significative au
temps d’exécution de l’algorithme (c’est clairement une simplification du problème,
mais les résultats présentés restent néanmoins valables). En ce qui nous concerne, il
est par conséquent naturel de définir la complexité de l’algorithme comme le nombre
d’opérations élémentaires nécessaires pour qu’il aboutisse, ce nombre dépendant clai-
rement des entiers sur lesquels on applique l’algorithme. Avec cette convention, le
temps d’exécution est donc proportionnel à sa complexité. Cette constante de pro-
portionnalité dépend de l’ordinateur utilisé et n’est pas d’un réel intérêt (tant que
l’on ne s’intéresse pas à l’implémentation effective de l’algorithme). Afin d’obtenir une
expression qui ne tienne pas compte de ce facteur, il est utile d’introduire quelques
notions de comparaison asymptotique. Considérons deux applications f, g : N>0 ! R.
On dit que g est dominée par f , et on écrit g = O(f), s’il existe une constante c 2 R
telle que

|g(n)|  c|f(n)|

pour tout n. D’après le paragraphe précédent, la complexité des opérations arithmé-
tiques sur les entiers naturels peu être majorée par une fonction ne dépendant que de
leur taille. Par exemple, nous avons vu que la complexité de l’algorithme d’addition
de deux entiers de k bits est inférieure ou égale à 7k. Avec la notation asymptotique
introduite ci-dessus, la somme de deux entiers de k bits est donc de complexité O(k).
Le tableau suivant donne une expression de la complexité de quelques algorithmes de
base sur deux entiers de k bits.

Algorithme Complexité
Comparaison O(k)

Addition/soustraction O(k)

Multiplication/division euclidienne O(k2)

Remarque 1.2.8 — L’algorithme d’addition utilisé dans la pratique est très proche
de celui décrit dans le paragraphe précédent. Concernant la multiplication (ou la
division euclidienne), on a utilisé ici un algorithme qui n’est autre que l’adaptation en
base 2 de la technique multiplication (ou de division) à la main, telle que l’on apprend
à l’école. Ce dernier n’est pas nécessairement optimal d’un point de vue effectif, mais
il l’est d’un point de vue asymptotique.

Il est souvent plus pratique d’estimer la complexité d’un algorithme en faisant
intervenir les entiers considérés plutôt que leur taille. Tenant compte des relations
`2(n) = blog2(n)c = O(log(n)), la somme de deux entiers naturels a et b est alors de
complexité O(max{log(a), log(b)}).
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Dans le tableau ci-dessous, nous avons reporté l’estimation de la complexité en
fonction des entiers naturels b  a considérés.

Algorithme Complexité
Comparaison O(log(a))

Comparaison, addition, soustraction O(log(a))

Multiplication, division euclidienne O(log2(a))

Algorithme d’Euclide étendu O(log2(a))

Remarque 1.2.9 — Concernant l’algorithme d’Euclide étendu, à chaque étape, on
effectue une division euclidienne (afin de déterminer la suite des restes), deux multi-
plications et deux soustractions (pour le calcul des suites auxilières (un) et (vn)). On
vérifie facilement que les entiers intervenant dans l’emsemble de l’algorithme sont in-
férieurs ou égaux à a, ce qui implique que chaque étape est de complexité O(log2(a)).
Comme il a été noté précédemment (cf. la remarque 1.1.21), en utilisant la division
euclidienne modifiée (qui est elle aussi de complexité O(log2(a)), l’algorithme aboutit
après `2(a) = blog2(a)c+1 = O(log(a)) étapes au plus (une estimation semblable est
valable si l’on utilise la division euclidienne ordinaire). On en déduit que l’algorithme
d’Euclide es de complexité O(log3(a)). Une étude plus fine (tenant compte du fait que
la suite des restes est strictement décroissante) permet de montrer qu’il est en fait de
complexité O(log2(a)).

Un algorithme sur des entiers naturels a1, . . . , an est polynomial s’il existe des en-
tiers naturels d1, . . . , dn tels que sa complexité soit égale à O(logd1(a1) · · · log

dn(an)).
On dit également que la complexité de l’algorithme est polynomiale. Tel est le cas
par exemple pour les algorithmes d’addition, de soustraction, de multiplication, de
division euclidienne ou de calcul de pgcd. Ce type d’algorithme est particulièrement
adapté à des applications effectives, tout particulièrement en cryptographie, car en
augmentant la taille des entiers considérés, la croissance de sa complexité reste mo-
dérée (polynomiale par rapport à leur taille, ce qui justifie d’ailleurs le nom).

1.2.5. Le problème de la factorisation — S’il est important en cryptographie
de disposer d’algorithmes performants (i.e. de complexité polynomiale), de nombreux
cryptosystèmes se basent par contre sur l’absence de tels algorithmes dans des pro-
blèmes particuliers, réputés difficiles d’un point de vue effectif. Tel est par exemple
le cas pour la factorisation d’un entier : on ne dispose pas à ce jour d’algorithme
rapide permettant de déterminer une factorisation non triviale d’un entier composé
(i.e. non premier). Un chapitre de ce cours est dédié à cette question. Pour l’heure,
remarquons qu’afin de factoriser un entier composé n, une première méthode natu-
relle (et incontournable) consiste à tester récursivement la divisibilité de n par tous
les entiers inférieurs ou égaux à

p
n (en effet, si n est composé, il possède un diviseur

1 < d 
p
n), et ce, en effectuant à chaque étape une division euclidienne. On obtient
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alors un algorithme de complexité O(
p
n log2(n)). En d’autres termes, la croissance

de sa complexité est bien plus que polynomiale par rapport à la taille de n (cette
dernière étant égale à `2(n) = O(log(n))). Dans ce cas, elle est même exponentielle.
Nous verrons que même l’utilisation de techniques plus sophistiquées n’amène pas à
une amélioration significative par rapport à la méthode décrite ici (la complexité reste
essentiellement exponentielle).

1.3. Deux algorithmes performants

1.3.1. Exponentiation rapide — En cryptographie, il est souvent nécessaire de
calculer des (grandes) puissances gn d’un éléments g d’un groupe G (ou, plus géné-
ralement, d’un monoïde). Il existe une méthode naïve de calcul de gn qui consiste
à effectuer n � 1 multiplications, ce qui, dans la pratique, peut souvent se révéler
prohibitif. Un procédé plus astucieux consiste à considérer l’écriture de n en base 2,

n = (a`a`�1 · · · a0)2 = a0 + 2a1 + · · ·+ a`2
`,

où `+ 1 = blog
2
(n)c+ 1 est la taille de n. En posant gi = g2

i

, on a alors l’identité

gn = ga0
0

· · · ga`
` .

On remarquera que l’on a la relation gi+1 = g2i . On en déduit que ` multiplications (en
fait, des élévations au carré) dans G suffisent pour déterminer les éléments g0, . . . , g`.
Les entiers ai étant égaux à 0 ou 1, l’élément gn est déterminé en effectuant au plus
` multiplication supplémentaires. En tout, on obtient un nombre de multiplications
inférieur ou égal à 2`. Cette méthode, appelée exponentiation rapide, est donc
performante et couramment utilisée dans la pratique. De nombreux cryptosystèmes
(RSA, El-Gamal, Rabin,...) ou algorithmes (critères de primalité, méthodes de facto-
risation,...) seraient en effet absolument ineffectifs sans l’utilisation cette technique.

Exemple 1.3.1 — En utilisant la méthode d’exponentiation rapide, l’entier 31000000

est déterminé en effectuant 27 multiplications dans N. D’un point de vue pratique, sur
un Macbook Pro, ce calcul nécessite environ 0, 02 secondes, contre 18 avec la méthode
naïve (comportant 999999 multiplications).

1.3.2. Extraction de la racine carrée d’un entier — Nous terminons ce cha-
pitre en décrivant un algorithme rapide pour déterminer la (partie entière de la) racine
carrée d’un entier n > 0. En notant r le plus grand entier tel que 4r  n, ce qui se
traduit par l’identité r = blog

2
(n)/2c, considérons la suite (xi) définie par x0 = 0 et

xi+1 =

8
>><

>>:

xi + 2r�i si (xi + 2r�i)2  n,

xi sinon.

Proposition 1.3.2 — L’élément xr+1 est la partie entière de
p
n.
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Démonstration — Montrons par récurrence que pour tout i 2 {1, . . . , r + 1}, xi est
un entier naturel vérifiant les inégalités

x2

i  n < (xi + 2r�i+1)2.

Pour i = 1, on a l’identité x1 = 2r, d’où les relations

x2

1
= 4r  n < 4r+1 = (x1 + 2r)2.

Soit donc i 2 {1, . . . , n} et supposons que xi est un entier naturel vérifiant les inégalités
ci-dessus. Pour (xi + 2r�i)2  n, on obtient xi+1 = xi + 2r�i

2 N, d’où les relations

x2

i+1
 n < (xi + 2r�i+1)2 = (xi+1 + 2r�i)2

Pour (xn + 2r�i)2 > n, on obtient xi+1 = xi 2 N et les relations

x2

i+1
= x2

i  n < (xi + 2r�i)2 = (xi+1 + 2r�i)2.

Finalement, pour i = r + 1, on obtient les inégalités

x2

r+1
 n < (xr+1 + 1)2,

d’où le résultat.

Corollaire 1.3.3 — L’algorithme d’extraction de la racine carrée d’un entier naturel
n est de complexité O(log3(n)).

Démonstration — La détermination de l’entier r nécessitant 2r décalages vers la
gauche et r comparaisons d’entiers inférieurs ou égaux à n, elle est de complexité
O(r log(n) + 2r) = O(log2(n)). À chaque pas de l’algorithme, on effectue au plus
une élévation au carré, une comparaison, un décalage à droite et une somme, le tout
avec des entiers inférieurs ou égaux à n2, ce qui amène à une complexité globale de
O((r + 1)(log2(n)) = O(log3(n)).
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