CHAPITRE 1

ARITHMETIQUE DES ENTIERS ET COMPLEXITE

D’un point de vue effectif, tous les protocoles cryptographiques que nous étudierons
se réduisent en derniére analyse & la manipulation d’entiers (ou de familles d’entiers)
et a la détermination explicite d’opérations arithmétiques entre eux. La conception de
nombreux cryptosystémes se base le plus souvent sur la relative simplicité de certaines
de ces opérations (effectuées en phase de cryptage, qui se doit d’étre rapide) ou, au
contraire, de leur difficulté (ce qui rend difficile le déchiffrement lors de la transmis-
sion du message chiffré). Nous allons commencer par un rapide rappel des porpriétés
algébriques et arithmétique des entiers. Ces constructions et résultats, essentiellement
contenus dans les Eléments d’Euclide, sont présentés dans le langage des anneaux,
ce qui permet, entre autre, de se familiariser avec ce formalisme et de passer en re-
vue quelques notions de base d’algébre commutative. Nous étudierons ensuite I’aspect
effectif des opérations, en introduisant la notion de complexité.

1.1. Rappels sur arithmétique des entiers

1.1.1. Structure d’anneau euclidien — La plupart des propriétés arithmétiques
et algébriques des entiers, ainsi que 'effectivité de nombreux algorithmes découlent
de l'existence d’une division euclidienne, ce qui munit Z d’une structure d’anneau
euclidien, une classe d’anneaux particuliérement adaptés & des constructions effec-
tives. Le résultat ci-dessous nous accompagne depuis les bancs du collége (voire plus
loin).

Théoréme 1.1.1 — Etant donnés deuz entiers a et b, avec b non nul, il existe un
unique couple d’entiers q et r, appelés respectivement quotient et reste de la division
euclidienne de a par b, tels que

a=bq+r,

avec 0 <1 < |b].
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Démonstration — L’ensemble
A={a—-bg|qeZ}nNN

est non vide (car il contient I’élément a + |ba| > 0) et posséde donc un plus petit
élément r. Par construction, on a l'identité a = bg + r, avec ¢ € Z. Si l'on avait
r > |b|, on obtiendrait les relations

r=r—|bl=a—-blgtl) €A

et 7 < r, ce qui est exclu. On a donc les inégalités 0 < r < [b]. Finalement, si
gb+r =4qb+1r", avec 0 < r,r’ < |b], on obtient l'identité b(¢ — ¢') = ' — r. Pour
q # q', on en déduit les relations

bl < |b(q" — q)| = |r — '] < |b],

ce qui est une fois encore exclu. On a donc q = ¢’ et, par suite r = r/, d’ou I'unicité
du quotient et du reste. O

D’un point de vue pratique, lorsque b est positif, en considérant la division eucli-
dienne a = bg + r, on a l'identité ¢ = |a/b|, ou |z| désigne la partie entiére d'un
réel x, i.e. le plus grand entier n tel que n < z.

Remarque 1.1.2 — En procédant comme dans la démonstration ci-dessus, on
montre ’existence et I'unicité d’un couple d’entiers ¢ et r tels que a = bg + r,
avec cette fois —|b|/2 < r < |b|/2. Dans ce cas, on parle de division euclidienne
modifiée.

1.1.2. Idéaux — On rappelle qu’un idéal a d’'un anneau A est monogéne s’il existe
un élément a € A, appelé générateur de a, tel que

a=aA={ab|be A},

Le générateur d’un idéal monogéne n’est généralement pas unique. Deux éléments a
et b de A sont associés s’ils engendrent le méme idéal, i.e. si aA = bA.

Lemme 1.1.8 — Deux éléments a,b € A d’un anneau intégre A sont associés si et
seulement s’il existe un élément u € A* tel que a = ub.

Démonstration — L’assertion étant immédiate lorsque ab = 0, supposons a et b non
nuls. Si aA = bA, on a en particulier b € aA et a € bA, ou encore b = ua et a = vb,
avec u,v € A, d’ou les identités a = bv = auwv et, par suite, a(1 — uv) = 0. L’anneau
A étant intégre et a étant non nul, on a alors 1 — uv = 0, ce qui implique que w
est inversible, d’inverse v. Réciproquement, si b = ua, avec u € A*, on a b € a4
et a = u'b € bA, d’ou les inclusions bA C aA et aA C bA, qui sont alors des
égalités. O

Un anneau A est principal s’il est intégre et si tous ses idéaux sont monogénes.

Théoréme 1.1.4 — L’anneau 7Z est principal.
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Démonstration — L’anneau 7Z étant intégre, il suffit de vérifier que tout idéal a de
Z est monogeéne. L’assertion étant immédiate pour a = 0, on supose a non nul. L’en-
semble
at={a€ala>0}CN

est non vide (car a posséde un élément non nul a, auquel cas |a| = +a € a™) et posséde
donc un élément minimal n > 0. On a on alors 'inclusion nZ C a. Réciproquement
étant donné m € a, en considérant la division euclidienne m = ng+r, avec 0 < r < n,
on obtient les relations r = m—ng € a. Pour r > 0, on obtiendrait 7 € a™, contredisant
la minimalité de n. On a donc r = 0, d’ot m = ng € nZ et, par suite, I'inclusion
a C nZ, qui est alors une égalité. O]

Proposition 1.1.5 — Un idéal de Z posséde un unique générateur positif. En par-
ticulier, ’application qui associe & un entier naturel n l’idéal nZ définit une bijection
entre N et l’ensemble des idéauz de 7.

Démonstration — L’identité Z = {£1} combinée avec le lemme 1.1.3 affirme qu’'un
idéal de Z, qui est monogene (cf. le théoréme 1.1.4), posséde au plus deux générateurs,
opposés I'un de I'autre (qui coincident si et seulement si 'idéal est nul), un seul d’entre
eux étant positif. O

Remarque 1.1.6 — Par définition, un idéal d’un anneau A est un sous-groupe
(additif) de A mais la réciproque n’est généralement pas vraie. En effet, étant donné
h € H et a € A, rien ne permet d’affirmer que I’élément ah appartient & H. Par
contre, pour A = Z, le sous-groupe H est automatiquement un idéal. En effet, en se
réduisant au cas a > 0, on a les relations

ah=h+--(a)--+heH.

En d’autres termes, pour Z, la notion d’idéal et de sous-groupe coincident. Dans la
proposition ci-dessus, il est par conséquent possible de remplacer le terme idéal par
sous-groupe.

1.1.3. Divisibilité, plus grand diviseur commun, identité de Bézout — De
maniére générale, si a et b sont deux éléments d’un anneau A, on dit que b divise a,
ou que a est un multiple de b s’il existe ¢ € A tel que a = be. On utilise la notation bla
pour indiquer que b divise a. Les idéaux sont I'outil le plus adapté dans toute question
liée & la divisibilité. Le résultat élémentaire suivant en est une premiére illustration.

Lemme 1.1.7 — Etant donnés deux éléments a et b d’un anneau A, on a bla si et
seulement si aA C bA.

Démonstration — Sibla, on aa = be, avec ¢ € A, d’ott a € bA et, par suite, I'inclusion
aA C bA. Réciproquement, pour aA C bA, on a a € aA C bA, d’ou a = bc, avec
ceA. O
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Revenant aux entiers, le résultat ci-dessous compléte la proposition 1.1.5.

Proposition 1.1.8 — Il existe une bijection naturelle entre [’ensemble des diviseurs
positifs d’un entier n et l’ensemble des idéaux de Z contenant nZ.

Démonstration — 1l suffit de combiner la proposition 1.1.5 et le lemme 1.1.7 O

Remarque 1.1.9 — La divisibilité définit une relation d’ordre sur N (mais pas sur
Z). Par ailleurs, 'ensemble des idéaux de Z est naturellement ordonné par I'inclusion
(on pose ici a < b si et seulement si b C a). Le résultat ci-dessus affirme que appli-
cation qui associe & un entier naturel n 'idéal nZ est un isomorphisme d’ensembles
ordonnés, i.e. une bijection qui est compatible avec les relations d’ordre.

Ezxemple 1.1.10 — Les six idéaux de Z contenant 12Z sont Z,27Z,37,4Z,67Z et
12Z. La relation d’inclusion entre eux, qui correspond au treillis des diviseurs de 12
est décrite schématiquement dans la figure ci-dessous.

On rappelle que si a et b sont deux idéaux d’un anneau A, leur somme
a+b={a+b|acabeb}

est également un idéal de A, c’est d’ailleurs le plus petit idéal contenant a U b. En ce
qui concerne les entiers, étant donnés a,b € Z, la somme

aZ +VZ = {ax +by | x,y € Z}

des idéaux aZ et bZ est monogene (cf. le théoréme 1.1.4), engendré par un unique
entier naturel (cf. la proposition 1.1.5), appelé plus grand diviseur commun, ou
simplement pged de a et b. On le note généralement a A b. Par constructon, il existe
un couple d’entiers x et y vérifiant la relation

aNb=ax+ by,

appelée identité de Bézout.

FEzxercice 1.1.11 — Soient a et b deux entiers. Montrer qu’étant donné un entier
naturel d, les conditions suivantes sont équivalentes :

1. Onad=aAb.

2. L’entier d divise a et b et si ¢ € Z est un diviseur commun & a et b alors ¢ divise
d (cette propriété justifie le nom de plus grand diviseur commun).
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Deux entiers a et b sont premiers entre eux si a Ab =1, ce qui revient & affirmer
qu’il existe une identité de Bézout az + by = 1.

Exercice 1.1.12 — Soient a,b et ¢ des entiers, avec a A b = 1. Montrer le lemme
de Gauss : si a divise be alors a divise ¢. En déduir que si alc et b|c alors ab|c.

Le plus petit commun multiple, ou ppcm de a et b, noté a V b est I'unique
générateur positif de 'idéal aZ N bZ.

Ezxercice 1.1.13 — Soient a et b deux entiers. Montrer qu’étant donné un entier
naturel m, les conditions suivantes sont équivalentes :

1. Onam=aVb.

2. L’entier m est un multiple de a et b et si ¢ € Z est multiple commun & a et b alors
¢ est un multiple de m (cette propriété justifie le nom de plus petit commun
multiple).

De maniére générale, étant donnés des entiers aq, ..., a,, leur pged, noté a; A--- A
an est 'unique générateur positif de I'idéal a1Z + - -+ + a,Z. De méme, leur ppcm
a1 V-V a, est 'unique générateur positif de 'idéal a1Z N --- N a,Z.

Remarque 1.1.14 — Les définitions de pged et de ppcm proposées dans ce pa-
ragraphe ainsi que leurs propriétés s’appliquent en fait & tout anneau principal, si
ce n’est que dans le cas général, on ne dispose pas nécessairement d'un générateur
privilégié d’un idéal (on parle alors d’un pged plutdt que du pged de a et b).

Exercice 1.1.15 — Montrer qu’étant donnés des entiers a, b et ¢, on a les propriétés
suivantes :

1. an(b+ac)=aAb.

2. (ab) A (ac) = la|(b A c).

3. (aAb)(aVb)=]abl|

1.1.4. Factorisation unique — Un nombre premier est un entier n > 1 tel que
ses seuls diviseurs (positifs) sont 1 et n lui-méme.

Proposition 1.1.16 — Un entier naturel n > 1 est un nombre premier si et seule-
ment si l’idéal nZ est maximal. En particulier, on en déduit le lemme d’FEuclide,
qui affirme que si un nombre premier divise le produit d’entiers alors il divise ['un des
facteurs.

Démonstration — La premiére assertion est une conséquence directe de la proposi-
tion 1.1.8. La seconde découle du fait que tout idéal maximal d’un anneau est premier
(cf. appendice). O
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Théoréeme 1.1.17 — Un entier non nuln s’écrit de maniére unique comme produit
n=+[]p"
P

ot p parcourt l’ensemble des nombres premiers, les entiers naturels e, étant presque
tous nuls (i.e. tous sauf un nombre fini d’entre eux).

Démonstration — On commence par montrer que tout nombre entier n posséde une
telle écriture. On procéde par récurrence sur |n| : Passertion étant claire pour n = 1
(auquel cas il suffit de poser e, = 0 pour tout p), supposons |n| > 1 et la pro-
priété vraie pour tout entier m tel que |m| < |n|. Si |n| est premier, 'assertion est
clairement remplie. Si n est composé, on a n = ab, avec 1 < a,b < n et il suffit
d’appliquer I'hypothése de récurrence. Concernant 1'unicité, considérons deux écri-
tures n = + Hp pfr =+ Hp p* et supposons qu’il existe un nombre premier ¢ tel que
eq 7 fq- On peut se réduire au cas ¢4 < f,, ce qui améne a 'identité

Hpep = j:qfq*eq prp_

P#£q p#q
En particulier, le nombre premier ¢ divise ¢r et coincide donc avec I'un des
’ pF#q
acteurs, ce qui est exclu. On a donc e, = our tout nombre premier p et le signe
fact , ceq t exclu. On a d » » D tout b p et 1
dans les deux expressions est clairement le méme, d’oit I'unicité. O

Remarque 1.1.18 — L’écriture (unique) décrite dans le résultat ci-dessus est en
fait valable pour tout rationnel non nul z, si ce n’est que les exposants e, peuvent
étre négatifs. Dans le langage des groupes, le théoréme fondamental de I’arithmétique
établit un isomorphisme entre Q* et uz x €, Z, ot l'on a posé py = Z* = {+1}.

Ezercice 1.1.19 — Etant donnés deux entiers non nuls a et b, considérons leurs
factorisations a = £ [, p® et b=£][], pfr. Montrer que 'on a a|b si et seulement si
ep < fp pour tout nombre premier p. En déduire les identités

alNb= prmin{ep,fp},

aVb= prmax{ep,fp}_

1.1.5. L’algorithme d’Euclide étendu — Le calcul de pged est omniprésent en
cryptographie algébrique. Il est par conséquent nécessaire de fournir un algorithme
efficace permettant de le déterminer explicitement. Soient donc a et b deux entiers,
que l'on suppose non nuls (dans le cas contraire, la calcul de leur pged est trivial).
Le pged ne dépendant pas du signe des entiers considérés, on peut se réduire au cas
0 <b<a(pour a =b, on a clairement a A b = a). Tout d’abord, on serait tenté de
considérer les factorisations de a et b en produit de nombres premiers, utilisant ensuite
I’expression du pged de 'exercice 1.1.19. Ne disposant a ce jour d’aucun algorithme de
factorisation réellement performant, cette démarche est a ecarter. Nous allons décrire
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une seconde méthode, le célébre algorithme d’Euclide (étendu), qui s’avére bien
plus efficace. On construit une suite finie d’entiers naturels (r;);>0, appelée suite des
restes (associée a a et b) par le procédé suivant :

e Onposerg=aetr, =b.

e Pour i > 1, si r; = 0 le procédé s’arréte, sinon 7,41 est le reste d’une division

euclidienne de r;_1 par r;.

Il existe alors un unique entier n > 1 tel que v(rg) > v(ry) > -+ > v(ry,) et rppq = 0.
Pour tout 7 € {1,...,n}, en posant

Tii = qiTi + Tit1,

on obtient la suite des quotients (¢;)1<i<n. Finalement, on considére deux autres
suites (u;)o<i<n €t (v;)o<i<n définies par

Ug = 17 Vo = 07
Uy = 07 et U1 = 17
Uip1 = Uj—1 — U;q; pour ¢ > 0, Vit1 = Vi—1 — V;q; pour ¢ > 0.

Il peut étre commode de présenter les étapes de calculs sous la forme du tableau

suivant
q1 q2 e dn—1 dn
al b |ra | | Tt |7Tn |0
110 [ug |- | Up_1 | Un
Tlwvg | | Upot1 | Un
Proposition 1.1.20 — Avec les notations et hypothéses ci-dessus, on a les identités
aANb=r, =au, + bu,.
Démonstration — Les relations a Ab = rg Ary et r, = rp Aryp4q sont immédiatement
vérifiees. Pour tout i € {1,...,n}, le point 1 de l'exercice 1.1.15 ameéne alors aux
identités

Tict AT = (Tim1 — qiri) A1 =T AT,
d’ou la premiére égalité. Concernant la seconde, montrons par récurrence que pour
tout i € {0,...,n}, on a la relation r; = au; + bv;. L’assertion étant trivialement
vérifiée pour ¢ = 0 et ¢ = 1, supposons qu’elle est vraie pour un entier ¢ > 1. On a
alors les relations
Tyl = Tic1 — @i = aui—1 + bvi_1 — qi(au; + bv;) =
= a(ui—1 — qiu;) + b(vi—1 — qivi) = auip1 + by,

ce qui conclut la démonstration. O

Remarque 1.1.21 — Dans ce procédé, on peut librement remplacer la division
euclidienne usuelle par sa version modifiée (cf. la remarque 1.1.2). Dans ce cas, les
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termes de la suite des restes (r;) n’étant pas n’écessairement positifs, on obtient I'iden-
tité |r,| = a A b) (le nombre d’itérations n n’étant généralement pas le méme qu’avec
la division euclidienne usuelle). Par contre, 'expression r,, = au,, + bv, reste valable.
La suite (|r;]) est strictement décroissante, car pour ¢ > 0, on a |r;+1] < |r;]/2, d’ot
la relation |r;| < |b]/2!~1. En particulier, on obtient n < log,(|b|) + 1, ce qui permet
de quantifier le nombre d’itération nécessaires pour que ’algorithme d’Euclide étendu
aboutisse (dans sa version modifiée). Une analyse similaire, faisant intervenir la suite
de Fibonacci, améne a une majoration semblable du nombre d’itérations nécessaires
avec 'agorithme usuel (non modifié).

Ezxemple 1.1.22 — Déterminons explicitement le pged des entiers 1071 et 2023. On
a le tableau

2023 | 1071|952 | 119 | O
1 0 1 | -1
0 1 -11] 2

On en déduit la relation 1071 A 2023 = 119 et I'identité de Bézout
2-1071 —1-2023 = 119.

La division euclidienne modifiée améne au second tableau

2 -9

2023 | 1071 | —-119 | O
1 0 1
0 1 -2

L’algorithme est donc plus rapide dans sa version modifiée.

1.2. Quelques notions de complexité

Ayant passé en revue les propriétés essentielles des entiers qui seront utilisés dans la
suite du cours, on s’interesse & présent a ’aspect effectif des opérations et constructions
présentées (somme, produit, division euclildienne, algorithme d’Euclide étendu,...).

1.2.1. Ecriture d’un entier en base b — Nous allons briévement rappeler une
notion qui remonte & nos souvenirs de jeunesse : la numération en base b.

Théoréme 1.2.1 — Soit b > 1 un entier. Tout entier naturel n s’écrit de maniére
unique sous la forme

n:a0+a1b+~~~+akbk+~~ ,
ow les entiers ag, ag, -+ € {0,...,b— 1} sont presque tous nuls (i.e. nuls a partir d’un
certain rang). Une telle expression est appelée écriture en base b de n.
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Démonstration — Concernant l’existence, on procéde par récurrence sur 'entier n :
pour n < b, c’est immédiat. Soit donc n > b un entier et supposons que tout entier
m < n posséde une telle écriture. En particulier, en considérant la division euclidienne
n=bm+ ag, avec 0 < ag < b, on a m < n d’ot écriture m = a1 + asb + asb® + - - -,
ce qui donne

n:a0+b(a1+a2b+~'):a0+a1b+a2b2—|—....

Concernant 'unicité, il suffit de remarquer que ag est le reste de la division euclidienne
de ng = n par b; il est donc unique. Dans ce cas a; est le reste de la division euclidienne
de n1 = (ng — ag)/b par b, qui est également unique. En itérant ce procédé, on en
déduit qu’il en est de méme pour a;, qui est le reste de la division euclidienne de
n; = (nj—1 —a;,—1)/b par b. O

En suivant la notation et les hypothéses du théoréme 1.2.1, notons £ = £,(n) le
plus grand entier naturel tel que ay # 0. On écrit alors n = (as - - - ag)p pour indiquer
I’écriture en base b de n. Si aucune confusion n’est possible, on utilise également la
notation n = ay - - - ag.

Exercice 1.2.2 — Montrer que £(a) est le plus petit entier £ tel que b**! > a, ce
qui se traduit par 'identité

ty(a) = [logy(a)],

ou |z | désigne la partie entiére d’un réel z.

Ezxzemple 1.2.3 — Le tableau ci-dessous contient les écritures de ’entier 2024 en
base b < 10.

2 3 4 ) 6 7 8 9
11111101010 | 2210001 | 133222 | 31101 | 13214 | 5623 | 3752 | 2701

FEzxercice 1.2.4 — Soit b > 1 un entier. Montrer qu’un entier relatif n s’écrit de
maniére unique sous la forme

n=ag—arb+ ah® + -+ ap(—=b)" + -,

ou les entiers ag, . ..,ar € {0,...,b— 1} sont presque tous nuls. Déterminer une telle
expression pour b = 2 et n = 2026.

Ezxercice 1.2.5 — Considérons un polyndéme f € Z[X] et supposons que tous ses
coefficients sont des entiers naturels. Montrer que la donnée des entiers n = f(1) et
m = f(n + 1) permet de déterminer f.
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1.2.2. La taille d’un entier en informatique — Ayant commencé a compter en
utilisant les dix doigts de nos mains, c’est ’écriture en base 10 qui s’est imposée au
fil des siécles. Cependant, d’un point de vue pratique, et particuliérement en ce qui
concerne les application en informatique, on utilise le plus souvent I’écriture en base
2. Dans ce contexte, un bit est une variable qui ne peut prendre que les valeurs 0
et 1. En considérant son écriture en base 2, un entier naturel peut étre assimilé a
une suite de bits. De maniére plus précise, étant donnée 'écriture n = (ay...ao)s,
Pentier naturel k& = ¢5(n) + 1 est la taille de n, i.e. le nombre de bits nécéssaires
pour le mémoriser. On dit alotrs que n est un entier de k bits. On rappelle que 'on
a lidentité k = |logy(n)] + 1 (cf. Vexercice 1.2.2). En particulier, n est un entier a
{ bits si et seulement si Pon a encadrement 251 < n < 2%. Le bit a, est le plus
significatif et agy est le moins significatif.

Exzemple 1.2.6 — L’entier 2024 = (11111101000), est de taille 11. A ce jour, dans
les applications cryptographiques tels que le cryptosystéme RSA (que nous verrons
dans le deuxiéme chapitre), on utilise des entiers de 1024 bits, ce qui correspond a
309 chiffres décimales.

Dans la pratique, on fixe la taille (maximale) k des entiers naturels considérés i.e.
la capacité de l'ordinateur avec sur lequel on envisage d’implémenter un algorithme.
Sin = (ag---ag)a est I'écriture en base 2 d’un tel entier, on a alors £ < k — 1 et
(0,...,0,ag,...,a0) est le k-plet de bits correspondant & n (on compléte par des 0).
Lors de 'implémentation de tout algorithme, il faut impérativement tenir compte de
la possibilité de dépassement de cette capacité, amenant & une erreur (overflow en
anglais).

Remarque 1.2.7 — Voulant encoder un entier relatif quelconque, on peut considé-
rer un bit supplémentaire correspondant a son signe. Il est important de signaler que
dans la pratique, on utilise plutét la technique du complément a deux, qui permet
d’effectuer des soustractions de maniére plus naturelle. Voulant éviter de s’éloigner
des objectifs du cours, nous ne détaillerons pas cette méthode.

1.2.3. Opérations élémentaires sur les bits et opérations arithmétiques
sur les entiers — Il existe quatre opérations élémentaires sur les bits :
NOT, OR, AND et XOR. Leur résultat est présenté dans les tableaux ci-dessous.

a|b|laORb|aANDb | aXORDb
a | NOTa 00 0 0 0
1 01 1 0 1
1 0 110 1 0 1
1)1 1 1 0
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Etant donné un k-plet n = (ag,---,a;) de bits ou, ce qui revient au méme, un
entier n < 2%, on introduit alors également ’opération élémentaire de décalage &
droite, définie par

RS(n) = (0,ar - ,a2).

On remarquera que l'entier correspondant a RS(n) est le quotient de la division eu-
clidienne de n par 2 et a; est son reste. On définit de maniére analogue le décalage
a gauche en posant

LS(n) = (ak,l, ...ap, 0)

On vérifie facilement que lentier associé a LS(n) n’est autre que le reste de la division
euclidienne de 2n par 2*. En particulier, pour aj = 0, ce qui se traduit par 'inégalité
n < 2871 on a lidentité LS(n) = 2n.

Toutes les opérations usuelles entre entiers (comparaison, addition, soustraction,
multiplication et division euclidienne) peuvent étre effectuées par une suite d’opéra-
tions élémentaires sur leurs bits. Décrivons par exemple un algorithme permettant
d’effectuer la somme de deux entiers naturels a et b & k bits correspondant respecti-
vement aux k-plets (ag,...,a1), et (bg,...,b1) :

r < 0 (bit de retenue)
Pouridelak
¢i + (a; XORb;) XOR r
r < (a; ANDb;) OR(a; AND ) OR(b; AND )

C < T

Cet algorithme nécessite 7k opérations élémentaires. Le résultat est le (k + 1)-plet
de bits (cg41,...,c1) et U'entier qui lui est associé coincide avec la somme de a et
b. Le tableau ci-dessous indique le nombre (pas nécessairement minimal et arrondi
par excés) d’opérations élémentaires nécessaires pour effectuer les opérations usuelles
entre deux entiers naturels & k bits.

Comparaison 2k
Addition Tk
Soustraction 8k

Multiplication 8k?
Division euclidienne | 13k2

1.2.4. Complexité d’un algorithme arithmétique sur les entiers — Comme
il a été souligné précédemment, tous les algorithmes considérés dans ce cours se ré-
duisent & une suite d’opérations arithmétique sur des entiers (comparaison, somme,
produit, division euclidienne). On peut associer & un tel algorithme deux types de
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complexités : la complexité en espace, qui mesure la mémoire (de l'ordinateur)
nécessaire & son execution, et la complexité en temps, qui est une évaluation de
sa durée d’exécution. C’est cette deuxiéme notion qui nous intéresse principalement.
Nous partirons du principe que toutes les opérations élémentaires sur les bits ont
la méme durée d’exécution et qu’elles seules contribuent de maniére significative au
temps d’exécution de l'algorithme (c’est clairement une simplification du probléme,
mais les résultats présentés restent néanmoins valables). En ce qui nous concerne, il
est par conséquent naturel de définir la complexité de ’algorithme comme le nombre
d’opérations élémentaires nécessaires pour qu’il aboutisse, ce nombre dépendant clai-
rement des entiers sur lesquels on applique l’algorithme. Avec cette convention, le
temps d’exécution est donc proportionnel & sa complexité. Cette constante de pro-
portionnalité dépend de 'ordinateur utilisé et n’est pas d’un réel intérét (tant que
lon ne s’intéresse pas a 'implémentation effective de Palgorithme). Afin d’obtenir une
expression qui ne tienne pas compte de ce facteur, il est utile d’introduire quelques
notions de comparaison asymptotique. Considérons deux applications f, g : Nyg — R.
On dit que g est dominée par f, et on écrit g = O(f), s’il existe une constante ¢ € R
telle que

lg(n)| < el f(n)]

pour tout n. D’aprés le paragraphe précédent, la complexité des opérations arithmé-
tiques sur les entiers naturels peu étre majorée par une fonction ne dépendant que de
leur taille. Par exemple, nous avons vu que la complexité de ’algorithme d’addition
de deux entiers de k bits est inférieure ou égale & Tk. Avec la notation asymptotique
introduite ci-dessus, la somme de deux entiers de k bits est donc de complexité O(k).
Le tableau suivant donne une expression de la complexité de quelques algorithmes de
base sur deux entiers de k bits.

Algorithme Complexité
Comparaison O(k)
Addition/soustraction O(k)
Multiplication/division euclidienne O(k?)
Remarque 1.2.8 — L’algorithme d’addition utilisé dans la pratique est trés proche

de celui décrit dans le paragraphe précédent. Concernant la multiplication (ou la
division euclidienne), on a utilisé ici un algorithme qui n’est autre que ’adaptation en
base 2 de la technique multiplication (ou de division) a la main, telle que 'on apprend
a ’école. Ce dernier n’est pas nécessairement optimal d’un point de vue effectif, mais
il ’est d’un point de vue asymptotique.

Il est souvent plus pratique d’estimer la complexité d’'un algorithme en faisant
intervenir les entiers considérés plutot que leur taille. Tenant compte des relations
la(n) = |logy(n)] = O(log(n)), la somme de deux entiers naturels a et b est alors de
complexité O(max{log(a),log(b)}).
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Dans le tableau ci-dessous, nous avons reporté l’estimation de la complexité en
fonction des entiers naturels b < a considérés.

Algorithme Complexité

Comparaison O(log(a))

Comparaison, addition, soustraction | O(log(a))
(log”(a))
(log”(a))

Multiplication, division euclidienne
Algorithme d’Euclide étendu

0
0

Remarque 1.2.9 — Concernant 'algorithme d’Euclide étendu, & chaque étape, on
effectue une division euclidienne (afin de déterminer la suite des restes), deux multi-
plications et deux soustractions (pour le calcul des suites auxiliéres (u,) et (vy)). On
vérifie facilement que les entiers intervenant dans I’emsemble de 1'algorithme sont in-
férieurs ou égaux a a, ce qui implique que chaque étape est de complexité O(log?(a)).
Comme il a été noté précédemment (cf. la remarque 1.1.21), en utilisant la division
euclidienne modifice (qui est elle aussi de complexité O(log?(a)), 'algorithme aboutit
aprés l3(a) = |logy(a)] +1 = O(log(a)) étapes au plus (une estimation semblable est
valable si l'on utilise la division euclidienne ordinaire). On en déduit que l’algorithme
d’Euclide es de complexité O(log®(a)). Une étude plus fine (tenant compte du fait que
la suite des restes est strictement décroissante) permet de montrer qu'il est en fait de
complexité O(log?(a)).

Un algorithme sur des entiers naturels aq, . . ., a, est polynomzial s’il existe des en-
tiers naturels dy, . . ., d,, tels que sa complexité soit égale a O(log¥ (ay) - - - log® (ay)).
On dit également que la complexité de 'algorithme est polynomiale. Tel est le cas
par exemple pour les algorithmes d’addition, de soustraction, de multiplication, de
division euclidienne ou de calcul de pgcd. Ce type d’algorithme est particuliérement
adapté a des applications effectives, tout particuliérement en cryptographie, car en
augmentant la taille des entiers considérés, la croissance de sa complexité reste mo-
dérée (polynomiale par rapport a leur taille, ce qui justifie d’ailleurs le nom).

1.2.5. Le probléme de la factorisation — S’il est important en cryptographie
de disposer d’algorithmes performants (i.e. de complexité polynomiale), de nombreux
cryptosystémes se basent par contre sur 'absence de tels algorithmes dans des pro-
blémes particuliers, réputés difficiles d’'un point de vue effectif. Tel est par exemple
le cas pour la factorisation d’un entier : on ne dispose pas a ce jour d’algorithme
rapide permettant de déterminer une factorisation non triviale d’'un entier composé
(i.e. non premier). Un chapitre de ce cours est dédié a cette question. Pour I’heure,
remarquons qu’afin de factoriser un entier composé n, une premiére méthode natu-
relle (et incontournable) consiste a tester récursivement la divisibilité de n par tous
les entiers inférieurs ou égaux a /n (en effet, si n est composé, il posséde un diviseur

1 < d < +/n), et ce, en effectuant a chaque étape une division euclidienne. On obtient
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alors un algorithme de complexité O(y/nlog®(n)). En d’autres termes, la croissance
de sa complexité est bien plus que polynomiale par rapport a la taille de n (cette
derniére étant égale a ¢3(n) = O(log(n))). Dans ce cas, elle est méme exponentielle.
Nous verrons que méme ['utilisation de techniques plus sophistiquées n’améne pas a
une amélioration significative par rapport a la méthode décrite ici (la complexité reste
essentiellement exponentielle).

1.3. Deux algorithmes performants

1.3.1. Exponentiation rapide — En cryptographie, il est souvent nécessaire de
calculer des (grandes) puissances g™ d’un éléments g d’un groupe G (ou, plus géné-
ralement, d’un monoide). Il existe une méthode naive de calcul de g™ qui consiste
a effectuer n — 1 multiplications, ce qui, dans la pratique, peut souvent se révéler
prohibitif. Un procédé plus astucieux consiste a considérer I’écriture de n en base 2,

n = (agar—1---ag)s = ag + 2a1 + - - + a,2",
ou £+ 1= |logy(n)] + 1 est la taille de n. En posant g; = g%, on a alors l'identité

g = g0 gl

On remarquera que l’'on a la relation g; 11 = ¢g2. On en déduit que ¢ multiplications (en
fait, des élévations au carré) dans G suffisent pour déterminer les éléments go, . . ., gs.
Les entiers a; étant égaux a 0 ou 1, I’élément ¢g" est déterminé en effectuant au plus
£ multiplication supplémentaires. En tout, on obtient un nombre de multiplications
inférieur ou égal a 2¢. Cette méthode, appelée exponentiation rapide, est donc
performante et couramment utilisée dans la pratique. De nombreux cryptosystémes
(RSA, El-Gamal, Rabin,...) ou algorithmes (critéres de primalité, méthodes de facto-
risation,...) seraient en effet absolument ineffectifs sans 'utilisation cette technique.

Exzemple 1.3.1 — En utilisant la méthode d’exponentiation rapide, I’entier 31000000
est déterminé en effectuant 27 multiplications dans N. D’un point de vue pratique, sur
un Macbook Pro, ce calcul nécessite environ 0,02 secondes, contre 18 avec la méthode
naive (comportant 999999 multiplications).

1.3.2. Extraction de la racine carrée d’un entier — Nous terminons ce cha-
pitre en décrivant un algorithme rapide pour déterminer la (partie entiére de la) racine
carrée d'un entier n > 0. En notant r le plus grand entier tel que 4" < n, ce qui se
traduit par l'identité r = |logy(n)/2], considérons la suite (z;) définie par 29 = 0 et
x; + 27 si (x; + 2T_i)2 <mn,
Tit+1 =

; sinon.

Proposition 1.3.2 — L’élément .1 est la partie entiére de v/n.
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Démonstration — Montrons par récurrence que pour tout ¢ € {1,...,r+ 1}, x; est
un entier naturel vérifiant les inégalités

x? <n < (4272,

Pour ¢ = 1, on a l'identité x; = 2", d’ou les relations
] =4" <n <4 = (z; +27)2
Soit donc i € {1,...,n} et supposons que z; est un entier naturel vérifiant les inégalités
ci-dessus. Pour (x; +2"7%)2 < n, on obtient z;,; = x; +2"~* € N, d’ou les relations
x§+1 <n < (2 4+ 2772 = (244 + 27702
Pour (z,, +2"~%)? > n, on obtient z;,1 = x; € N et les relations
iy =27 <n< (z;+277)% = (z + 2702

Finalement, pour ¢ = r + 1, on obtient les inégalités

22 <n < (zo41 +1)%
d’ou le résultat. O

Corollaire 1.3.3 — L’algorithme d’extraction de la racine carrée d’un entier naturel
n est de complezité O(log®(n)).

Démonstration — La détermination de l’entier r nécessitant 2r décalages vers la

gauche et r comparaisons d’entiers inférieurs ou égaux a n, elle est de complexité
O(rlog(n) + 2r) = O(log?(n)). A chaque pas de l’algorithme, on effectue au plus
une élévation au carré, une comparaison, un décalage a droite et une somme, le tout
avec des entiers inférieurs ou égaux a n?, ce qui améne & une complexité globale de

O((r + 1)(1og*(n) = O(log*(n)). O
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