
CHAPITRE 2

PROTOCOLES REPOSANT SUR LE PROBLÈME DE LA
FACTORISATION

Ce chapitre est consacré à la description de quelques cryptosystèmes dont la sécu-
rité se base sur la difficulté de factoriser un entier naturel qui est le produit de deux
(grands) nombres premiers. L’artihmétique modulaire, c’est à dire l’étude des quo-
tients de Z est au coeur de toutes les constructions, l’interprète théorique principal
étant le théorème des restes chinois. Le cryptosystème RSA est l’un des plus cé-
lèbres protocoles cryptographiques reposant sur le problème de la factorisation ; une
section entière lui est dédiée. Des questions de factorisation effective se prêtant à des
application cryptographiques apparaissent également lorsque l’on s’intéresse aux car-
rés dans les anneaux Z/nZ. Les cryptosystèmes de Rabin et de Goldwasser-Micali,
faisant intervenir le symbole de Legendre, en sont des illustrations.

2.1. Arithmétique modulaire

2.1.1. Le groupe Z/nZ — On commence à s’interesser à la structure des quotients
du groupe Z. D’après la remarque 1.1.6, si H est un sous-groupe de Z, alors H = nZ,
où l’entier n est univoquement déterminé. Deux entiers a et b sont congrus modulo

n s’ils défiissent le même élément de Z/nZ, ce qui se traduit par la relation n|a � b,
ou encore a� b 2 nZ. On écrit alors

a ⌘ b (mod n).

L’élément
ā = a+ nZ = {a+ nm | m 2 Z} 2 Z/nZ

associé à a, i.e. l’ensemble des entiers qui sont congrus à a modulo n, est la classe

(de congruence) de a modulo n.

Proposition 2.1.1 — Soit n > 0 un entier. Le groupe Z/nZ est cyclique, d’ordre
n et il existe une bijection entre l’ensemble de ses sous-groupes et l’ensemble des
diviseurs (positifs) de n.
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Démonstration — D’après le théorème 1.1.1, un entier est congru modulo n à un
unique élément de l’ensemble {0, . . . , n � 1} et deux éléments distincts de ce dernier
ne sont jamais congrus modulo n, ce qui implique que Z/nZ est d’ordre n. Il est
cyclique, engendré par l’élément 1̄ (en effet, pour tout x = ā 2 Z/nZ, on a l’identité
x = a · 1̄). On a un homomorphisme surjectif canonique de groupes f : Z ! Z/nZ
défini par f(a) = ā et la proposition A.2.9 affirme que f définit une bijection entre les
sous-groupes de Z/nZ et les sous-groupes de Z contenant nZ. Il suffit alors d’appliquer
la proposition 1.1.8.

2.1.2. Groupes cycliques, le problème du logarithme discret (à rédiger) —
Le groupe Z des entiers relatifs vérifie la propriété universelle suivante : étant donné
un groupe G (pas nécessairement abélien) et un élément g 2 G, il existe un unique
homomorphisme de groupes expg : Z ! G tel que expg(1) = g. D’un point de vue
explicite, on a l’identité

expg(n) = gn

pour tout n 2 Z. On rappelle que tel qu’il a été défini dans l’appendice, l’ordre de g
est le cardinal du sous-groupe hgi de G qu’il engendre.

Proposition 2.1.2 — Soient G un groupe et g 2 G un élément d’ordre fini n. Le
groupe hgi est isomorphe à Z/nZ. En particulier, on a gm = 1 si et seulement si n
divise m.

Démonstration — L’image de l’homomorphisme expg coïncide avec le sous-groupe hgi
et le thórème d’isomorphisme pour les groupes affirme que ce dernier est isomorphe
à Z/ ker(expg). On a donc ker(expg) = dZ, avec d > 0 univoquement déterminé (on
ne peut avoir d = 0, sinon le groupe Z/ ker(expg) serait d’ordre infini). En comparant
les ordres, on obtient alors d = n. Finalement, on a l’identité gm = 1 si et seulement
si m 2 ker(expg) = nZ, ce qui se traduit par la relation n|m.

Corollaire 2.1.3 — Un groupe cyclique d’ordre n est isomorphe à Z/nZ.

Démonstration — C’est un cas particulier du résultat précédent.

2.1.3. L’anneau Z/nZ — Dans ce chapitre, on s’intéresse au quotient de Z par
rapport à un idéal a. L’anneau Z/0 s’identifiant canoniquement avec Z, on suppose
a non nul. D’après la proposition 1.1.5, on a alors a = nZ, où l’entier n > 0 est
univoquement déterminé.

Proposition 2.1.4 — Soit n > 0 un entier. L’anneau Z/nZ est fini, de cardinal
n et il existe une bijection entre l’ensemble de ses idéaux et l’ensemble des diviseurs
(positifs) de n.
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Démonstration — D’après le théorème 1.1.1, un entier est congru modulo n à un
unique élément de l’ensemble {0, . . . , n � 1}, d’où la première assertion. On a un
homomorphisme surjectif canonique d’anneaux f : Z ! Z/nZ défini par f(a) = ā et
la proposition A.3.4 affirme que f définit une bijection entre les idéaux de Z/nZ et
les idéaux de Z contenant nZ. Il suffit alors d’appliquer la proposition 1.1.8.

Dans la pratique, étant donné un élément de Z/nZ, on considère toujours son
unique représentant dans l’ensemble {0, . . . , n � 1}. Les opérations algébriques dans
Z/nZ (somme et produit) sont alors effectuées sur des entiers naturels inférieurs ou
égaux à n. Au vu des résultats du chapitre précédent, la proposition ci-dessous est
immédiate (l’élévation à la puissance m étant effectuée par exponentiation rapide, cf.
le praragraphe 1.3.1).

Proposition 2.1.5 — Les opérations de somme, de produit et d’élévation à la puis-
sance m > 0 dans Z/nZ sont de complexités respectives O(log(n)), O(log2(n)) et
O(log(m) log2(n)).

2.1.4. Le théorème des restes chinois — Le célèbre théorème des restes chi-

nois est à la base de la conception pratique des cryptosystèmes présentés dans ce cha-
pitre. Nous en présentons ici une version très générale. Étant donnés trois anneaux
X,Y et S ainsi que deux homomorphismes d’anneaux f : X ! S et g : Y ! S,
l’ensemble

X ⇥S Y = {(x, y) 2 X ⇥ Y | f(x) = g(y)}

est un sous-anneau de X ⇥ Y appelé produit fibré de X et Y au dessus de S.

Proposition 2.1.6 — Étant donnés deux idéaux a et b d’un anneau A, posons
c = a + b et considérons les anneaux X = A/a, Y = A/b et S = A/c. On a alors
des homomorphismes canoniques d’anneaux f : X ! S et g : Y ! S. Avec ces
hypothèses, l’anneau X ⇥S Y est isomorphe à A/a \ b.

Démonstration — On a un homomorphisme naturel d’anneaux h : A ! X ⇥ Y
défini par h(a) = (a + a, a + b). Son image est contenue dans X ⇥S Y . Étant donné
(x, y) 2 X ⇥S Y , on a x = a + a et y = b + b, avec a, b 2 A. Par hypothèse, on a
a + c = b + c, d’où l’existence de a0 2 a et b0 2 b tels que a � b = a0 � b0. En posant
x = a� a0 = b� b0, on a alors les identités

h(x) = (x+ a, x+ b) = (a� a0 + a, b� b0 + b) = (a+ a, b+ b) = (x, y),

d’où l’inclusion X ⇥S Y ⇢ Im(h), qui est alors une égalité. Le noyau de h coïncidant
avec a \ b, le théorème d’isomorphisme pour les anneaux permet de conclure.

En généralisant la notion définie précédemment, nous dirons que deux éléments x
et y de A sont congrus modulo un ideal a s’ils définissent le même élément de A/a,
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ce qui se traduit per la relation x� y 2 a. On écrit alors

x ⌘ y (mod a).

De manière pratique, la démonstration du résultat ci dessus affirme qu’étant donnés
deux éléments a, b 2 A, le système de congruences

8
>><

>>:

x ⌘ a (mod a),

x ⌘ b (mod b),

admet une solution si et seulement si a ⌘ b (mod c), auquel cas elle est unique modulo
a \ c.

Deux idéaux a et b de A sont étrangers si a+ b = A, ce qui se traduit l’existence
de deux éléments a 2 a et b 2 b tels que a + b = 1. On généralise ici la notion de
coprimalité introduite dans le chapitre précédent pour Z et l’identité ci-dessus est
l’analogue de l’identité de Bézout.

Lemme 2.1.7 — Si a et b sont deux idéaux étranger d’un anneau A alors on a
l’identité a \ b = ab.

Démonstration — L’inclusion ab ⇢ a\ b étant immédiate, soit c un élément de a\ b.
Ayant fixé deux éléments a 2 a et b 2 b tels que a+ b = 1, on obtient alors l’identité
c = ac + bc. Les éléments ac et bc appartenant à l’idéal ab, il en est alors de même
pour c, d’où l’inclusion a \ b ⇢ ab, qui est donc une eǵalité.

Théorème 2.1.8 (Théorème des restes chinois) — Étant donnés deux idéaux
étrangers a et b d’un anneau A, les anneaux A/ab et A/a⇥A/b sont isomorphes.

Démonstration — On reprend les notations de la proposition ci-dessus. Les idéaux a
et b étant étrangers, l’anneau S est nul, ce qui implique que X ⇥S Y coïncide avec
X ⇥ Y , d’où un isomorphisme d’anneaux entre A/a \ b et X ⇥ Y . Le dernier lemme
permet de conclure.

Ce dernier résultat affirme que le système de congruences présenté précédemment
admet toujours une solution, qui est unique modulo ab. Cette dernière peut être
explicitée de la manière suivante : étant donnés a0 2 a et b0 2 b tels que a0 + b0 = 1, il
suffit de poser x = ab0 + a0b.

Corollaire 2.1.9 — Si n et m sont deux entiers premiers entre eux alors les anneaux
Z/nmZ et Z/nZ⇥ Z/mZ sont isomorphes.

Démonstration — C’est un cas particulier du dernier résultat, en remrquant que les
idéaux nZ et mZ sont étrangers si et seulement si les entiers n et m sont premiers
entre eux



2.1. ARITHMÉTIQUE MODULAIRE 21

2.1.5. Le groupe (Z/nZ)⇥ et la fonction indicatrice d’Euler — Commençons
ce paragraphe en remarquant que le pgcd de deux entiers a et n ne dépend que
de la classe de congruence de a modulo n. En particulier, nous pouvons écrire sans
ambiguïté x ^ n pour tout x 2 Z/nZ.

Proposition 2.1.10 — Étant donné un élément x 2 Z/nZ, les conditions suivantes
sont équivalente :

1. On a x 2 (Z/nZ)⇥.
2. L’élément x est un générateur du groupe (additif) Z/nZ.
3. On a l’identité x ^ n = 1.

Démonstration — Montrons les implications (1))(2))(3))(1).
(1))(2) Tout d’abord, le groupe Z/nZ est engendré par la classe 1̄. Par hypothèse, il
existe y 2 Z/nZ tel que xy = 1̄. En posant y = ū, avec u 2 N, on obtient les identités

ux = x+ · · · (u) · · ·+ x = 1̄.

En particulier, l’élément 1̄ appartient au sous-groupe hxi de Z/nZ engendré par x,
d’où hxi = Z/nZ.
(2))(3) Le groupe Z/nZ étant engendré par x, il existe un entier (naturel) u tel que
ux = 1̄. En posant x = ā, avec a 2 Z, on obtient la congruence ua ⌘ 1 (mod n),
ce qui se traduit par l’existence d’un entier v tel que ua + vn = 1, d’où les identités
(x, n) = (a, n) = 1.
(3))(1) En posant x = ā, avec a 2 Z, il existe un couple d’entiers u et v tels
que au + nv = 1, d’où l’identité xy = 1, avec y = ū et, par suite, la relation x 2

(Z/nZ)⇥.

Proposition 2.1.11 — Le calcul de l’inverse d’un élément x 2 (Z/nZ)⇥ est de
complexité O(log2(n)).

Démonstration — Un élément x 2 (Z/nZ)⇥ est représenté par un entier a 2

{0, . . . , n� 1} tel que (a, n) = 1. La détermination de son inverse se réduit à l’expli-
citation d’une identité de Bézout au + nv = 1, ce qui peur être fait via l’algorithme
d’Euclide étendu, avec une complexité de O(log2(n)).

La fonction indicatrice d’Euler est l’application ' qui associe à un entier n > 0
le nombre d’entiers m 2 {0, . . . , n � 1} premiers avec n. Les premières valeurs de '
sont reportées dans le tableau ci-dessous.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
'(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16

Proposition 2.1.12 — La fonction indicatrice d’Euler vérifie les propriétés sui-
vantes :



22 CHAPITRE 2. PROTOCOLES REPOSANT SUR LE PROBLÈME DE LA FACTORISATION

1. Pour tout entier n > 0, le groupe (Z/nZ)⇥ est d’ordre '(n).

2. Étant donnés deux enties naturels n,m > 0 premiers entre eux, on a l’identité

'(nm) = '(n)'(m).

3. Pour tout nombre premier p et tout entier e > 0, on a la relation

'(pe) = pe�1(p� 1).

Démonstration — La première assertion découle directement de la proposition 2.1.10
et du fait que tout élément de Z/nZ possède un unique représentant dans l’en-
semble {0, . . . , n� 1}. Le théorème des restes chinois affirme que les anneaux Z/nmZ
et Z/nZ ⇥ Z/mZ sont isomorphes, ce qui implique que les groupes (Z/nmZ)⇥ et
(Z/nZ)⇥ ⇥ (Z/mZ)⇥ sont isomorphes et en comparant leurs ordres on obtient le
deuxième point. Finalement, les entiers de l’ensemble {0, . . . , pe � 1} qui ne sont pas
premiers avec pe sont ceux qui sont divisibles par p ; ils s’écrivent alors comme pa,
avec a 2 {0, . . . , pe�1

� 1} et il en existe donc pe�1, d’où la troisième affirmation.

Ce dernier résultat permet de calculer explicitement '(n) lorsque l’on connaît la
factorisation de n .

Corollaire 2.1.13 — Pour tout entier n, on a l’identité

'(n) = n
Y

p|n

✓
1�

1

p

◆
,

où p parcourt l’ensemble des nombres premiers divisant n.

Démonstration — En remarquant que l’identité 3 de la proposition précédente peut
s’écrire comme

' (pe) = pe
✓
1�

1

p

◆
,

il suffit d’utiliser la multiplicativité de la fonction indicatrice d’Euler.

Exercice 2.1.14 — Notons !(n) le nombre de diviseurs premiers d’un entier n > 0
(comptés sans multiplicité). Montrer que l’on a les inégalités

'(n) �
n

!(n) + 1
�

n

log
2
(n) + 1

.

Tel qu’il a été défini dans l’appendice, l’ordre d’un élément g d’un groupe fini G
est le cardinal du sous-groupe hgi qu’il engendre.

Lemme 2.1.15 — Soit G un groupe fini. L’ordre d’un élément g 2 G est le plus
petit entier d > 0 tel que gd = 1. En particulier, on a l’identité g|G| = 1.
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Démonstration — L’application f : Z ! G définie par f(n) = gn est un homomor-
phisme de groupes. Son image coïncidant avec hgi, on en déduit un isomorphisme
entre les groupes Z/ ker(f) et hgi. Le sous-groupe

ker(f) = {n 2 Z | gn = 1}

n’est pas trivial (sinon f serait injectif, ce qui est exclu, car G est fini). On remarquera
que dans Z, la notion d’idéal et de sous-groupe (par rapport à la somme) coïncident.
D’après la démonstration du théorème 1.1.1, on a alors ker(f) = dZ, où d est le plus
petit élément strictement positif de ker(f), i.e. le plus petit entier naturel non d nul
tel que gd = 1. La dernière assertion découle du théorème de Lagrange : en effet,
l’ordre d du sous-groupe hgi divise |G| et, en posant |G| = dn, on obtient les identités

g|G| = gdn = (gd)n = 1n = 1.

Remarque 2.1.16 — Lorsque G est abélien, la dernière identité du lemme peut être
obtenue de manière directe : en effet, le groupe G étant abélien, l’élément x =

Q
h2G h

est bien défini. Pour tout g 2 G, l’application f : G ! G définie par f(h) = gh est
bijective. On a alors les identités

1 = xx�1 = x�1
Y

h2G

h = x�1
Y

h2G

gh = x�1g|G|
Y

h2G

h = g|G|xx�1 = g|G|.

Exercice 2.1.17 — Montrer qu’un groupe cyclique d’ordre n est isomorphe à Z/nZ
et possède '(n) générateurs.

Le résultat suivant est un ingrédient fondamental dans la conception du cryptosys-
tème RSA.

Théorème 2.1.18 (Euler) — Soit n > 0 un entier. Pour tout entier a premier
avec n, on a la congruence

a'(n) ⌘ 1 (mod n).

Démonstration — En posant x = ā 2 (Z/nZ)⇥, la congruence de l’énoncé se traduit
par l’identité x'(n) = 1 et découle directement du lemme 2.1.15 appliqué au groupe
(Z/nZ)⇥.

Exercice 2.1.19 — Soient a > 1 et n > 0 deux entiers. Montrer que n divise
'(an � 1).

Proposition 2.1.20 — Pour tout nombre entier n > 1, on a l’inégalité '(n)  n�1
et les conditions suivantes sont équivalentes :

1. On a l’égalité '(n) = n� 1.

2. L’entier n est un nombre premier.

3. L’anneau Z/nZ est un corps.
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Démonstration — Pour n > 1, les entiers 0 et n ne sont pas premiers entre eux, ce
qui implique qu’il existe au plus n� 1 éléments de l’ensemble {0, . . . , n� 1} premiers
avec n.

Montrons les implications (1))(2))(3))(1). Si '(n) = n� 1, tout entier non nul
1 < m < n est premier avec n (et, en particulier, m 6 |n), d’où la primalité de n. Si
l’entier n est premier, la proposition 1.1.16 affirme que l’idéal nZ est maximal, ou
encore que l’anneau Z/nZ est un corps (cf. l’appendice). Finalement, si cette dernière
condition est remplie, d’après le premier point de la proposition 2.1.12, l’entier '(n)
est l’ordre du groupe (Z/nZ)⇥ = Z/nZ� {0}, d’où '(n) = n� 1.

Dans la suite, adoptant une convention usuelle, étant donné un nombre premier p,
le corps Z/pZ est noté Fp.

Corollaire 2.1.21 (Petit théorème de Fermat) — Pour tout x 2 Fp, on a
l’identité xp = x.

Démonstration — L’assertion est immédiate pour x = 0. Pour x 6= 0, on a x 2 F⇥
p

(car Fp est un corps). D’après le théorème 2.1.18 et le lemme ci-dessus, on a l’identité
xp�1 = 1, d’où la relation xp = x.

Remarque 2.1.22 — Ayant déterminé '(n) (ce qui est immédiat lorsque n est
premier), le calcul de l’inverse d’un élémet de x 2 (Z/nZ)⇥ peut être calculé en
utilisant le théorème 2.1.18, qui amène à l’identité

x�1 = x'(n)�1.

La multiplication dans Z/nZ étant de complexité O(log2(n)), par exponentiation ra-
pide, on obtient un algorithme de calcul de l’inverse de complexité O(log3(n)).

2.2. Le cryptosystème RSA

2.2.1. Cryptosystèmes à clé publique — La cryptographie à clé publique est
apparue en 1976 avec les travaux de Withfield Diffie et Martin Hellman. Un crypto-

système à clé publique, également appelé cryptosystème asymétrique, repose
sur l’existence d’une clé publique pour le chiffrement, et d’une clé secrète pour le
déchiffrement. Ces deux clés sont distinctes. Un utilisateur A qui souhaite envoyer un
message à un utilisateur B, chiffre son message au moyen de la clé publique de B, et
ce dernier au moyen de sa clé secrète, qu’il est seul à connaître, est alors en mesure
de déchiffrer le message envoyé. Deux utilisateurs d’un cryptosystème à clé publique
peuvent donc s’échanger des messages chiffrés, via un canal non sécurisé, et sans pos-
séder de secret en commun. Son efficacité est basée sur le fait qu’il est impossible en
un temps raisonnable de déterminer la clé secrète à partir de la clé publique.
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2.2.2. Principe du protocole — Le protocole RSA est un cryptosystème à clé
publique introduit en 1977 par Leonardo Adleman, Ronald Rivest et Adi Shamir. Sa
sécurité repose sur le fait que connaissant un entier n, qui est le produit de deux grands
nombre premiers p et q distincts, il est généralement très difficile, voire impossible
pratiquement, de déterminer p et q, i.e. la factorisation de n. D’un point de vue
théorique, le protocole repose sur le résultat suivant, qui est une conséquence du petit
théorème de Fermat (cf. corollaire 2.1.21).

Proposition 2.2.1 — Soient p et q deux nombres premiers distincts et posons
n = pq. Pour tout entier naturel t congru à 1 modulo '(n) et tout élément x 2 Z/nZ,
on a l’identité xt = x.

Démonstration — D’après le théorème des restes chinois, l’anneau Z/nZ est iso-
morphe à Fp ⇥ Fq. Il suffit donc de vérifier l’identité xt = x pour tout x 2 Fp et
tout x 2 Fq. L’assertion étant immédiate pour x = 0, supposons x 2 Fp non nul.
Par hypothèse, on a t = k'(n) + 1, avec k 2 N, et la multiplicativité de la fonction
indicatrice d’Euler amène à l’expression '(n) = (p� 1)(q � 1), d’où les identités

xt = x1+k'(n) = x · xk(p�1)(q�1) = x · (xp�1)k(q�1) = x,

la dernière égalité découlant du théorème 2.1.18 ou du corollaire 2.1.21.

Nous pouvons maintenant décrire le protocole. Chaque utilisateur procède de la
façon suivante :

• Il choisit deux nombres premiers p et q et determine ensuite les entier n = pq
et '(n) = (p� 1)(q � 1).

• Il choisit un entier e premier avec '(n) tel que 1 < e < '(n). La classe de e
modulo '(n) est donc inversible dans Z/'(n)Z.

• Il détermine l’entier d tel que 1 < d < '(n) et ed ⌘ 1 mod '(n). La classe de
d modulo '(n) est donc l’inverse de la classe de e dans

�
Z/'(n)Z

�⇥.
• Il publie ensuite le couple (e, n), qui est sa clé publique, et il conserve secret

l’élément d, qui est sa clé secrète ou privée.
Soit A un utilisateur dont la clé publique est (e, n) et la clé secrète est d.

L’algorithme de chiffrement de A est l’application fA : Z/nZ ! Z/nZ définie
pour tout x 2 Z/nZ par fA(x) = xe. C’est une bijection de Z/nZ et d’après la
proposition 2.2.1, on a f�1

A (x) = xd. On dit que f�1

A est l’algorithme de déchiffre-

ment de A et l’élément xe est appelé cryptogramme. Si une personne B souhaite
envoyer un message secret à A sous la forme d’un élément x0 2 Z/nZ, il utilise la clé
publique de A en lui envoyant l’élément fA(x0). Afin d’obtenir x0, il suffit alors pour
A d’utiliser sa clé secrète en calculant f�1

A (xe
0
).

Exemple 2.2.2 — Prenons (e, n) = (239, 406121) comme clé publique. On a n = pq
avec p = 101 et q = 4021. Il est facile de vérifier que p et q sont premiers (si q n’était
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pas premier il devrait posséder un diviseur premier plus petit que 63 = b
p
4021c, et

ce n’est pas le cas). On obtient

'(n) = 100 · 4020 = 402000.

Afin de déterminer la clé secrète, il s’agit de calculer l’inverse de 239 modulo 402000.
On utilise l’algorithme d’Euclide. Avec la présentation adoptée de cet algorithme, on
obtient le tableau suivant :

1682 119 2

402000 239 2 1 0

1 0 1 �119

0 1 �1682 200159

La clé secrète est donc d = 200159.

2.2.3. Signature — L’algorithme RSA fournit un moyen de signer, ou d’authen-
tifier, les messages. Soit A un utilisateur ayant pour clé publique (e, n) et pour clé
secrète d. Supposons que A souhaite envoyer à B un message x 2 Z/nZ, sans se pré-
occuper de sa confidentialité, mais de sorte que B soit certain que c’est bien A qui lui
a transmis x. Pour cela, A envoie à B le couple

(x, xd) 2 Z/nZ⇥ Z/nZ.

Avec la clé publique (e, n), B calcule alors

(xd)e = xde = x.

Puisque A est seul à connaître d, B peut être a priori certain que c’est bien A l’expé-
diteur du message.

2.2.4. Cryptanalyse — Pour qu’un cryptosystème soit utilisable dans la pratique,
il est nécessaire que le chiffrement et de déchiffrement (connaissant la clé secrète)
puissent être effectués en un temps raisonnable. Idéalement, on souhaite que ces al-
gorithmes soient en temps polynomial par rapport à la taille des clés. Dans la suite
de se paragraphe, on fixe deux nombres premiers distincts p et q et l’on pose n = pq.

Proposition 2.2.3 — Les algorithmes de chiffrement et de déchiffrement du proto-
cole RSA utilisant un entier n = pq sont de complexité O(log3(n)).

Démonstration — Le chiffrement, ainsi que le déchiffrement sont juste des calculs de
puissances dans Z/nZ. L’exposant étant inférieur à n, la proposition 2.1.5 affirme que
la complexité est O(log3(n)).

Remarque 2.2.4 — Il est également important de s’intéresser à la complexité de
la mise en place du protocole lui-même. La clé publique est généralement choisie par
un processus aléatoire. La détermination de la clé privée, qui se réduit au calcul de
l’inverse de la clé publlique nodulo '(n), est de complexité O(log2(n)) (la complexité
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est en fait dominée par la fonction log2('(n), cette dernièrer étant elle-même dominée
par log2(n)). Il ne reste qu’à déterminer une méthode efficace et rapide de construction
des nombres premiers p et q. Cette question est cruciale en cryptographie, que ce soit
d’un point de vue thérique ou pratique. Les contraintes de temps imposées à ce cours
ne nous permettent malheureusement pas d’aborder ce sujet.

Considérons et une clé publique (e, n) utilisée lors d’un protocole RSA et notons d
la cé secrète correspondante. Une personne souhaitant retrouver le message initial à
partir de son cryptogramme peut commencer par essayer d’évaluer '(n), la clé secrète
étant alors obtenue rapidement via l’algotithme d’Euclide. Cette démarche n’est pas
très efficace. Le résultat suivant montre en effet que la connaissance de '(n) permet
d’obtenir la factorisation de n par un algorithme de complexité polynomiale, là où le
cryptosystème RSA repose justement sur la difficulté d’obtenir une telle factorisation
(en un temps raisonnable).

Lemme 2.2.5 — Connaisant n et '(n), il existe un algorithme de complexité
O(log3(n)) permettant de déterminer p et q.

Démonstration — Quitte à permuter p et q, on se réduit au cas q < p. Connaissant
n et '(n), les entiers naturels

m = n� '(n) + 1 = p+ q et � = m2
� 4n = (p� q)2

sont déterminés avec des algorithmes de complexités respectives O(log(n)) (deux
sommes) et O(log2(n)). En utilisant l’algorithme présenté dans le chapitre précédent,
l’extraction de la racine carrée de � est de complexité O(log3(n)). L’identité

2p = m+
p

�

Permet d’obtenir p en effectuant une somme et une division par 2 (un décalage à droite,
en termes d’opérations sur les bits), pour une complexité de O(log(n)). Globalement,
cet algorithme de factorisation est donc de complexité O(log3(n)).

Remarque 2.2.6 — Lors d’un protocole RSA, il est primordial de vérifier que le
message x à envoyer soit premier avec n. En effet, dans la pratique, x ainsi que le
cryptogramme z = xe sont représentés par des entiers naturels non nuls et strictement
inférieurs à n. Si x et n n’étaient pas premiers entre eux, il en serait de même pour
z et n. Leur pgcd, déterminé rapidement par l’algorithme d’Euclide, fournirait alors
un diviseur non trivial de n, ce qui permettrait d’obtenir la factorisation de n et de
déchiffrer ainsi tout cryptogramme. Ceci étant, lors d’une implémentation effective
du protocole, la probabilité de tomber sur un élément x qui ne soit pas premier avec
n est pratiquement nulle. En effet, en posant n = pq, avec p < q, on a les relations

'(n)

n
= 1�

1

p
�

1

q
+

1

n
> 1�

2

p
.
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En particulier, si p est un nombre premier de 1024 bits, la probabilité qu’un entier
m < n pris au hasard ne soit pas premier avec n est inférieure à 2�1023.

Il faut remarquer que, bien que suffisante, la connaissance de '(n) n’est pas vrai-
ment indispensable pour pouvoir déchiffrer un message. Il est en fait suffisant de
déterminer un entier r tel que xer = x pour tout x 2 Z/nZ.

Proposition 2.2.7 — Posons m = (p � 1) _ (q � 1). Pour tout entier u > 0, les
conditions suivantes sont équivalentes :

1. xu = x pour tout x 2 Z/nZ.

2. u ⌘ 1 (mod m).

Démonstration — D’après le théorème des restes chinois, le groupe Z/nZ est iso-
morphe à Fp ⇥ Fq. La première condition est donc équivalente à xu = x pour tout
x 2 Fp et tout x 2 Fq. Soit x 2 Fq. Pour x = 0 on a toujours xu = x. On peut donc
se réduire au cas x 2 F⇥

p . La condition xu = x est alors équivalente à xu�1 = 1. Nous
admettons ici le fait que le groupe F⇥

p est cyclique, d’ordre p� 1 (ce résulat sera dé-
montré dans le chapitre 3). Dans cette dernière condition, on peut alors se restreindre
au cas où x est un générateur du groupe, auquel cas elle est vérifiée si et seulement
si p� 1 divise u� 1. En procédant de manière analogue pour Fq on en déduit que la
première condition de la proposition est équivalente à p � 1|u � 1 et q � 1|u � 1, ce
qui se traduit par m|u� 1.

Corollaire 2.2.8 — En posant t = (p� 1) ^ (q � 1), il existe t entiers r dans
l’intervalle [1,'(n)[ tels que xer = x pour tout x 2 Z/nZ.

Démonstration — D’après la proposition 2.2.7, la condition du corollaire est équi-
valente à er ⌘ 1 (mod m), qui admet une unique solution r0 2 {1, . . . ,m � 1}. On
en déduit que r appartient à l’ensemble {r0, r0 +m, . . . , r0 + (t� 1)m}, qui est de
cardinal t.

Un entier r 2 {1, . . . ,'(n)� 1} vérifiant la condition du lemme est appelé clé de

déchiffrement. Lors du choix des nombres premiers p et q il est préférable de vérifier
que le pgcd de p � 1 et q � 1 est petit, afin d’éviter l’existence de nombreuses clés
de déchiffrement. L’existence de plusieurs clés de déchiffrement constitue également
une faille dans la procédure de signature d’un message. En effet, elle permet juste
d’affirmer que l’expéditeur possède une clé de déchiffrement, qui peut être différente
de la clé secrète. Ceci dit, le nombre de clés de déchiffrement est majoré par

p
n� 1,

et la probabilité d’en obtenir une de manière aléatoire est pratiquement nulle lorsque
n est grand.

Exemples 2.2.9 —
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1. Reprenons les valeurs p = 101 et q = 4021 de l’exemple précédent. Un simple
calcul montre que 100 ^ 4020 = 20. Il existe donc 20 clés de déchiffrement,
données explicitement par la formule 19259 + 20100k, avec k 2 {0, . . . , 19}. La
clé secrète est obtenue pour k = 9.

2. Si les nombres premiers p et q sont impairs (ce qui est toujours le cas dans la
pratique), il existe toujours au moins deux clés de déchiffrement. Il en existe
exactement deux si et seulement si p�1

2
et q�1

2
sont premiers entre eux. Tel est

le cas par exemple si p = 2p0 + 1 et q = 2q0 + 1 avec p0 et q0 premiers. En
supposant p < q, le nombre de clés de déchiffrement est maximal lorsque p� 1
divise q � 1, auquel cas il en existe exactement p� 1.

Exercice 2.2.10 — Afin d’utiliser le protocole RSA, Alice choisit les nombres pre-
miers p = 101 et q = 131. Elle transmet ensuite la clé publique (3901, 13231). Elle
réalise assez vite que son choix était très mauvais. Pourquoi ?

2.3. Symbole de Legendre et carrés dans Z/nZ

2.3.1. Le symbole de Legendre — Dans la suite p > 2 désigne un nombre pre-
mier. Étant donné un entier n, le symbole de Legendre (np ) est l’entier défini par la
relation

✓
n

p

◆
=

8
>><

>>:

0 si p|n,
1 si p6 |n et n est un carré modulo p,

�1 sinon.
Un entier n tel que (np ) = 1 est appelé résidu quadratique. Si (np ) = �1, on parle
de non-résidu quadratique. Par définition, le symbole de Legendre (np ) ne dépend
que de la classe de n modulo p. En effectuant une division euclidienne, on peut donc
toujours se réduire au cas 0  n < p. De plus, étant donné x 2 Fp, on peut écrire
(xp ) sans ambiguité. Notons (F⇥

p )
2 le sous-groupe des carrés de F⇥

p , i.e. l’image de
l’homomorphisme F⇥

p ! F⇥
p d’élévation au carré. On a alors (xp ) = 1 si et seulement

si x 2 (F⇥
p )

2. Avec un légér abus de langage, les éléments de (F⇥
p )

2 seront également
appelés résidus quadratiques. Le résultat ci-dessous affirme que la moitié des éléments
de F⇥

p sont des résidus quadratiques.

Lemme 2.3.1 — Le groupe (F⇥
p )

2 est d’ordre (p� 1)/2.

Démonstration — Le noyau de l’homomorphisme F⇥
p ! F⇥

p d’élévation au carré étant
le sous-groupe µ2 = {±1}, le théorème d’isomorphisme pour les groupes affirme que
son image, qui n’est autre que (F⇥

p )
2, est d’ordre (p� 1)/2.

Théorème 2.3.2 (Euler) — On a la congruence
✓
n

p

◆
⌘ n

p�1
2 (mod p).
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Démonstration — L’assertion étant claire pour x = 0, supposons x non nul. Consi-
dérons l’homomorphisme de groupes g : F⇥

p ! F⇥
p défini par g(x) = x(p�1)/2. On

doit montrer que pour tout x 2 Fp, on a l’identité g(x) =
⇣

x
p

⌘
. Les relations

g(x)2 = xp�1 = 1 impliquent que l’image de g est contenue dans le sous-groupe
µ2 = {±1} de F⇥

p . En admettant une fois encore que le groupe F⇥
p est cyclique et

en fixant un de ses générateurs t, on a nécessairement g(t) 6= 1, ce qui implique que
l’image de g coïncide avec µ2 et, par suite, que ker(g) est d’ordre (p � 1)/2. Par
ailleurs le lemme 2.1.15 amène à l’inclusion (F⇥

p )
2
⇢ ker(g), qui est alors une égalité

(il suffit de comparer les ordres). On a donc (xp ) = 1 (resp. (xp ) = �1) si et seulement
si g(x) = 1 (resp. g(x) = �1), d’où g(x) = (xp ) pour tout x 2 F⇥

p .

Remarque 2.3.3 — Les classes des entiers 0, 1 et �1 modulo p étant deux à deux
distinctes, le symbole de Legendre est univoquement déterminé par sa classe modulo
p. En particulier, le théorème 2.3.2 fournit une méthode de calcul effectif de (np ).

Corollaire 2.3.4 — Étant donnés un nombre premier p > 2 et deux entiers n et
m, on a l’identité ✓

nm

p

◆
=

✓
n

p

◆✓
m

p

◆
.

Démonstration — D’après le théorème 2.3.2, on a les congruences
✓
nm

p

◆
⌘ (nm)

p�1
2 ⌘ n

p�1
2 m

p�1
2 ⌘

✓
n

p

◆✓
m

p

◆
(mod p),

ce qui implique que l’entier a = (nmp ) � (np )(
m
p ) est divisible par p. Les inégalité

|a|  2 < p amènent alors à l’identité a = 0.

Corollaire 2.3.5 — Pour tout nombre premier p > 2, on a l’identité
✓
�1

p

◆
= (�1)

p�1
2 .

En particulier, �1 est un carré dans Z/pZ si et seulement si p est congru à 1 modulo
4.

Démonstration — On procède exactement comme dans la démonstration du corol-
laire 2.3.4.

Proposition 2.3.6 — Étant donnés un nombre premier p > 2 et un entier naturel
n < p, le calcul du symbole de Legendre (np ) est de complexité O(log3(p)).

Démonstration — D’après la remarque 2.3.3, il suffit de déterminer la classe de (np )

modulo p. Le théorème 2.3.2 affirme que ceci revient à calculer n̄(p�1)/2 dans Fp.
La multiplication dans Fp étant de complexité O(log2(p)), en utilisant l’algorithme
d’exponentiation rapide, on obtient une méthode de calcul du symbole de Legendre
de complexité de O(log3(p)).
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Remarque 2.3.7 — En utilisant la loi de réciprocité quadratique pour le
le symbole de Jacobi, on obtient un algorithme de calcul de (np ) de complexité
O(log2(p)) (cf. le complément à ce chapitre).

2.3.2. Extraction de racines carrées dans Fp — Soit p > 2 un nombre premier.
Du moment où l’on sait qu’un élément x 2 F⇥

p est un carré, il est nécessaire de
déterminer un algorithme de calcul de ses (deux) racines carrées. Dans ce cours,
nous ne traiterons explicitement que le cas où p est congru à 3 modulo 4, qui est
particulièrement simple. Dans le cas général, on dispose de méthodes efficaces, telles
que l’algorithme de Cipolla, ou celui de Tonelli-Shanks, qui nécessitent néanmoins
la connaissance d’un non-résidu quadratique de F⇥

p .

Proposition 2.3.8 — Soit x 2 F⇥
p un résidu quadratique. Si p est congru à 3 modulo

4 alors l’élément
y = x

p+1
4

est une racine carrée de x (l’autre étant égale à �x).

Démonstration — En s’appuyant sur le corollaire 2.3.2, on a les identités

y2 = x
p+1
2 = x · x

p�1
2 = x

✓
x

p

◆
= x.

Corollaire 2.3.9 — Pour p congru à 3 modulo 4, l’extraction de racines carrées
dans Fp est de complexité O(log3(p)).

Démonstration — Il suffit d’appliquer la proposition précédente en utilisant l’algo-
rithme d’exponentiation rapide.

2.3.3. Carrés dans Z/nZ — Au vu des applications en cryptographie, nous n’étu-
dierons les carrés et les méthodes d’extraction de racines carrés dans Z/nZ que dans
le cas particulier où n = pq est le produit de deux nombres premiers impairs p 6= q,
qui sont fixés une fois pour toutes. Comme pour Fp, un carré de (Z/nZ)⇥ est appelé
résidu quadratique. Étant donné un groupe abélien G, on note G[2] le sous-groupe

de 2-torsion, formé par les éléments g 2 G tels que g2 = 1.

Lemme 2.3.10 — Le groupe (Z/nZ)⇥[2] est isomorphe à Z/2Z⇥ Z/2Z.

Démonstration — Étant donnés deux groupes G et H, on montre facilement que
l’identité (G ⇥H)[2] = G[2] ⇥H[2]. Le lemme découle alors du théorème des restes
chinois, qui affirme que (Z/nZ)⇥ est isomorphe à F⇥

p ⇥F⇥
q , et du fait que les groupes

F⇥
p [2] et F⇥

q [2] sont isomorphes à Z/2Z.

Corollaire 2.3.11 — Un résidu quadratique de (Z/nZ)⇥ possède 4 racines carrées.
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Démonstration — Soit x = y2 un carré de (Z/nZ)⇥. Un élément z 2 (Z/nZ)⇥ est
une racine carrée de x si et seulement si z�1y appartient à (Z/nZ)⇥[2]. Il suffit alors
d’appliquer le lemme ci-dessus.

Proposition 2.3.12 — On a les propriétés suivantes :

1. Le sous-groupe des carrés de (Z/nZ)⇥ est d’ordre 1

4
'(n).

2. Un élément x 2 (Z/nZ)⇥ est un carré si et seulement si (xp ) = (xq ) = 1.

Démonstration — L’élévation au carré définit un endomorphisme (Z/nZ)⇥ ayant
pour image le sous-groupe des carrés et pour noyau le groupe (Z/nZ)⇥[2]. Le point
1 découle alors du théorème d’isomorphisme pour les groupes et du lemme 2.3.10. Le
théorème des restes chinois implique que l’homomorphisme canonique f : (Z/nZ)⇥ !

F⇥
p ⇥F⇥

q est un isomorphisme. Un élément (x, y) 2 F⇥
p ⇥F⇥

q étant un carré si et seule-
ment s’il en est de même pour x et y, on obtient le point 2.

Le problème de la résidualité quadratique
(1) consiste à déterminer si un élé-

ment de (Z/nZ)⇥ est un résidu quadratique. Si l’on connaît la factorisation de n, le
point 2 de la proposition 2.3.12 réduit la question au simple calcul de deux symboles
de Legendre, ce qui peut être effectué par un algorithme de complexité O(log3(n)).
Par contre, lorsque la factorisation de n n’est pas connue, on ne dispose pas d’algo-
rithme de complexité polynomiale permettant de résoudre le problème. De nombreux
protocoles cryptographiques se basent sur cette dichotomie. On retrouve une situa-
tion analogue lorsque l’on s’intéresse au problème d’extraction de racines carrées d’un
résidu quadratique x de Z/nZ : si l’on connaît p et q, en appliquant les méthodes dé-
crites dans les paragraphes précédents, on détermine facilement les racines carrées de
x dans Fp et Fq. Une identité de Bézout permet alors d’en déduire ses racines carrées
dans Z/nZ. Si, par contre, on ne connaît pas la factorisation de n, la détermination
des racines carrées de x est un problème difficile, équivalent à la factorisation de n,
comme le montre le résultat ci-dessous.

Proposition 2.3.13 — La connaissance de 3 racines carrées d’un résidu quadratique
de (Z/nZ)⇥ permet d’obtenir la factorisation de n par un algorithme de complexité
O(log2(n)).

Démonstration — Si x 2 (Z/nZ)⇥ est une racine carrée d’un résidu quadratique, il
en est de même pour �x. Soit y 6= ±x une troisième racine carrée. On obtient alors
l’identité (x � y)(x + y) = 0. L’entier d = (x � y, n) est différent de 1 (dans le cas
contraire, on aurait y = �x) et de n (autrement, on obtiendrait y = x). On a donc
d = p ou d = q. En utilisant l’algorithme d’Euclide, la détermination de d est de
complexité O(log2(n)), d’où le résultat.

1. Dans la littérature, on retrouve également le terme résiduosité, un néologisme qui nous parraît
plus que dissonant.
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2.4. Applications cryptographiques

2.4.1. Le cryptosystème de Rabin — Le cryptosystème de Rabin est un pro-
tocole d’échange à clé publique basé sur la difficulté d’extraire des racines carrées dans
Z/nZ lorsque l’on ne connaît pas la factorisation de n. Voulant communiquer de ma-
nière confidentielle en utilisant un réseau non sécurisé, deux utilisateurs, Alice et Bob,
procèdent de la manière suivante :

• Alice choisit deux nombres premiers distincts p et q congrus à 3 modulo 4, qui
constituent sa clé secrète, et publie leur produit n = pq, qui est la clé publique.

• Afin d’envoyer un message u 2 Z/nZ, Bob transmet à Alice l’élément v = u2.
• Alice détermine les quatre racines carrées de u dans Z/nZ. L’une d’entre elles

est le message original.
La phase de chiffrement se réduisant à une simple élévation au carré dans Z/nZ, elle

est de complexité O(log2(n)). Connaissant la factorisation de n, la phase de déchiffre-
ment nécessite l’extraction de racines carrées dans Fp et Fq, qui peut être effectuée en
appliquant la proposition 2.3.8. Elle est donc de complexité O(log3(n)). Si une tierce
personne récupère le cryptogramme u, elle ne peut le déchiffrer, à moins connaître la
factorisation de n.

2.4.2. Le protocole de Goldwasser-Micali — Ce cryptosystème se base sur le
problème de la résiduosité quadratique (cf. la fin du paragraphe 2.3.3). C’est une fois
encore un protocole à clé publique, qui se déroule de la manière suivante :

• Alice choisit deux nombres premiers impairs p < q et calcule l’entier
n = pq. Elle choisit ensuite un entier n tel que (xp ) = (xq ) = �1. Sa clé
privée est le couple (p, q), la clé publique est le couple (x, n).

• Bob veut transmettre à Alice une suite de bits (a1, . . . , ar). Pour chaque i 2
{1, . . . , r}, il choisit un élément xi 2 (Z/nZ)⇥ au hasard et calcule yi = x2

ix
ai .

Il envoie ensuite à Alice la suite (y1, . . . , yr).
• Afin de déchiffrer le cryptogramme (y1, . . . , yr), en calculant (yi

p ) et (yi

q ), Alice
détermine si yi est un carré dans Z/nZ. Si c’est le cas, elle en déduit que ai = 0,
sinon, ai = 1.

La phase de chiffrement est de complexité O(r log2(n)), car elle se réduit à r éléva-
tions au carré et à r multiplications (au plus) dans Z/nZ. Le déchiffrement ne nécessite
que le calcul de deux symboles de Legendre. Il est donc de complexité O(r log2(n)). On
remarquera que lors de la phase de déchiffrement, seul le calcul de (yi

p ) est nécessaire.
On a en effet les identités

✓
yi
q

◆
=

✓
x2

i

q

◆✓
x

q

◆ai

=

✓
x

q

◆ai

=

✓
x

p

◆ai

=

✓
x2

i

p

◆✓
x

p

◆ai

=

✓
yi
p

◆
.

2.4.3. Alice et Bob jouent à pile ou face — Afin de jouer à pile ou face à
distance, Alice et Bob procèdent de la manière suivante :
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• Alice choisit deux nombres premiers distincts p et q et elle transmet leur produit
n = pq à Bob.

• Bob choisit au hasard un entier strictement positif a < n
2

(lancer de la pièce)
et envoie à Alice son carré b modulo n.

• Alice détermine les quatre racines carrées de b modulo n. Seules deux d’entre
elles sont représentées par des entiers positifs a et c inférieurs à n

2
. Elle en choisit

une, et l’envoie à Bob (elle parie que c’est l’entier a choisi par Bob).
• Si Bob n’est pas en mesure d’exhiber c, c’est que l’entier envoyé par Alice

coïncide avec a ; elle a donc remporté son pari. En effet, ne connaissant pas la
factorisation de n, Bob n’est pas en mesure d’extraire des racines carrées dans
Z/nZ (en un temps raisonnable) et ne peut donc pas tricher.

Si Alice et Bob veulent réitérer le pari, il est nécessaire de changer les valeurs de p et
q. Dans le cas contaire, dès qu’Alice perd le pari, Bob est en mesure de factoriser n, car
il connait toutes les racines carrées d’un élément de Z/nZ (cf. la proposition 2.3.13),
et peut donc tricher.

2.5. Complément : réciprocité quadratique et symbole de Jacobi

2.5.1. La loi de réciprocité quadratique — Nous allons commencer avec un
résultat classique en théorie élémentaire des nombres.

Théorème 2.5.1 (Wilson) — Pour tout nombre premier p, on a la congruence

(p� 1)! ⌘ �1 (mod p)

Démonstration — La classe de (p � 1)! modulo p n’est autre que le produit des élé-
ments de F⇥

p . Étant donné un élément x 2 F⇥
p , si x 6= x�1, les éléments x et x�1

apparaissent dans un tel produit et s’éliminent donc. On en déduit que la classe de
(p � 1)! modulo p est le produit des éléments x 2 F⇥

p tels que x = x�1, ce qui se
traduit par x = ±1.

Corollaire 2.5.2 — Soit p > 2 un nombre premier. En posant m = (p� 1)/2, on a
la congruence

m!2 ⌘ (�1)m+1 (mod p).

Démonstration — Le théorème de Wilson amène aux congruences

�1 ⌘ (p� 1)! ⌘
mY

k=1

k(p� k) ⌘ (�1)mm!2 (mod p),

d’où le résultat.

Nous pouvons à présent énoncer et démontrer la loi de réciprocité quadratique.
Il existe à ce jour plus de 300 démonstrations différentes de ce résultat fondamental.
Celle que nous proposons ici repose sur le théorème des restes chinois.



2.5. COMPLÉMENT : RÉCIPROCITÉ QUADRATIQUE ET SYMBOLE DE JACOBI 35

Théorème 2.5.3 — Étant donnés deux nombres premiers impairs p et q, on a l’iden-
tité ✓

q

p

◆
= (�1)

p�1
2

q�1
2

✓
p

q

◆
.

Démonstration — L’assertion étant immédiate lorsque p = q, supposons p et q dis-
tincts. Posons n = pq et considérons le groupe G = (Z/nZ)⇥/{±1}. On s’intéresse à
l’élément

x =
Y

g2G

g.

Dans la suite, on note [a] l’image canonique dans G d’un entier a premier à n. Un
élément g 2 G possède un unique représentant a 2 Z tel que 0 < a < n/2 et (a, n) = 1.
En posant p0 = (p� 1)/2, q0 = (q� 1)/2 et n0 = (n� 1)/2, les entiers a de l’intervalle
]0, n/2[ qui ne sont pas premiers avec n sont du type a = up, avec u 2 {1, . . . , q0}, ou
a = vq, avec v 2 {1, . . . , p0}. On en déduit l’identité x = [N ], avec

N =
Y

0<a<n/2

(a,n)=1

a =

Q
0<a<n/2 aQ

0<a<n/2

(a,n)=p
a
Q

0<a<n/2

(a,n)=q
a
=

n0!

pq0q0!qp0p0!
.

L’entier M = qp
0
p0!N est le produit des entiers inférieurs à n/2 qui ne sont pas

divisibles par p. Tenant compte du théorème de Wilson, on obtient alors les relations

M ⌘

Y

0<a<p,0<b<q0

(a+bp)
Y

0<ap0

(a+q0p) ⌘ p0!
Y

0<a<p

aq
0
⌘ (p�1)!q

0
⌘ (�1)q

0
p0! (mod p),

d’où les congruences

(�1)q
0
p0! ⌘ M ⌘ qp

0
p0!N ⌘

✓
q

p

◆
p0!N (mod p),

et, finalement,

N ⌘ (�1)q
0
✓
q

p

◆
(mod p).

En procédant de manière analogue, on obtient la congruence

N ⌘ (�1)p
0
✓
p

q

◆
(mod q).

Le théorème des restes chinois induit un isomorphisme entre les groupes (Z/nZ)⇥ et
F⇥
p ⇥ F⇥

q . Un élément de G possède alors un unique représentant (u, v) 2 F⇥
p ⇥ F⇥

q ,
avec u = ā, v = b̄, les entiers a et b vérifiant les relations 0 < a < p et 0 < b  q0. On
en déduit que l’élément x est représenté par le couple

Y

0<a<p,0<bq0

(ā, b̄) =
Y

0<a<p

(āq
0
, q0!) = ((p� 1)!

q0

, q0!
p�1

) =

= ((�1)q
0
, (�1)(p

0
+1)p0

) = ((�1)q
0
, (�1)p

0q0+p0
).
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Dans ce cas, l’élément

⇣ = ((�1)p
0
+q0+p0q0 , 1) = ±((�1)q

0
, (�1)p

0q0+q0) 2 F⇥

p ⇥ F⇥

q

est également un représentant de x. Par ailleurs, d’après ce qui précède, x est repré-
senté par l’élément

(N̄ , N̄) =

✓
(�1)q

0
✓
q

p

◆
, (�1)p

0
✓
p

q

◆◆
2 F⇥

p ⇥ F⇥

q .

Comme précédemment, l’élément

⌘ =

✓
(�1)q+q0

✓
p

q

◆✓
q

p

◆
, 1

◆
2 F⇥

p ⇥ F⇥

q

est aussi un représentant de x, d’où ⌘ = ±⇣, puis ⌘ = ⇣ (car q > 2) et, finalement,
l’identité

(�1)p
0q0

✓
p

q

◆✓
q

p

◆
= 1

dans Fp, qui est alors également une identité dans Z (car p > 2).

Remarque 2.5.4 — La loi de réciprocité quadratique affirme que si p et q sont
congrus à 3 modulo 4 alors (pq ) = �( qp ), sinon (pq ) = ( qp ).

2.5.2. Le symbole de Jacobi — Soit n un entier naturel impair et considérons
sa factorisation n =

Q
p|n p

ep . Pour tout entier m, le symbole de Jacobi
�
m
n

�
est

l’entier défini par la relation
⇣m
n

⌘
=

Y

p|n

✓
m

p

◆ep

.

Si n est premier, on retrouve le symbole de Legendre usuel.

Proposition 2.5.5 — Le symbole de Jacobi vérifie les propriétés suivantes :

1. On a (mn ) 2 {0, 1,�1} et (mn ) 6= 0 si et seulement si n et m sont premiers entre
eux.

2. Le symbole de Jacobi (mn ) ne dépend que de la classe de m modulo n.

3. Quels que soient les entiers u et v, on a la relation
⇣uv
n

⌘
=

⇣u
n

⌘⇣ v

n

⌘
.

4. Quels que soient les entiers impairs u et v, on a la relation
⇣m

uv

⌘
=

⇣m
u

⌘⇣m
v

⌘
.

Démonstration — Ce sont toutes des conséquences directes de la définition du sym-
bole de Jacobi et des propriétés du symbole de Legendre.
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Lemme 2.5.6 — Pour tout entier impair n, posons  (n) = n�1

2
. On a alors la

congruence
 (nm) ⌘  (n) +  (m) (mod 2).

Démonstration — En posant n = 2u+ 1 et m = 2v + 1, on a les identités

 (nm) ⌘
(2u+ 1)(2v + 1)� 1

2
⌘ 2uv + u+ v ⌘  (n) +  (m) (mod 2).

Corollaire 2.5.7 — Pour tout entier impair n, on a l’identité
✓
�1

n

◆
= (�1)

n�1
2 .

Démonstration — Considérons la factorisation n =
Q

p|n p
ep . En combinant le corol-

laire 2.3.5 et le lemme 2.5.6, on obtient
✓
�1

n

◆
=

Y

p|n

✓
�1

p

◆ep

= (�1)
P

p|n ep (p) = (�1) (n).

Théorème 2.5.8 — Étant donnés deux entiers naturels impairs n et m, on a l’iden-
tité ⇣m

n

⌘
= (�1)

n�1
2

m�1
2

⇣ n

m

⌘
.

Démonstration — L’assertion étant trivialement vérifiée si n et m ne sont pas pre-
miers entre eux, supposons que (n,m) = 1. Pour tout entier impair r, posons une fois
de plus  (r) = r�1

2
. On procède comme dans la démonstration du corollaire 2.5.7 :

en posant n =
Q

i p
ai
i et m =

Q
i q

bi
i , la loi de réciprocité quadratique pour le symbole

de Legendre amène aux identités
⇣m
n

⌘
=

Y

i,j

✓
qi
pj

◆aibj

=
Y

i,j

(�1)aibj (pi) (qj)

✓
pi
qj

◆aibj

= (�1)
P

i,j aibj (pi) (qj)
⇣ n

m

⌘
.

Finalement, en appliquant le lemme 2.5.6, on obtient les congruences
X

i,j

aibj (pi) (qj) ⌘
X

i

ai (pi)
X

j

bj (qj) ⌘
X

i

ai (pi) (m) ⌘

⌘  (n) (m) (mod 2).

Exercice 2.5.9 — Montrer que pour tout entier impair n, l’entier n2
�1 est divisible

par 8.
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Proposition 2.5.10 — Pour tout entier impair n � 3, on a l’identité
✓
2

n

◆
= (�1)

n2�1
8 .

En d’autres termes, on a ( 2n ) = 1 si et seulement si n est congru à ±1 modulo 8.

Démonstration — On procède par récurrence sur l’entier n : pour n = 3, on a les
identités ✓

2

3

◆
= �1 = (�1)

32�1
8 .

Soit donc n > 3 un entier impair et supposons la propriété vérifiée pour n� 2. On a
alors les relations✓

2

n

◆
=

✓
�1

n

◆✓
�2

n

◆
= (�1)

n�1
2

✓
n� 2

n

◆
= (�1)

n�1
2

✓
n

n� 2

◆
=

= (�1)
n�1
2

✓
2

n� 2

◆
= (�1)

n�1
2 (�1)

(n�2)2�1
8 = (�1)

4n�4+(n�2)2�1
8 = (�1)

n2�1
8 ,

ce qui permet de conclure. La dernière assertion est juste une vérification directe (on
remarquera que la parité de (n2

�1)/8 ne dépend que de la classe de n modulo 8).

2.5.3. Calcul explicite du symbole de Jacobi — Soient n et m deux entiers
impairs, avec 1 < n < m. Nous terminons cette section en décrivant un algorithme
efficace de calcul du symbole de Jacobi (mn ) ne nécessitant pas la connaissance de
la factorisation de n. Cette méthode repose essentiellement sur la loi de réciprocité
quadratique pour le symbole de Jacobi et sur une version modifiée de l’algorithme
d’Euclide étendu.

• Pour m = 1, on obtient (mn ) = 1 et l’algorithme s’arrête.
• Pour m > 1, la loi de réciprocité quadratique amène à l’identité (mn ) = ±( n

m ),
le signe ne dépendant que de la classe de n et m modulo 4.

• En considérant la division euclidienne modifiée n = mq+ r, avec |r| < m/2, on
obtient la relation ( n

m ) =
�

r
m

�
.

• Pour r = 0, on obtient les identités
⇣m
n

⌘
= ±

⇣ r

m

⌘
= 0

et l’algorithme s’arrête.
• Sinon, l’entier r possède une écriture unique du type r = ±2ab, avec b > 0

impair. Par construction, on a l’inégalité b < m/2 et les identités
⇣ r

m

⌘
=

✓
±1

m

◆✓
2

m

◆a ✓ b

m

◆
.

La détermination de (�1

m ) ne dépend que de la classe de m modulo 4. De même,
( 2

m ) ne dépend que de la classe de m modulo 8. De plus, l’entier ( 2

m )a est égal
à ( 2

m ) si a est impair et à 1 sinon.
• On répète le procédé en remplaçant (mn ) par ( b

m ).
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Chaque étape de l’algorithme est de complexité polynomiale par rapport à la taille
des entiers considérés. De manière plus précise, l’opération la plus coûteuse (en temps)
est la division eucllidienne modifiée de n par m (cf. le troisième point ci-dessus), qui est
de complexité O(log2(n)). La factorisation de r se réduit à une suite de décalages sur
la droite et ne pose pas de problème. Finalement, ayant utilisé la division euclidienne
modifiée, le nombre de boucles nécessaires pour que l’algorithme aboutisse est majoré
par log

2
(n). On en déduit que cette méthode de calcul du symbole de Jacobi est de

complexité globale O(log2(n)) améliorant ainsi l’algorithme de calcul du symbole de
Legendre découlant du théorème 2.3.2 (qui était de complexité O(log3(n)).

Exemple 2.5.11 — Calculons le symbole de Jacobi ( 43

143
) de deux manières diffé-

rentes :
• Tout d’abord en considérant la factorisation 143 = 11·13, on obtient les identités

✓
43

143

◆
=

✓
43

11

◆✓
43

13

◆
=

✓
�1

11

◆✓
4

13

◆
= �1.

• Sans avoir recours à la factorisation de 143, la loi de réciprocité quadratique
pour le symbole de Jacobi amène aux relations

✓
43

143

◆
= �

✓
143

43

◆
= �

✓
14

43

◆
= �

✓
2

43

◆✓
7

43

◆
= �

✓
43

7

◆
=

= �

✓
1

7

◆
= �1.
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