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Solutions

Exercice 1 (Applications de 1’écriture en base b)

1. Soit f € Z[X] un polynéme tel que ses coeflicients soient tous des entiers naturels. Montrer que
la connaissance de f(1) et f(m), avec m > f(1) permet de déterminer (les coefficients de) f.
Déterminer explicitement f lorsque f(1) =10 et f(15) = 2026.

Posons f = ag + a1 X + -+ 4+ a, X™. On a les relations f(1) = a; + -+ + a,, > max;{a;} (car
a; > 0 pour tout ), d’ou l'identité f(m) = ao+aim+ -+ a,m", avec

0 < a; <max{a;} < f(1) < m,

ce qui implique que ag + aym + - -+ + a,m™ est écriture de f(m) en base m. Connaissant
les entiers m et f(m), il suffit donc de déterminer explicitement cette écriture. En particulier,
pour f(1) =10 et f(15) = 2026, on a 15 > f(1) et les relations

2026 =1-+2025=1+452=1+9- 152,

amenent alors & I'identité f = 9X?2 + 1.

2. Notons Py(N) I'ensemble des parties finies de N. Montrer que Papplication f : Py(N) — N définie
par

fx)y=> 2"

neX

est bijective. Vérifier que pour X C Y, on a f(X) < f(Y). La réciproque est-elle vraie ?



Etant donné un sous-ensemble X de N , notons xx : X — {0,1} sa fonction caractéristique,
définie par
1sine X,
xx(n) =
0 sinon.

SiY est un second sous-ensemble de N, on a alors I'identité X =Y si et seulement si yx = xy.
Par définition, pour X € Py(N), on a l'identité

F(X) =) xx(n)2n,

neN

ce qui implique que ) -\ xx(1n)2" est I'écriture de f(X) en base 2. L’injectivité de f découle
alors de 'unicité d’une telle écriture et la surjectivité de son existence. Etant donné Y C X,
on a xy(n) < xx(n) pour tout n € N, d’ou les relations

FOV) = xy()2" <> xx(n)2" = f(X).

neN neN

Etant donné X € Py(N) non vide, posons m = max(X)+1 et Y = {m}, on a alors X ¢ Y et

f)=3 2"< Y0 =2 o 1< 2" = f(Y),

neX 0<n<m

ce qui montre que la réciproque est fausse.

Exercice 2 (Applications de la factorisation unique) — L’ensemble Z" des applications f : N — Z
est muni d’une structure naturelle de groupe abélien : étant données f, g € ZN, on pose

(f +9)(n) = f(n) +g(n)

pour tout n € N. Le support de f € ZN est 'ensemble

Supp(f) = {n € N'| f(n) # 0}.

Nous dirons que f est @ support fini si Supp(f) est un ensemble fini. Notons Z} le sous-ensemble de Z"
des applications & support fini. Vérifier que ZISI est un sous-groupe de ZY et montrer qu'il est isomorphe
au groupe (multiplicatif) Q% des rationnels strictement positifs.

La premiere assertion découle de I'inclusion

Supp(f + g) C Supp(f) U Supp(g)

et de l'identité Supp(—f) = Supp(f). Soit s : N — N I’application qui associe & un entier
naturel n le plus petit nombre premier strictement supérieur a n et considérons ’application
p : N — N définie par p(0) = 2 et p(n + 1) = s(p(n)). L’'image de p coincide alors avec
I’ensemble des nombres premiers. Etant donnée une application f € Zk, posons

of)= J] »pn)™.

neSupp(f)

On définit ainsi une application ¢ : Z§ — QZ,. La bijectivité de ¢ découle de la factorisation
unique dans Q* et du fait que tout nombre premier appartient & 'image de p. Finalement,
étant données deux applications & support fini f,g € Z, en posant X = Supp(f) U Supp(g),
on a les identités




o(f +g) = H p(n)f M+ — H p(n)f(M+a) — H p(n)f W p(n)s™ =

n€Supp(f+g) neX neX
= [T e/ T )™ = T )™ ] »m)*™ =e(f)el9),
neX neX neSupp(f) n€Supp(g)

ce qui montre que ¢ est un homomorphisme de groupes.

Exercice 3 (Ecriture en base —b) — Considérons un entier naturel b > 1.

1. Montrer qu’'un entier n € Z s’écrit de maniére unique comme

n= Z ak(—b)k,

k>0

ou les entiers ag,...,ar € {0,...,n — 1} sont presque tous nuls, i.e. nuls & partir d’un certain
rang. Une telle expression est l’écriture de n en base —b. On écrira alors n = (ay - - - ag)—sp.

On commence en montrant 'existence d’une telle écriture. On procede par récurrence sur
Pentier naturel |n|. L’assertion est vérifiée pour |n| = 0, auquel cas il suffit de poser ar = 0
pour tout k € N. Pour n = 1, il suffit de poser ag = 1 et ax = 0 pour tout k£ > 0. De méme,
pour n = —1, on pose ag = b —1,a; = 1 et ap = 0 pour tout k£ > 1. La propriété est donc
vérifiée pour |n| < 1. Soit n # 0 un entier avec |n| > 1 et supposons la propriété vérifiée pour
tout entier m tell que |m| < |n|. Notons ag le reste de la division euclidienne de n par b. Les
identités n = ¢b + a9 = (—¢)(—b) + ag combinée avec 'unicité du quotient et du reste de la
division euclidienne impliquent que ay est également le reste de la division euclidienne de n

par —b. Considérons I'entier m = #=". Pour n > 0, on a les relations

lap —n| n—ag _n
= e < —
Il b b b

<n=]n|.

Pour n < 0, on obtient les relations

ag—n _ ag+ |n| <b—1—|—|n|_|n\—1

|m|=b—b_ ; — 1

On a MT_l + 1 > |n| si et seulement si [n| < 1, ce qui est exclu. Dans les deux cas, on
a donc l'inégalité |m| < |n|. En appliquant ’hypothése de récurrence, on a alors l'identité
m =aj —agb+ -+ ap,1(—b)*, d’ott 'expression n = ag —a;b+ - -+ (—1)*ax, ce qui montre
I’existence de I’écriture en base —b pour n. Par le principe de récurrence, la propriété est donc
vraie pour tout entier. Concernant I'unicité, considérons deux écritures n = Y, ap(—b)* =
Yok cx(—b)*. Supposons qu'il existe un entier k tel que aj, # cx et notons m le plus petit d’entre

eux. On a alors a; = by pour tout k < m et a,, # b,,, d’ou l'es identités

(am — cm)(=0)" = Z (em — am)(_b)k _ (_b)m+1 Z (m — am)(—b)k_m_l.

k>m k>m

On en déduit que b™ ! divise (a,, — ¢, )b™, ou encore que b divise a,, —c,,. Ayant les inégalités
0 < am, cm < b, on a alors nécessairement a,,, = ¢, ce qui est exclu. L’écriture est donc unique.

2. Décrire un algorithme permettant de déterminer ’écriture en base —b d’un entier.



Notons r(n) le reste de la division euclidienne d’un entier n par b. Ayant fixé n, considérons
la suite (m;) définie par mg =n

r(my) — mg

2 si my # 0,

Me+1 =
0 sinon.
D’apres la démonstration du point 2, pour |my| > 1, on a my1 < my. Il existe alors un entier
k tel que |mg| < 1. Pour my = 1, on obtient my; = 0. De méme, pour my = —1, on a
mpy1 = 1, d’ot miy2 = 0. On en déduit qu'il existe un entier k tel que my = 0, auquel cas

on a m; = 0 pour tout ¢ > k. En posant a; = r(m;) pour tout entier naturel 7, on démontre
alors par récurrence l'identité

n=ag—ab+---+a;(=b)" + (=b)my .
En particulier, pour ¢ = k, on obtient ’expression

n=ag—ab+---+ ap(=b)k,

qui est donc I’écriture en base —b de n.

3. Déterminer 1'écriture de 2026 en base —10.

En appliquant ’algorithme décrit dans le point précédent, on obtient 1’écriture

2026 =6-1—8-10+1-10* —8-10% +1-10* = (18186)_1

4. Soit n un entier non nul et considérons son écriture n =Y, ax(—b)* en base —b. Notons k le plus
grand entier naturel tel que ax # 0. Vérifier que l'on a 'inégalité

k <logy(|n|) +2.

Pour n > 0, l'entier k£ est nécessairement pair. En effet, dans le cas contraire, on aurait les

relations
k—1 ) k—1 )
n=Y a(-b)'=-b"+> a;(~-b)' < b+ (b-1)> b=
] =0 1=0

ce qui est exclu. L’inégalité de I’énoncé est directement pour 0 < n < b (qui correspondent au
cas k = 0), on peut supposer k > 0. En posant k = 2m, on a alors m > 1 et les relations

2m m—1 m—1
|TL‘ =n= Zai(*b)z Z (Z2mb2m — Z a2i+1b2’+1 2 b2m - (b — ]_) Z b2z+1 =
i=0 i=0 i=0
bk 1 v +b
—0?" —b(b—1) Z b2 = bk — -2
b +1 b+1
De maniére générale, étant donné un entier naturel u, la relation bif{b < u est équivalente

au< g b 7 L megahte b2 —b—1<best equwalente a b(b — 2) < 0. En particulier, pour
b > 2, on obtient

b2 u+b

< 1. Pour b = 2, on a = 1. Dans tout les cas, on en déduit

b2b1 b2b1

I'inégalit’e > u pour tout u > 1. Par hypothese, on a k = 2m > 2, d’ot1t b* = b?u, avec

u=">0b2> 1. D apres ce qui précede, on en déduit les relations




b +b  bu+b
b+1  b+1
d’ou I'inégalité k < log, (|n|) + 2. Supposons maintenant n négatif. Comme précédemment, on
montre que l'entier & est nécessairement impair, soit k = 2m+1, avec m > 0. On obtient alors
les relations

2 u = bk}—27

In| >

2m+1 m m
|n| =—n=- Z ai(*b)i > 612m+1b2m+1 - Za%b% > pmrt — (b - 1) Zb% =
i=0 i=0 i=0
A TR AR
b+1 b+1

Etant donné un entier u, I'inégalité bz"b;# > 7 est équivalente a (b3 —b? —b)u > —b. Ayant

b > 2, on en déduit les relations b> — b2 — b =b*(b—1) —b > b(b—1)2 —b = b(b —2) > 0.
2

En particulier, pour tout u > 0, on a &4=tu*Ll > 4 En posant u = b* !, on obtient alors les

b+1
relations )
jnf > Tu Ul e
b+1 b

ce qui amene une fois encore & I'inégalité k < log(|n|) + 2.

5. Etant donné un entier n = >p ak(=b)*, posons f(n) =3 axbF. On définit ainsi une application
f :Z — N. Déduire des questions précédentes que f est bijective.

L’injectivité de f découle de 'unicité de ’écriture d’un entier relatif en base —b, sa surjectivité
est conséquence de 'existence de ’écriture d’un entier naturel en base b.

Exercice 4 — Déterminer tous les entiers n tels que

(n® +3) A (n® +n+2) = 16.

On rappelle quétant donnés trois entiers a, b et ¢, on a la relation (a + bc) Ab = a Ab. Dans le
cas présent, on obtient les identités

M +3NAM*+n+2) =0 +3-—nn*+n+2)A N> +n+2) =
=P+ =3)AM*+n+2)=n-5)AMN*+n+2) =
=n—-5)A(6n+2)=(n—>5)A32.
On est donc réduit a résoudre 1’équation (n—5) A32 = 16. L’entier n — 5 est alors divisible par

16, soit n = 16m + 5, ce qui donne 16m A 32 = 16, ou encore m A2 = 1. En posant m = 2k +1,
on obtient finalement 'expression n = 32k + 21, avec k € Z.

Exercice 5 (Produit fibré et théoréme des restes chinois) — Ce long exercice consititue une
bonne révision des notions d’algebre qui seront utilisées dans le cours. Son objectif est de fournir une
démonstration du célebre théoréme des restes chinotis dans une formulation générale.

Considérons trois ensembles X,Y et S ainsi que deux applications f : X — Setg:Y — S.

L’ensemble
X xgY ={(z,y) e X xY [ f(z) = g(y)}

est le produit fibré de X et Y au dessus de S. Dans la suite, nous supposerons X, Y et S non vides.



1. Montrer que X xgY = @ si et seulement si Im(f) NIm(g) = @ et que X xg Y = X XY si et
seulement si Im(f) = Im(g) est un singleton.

Si ensemble X xg Y est non vide alors il existe (x,y) € X x Y, tel que f(z) = g(y). Dans
ce cas, on a f(z) € Im(f) NIm(g), d’ott Im(f) NIm(g) # . Réciproquement, si Im(f) N Im(g)
est non vide, il contient un élément s. Par définition, il existe alors z € X tel que f(z) = s.
De méne, il existe y € Y tel que g(y) = s, ce qui implique que le couple (z,y) appartient
a X xg Y, qui est donc non vide. Supposons maintenant que X xg Y coincide avec X x Y.
Les ensembles X, Y et S étant supposés non vides, le produit cartésien X x Y est non vide.
D’aprés ce qui précede, Im(f) N Im(g) est non vide. Supposons qu’il possede deux éléments
distincts s et t. Fixons z € X tel que f(z) = set y € Y tel que g(z) = t. Dans ce cas, on
a(z,y) € X xY et (z,y) ¢ X xgY, ce qui est exclu. L’ensemble Im(f) N Im(g) = {s} est
donc un singleton. Fixons y € Y. Pour tout € X, on a alors (z,y) € X xY = X xgY,
d’ou f(z) = g(y) = s, ce qui implique que Im(f) est inclus dans Im(f) NIm(g), auquel cas ils
coincident. De méme, on obtient Im(g) = {s}. Réciproquement, si S = {s} est un singleton,
pour tout (z,y) € X x Y, on a f(x) = g(y) = s, d’on I'identité X xg Y =X x Y.

2. Considérons les applications m1 : X xgV — X et my : X xg Y — Y définies par m (z,y) = «
et mo(x,y) = y. Montrer que 77 est surjective si et seulement si Im(f) C Im(g). De méme 75 est
surjective si et seulement si Im(g) C Im(f). En particulier 7; et 7 sont toutes deux surjectives si
et seulement si Im(f) = Im(g).

L’application 7, est surjective si et seulement si, pour tout = € X, il existe (z,y) € X x Y tel
que f(z) = g(y), ce qui traduit le fait que pour tout € X on a f(x) € Im(g), cette derniére
condition étant équivalente & Im(f) C Im(g).

On suppose désormais que X, Y et .S sont des groupes et que les applications f et g sont des homomor-
phismes surjectifs de groupes. Dans la suite, on se restreint au cas ou f et g sont surjectifs. Dans cette
situation, les applications 71 et mo sont surjectives (cf. le point ci-dessus).
3. Vérifier que X XY est un sous-groupe de X XY, qu'il contient ker(f) xker(g), que les applications
71 et o sont des homomorphismes de groupes et que 'on a les identités ker(m;) = 1 x ker(g) et
ker(mg) = ker(f) x 1.

Tout d’abord, X x Y est non vide, car il contient I'élément (1,1). Etant donnés deux éléments
g=(z,y) et h=(u,v) de X x5V, on a les identités gh~! = (zu~1,yv~1t) et

flau™) = f@) f(w) ™" = g(y)gv) " = glyv™),

d’olt gh™! € X x5Y, ce qui implique que X xgY est un sous-groupe de X x Y. Etant donné
(z,y) € ker(f) x ker(g), on a f(x) =1= f(y), dou (z,y) € X xg Y et, par, suite, I'inclusion
ker(f) x ker(g) C X xg Y. L’application f est un homomorphisme de groupes, car restriction
de la projection X x Y — X, qui est un homomorphisme. Finalement, on a 71(x,y) =1 si et
seulement si @ = 1, auquel cas g(y) = f(z) = 1, ou encore y € ker(g), ce qui donne l'inclusion
ker(m;) C 1 x ker(g). Réciproquement, on a linclusion f(1 x ker(g)) = {1}, d’ou I'inclusion
1 x ker(g) C ker(m), qui est alors une égalité.

4. On suppose X et Y finis. Justifier le fait que S et X x gY sont finis et montrer que I'on a I'indentité
IS]- [ X x5 Y] = |X]-[Y].

Si X et Y sont finis, alors S est fini (car les homomorphismes f et g sont surjectifs) et
X XgY est fini, car sous-ensemble de X x Y, qui est fini. L’homomorphisme 7 étant surjectif,
le théoreme d’isomorphisme pour les groupes affirme que X est isomorphe au quotient de
X XgY par ker(m ), d’ou l'identité | X xg Y| = |X| | ker(m1)|. D’apres le point précédent, on
a ker(m;) = 1 x ker(g), d’ou | ker(my)| = | ker(g)|. Finalement, ’homomorphisme ¥ — S étant
surjectif, on obtient I'identité |Y| = |ker(g)| - |S], ce qui permet de conclure.




5. Soient H et K deux sous-groupes distingués d’un groupe G. Dans la suite, on pose X = G/H et
Y = G/K. On a alors des homomorphismes surjectifs canoniques v: G — X et v: G — Y.

(a)

(b)

Vérifier que I’ensemble
HK ={hk | he H k€ K}

est un sous-groupe distingué de G et que c’est le plus petit sous-groupe contenant H U K. En
posant S = G/HK, on obtient alors des homomorphismes canoniques surjectifs de groupes
f:X—=>Setg:Y — S et'on peut donc considérer le produit fibré X xg Y.

Soient x = ab et y = cd deux éléments de HK, avec a,c € H et b,d € K. Le sous-groupe K
étant distingué, on a dbb~! = e € H, d’ot1 'identité ed~! = d~'e et, par suite, les relations

zy ' =ab(ed)™t = abd e = ad tect,

avec ad~t € H et ec™* € K (car H et K sont des sous-groupes de G), d'on 2y~ ! € HK,
ce qui montre que HK est un sous-groupe de G. Finalement, étant donné x = hk € HK et
g € G, on a l'identité g~ *hkg = (g~ 'hg)(g~'kg). Les sous-groupes H et K étant distingués,
onaglhg € Het golkg € K, dott g~'wg € HK, ce qui montre que HK est distingué.
Finalement, si F' est un sous-groupe de G contenant H et K, il contient hk pour tout h € H
et tout k € K, d’ou I'nclusion HK C F, ce qui implique que H K est le plus petit sous-groupe
de G contenant H et K.

Considérons 'homomorphisme de groupes h : G — X x Y défini par h(z) = (u(x),v(x)).
décrire son noyau et montrer que son image coincide avec X X g Y. En déduire le théoréme
des restes chinois pour les groupes, qui affirme que les groupes X xgY et G/H N K
sont isomorphes. En particulier, pour G = HK, on en déduit un isomorphisme entre X x Y
et G/HNK.

Par définition, on a u(z) = Hz, d’ou ker(u) = H. De méme, on a ker(v) = K. La relation
x € ker(h) se traduit par u(z) = 1 et v(z) = 1, ou encore z € ker(u) Nkerv = H N K. Etant
donné x € G, on a

flu(@)) = f(Hr) = HKz = g(Kx) = g(v(2)),

d’ou h(z) = (u(z),v(z)) € X xg Y. Réciproquement, étant donné (a,b) € X xgY, on a
a=Hzx et b= Ky, avec z,y € G. On a alors I'identité HKz = HKy, ce qui se traduit par
Iexistence de h € H et k € K tels que x = hky. En posant z = h ™'z = ky, on a les identités
Hz = Hzx et Kz = Ky, ou encore u(z) = a et v(z) = b, dou (a,b) € Im(h). On a donc
Pinclusion X xg Y C Im(h), qui est alors une égalité. Le théoréeme d’isomorphisme pour les
groupes affirme alors que les groupes G/H N K et X xg Y sont isomorphes.

Nous dirons que deux éléments x,y € G sont congrus modulo H si xy~! € H, ce qui revient
a affirmer que z et y définissent le méme élément de X. On écrit alors =y (mod H). Etant
donnés a,b € G, on s’intéresse a 'existence d’un élément = € G tel que

x=a (mod H),

x=b (mod K).

Déduire du point précédent qu’un tel élément existe si et seulement si a et b sont congrus
modulo HK et qu’il est alors unique modulo H N K. En particulier, pour G = HK, une
solution existe toujours.



Considérons les éléments Ha € X et Kb € Y. L’existence d’'une solution = du systeme de
congruences se traduit alors par les relations Hx = Ha et Kx = Kb, qui sont équivalentes
a h(z) = (Ha, Hb). D’apres le point précédent, un tel élément existe si et seulement si on a
l'identité HKa = HKD, ou encore ab~' € HK. Si deux éléments x,y € G sont solution du
systéme, on a alors h(z) = h(y), ou encore zy~* € ker(h) = HN K, ce qui permet de conclure.

On suppose finalement que X,Y et S sont des anneaux et que les applications f er g sont des homomor-
phismes d’anneaux.

8.

9.

10.

11.

12.

Vérifier que X xXg Y est un sous-anneau de X x Y.

Le point 3 affirme que X XgY est un sous-groupe de X x Y. On a f(1) =g(1) =1, dou
(1,1) € X x5 Y. Etant donnés x = (a,b),y = (¢,d) € X xgY, on a les identités

flac) = f(a)f(c) = g(b)g(d) = g(bd),

d’olt zy = (ac,bd) € X xgY, ce qui montre que X Xg Y est un sous-anneau de X x Y.

Considérons deux idéaux a et b d’un anneau A. Posons X = A/a,Y = A/bet S = A/(a+b).
On a alors des homomorphismes canoniques f : X — S et g : Y — S. Montrer le théoréme
des restes chinois pour les anneaur, qui affirme que les anneaux X xgY et A/anN b sont
isomorphes.

Le théoréme des restes chinois pour les groupes, démontré dans le point (5b), affirme que les
groupes X XgY et A/anb sont isomorphes. Les homomorphismes f et g étant des homomor-
phismes d’anneaux, cet isomorphisme est automatiquesment un isomorphisme d’anneaux.

Avec les hypotheses et notations du point précédent, étant donnés a,b € A, montrer que le systeme
de congruences
z=a (mod a),

x=b (mod b)

admet une solution si et seulement si a est congru a b modulo a + b, auquel cas la solution est
unique modulo a N b.

Ce n’est qu’une reformulation du point (5¢) dans le contexte des anneaux.

Deux idéaux a et b de A sont étrangers si a +b = A, ce qui se traduit par l'existence de deux
éléments a € a et b € b vérifiant la relation a + b = 1, appelée identité de Bézout. Montrer que
dans ce cas, on a l'identité ab = anb.

Ayant toujours I'inclusion ab C anb, considérons un élément = € aNb. Les idéaux a et b étant
étrangers, on a une identité de Bézout a +b = 1, avec a € a et b € b, dott © = 2(a + b) =
rza+xb. Onaa € aet x € anNb, ce qui donne ax € ab. De méme, on obtient bx € ab, d’ou
x = ar + br € ab, ce qui amene a l'inclusion aNb C ab, qui est alors une égalité.

Montrer que si a et b sont deux idéaux étrangers d’un anneau A alors les anneaux A/a x A/b et
A/ab sont isomorphes. Dans ce cas, le systeme de congruences du point 10 admet toujours une
solution, qui est unique modulo ab. C’est sous cette forme qu’est généralement énoncé le théoreme
des restes chinois.

Si a et b sont étrangers, le quotient A/(a + b) est un singleton. Le point 1 affirme alors que
X XgY et X xY coincident. Compte tenu du dernier point, il suffit alors d’appliquer le
théoreme des restes chinois pour les anneaux.




