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Feuille d’exercices 1

Solutions

Exercice 1 (Applications de l’écriture en base b)

1. Soit f ∈ Z[X] un polynôme tel que ses coefficients soient tous des entiers naturels. Montrer que
la connaissance de f(1) et f(m), avec m > f(1) permet de déterminer (les coefficients de) f .
Déterminer explicitement f lorsque f(1) = 10 et f(15) = 2026.

Posons f = a0 + a1X + · · ·+ anX
n. On a les relations f(1) = a1 + · · ·+ an ≥ maxi{ai} (car

ai ≥ 0 pour tout i), d’où l’identité f(m) = a0 + a1m+ · · ·+ anm
n, avec

0 ≤ ai ≤ max
i
{ai} ≤ f(1) < m,

ce qui implique que a0 + a1m + · · · + anm
n est l’écriture de f(m) en base m. Connaissant

les entiers m et f(m), il suffit donc de déterminer explicitement cette écriture. En particulier,
pour f(1) = 10 et f(15) = 2026, on a 15 > f(1) et les relations

2026 = 1 + 2025 = 1 + 452 = 1 + 9 · 152,

amènent alors à l’identité f = 9X2 + 1.

2. Notons P0(N) l’ensemble des parties finies de N. Montrer que l’application f : P0(N)→ N définie
par

f(X) =
∑
n∈X

2n

est bijective. Vérifier que pour X ⊂ Y , on a f(X) ≤ f(Y ). La réciproque est-elle vraie ?
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Étant donné un sous-ensemble X de N, notons χX : X → {0, 1} sa fonction caractéristique,
définie par

χX(n) =


1 si n ∈ X,

0 sinon.

Si Y est un second sous-ensemble de N, on a alors l’identité X = Y si et seulement si χX = χY .
Par définition, pour X ∈ P0(N), on a l’identité

f(X) =
∑
n∈N

χX(n)2n,

ce qui implique que
∑

n∈N χX(n)2n est l’écriture de f(X) en base 2. L’injectivité de f découle

alors de l’unicité d’une telle écriture et la surjectivité de son existence. Étant donné Y ⊂ X,
on a χY (n) ≤ χX(n) pour tout n ∈ N, d’où les relations

f(Y ) =
∑
n∈N

χY (n)2n ≤
∑
n∈N

χX(n)2n = f(X).

Étant donné X ∈ P0(N) non vide, posons m = max(X) + 1 et Y = {m}, on a alors X 6⊂ Y et

f(X) =
∑
n∈X

2n ≤
∑

0≤n<m

2n = 2m − 1 < 2m = f(Y ),

ce qui montre que la réciproque est fausse.

Exercice 2 (Applications de la factorisation unique) – L’ensemble ZN des applications f : N→ Z
est muni d’une structure naturelle de groupe abélien : étant données f, g ∈ ZN, on pose

(f + g)(n) = f(n) + g(n)

pour tout n ∈ N. Le support de f ∈ ZN est l’ensemble

Supp(f) = {n ∈ N | f(n) 6= 0}.

Nous dirons que f est à support fini si Supp(f) est un ensemble fini. Notons ZN
0 le sous-ensemble de ZN

des applications à support fini. Vérifier que ZN
0 est un sous-groupe de ZN et montrer qu’il est isomorphe

au groupe (multiplicatif) Q×>0 des rationnels strictement positifs.

La première assertion découle de l’inclusion

Supp(f + g) ⊂ Supp(f) ∪ Supp(g)

et de l’identité Supp(−f) = Supp(f). Soit s : N → N l’application qui associe à un entier
naturel n le plus petit nombre premier strictement supérieur à n et considérons l’application
p : N → N définie par p(0) = 2 et p(n + 1) = s(p(n)). L’image de p cöıncide alors avec
l’ensemble des nombres premiers. Étant donnée une application f ∈ ZN

0 , posons

ϕ(f) =
∏

n∈Supp(f)

p(n)f(n).

On définit ainsi une application ϕ : ZN
0 → Q×>0. La bijectivité de ϕ découle de la factorisation

unique dans Q× et du fait que tout nombre premier appartient à l’image de p. Finalement,
étant données deux applications à support fini f, g ∈ ZN

0 , en posant X = Supp(f) ∪ Supp(g),
on a les identités
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ϕ(f + g) =
∏

n∈Supp(f+g)

p(n)f(n)+g(n) =
∏
n∈X

p(n)f(n)+g(n) =
∏
n∈X

p(n)f(n)p(n)g(n) =

=
∏
n∈X

p(n)f(n)
∏
n∈X

p(n)g(n) =
∏

n∈Supp(f)

p(n)f(n)
∏

n∈Supp(g)

p(n)g(n) = ϕ(f)ϕ(g),

ce qui montre que ϕ est un homomorphisme de groupes.

Exercice 3 (Écriture en base −b) – Considérons un entier naturel b > 1.

1. Montrer qu’un entier n ∈ Z s’écrit de manière unique comme

n =
∑
k≥0

ak(−b)k,

où les entiers a0, . . . , ak ∈ {0, . . . , n − 1} sont presque tous nuls, i.e. nuls à partir d’un certain
rang. Une telle expression est l’écriture de n en base −b. On écrira alors n = (ak · · · a0)−b.

On commence en montrant l’existence d’une telle écriture. On procède par récurrence sur
l’entier naturel |n|. L’assertion est vérifiée pour |n| = 0, auquel cas il suffit de poser ak = 0
pour tout k ∈ N. Pour n = 1, il suffit de poser a0 = 1 et ak = 0 pour tout k > 0. De même,
pour n = −1, on pose a0 = b − 1, a1 = 1 et ak = 0 pour tout k > 1. La propriété est donc
vérifiée pour |n| ≤ 1. Soit n 6= 0 un entier avec |n| > 1 et supposons la propriété vérifiée pour
tout entier m tell que |m| < |n|. Notons a0 le reste de la division euclidienne de n par b. Les
identités n = qb + a0 = (−q)(−b) + a0 combinée avec l’unicité du quotient et du reste de la
division euclidienne impliquent que a0 est également le reste de la division euclidienne de n
par −b. Considérons l’entier m = a0−n

b . Pour n ≥ 0, on a les relations

|m| = |a0 − n|
b

=
n− a0
b

≤ n

b
< n = |n|.

Pour n < 0, on obtient les relations

|m| = a0 − n
b

=
a0 + |n|

b
≤ b− 1 + |n|

b
=
|n| − 1

b
+ 1.

On a |n|−1
b + 1 ≥ |n| si et seulement si |n| ≤ 1, ce qui est exclu. Dans les deux cas, on

a donc l’inégalité |m| < |n|. En appliquant l’hypothèse de récurrence, on a alors l’identité
m = a1− a2b+ · · ·+ ak+1(−b)k, d’où l’expression n = a0− a1b+ · · ·+ (−1)kak, ce qui montre
l’existence de l’écriture en base −b pour n. Par le principe de récurrence, la propriété est donc
vraie pour tout entier. Concernant l’unicité, considérons deux écritures n =

∑
k ak(−b)k =∑

k ck(−b)k. Supposons qu’il existe un entier k tel que ak 6= ck et notons m le plus petit d’entre
eux. On a alors ak = bk pour tout k < m et am 6= bm, d’où l’es identités

(am − cm)(−b)m =
∑
k>m

(cm − am)(−b)k = (−b)m+1
∑
k>m

(cm − am)(−b)k−m−1.

On en déduit que bm+1 divise (am−cm)bm, ou encore que b divise am−cm. Ayant les inégalités
0 ≤ am, cm < b, on a alors nécessairement am = cm, ce qui est exclu. L’écriture est donc unique.

2. Décrire un algorithme permettant de déterminer l’écriture en base −b d’un entier.
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Notons r(n) le reste de la division euclidienne d’un entier n par b. Ayant fixé n, considérons
la suite (mi) définie par m0 = n

mk+1 =


r(mk)−mk

b
si mk 6= 0,

0 sinon.

D’après la démonstration du point 2, pour |mk| > 1, on a mk+1 < mk. Il existe alors un entier
k tel que |mk| ≤ 1. Pour mk = 1, on obtient mk+1 = 0. De même, pour mk = −1, on a
mk+1 = 1, d’où mk+2 = 0. On en déduit qu’il existe un entier k tel que mk = 0, auquel cas
on a mi = 0 pour tout i ≥ k. En posant ai = r(mi) pour tout entier naturel i, on démontre
alors par récurrence l’identité

n = a0 − a1b+ · · ·+ ai(−b)i + (−b)i+1mi+1.

En particulier, pour i = k, on obtient l’expression

n = a0 − a1b+ · · ·+ ak(−b)k,

qui est donc l’écriture en base −b de n.

3. Déterminer l’écriture de 2026 en base −10.

En appliquant l’algorithme décrit dans le point précédent, on obtient l’écriture

2026 = 6 · 1− 8 · 10 + 1 · 102 − 8 · 103 + 1 · 104 = (18186)−10.

4. Soit n un entier non nul et considérons son écriture n =
∑

k ak(−b)k en base −b. Notons k le plus
grand entier naturel tel que ak 6= 0. Vérifier que l’on a l’inégalité

k ≤ logb(|n|) + 2.

Pour n > 0, l’entier k est nécessairement pair. En effet, dans le cas contraire, on aurait les
relations

n =

k∑
i=0

ai(−b)i = −bk +

k−1∑
i=0

ai(−b)i ≤ −bk + (b− 1)

k−1∑
i=0

bi = −1,

ce qui est exclu. L’inégalité de l’énoncé est directement pour 0 < n < b (qui correspondent au
cas k = 0), on peut supposer k > 0. En posant k = 2m, on a alors m ≥ 1 et les relations

|n| = n =

2m∑
i=0

ai(−b)i ≥ a2mb2m −
m−1∑
i=0

a2i+1b
2i+1 ≥ b2m − (b− 1)

m−1∑
i=0

b2i+1 =

= b2m − b(b− 1)

m−1∑
i=0

b2i = bk − bb
k − 1

b+ 1
=
bk + b

b+ 1
.

De manière générale, étant donné un entier naturel u, la relation b2u+b
b+1 < u est équivalente

à u < b
b2−b−1 . L’inégalité b2 − b − 1 < b est équivalente à b(b − 2) ≤ 0. En particulier, pour

b > 2, on obtient b
b2−b−1 < 1. Pour b = 2, on a b

b2−b−1 = 1. Dans tout les cas, on en déduit

l’inégalit’e b2u+b
b+1 ≥ u pour tout u ≥ 1. Par hypothèse, on a k = 2m ≥ 2, d’où bk = b2u, avec

u = bk−2 ≥ 1. D’après ce qui précède, on en déduit les relations
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|n| ≥ bk + b

b+ 1
=
b2u+ b

b+ 1
≥ u = bk−2,

d’où l’inégalité k ≤ logb(|n|) + 2. Supposons maintenant n négatif. Comme précédemment, on
montre que l’entier k est nécessairement impair, soit k = 2m+1, avec m ≥ 0. On obtient alors
les relations

|n| = −n = −
2m+1∑
i=0

ai(−b)i ≥ a2m+1b
2m+1 −

m∑
i=0

a2ib
2i ≥ b2m+1 − (b− 1)

m∑
i=0

b2i =

= bk − bk − 1

b+ 1
=
bk+1 − bk + 1

b+ 1
.

Étant donné un entier u, l’inégalité b2u−bu+1
b+1 ≥ u

b est équivalente à (b3− b2− b)u ≥ −b. Ayant

b ≥ 2, on en déduit les relations b3 − b2 − b = b2(b − 1) − b ≥ b(b − 1)2 − b = b(b − 2) ≥ 0.

En particulier, pour tout u ≥ 0, on a b2u−bu+1
b+1 ≥ ub. En posant u = bk−1, on obtient alors les

relations

|n| ≥ b2u− bu+ 1

b+ 1
≥ u

b
= bk−2,

ce qui amène une fois encore à l’inégalité k ≤ logb(|n|) + 2.

5. Étant donné un entier n =
∑

k ak(−b)k, posons f(n) =
∑

n akb
k. On définit ainsi une application

f : Z→ N. Déduire des questions précédentes que f est bijective.

L’injectivité de f découle de l’unicité de l’écriture d’un entier relatif en base −b, sa surjectivité
est conséquence de l’existence de l’écriture d’un entier naturel en base b.

Exercice 4 – Déterminer tous les entiers n tels que

(n3 + 3) ∧ (n2 + n+ 2) = 16.

On rappelle quétant donnés trois entiers a, b et c, on a la relation (a+ bc)∧ b = a∧ b. Dans le
cas présent, on obtient les identités

(n3 + 3) ∧ (n2 + n+ 2) = (n3 + 3− n(n2 + n+ 2)) ∧ (n2 + n+ 2) =

= (n2 + 2n− 3) ∧ (n2 + n+ 2) = (n− 5) ∧ (n2 + n+ 2) =

= (n− 5) ∧ (6n+ 2) = (n− 5) ∧ 32.

On est donc réduit à résoudre l’équation (n−5)∧32 = 16. L’entier n−5 est alors divisible par
16, soit n = 16m+5, ce qui donne 16m∧32 = 16, ou encore m∧2 = 1. En posant m = 2k+1,
on obtient finalement l’expression n = 32k + 21, avec k ∈ Z.

Exercice 5 (Produit fibré et théorème des restes chinois) – Ce long exercice consititue une
bonne révision des notions d’algèbre qui seront utilisées dans le cours. Son objectif est de fournir une
démonstration du célèbre théorème des restes chinois dans une formulation générale.

Considérons trois ensembles X,Y et S ainsi que deux applications f : X → S et g : Y → S.
L’ensemble

X ×S Y = {(x, y) ∈ X × Y | f(x) = g(y)}

est le produit fibré de X et Y au dessus de S. Dans la suite, nous supposerons X, Y et S non vides.
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1. Montrer que X ×S Y = ∅ si et seulement si Im(f) ∩ Im(g) = ∅ et que X ×S Y = X × Y si et
seulement si Im(f) = Im(g) est un singleton.

Si l’ensemble X ×S Y est non vide alors il existe (x, y) ∈ X × Y , tel que f(x) = g(y). Dans
ce cas, on a f(x) ∈ Im(f)∩ Im(g), d’où Im(f)∩ Im(g) 6= ∅. Réciproquement, si Im(f)∩ Im(g)
est non vide, il contient un élément s. Par définition, il existe alors x ∈ X tel que f(x) = s.
De mêne, il existe y ∈ Y tel que g(y) = s, ce qui implique que le couple (x, y) appartient
à X ×S Y , qui est donc non vide. Supposons maintenant que X ×S Y cöıncide avec X × Y .
Les ensembles X,Y et S étant supposés non vides, le produit cartésien X × Y est non vide.
D’après ce qui précède, Im(f) ∩ Im(g) est non vide. Supposons qu’il possède deux éléments
distincts s et t. Fixons x ∈ X tel que f(x) = s et y ∈ Y tel que g(x) = t. Dans ce cas, on
a (x, y) ∈ X × Y et (x, y) /∈ X ×S Y , ce qui est exclu. L’ensemble Im(f) ∩ Im(g) = {s} est
donc un singleton. Fixons y ∈ Y . Pour tout x ∈ X, on a alors (x, y) ∈ X × Y = X ×S Y ,
d’où f(x) = g(y) = s, ce qui implique que Im(f) est inclus dans Im(f) ∩ Im(g), auquel cas ils
cöıncident. De même, on obtient Im(g) = {s}. Réciproquement, si S = {s} est un singleton,
pour tout (x, y) ∈ X × Y , on a f(x) = g(y) = s, d’où l’identité X ×S Y = X × Y .

2. Considérons les applications π1 : X ×S Y → X et π2 : X ×S Y → Y définies par π1(x, y) = x
et π2(x, y) = y. Montrer que π1 est surjective si et seulement si Im(f) ⊂ Im(g). De même π2 est
surjective si et seulement si Im(g) ⊂ Im(f). En particulier π1 et π2 sont toutes deux surjectives si
et seulement si Im(f) = Im(g).

L’application π1 est surjective si et seulement si, pour tout x ∈ X, il existe (x, y) ∈ X × Y tel
que f(x) = g(y), ce qui traduit le fait que pour tout x ∈ X on a f(x) ∈ Im(g), cette dernière
condition étant équivalente à Im(f) ⊂ Im(g).

On suppose désormais que X,Y et S sont des groupes et que les applications f et g sont des homomor-
phismes surjectifs de groupes. Dans la suite, on se restreint au cas où f et g sont surjectifs. Dans cette
situation, les applications π1 et π2 sont surjectives (cf. le point ci-dessus).

3. Vérifier que X×SY est un sous-groupe de X×Y , qu’il contient ker(f)×ker(g), que les applications
π1 et π2 sont des homomorphismes de groupes et que l’on a les identités ker(π1) = 1 × ker(g) et
ker(π2) = ker(f)× 1.

Tout d’abord, X×S Y est non vide, car il contient l’élément (1, 1). Étant donnés deux éléments
g = (x, y) et h = (u, v) de X ×S Y , on a les identités gh−1 = (xu−1, yv−1) et

f(xu−1) = f(x)f(u)−1 = g(y)g(v)−1 = g(yv−1),

d’où gh−1 ∈ X ×S Y , ce qui implique que X ×S Y est un sous-groupe de X × Y . Étant donné
(x, y) ∈ ker(f)× ker(g), on a f(x) = 1 = f(y), d’où (x, y) ∈ X ×S Y et, par, suite, l’inclusion
ker(f)× ker(g) ⊂ X ×S Y . L’application f est un homomorphisme de groupes, car restriction
de la projection X × Y → X, qui est un homomorphisme. Finalement, on a π1(x, y) = 1 si et
seulement si x = 1, auquel cas g(y) = f(x) = 1, ou encore y ∈ ker(g), ce qui donne l’inclusion
ker(π1) ⊂ 1 × ker(g). Réciproquement, on a l’inclusion f(1 × ker(g)) = {1}, d’où l’inclusion
1× ker(g) ⊂ ker(π1), qui est alors une égalité.

4. On suppose X et Y finis. Justifier le fait que S et X×SY sont finis et montrer que l’on a l’indentité

|S| · |X ×S Y | = |X| · |Y |.

Si X et Y sont finis, alors S est fini (car les homomorphismes f et g sont surjectifs) et
X×S Y est fini, car sous-ensemble de X×Y , qui est fini. L’homomorphisme π1 étant surjectif,
le théorème d’isomorphisme pour les groupes affirme que X est isomorphe au quotient de
X ×S Y par ker(π1), d’où l’identité |X ×S Y | = |X| · | ker(π1)|. D’après le point précédent, on
a ker(π1) = 1× ker(g), d’où | ker(π1)| = | ker(g)|. Finalement, l’homomorphisme Y → S étant
surjectif, on obtient l’identité |Y | = | ker(g)| · |S|, ce qui permet de conclure.
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5. Soient H et K deux sous-groupes distingués d’un groupe G. Dans la suite, on pose X = G/H et
Y = G/K. On a alors des homomorphismes surjectifs canoniques u : G→ X et v : G→ Y .

(a) Vérifier que l’ensemble
HK = {hk | h ∈ H, k ∈ K}

est un sous-groupe distingué de G et que c’est le plus petit sous-groupe contenant H ∪K. En
posant S = G/HK, on obtient alors des homomorphismes canoniques surjectifs de groupes
f : X → S et g : Y → S et l’on peut donc considérer le produit fibré X ×S Y .

Soient x = ab et y = cd deux éléments de HK, avec a, c ∈ H et b, d ∈ K. Le sous-groupe K
étant distingué, on a dbb−1 = e ∈ H, d’où l’identité ed−1 = d−1e et, par suite, les relations

xy−1 = ab(cd)−1 = abd−1c−1 = ad−1ec−1,

avec ad−1 ∈ H et ec−1 ∈ K (car H et K sont des sous-groupes de G), d’où xy−1 ∈ HK,
ce qui montre que HK est un sous-groupe de G. Finalement, étant donné x = hk ∈ HK et
g ∈ G, on a l’identité g−1hkg = (g−1hg)(g−1kg). Les sous-groupes H et K étant distingués,
on a g−1hg ∈ H et g−1kg ∈ K, d’où g−1xg ∈ HK, ce qui montre que HK est distingué.
Finalement, si F est un sous-groupe de G contenant H et K, il contient hk pour tout h ∈ H
et tout k ∈ K, d’où l’nclusion HK ⊂ F , ce qui implique que HK est le plus petit sous-groupe
de G contenant H et K.

(b) Considérons l’homomorphisme de groupes h : G → X × Y défini par h(x) = (u(x), v(x)).
décrire son noyau et montrer que son image cöıncide avec X ×S Y . En déduire le théorème
des restes chinois pour les groupes, qui affirme que les groupes X ×S Y et G/H ∩ K
sont isomorphes. En particulier, pour G = HK, on en déduit un isomorphisme entre X × Y
et G/H ∩K.

Par définition, on a u(x) = Hx, d’où ker(u) = H. De même, on a ker(v) = K. La relation
x ∈ ker(h) se traduit par u(x) = 1 et v(x) = 1, ou encore x ∈ ker(u) ∩ ker v = H ∩K. Étant
donné x ∈ G, on a

f(u(x)) = f(Hx) = HKx = g(Kx) = g(v(x)),

d’où h(x) = (u(x), v(x)) ∈ X ×S Y . Réciproquement, étant donné (a, b) ∈ X ×S Y , on a
a = Hx et b = Ky, avec x, y ∈ G. On a alors l’identité HKx = HKy, ce qui se traduit par
l’existence de h ∈ H et k ∈ K tels que x = hky. En posant z = h−1x = ky, on a les identités
Hz = Hx et Kz = Ky, ou encore u(z) = a et v(z) = b, d’où (a, b) ∈ Im(h). On a donc
l’inclusion X ×S Y ⊂ Im(h), qui est alors une égalité. Le théorème d’isomorphisme pour les
groupes affirme alors que les groupes G/H ∩K et X ×S Y sont isomorphes.

(c) Nous dirons que deux éléments x, y ∈ G sont congrus modulo H si xy−1 ∈ H, ce qui revient
à affirmer que x et y définissent le même élément de X. On écrit alors x ≡ y (mod H). Étant
donnés a, b ∈ G, on s’intéresse à l’existence d’un élément x ∈ G tel que

x ≡ a (mod H),

x ≡ b (mod K).

Déduire du point précédent qu’un tel élément existe si et seulement si a et b sont congrus
modulo HK et qu’il est alors unique modulo H ∩ K. En particulier, pour G = HK, une
solution existe toujours.
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Considérons les éléments Ha ∈ X et Kb ∈ Y . L’existence d’une solution x du système de
congruences se traduit alors par les relations Hx = Ha et Kx = Kb, qui sont équivalentes
à h(x) = (Ha,Hb). D’après le point précédent, un tel élément existe si et seulement si on a
l’identité HKa = HKb, ou encore ab−1 ∈ HK. Si deux éléments x, y ∈ G sont solution du
système, on a alors h(x) = h(y), ou encore xy−1 ∈ ker(h) = H ∩K, ce qui permet de conclure.

On suppose finalement que X,Y et S sont des anneaux et que les applications f er g sont des homomor-
phismes d’anneaux.

8. Vérifier que X ×S Y est un sous-anneau de X × Y .

Le point 3 affirme que X ×S Y est un sous-groupe de X × Y . On a f(1) = g(1) = 1, d’où
(1, 1) ∈ X ×S Y . Étant donnés x = (a, b), y = (c, d) ∈ X ×S Y , on a les identités

f(ac) = f(a)f(c) = g(b)g(d) = g(bd),

d’où xy = (ac, bd) ∈ X ×S Y , ce qui montre que X ×S Y est un sous-anneau de X × Y .

9. Considérons deux idéaux a et b d’un anneau A. Posons X = A/a, Y = A/b et S = A/(a + b).
On a alors des homomorphismes canoniques f : X → S et g : Y → S. Montrer le théorème
des restes chinois pour les anneaux, qui affirme que les anneaux X ×S Y et A/a ∩ b sont
isomorphes.

Le théorème des restes chinois pour les groupes, démontré dans le point (5b), affirme que les
groupes X ×S Y et A/a∩ b sont isomorphes. Les homomorphismes f et g étant des homomor-
phismes d’anneaux, cet isomorphisme est automatiquesment un isomorphisme d’anneaux.

10. Avec les hypothèses et notations du point précédent, étant donnés a, b ∈ A, montrer que le système
de congruences 

x ≡ a (mod a),

x ≡ b (mod b)

admet une solution si et seulement si a est congru à b modulo a + b, auquel cas la solution est
unique modulo a ∩ b.

Ce n’est qu’une reformulation du point (5c) dans le contexte des anneaux.

11. Deux idéaux a et b de A sont étrangers si a + b = A, ce qui se traduit par l’existence de deux
éléments a ∈ a et b ∈ b vérifiant la relation a+ b = 1, appelée identité de Bézout. Montrer que
dans ce cas, on a l’identité ab = a ∩ b.

Ayant toujours l’inclusion ab ⊂ a∩b, considérons un élément x ∈ a∩b. Les idéaux a et b étant
étrangers, on a une identité de Bézout a + b = 1, avec a ∈ a et b ∈ b, d’où x = x(a + b) =
xa + xb. On a a ∈ a et x ∈ a ∩ b, ce qui donne ax ∈ ab. De même, on obtient bx ∈ ab, d’où
x = ax+ bx ∈ ab, ce qui amène à l’inclusion a ∩ b ⊂ ab, qui est alors une égalité.

12. Montrer que si a et b sont deux idéaux étrangers d’un anneau A alors les anneaux A/a×A/b et
A/ab sont isomorphes. Dans ce cas, le système de congruences du point 10 admet toujours une
solution, qui est unique modulo ab. C’est sous cette forme qu’est généralement énoncé le théorème
des restes chinois.

Si a et b sont étrangers, le quotient A/(a + b) est un singleton. Le point 1 affirme alors que
X ×S Y et X × Y cöıncident. Compte tenu du dernier point, il suffit alors d’appliquer le
théorème des restes chinois pour les anneaux.
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