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Introduction

Let K be a number field and let E be an elliptic curve defined over K. It is
known that for a positive integer N , the set of N -torsion points of E is a free
Z⧸NZ-module of rank 2, i.e.

E[N ] := {P ∈ E(K) | N · P = O} ∼= Z⧸NZ×
Z⧸NZ

with the isomorphism given by a choice of Z⧸NZ-basis of E[N ]. The action
of the absolute Galois group of K on the N -torsion points of E defines a
representation

ρE,N : Gal

(
K⧸K

)
→ Aut(E[N ]) ∼= GL2

(
Z⧸NZ

)
.

If p is a fixed prime, we can restrict to values of N of the form pn and take
the limit over n. We then obtain the representation

ρE,p∞ : Gal

(
K⧸K

)
→ Aut(TpE) ∼= GL2(Zp),

where TpE = lim←−E[pn] is the p-adic Tate module of E. If we take the product
over all primes, we obtain the adelic representation

ρE =
∏

p prime

ρE,p∞ : Gal

(
K⧸K

)
→

∏
p prime

Aut(TpE) ∼= GL2(Ẑ),

which is the representation given by the action of the absolute Galois group
of K on all the torsion points of E.
In 1972 Serre [Ser72] proved his celebrated open image theorem, stating

that if the elliptic curve E does not have (potential) complex multiplication,
then the representation ρE,p∞ is surjective for almost all primes. He actually
proved a stronger statement [Ser72, Théorème 3]: if E does not have com-
plex multiplication, then the image of the adelic representation ρE is open;
equivalently, the image of ρE has finite index in GL2(Ẑ). From now on, we
will say for simplicity that E does not have complex multiplication (CM) if it
has no potential complex multiplication. In the same paper, Serre asked the
following question.

1



2 INTRODUCTION

Question 1 (Serre’s uniformity question). Let K be a number field. Does
there exist a constant N , depending only on K, such that for every non-CM
elliptic curve E⧸K and for every prime p > N the residual representation

ρE,p : Gal

(
K⧸K

)
→ GL2(Fp)

is surjective?

Although this problem has been widely studied, the question is still open,
even in the case K = Q. At least in this case, it is conjectured that it can be
answered affirmatively (see for example [Zyw15a, Conjecture 1.12] or [Sut16,
Conjecture 1.1]).

Conjecture 2. For every elliptic curve E⧸Q without CM and for every prime
p > 37, the representation ρE,p is surjective.

Over the years, many mathematicians provided various partial results to-
wards an answer to Conjecture 2. Whenever the representation ρE,p is not sur-
jective, its image must be contained in a maximal subgroup of GL2(Fp). Serre
classified [Ser72, Section 2] all the maximal subgroups of GL2(Fp) and proved
that they can be of three types: some so-called ‘exceptional’ subgroups, the
Borel subgroups, and the normalisers of (split or non-split) Cartan subgroups.
He then showed [Ser81, §8.4, Lemma 18] that for p > 13 the exceptional sub-
groups cannot contain the image of ρE,p. Later, Mazur [Maz78] proved that
there are no isogenies of prime degree p between non-CM elliptic curves over
Q for p > 37: this is equivalent to the fact that for p > 37 the image of ρE,p
is not contained in a Borel subgroup. More precisely, he proved the following
theorem.

Theorem 3 (Mazur). Let E⧸Q be an elliptic curve without CM, and let p be a
prime such that E admits a rational isogeny of degree p. One of the following
holds:

� p ∈ {2, 3, 5, 7, 13};

� p = 11 and j(E) ∈
{
−112, −11 · 1313

}
;

� p = 17 and j(E) ∈
{
−2−1 · 172 · 1013, −2−17 · 17 · 3733

}
;

� p = 37 and j(E) ∈
{
−7 · 113, −7 · 1373 · 20833

}
.

More recently, Bilu and Parent developed their version of Runge’s method
for modular curves [BP11a], which allowed them to prove [BP11b] that the
image of ρE,p is not contained in the normaliser of a split Cartan subgroup for
sufficiently large p. The result was then sharpened by Bilu–Parent–Rebolledo
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[BPR13], who showed that the same statement holds for every p ≥ 11, with
the possible exception of p = 13. Finally, it was extended to also cover the
prime p = 13 by means of the so-called quadratic Chabauty method [BDM+19].
These results together give the following theorem.

Theorem 4. Let E⧸Q be an elliptic curve without CM. For every prime p > 7
the image of the representation ρE,p is not contained in the normaliser of a
split Cartan subgroup.

Thus, the only case that remains open is that of normalisers of non-split
Cartan subgroups. In particular, Conjecture 2 can be reformulated in the
following way.

Conjecture 5. Let E⧸Q be an elliptic curve without complex multiplication.
If p is a prime such that the image of ρE,p is contained in the normaliser of a
non-split Cartan subgroup, then p ≤ 11.

Actually, Conjecture 5 is a little bit stronger, because it also implies that
there are no non-CM elliptic curves E for which Im ρE,p is contained in the
normaliser of a non-split Cartan subgroup for 13 ≤ p ≤ 37. Unfortunately,
the techniques applied in the other cases, such as Runge’s method, cannot be
applied to the modular curves corresponding to normalisers of non-split Cartan
subgroups. However, some partial results have been obtained even in this
case. In particular, Zywina [Zyw15a] and Le Fourn–Lemos [LFL21] studied
the possibility that the image of ρE,p is strictly contained in the normaliser of
a non-split Cartan subgroup. We now recall their results.
Assuming p > 2, we let ε be the reduction modulo p of the least positive

integer which represents a quadratic non-residue in F×
p . We denote by Cns(p)

the non-split Cartan group

Cns(p) :=

{(
a εb

b a

)∣∣∣∣∣ a, b ∈ Fp, (a, b) ̸= (0, 0)

}
(0.1)

and by C+
ns(p) its normaliser, obtained as Cns(p) ∪

(
1 0

0 −1

)
Cns(p).

Theorem 6 (Zywina). Suppose that ρE,p is not surjective for a non-CM el-

liptic curve E⧸Q and a prime p > 37.

� If p ≡ 1 (mod 3), then Im ρE,p is conjugate to C+
ns(p) in GL2(Fp).

� If p ≡ 2 (mod 3), then Im ρE,p is conjugate in GL2(Fp) either to C+
ns(p)

or to the group

G(p) := {a3
∣∣ a ∈ Cns(p)} ∪{(1 0

0 −1

)
· a3

∣∣ a ∈ Cns(p)} ⊂ C+
ns(p).
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This theorem follows from Proposition 1.13 of the unpublished preprint
[Zyw15a]. A full proof is available in print as [LFL21, Proposition 1.4]. In
their paper [LFL21], Le Fourn and Lemos studied the case where Im ρE,p is
conjugate to G(p), ruling out this possibility for all sufficiently large primes
[LFL21, Theorem 1.2].

Theorem 7 (Le Fourn, Lemos). Let E⧸Q be an elliptic curve without complex

multiplication. If p > 37 is a prime number such that Im ρE,p ∼= G(p), then
p < 1.4 · 107 and j(E) ∈ Z.

In the introduction to [LFL21], the authors describe the difficulties in ex-
tending their result to primes smaller than 1.4 · 107. In particular, they show
that for any prime p > 37 and elliptic curve E⧸Q without CM for which

Im ρE,p ∼= G(p), we have log |j(E)| ≤ max{12000, 7√p} ≤ 27000, which to-
gether with the fact that j(E) ∈ Z shows that there are only finitely many
(Q-isomorphism classes of) curves to check. However, as they point out, there
seems to be no easy way to handle the remaining cases algorithmically.

In our first result, corresponding to the preprint [FL23b], we deal with the
remaining primes to prove the following simple dichotomy in Serre’s uniformity
question.

Theorem 8. Let E⧸Q be an elliptic curve without complex multiplication and

let p > 37 be a prime number. The image of ρE,p is either GL(E[p]) or the
normaliser of a non-split Cartan subgroup of GL(E[p]).

For p ≤ 37, the images of the mod-p representations attached to elliptic
curves over Q have been studied extensively (see [Zyw15a, RSZB22, BDM+23]
for the state of the art). Combined with Theorem 8, this allows us to show
the following.

Theorem 9. Let E⧸Q be an elliptic curve without CM and let p ≥ 5 be a

prime such that the image of ρE,p is contained in C+
ns(p). If Im ρE,p = G(p)

then p = 5. In all the other cases, Im ρE,p = C+
ns(p).

Similar to the observation of Le Fourn and Lemos in [LFL21, Theorem
1.3], Theorems 8 and 9 also completely settle a question of Najman [Naj18],
improving [LFL21, Theorem 1.3]. Let d ≥ 1 be a positive integer and let
IQ(d) be the set of prime numbers p for which there exists a rational elliptic

curve E⧸Q without complex multiplication and an isogeny φ : E → E′ of

degree p defined over a field K of degree [K : Q] ≤ d. From Mazur’s work
(Theorem 3) we know that IQ(1) = {2, 3, 5, 7, 11, 13, 17, 37}, and Najman’s
question concerns the sets IQ(d) for d ≥ 2. As a consequence of [LFL21,
Proposition 1.4] and Theorem 9 we obtain:
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Theorem 10. For every positive integer d we have

IQ(d) = IQ(1) ∪ {p prime | p ≤ d− 1}.

This is an unconditional version of [Naj18, Theorem 4.1], and the proof
relies on the same arguments.

A more general goal is to classify all the possible images of ρE inside GL2(Ẑ).
This is known as Mazur’s ‘Program B’ [Maz77]. In recent years, much progress
has been made in the case of elliptic curves defined over Q. Most of the
results are given either in the ‘vertical’ or ‘horizontal’ direction, i.e. they either
classify the possible images of the p-adic representations ρE,p∞ , or study the
entanglement phenomenon at composite level.

A lemma of Serre [Ser98, IV-23, Lemma 3] implies that, for p ≥ 5, the

p-adic representation attached to E⧸Q is surjective if and only if the mod-p
representation is surjective. In particular, to classify all the possible images of
ρE,p∞ , it suffices to consider the case where ρE,p is not surjective. Greenberg
[Gre12] and Greenberg–Rubin–Silverberg–Stoll [GRSS14] classified the p-adic
representations ρE,p∞ for p ≥ 5 under the assumption that Im ρE,p is contained
in a Borel subgroup. We present their result for non-CM elliptic curves.

Theorem 11. Let E⧸Q be an elliptic curve without CM and let p ≥ 5 be

a prime such that E admits a rational p-isogeny (i.e., such that Im ρE,p is
contained in a Borel subgroup).

� If p > 5 then Im ρE,p∞ ⊇ I + pM2×2(Zp), and in particular [GL2(Zp) :
Im ρE,p∞ ] = [GL2(Fp) : Im ρE,p].

� If p = 5, then [GL2(Z5) : Im ρE,5∞ ] divides 5[GL2(F5) : Im ρE,5].

Proof. The statement follows combining [Gre12, Theorems 1 and 2], Theorem
3, [Gre12, Remark 4.2.1], and the main result of [GRSS14].

We remark that, by Theorem 3, the above result only applies to the primes
{5, 7, 11, 13, 17, 37}.
Later, Rouse and Zureick-Brown [RZB15] completely classified all the pos-

sible 2-adic images. Then, Sutherland and Zywina [SZ17] described all the
possible open subgroups G < GL2(Ẑ) for which there are infinitely many iso-

morphism classes of elliptic curves E⧸Q with Im ρE = G. Eventually, Rouse,

Zureick-Brown and Sutherland [RSZB22] gave a detailed description of all the
possible p-adic images for all primes p whenever the image of ρE,p is not con-
tained in the normaliser of a non-split Cartan. We will refer to the modular
curves classified in [RSZB22] by the labels they were given there, which we
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will call RSZB labels. We now give the precise statement of their theorem.
Given an integer ε which is not a square modulo p, denote by

C+
ns(p

n) :=

{(
1 0

0 ±1

)
·

(
a εb

b a

)∣∣∣∣∣ a, b ∈ Z⧸pnZ, (a, b) ̸≡ (0, 0) mod p

}

the normaliser of a non-split Cartan subgroup of GL2

(
Z⧸pnZ

)
(see Chapter

2 for definitions).

Theorem 12 ([RSZB22, Theorem 1.6]). Let E⧸Q be an elliptic curve without
CM. Let p be a prime number and set G := Im ρE,p∞. Exactly one of the
following is true:

� the modular curve XG has infinitely many rational points and ±G is
listed in [SZ17, Tables 1–4];

� the modular curve XG has an ‘exceptional’ rational point, and the pair
(G, j(E)) appears in the finite list in [RSZB22, Table 1];

� G (mod pn) is contained in C+
ns(p

n) for pn ∈ {33, 52, 72, 112}∪{p prime |
p ≥ 19};

� G is a subgroup of one of the groups with RSZB label 49.147.9.1 or
49.196.9.1.

Building on the work of Zywina [Zyw15a], we give a restricted list of sub-
groups G < GL2(Zp) such that Im ρE,p∞ is possibly equal to G whenever
Im ρE,p is contained in the normaliser of a non-split Cartan, dealing with
the cases not covered by Theorem 12. We will prove the following result as
Theorem 6.1.5.

Theorem 13. Let E⧸Q be an elliptic curve without CM. Let p be an odd prime

such that Im ρE,p ⊆ C+
ns(p) up to conjugation, and let n ≥ 1 be the smallest

integer such that Im ρE,p∞ ⊇ I + pnM2×2(Zp). One of the following holds:

� p = 3 and ± Im ρE,3∞ is conjugate to one of the groups with RSZB
labels 3.6.0.1, 3.12.0.1, 9.18.0.1, 9.18.0.2, 9.36.0.1, 9.36.0.2,
9.36.0.3;

� p = 5 and the image of ρE,5∞ is the group with RSZB label 5.30.0.2
up to conjugation;

� The image of ρE,pn is equal to C+
ns(p

n) up to conjugation;
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� n = 2 and

Im ρE,p2 ∼= C+
ns(p)⋉

{
I + p

(
a εb

−b c

)}
,

with the semidirect product defined by the conjugation action.

While the eight groups with RSZB labels given in the first two cases of
Theorem 13 actually occur for some elliptic curves E, the last two cases con-
jecturally never occur for large values of p. In particular, we know examples
of elliptic curves E for which Im ρE,pn ∼= C+

ns(p
n) only for pn ≤ 11, while the

last case is only known to happen for p = 3.

On the other hand, many authors have studied the ‘horizontal’ entanglement
classification problem, i.e.the classification of intersections of division fields at
different primes, which we call entanglement fields. Serre [Ser72, Proposition
22] proved that for every non-CM elliptic curve E defined over Q, the image
of ρE lies in an index-2 subgroup of GL2(Ẑ), even if the p-adic representation
ρE,p∞ is surjective for every prime p. More recent results focus on the study of
the intersection of Q(E[p]) and Q(E[q]) for two different primes p, q, usually
small (see for example [BJ16, Mor19, DM22, JM22, DLR23]). In Section
6.3, we prove some general theorems to bound the degree of entanglement
fields, especially in the case where one of the division fields has Galois group
contained in the normaliser of a non-split Cartan. We then give a bound
on the growth of the adelic index with respect to the product of the p-adic
indices due to the entanglement phenomenon. In particular, in Lemma 6.4.10
(precisely, equation (6.4.5)) we show the following.

Proposition 14. Let E⧸Q be a non-CM elliptic curve that does not satisfy
Conjecture 5 and let α be the number of primes p > 5 for which the image of
ρE,p is contained in C+

ns(p). We have

[GL2(Ẑ) : Im ρE ] ≤ 1536 · 6α
∏

p prime

[GL2(Zp) : Im ρE,p∞ ].

A problem equivalent to Question 1 (uniformity question) is the following.

Question 15. Let K be a number field. Does there exist a constant N , de-
pending only on K, such that for every non-CM elliptic curve E⧸K we have

[GL2(Ẑ) : Im ρE ] < N?

The equivalence between the two questions can be shown in the following
way: if there exists an integer M such that for every prime p greater than
M the mod-p representation is surjective, then by [Ser98, IV-23, Lemma 3]
the same holds for p-adic representations. Consider now, for every prime p
smaller than or equal to M , all the possible subgroups of GL2(Fp) and their
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corresponding modular curves. Some of these curves will have finitely many
K-rational points and we can ignore them. For the other modular curves, if we
consider a rational point on one of them and the corresponding elliptic curve
E, either the image of the p-adic representation ρE,p∞ contains the group
I + pM2×2(Zp) (and hence the p-adic index is bounded), or E corresponds to
a K-rational point on a level p2 modular curve. We can then repeat the same
argument for modular curves of level p2, and go on with higher powers of p.
Since the genus of the modular curves grows with the level, there exists an
integer n such that all the modular curves of level pn have genus greater than
1, and then they will have a finite number of K-rational points by Faltings
theorem (see [Ara08, Theorem 1.3]). This gives a bound on the indices of
the p-adic representations. Serre proved that the image of ρE has finite index
in the product

∏
Im ρE,p∞ over the finite set of primes containing 2, 3, 5 and

those primes for which ρE,p∞ is not surjective [Ser98, IV-26, Lemma 5]. Since
for every p the pro-p Sylow subgroup of GL2(Zp) has a finite index, it suffices
to show that the intersection of the image of

∏
ρE,p∞ with the product of the

pro-p Sylow subgroups has finite index. However, a subgroup of a product
of p-groups (for different primes p) is a product of subgroups, and since the
projections on GL2(Zp) have finite index, so have their product.
Recently, Zywina [Zyw11] provided a bound on the adelic index in the case

where the elliptic curve E is defined over Q, polynomial in terms of the height
h(j(E)). Moreover, he also gave a bound in terms of the conductor of E.

Theorem 16 (Zywina). Let E be a non-CM elliptic curve defined over Q.

1. There are absolute constants C and γ such that

[GL2(Ẑ) : Im ρE ] ≤ C(max{1,h(j(E))})γ ,

where h(j(E)) is the logarithmic Weil height of the j-invariant of E.

2. Let N be the product of the primes of bad reduction of E. There is an
absolute constant C such that

[GL2(Ẑ) : Im ρE ] ≤ C
(
68N(1 + log logN)

1
2

)24ω(N)
,

where ω(N) is the number of distinct prime divisors of N .

The bound in terms of the height of j(E) relies on previous results of Masser
and Wüstholz on isogenies [MW93b, MW93a]. Their results were made ex-
plicit by many authors, and optimised by Gaudron and Rémond. For example,
in [GR14] they gave a bound on the minimal degree of an isogeny between two
elliptic curves which is quadratic in the stable Faltings height of the curves
(the stable Faltings height of an elliptic curve E is approximately 1

12 h(j(E))
as shown in Theorem 1.2.6). Both of Zywina’s bounds are ineffective. Later,
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Lombardo gave a bound for the adelic index for elliptic curves defined over a
generic number field [Lom15, Corollary 9.3 and Remark 1.1]. His proof ex-
ploits Gaudron–Rémond’s improvements to the isogeny theorem. This bound
is effective and polynomial in terms of the Faltings height of the curve.

Theorem 17 (Lombardo). Let E be a non-CM elliptic curve defined over a
number field K and let hF (E) be the stable Faltings height of E. We have[

GL2(Ẑ) : ρE
(
Gal(K/K)

)]
< γ1 · [K : Q]γ2 ·max {1,hF (E), log[K : Q]}γ2 ,

where γ1 = exp(1.9 · 1010) and γ2 = 12395.

On the other hand, Zywina’s bound in terms of the conductor is proved
building on previous work of Serre and Kraus. In particular, given a non-
CM elliptic curve E defined over Q, under GRH Serre [Ser81, Theorem 22]
obtained the following bound in terms of the conductor for the largest prime
p for which ρE,p is not surjective.

Theorem 18 (Serre). Let E⧸Q be an elliptic curve without CM and let N be
the product of the primes of bad reduction of E. Suppose that the generalised
Riemann hypothesis is true. There exists a constant c such that for every
prime number p > c logN(log logN)3 the representation ρE,p is surjective.

Later, Kraus [Kra95] proved a similar unconditional effective result for mod-
ular elliptic curves. Thanks to the modularity theorem [BCDT01], this is now
known to be true for every elliptic curve.

Theorem 19 (Kraus). Let E⧸Q be an elliptic curve without CM and let N
be the product of the primes of bad reduction of E. For every prime number
p ≥ 68N(1 + log logN)

1
2 the representation ρE,p is surjective.

Cojocaru [Coj05] extended Kraus’s result to bound the product of the
primes p for which the representation ρE,p is not surjective. However, as
Zywina notes in [Zyw11, Remark 3.4], there seems to be a mistake in her
proof. Recently, Mayle and Wang [MW24] gave an effective sharp version of
Serre’s result assuming GRH.
One of the main aim of this thesis is to provide some bounds on the adelic

index when E is an elliptic curve defined over Q. In particular, in Theorem
6.4.1 we give a bound in terms of the stable Faltings height of the curve which
is much better than that of Lombardo. Moreover, we give an effective and
improved version of Zywina’s bound in terms of the radical of the conductor.

Theorem 20. Let E⧸Q be an elliptic curve without CM.

1. If hF (E) is the stable Faltings height of E, we have

[GL2(Ẑ) : Im ρE ] < 9.5 · 1020(hF (E) + 40)4.42.
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2. We have

[GL2(Ẑ) : Im ρE ] < hF (E)
3+O

(
1

log log hF (E)

)

as hF (E) tends to ∞, where the constant is explicit.

3. If N is the product of the primes of bad reduction of E and ω(N) is the
number of distinct prime factors of N , we have

[GL2(Ẑ) : Im ρE ] < 2488320
(
51N(1 + log logN)

1
2

)3ω(N)
.

Description of contents

In this thesis, we present the proofs of Theorems 8, 9 and 20. We now briefly
describe the strategy behind these proofs.

The proofs of Theorems 8 and 9 follow that of Theorem 7 by Le Fourn and
Lemos. Their proof is based on two fundamental steps: first, they show that
an elliptic curve satisfying the hypothesis of Theorem 7 has integral j-invariant
(via the formal immersion method of Mazur). Second, they prove an upper
bound on |j(E)| by combining Runge’s method with an effective surjectivity
theorem, showing that Im ρE,p = GL(E[p]) for all p greater than an explicit
bound depending on j(E).

The first step works in complete generality: Theorem 7 gives the integrality
of j(E) as soon as p > 37, so – in order to prove Theorem 8 – we can assume
j(E) ∈ Z. Our main contribution lies in a much sharper upper bound on
|j(E)|, which we achieve through three main innovations:

� We prove a sharp effective surjectivity theorem (in the spirit of [MW93a],
[Lom15], and [LF16, Theorem 5.2]) by refining the proof of the effective
isogeny theorem of Gaudron and Rémond [GR14]. The main results
we show are Theorem 4.1.1 and Theorem 4.2.5. We obtain substan-
tially improved constants by showing that certain auxiliary subvarieties
considered in the proof are all trivial in our case (see Lemma 4.1.11).

� Second, we perform a detailed analysis of the local properties of the
representations ρE,p. This analysis yields several improvements, such as
ruling out all primes p ≡ −1 (mod 9) (Theorem 3.1.4) and proving that
p4 divides j(E) (Proposition 3.2.14). Furthermore, we show that j(E)
can be written as pkc3 for some integer c. When we eventually reduce
the proof of Theorem 8 to an explicit calculation, this latter relation has
the effect of dividing by three on a logarithmic scale the number of tests
we have to perform, significantly reducing the computational component
of our approach.
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� Finally, the third and most significant innovation is our much more de-
tailed study of the modular units on the curve XG(p). The main ingre-
dients that lead to our improved bound on log |j(E)| are sharp bounds
on character sums, which essentially draw on Weil’s method to treat
Kloosterman sums [Wei48], an idea based on Abel’s summation to am-
plify certain cancellation phenomena among roots of unity, and direct
computations to fully exploit the extent of these cancellations. All of
these improvements are crucial to lowering the bound on log |j(E)| to
values that are computationally tractable (see Theorem 5.4.16), and the
result we obtain is sharp enough that the final computation takes less
than two minutes of CPU time.

We now describe the strategy behind the proof of Theorem 20. It combines
the different results described above about the growth of the adelic index in
the ‘vertical’ and ‘horizontal’ directions. In particular, the proof consists of
three main steps.

� For every odd prime p, we classify the possible images of ρE,pn whenever
the image of ρE,p is contained in the normaliser of a non-split Cartan
(Theorem 13). The main aim will be to show that if n is the smallest
integer for which Im ρE,p∞ contains I + pnM2×2(Zp), then the image of
ρE,pn is exactly C+

ns(p
n). This will allow us to obtain a good bound on

the p-adic index.

� We generalise the effective surjectivity theorem to show that the product
of the prime powers pn for which the image of ρE,pn is contained in
C+
ns(p

n) is bounded linearly in the stable Faltings height of E (Theorems
4.1.1 and 4.2.5). This is used to bound the product of the p-adic indices
for all the primes p such that Im ρE,p ⊆ C+

ns(p). While in the proofs
of Theorems 8 and 9 the most important improvement concerned the
applicability of the theorem to curves with small height, in this case
the main improvements are the generalisation of Le Fourn’s theorem
([LF16, Theorem 5.2]) to product of prime powers and the elimination
of the dependence on the cardinality of C, where C is the set of primes
p for which the mod-p representation is contained in the normaliser of
Cartan subgroup.

� We give a bound on the entanglement phenomenon among all primes
to obtain a bound on the adelic index from the bound on the product
of the p-adic indices obtained via the surjectivity theorem. The main
ingredient to obtain a good bound is the study of the ramification index
of p in the field Q(E[pn]). Indeed, when the image of ρE,pn is contained
in the normaliser of a non-split Cartan subgroup, p is ‘almost totally’
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ramified in Q(E[p]). On the other hand, by a variant of the Néron–Ogg–
Shafarevich criterion (see Theorem 3.1.1) we know that the ramification
index of p inside Q(E[N ]) for p ∤ N is low. This shows that the inter-
section Q(E[p]) ∩ Q(E[N ]) is small. These ramification arguments rely
on the work of Lozano-Robledo [LR16] and Smith [Smi23].

We now summarise the contents of each chapter and describe their main
goal.

In Chapter 1, we give some preliminary results used throughout the thesis.
We begin by giving some elementary lemmas. Then, we study in detail the
stable Faltings height of elliptic curves defined over the rationals. We conclude
the chapter with a profinite version of the Schur–Zassenhaus lemma and an
application to groups of matrices in the p-adic numbers.

In Chapter 2, we study the subgroups of GL2(Zp) that satisfy some restric-
tive conditions. In particular, we consider the subgroups that – modulo p –
are contained in the normaliser of a non-split Cartan (but not in the Cartan)
and that contain all the homotheties, i.e. the elements in Z×

p · I. We prove
some theorems about the structure of these groups, which we call N-Cartan
lifts. These results will play a crucial role in the classification of the possible
images of the representations ρE,p∞ , because one can show that if p is a prime
such that Im ρE,p ⊆ C+

ns(p), then Im ρE,p∞ is an N-Cartan lift.

In Chapter 3, we investigate the local properties of the representations ρE,pn

when their image is contained in the normaliser of a non-split Cartan sub-
group. We show that E has potentially good reduction at every prime ℓ ̸≡ ±1
(mod pn) (Proposition 3.1.2). Then, given a prime ℓ, we describe the image
of the ℓ-inertia group via ρE,p. This will allow us to show that if the image
of ρE,p is contained in the subgroup G(p) defined in Theorem 6 then p ̸≡ −1
(mod 9), and j(E) can be written as pd·c3. We then introduce the central topic
of the chapter, the canonical subgroup. We show that if Im ρE,p is contained
in C+

ns(p) then E does not have a canonical subgroup of order p (Theorem
3.2.9). This implies that the p-adic valuation of the Hasse invariant of E is
quite large, a fact we will use to show that if Im ρE,p ⊆ G(p) then the p-adic
valuation of j(E) is at least 4.

In Chapter 4, precisely in Theorem 4.1.1, we provide our version of the effec-
tive surjectivity theorem. We modify and improve the proofs of Le Fourn’s the-
orem ([LF16, Theorem 5.2]) and Gaudron–Rémond’s theorem ([GR14, The-
orem 1.4]). In particular, we obtain a better result via two main improve-
ments: the first is to show that certain auxiliary abelian varieties called Bσ
are all trivial (Lemma 4.1.11), making the bound efficacious for elliptic curves
with small height. The second improvement consists in a generalisation of Le
Fourn’s theorem in order to consider the products of prime powers (instead
of the product of primes). We then conclude the chapter by proving some
bounds on the prime powers pn for which Im ρE,pn is contained in the nor-
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maliser of a Cartan subgroup whenever j(E) /∈ Z. In fact, in this case one can
obtain much better constants. The proofs of these last results only rely on
local arguments, and hence have a completely different approach with respect
to the periods theorem.

In Chapter 5, we study the existence of non-CM integral points on the
modular curves X+

ns(N), i.e. rational points P ∈ X+
ns(N)(Q) such that j(P ) ∈

Z. We introduce the modular units, which are the main tool used to compute
integral points. They will be exploited in two different ways: via Baker’s
bound for linear forms in logarithms and via Runge’s method for modular
curves. The first one is used in [BS14] to show that every elliptic curve such
that Im ρE,p is contained in C+

ns(p) has j-invariant uniformly bounded in terms
of p. The bound obtained is really large, but one can lower it using some
techniques of diophantine approximation and then test the remaining cases.
We will follow this strategy to show that the curve X+

ns(25) has no non-CM
integral points (Proposition 5.3.9). The Runge method is used instead to find
the integral points on the curve XG(p), where G(p) is the group defined in
Theorem 6. Indeed, this is the strategy followed by Le Fourn and Lemos to
obtain their first bound on p in Theorem 7. However, we will conduct a deeper
study of the modular units involved to obtain stronger bounds. To this end,
we take into account the cancellation among roots of unity in their Fourier
expansion. In particular, we followWeil’s strategy for bounding Kloosterman’s
sums. Using Abel’s summation we then rewrite the sums of roots of unity
we already estimated in a different form to amplify as much as possible the
cancellation phenomena. We conclude the chapter by proving Theorems 8
and 9. Combining the bound obtained via Runge’s method with the effective
surjectivity theorem, we obtain an absolute bound on the j-invariant of elliptic
curves E with Im ρE,p = G(p). Since by Theorem 7 these curves have integral
j-invariant, we are left with a finite number of them. As proved in Chapter
3, the j-invariant of E must be of the form pd · c3, with d ≥ 4 and p ≡ 2, 5
(mod 9). These restrictive properties reduce a lot the number of admissible
j-invariants. We can then test the remaining curves by checking directly that
none of them satisfies Im ρE,p ∼= G(p).

In Chapter 6, we apply the classification results proved in Chapter 2 to de-
scribe the possible images of the representations ρE,p∞ : in Proposition 6.2.1
this allows us to explicitly compute the p-adic indices at every p in terms of
the smallest power pn for which Im ρE,p∞ ⊇ I + pnM2×2(Zp). Then, we study
the entanglement of division fields in the non-split Cartan case. Using a re-
sult by Lozano-Robledo [LR16] and Smith [Smi23], we show that if Im ρE,pn

is contained in C+
ns(p

n) then the ramification index of p in Q(E[pn]) is at least
p2n−p2n−2

6 , which is quite close to the degree [Q(E[pn]) : Q] (Theorem 6.3.1).
In particular, p is almost totally ramified in Q(E[pn]). On the other hand,
by Theorem 3.1.1 we know that for every other prime q ̸= p, the ramifica-
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tion index of p in Q(E[q∞]) is at most 6. This implies that the intersection
Q(E[q∞])∩Q(E[pn]) has small, uniformly bounded degree. We use this fact to
bound the adelic index [GL2(Ẑ) : Im ρE ] in terms of the product of the p-adic
indices [GL2(Zp) : Im ρE,p∞ ] (equation (6.4.5)). Combining these results with
the effective surjectivity theorem (Theorem 4.2.5), we obtain a bound on the
adelic index in terms of the stable Faltings height of the curve. We conclude
the chapter by using results in the previous sections to give another bound on
[GL2(Ẑ) : Im ρE ] in terms of the radical of the conductor of E. The proof of
this result follows that of Zywina [Zyw11], which builds on previous work of
Serre [Ser81] and Kraus [Kra95].



CHAPTER 1
Preliminaries

In this chapter we collect some auxiliary results that will be used in some
proofs in the other chapters. In particular, we provide explicit comparisons
between the stable Faltings height of an elliptic curve over the rationals and
its modular height, i.e. the logarithmic Weil height of its j-invariant. Then,
we give a variant of Schur–Zassenhaus lemma for p-adic matrices.

1.1 Elementary lemmas

We start by recalling the following lemma, which can be found in [BPR13,
Lemma 3.5].

Lemma 1.1.1 (Bilu, Parent, Rebolledo). For every x ∈ (0, 1) we have

−
∞∑
k=1

log(1− xk) < − π2

6 log x
.

The next two lemmas will be useful for the proof of Theorem 8 and Theorem
9. In particular, we will use them in the parts of our argument that rely on
the complex interpretation of modular curves.

Lemma 1.1.2. Let p be a positive integer. Let τ ∈ H be a point in the standard
fundamental domain for the action of SL2(Z) (as defined in Definition 1.2.1),

let q = e2πiτ , and let q
1
p be the p-th root of q given by (e2πiτ )

1
p = e

2πiτ
p . We

have

|1− q
1
p | < 1− |q|

1
p + |q|

1
2p
π

p
.

15
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Proof. Since τ is in the standard fundamental domain, we have |ℜ{τ}| ≤ 1
2 ,

hence we can write q
1
p = |q|

1
p eiθ with |θ| ≤ π

p . By using that
√
a2 + b2 ≤ |a|+|b|

for all real numbers a and b, and that cos θ ≥ 1− θ2

2 , we obtain

|1− q
1
p | =

√
(1− |q|

1
p cos θ)2 + |q|

2
p sin2 θ

=

√
1− 2|q|

1
p cos θ + |q|

2
p

=

√
(1− |q|

1
p )2 + 2|q|

1
p (1− cos θ)

≤ 1− |q|
1
p + |q|

1
2p |θ|,

with equality holding only for θ = 0, and the lemma follows.

Lemma 1.1.3. Let p > 1 be an integer and let x ∈ (0, 1). We have

1. 1− x
1
p < | log x|

p ;

2. x
1
p

1−x
1
p
< p

| log x| .

Proof. Both results are obtained from the inequality log y < y−1, with y = x
1
p

and y = x
− 1

p respectively.

The following Lemma will be used in the proof of Theorem 20 and consists in
an effective variant of Merten’s theorem. Given an integer N > 2, we want to

bound the product
∏
p|N

(
1 + 1

p

)
over the prime divisors of N . A first result

was given by Kraus in [Kra95], which bounds the product with 4(1+log logN).
In the same article [Kra95], in a note at the end of the paper, he wrote that
Serre remarked that one can improve the bound by replacing the constant 4
with 2.4. More recently, in [SP11, Corollary 2] the authors proved that the
product above is bounded by eγ log logN , where γ is the Euler–Mascheroni
constant and eγ ≈ 1.78. Exploiting the results contained in [SP11], we show
that we can actually replace the constant in Kraus’s lemma with 6eγ

π2 ≈ 1.081,
which is asymptotically optimal (as shown in [SP11, Proposition 3]).

Lemma 1.1.4. Let N > 6 be a positive integer. We have∏
p|N

p prime

(
1 +

1

p

)
<

6eγ

π2
(1 + log logN).

Proof. First of all, we notice that if the statement holds for a number N ,
then it holds for all the numbers N ′ > N divisible by the same primes as N ,
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hence it suffices to verify the inequality for squarefree numbers. Moreover, if
N =

∏k
i=1 pi and N

′ =
∏k
i=1 qi with pi ≤ qi for every i, then∏

p|N

(
1 + 1

p

)
1 + log logN

≥

∏
q|N ′

(
1 + 1

q

)
1 + log logN ′ :

indeed, this is true if and only if

k∏
i=1

1 + 1/pi
1 + 1/qi

≥
1 + log

(∑k
i=1 log pi

)
1 + log

(∑k
i=1 log qi

) ,
which is true because LHS ≥ 1 and RHS ≤ 1. Therefore, it suffices to
consider the primorials Nk =

∏k
i=1 pi, where pi is the i-th prime number and

k ≥ 3, and the numbers N whose radical is smaller than 7. In the latter case,
it suffices to notice that either N is a power of a prime, and in this case we
have ∏

p|N

(
1 + 1

p

)
1 + log logN

≤ 3

2(1 + log log 7)
< 1 <

6eγ

π2
,

or N has radical equal to 6, and so we have N ≥ 12 and∏
p|N

(
1 + 1

p

)
1 + log logN

≤
3
2 ·

4
3

1 + log log 12
< 1.05 <

6eγ

π2
.

If instead N is the primorial Nk, suppose first that k ≥ 2263 (or equivalently
pk > 20000). By [SP11, Proposition 4] we have

∏
p|Nk

(
1 +

1

p

)
=

k∏
i=1

(
1 +

1

pi

)
≤

6 exp
(
γ + 2

pk

)
π2

(
log logNk +

1.125

log pk

)

<
6eγ

π2

(
log logNk +

1.125

log pk

)
+

6eγ

π2
· 3
pk

(
log logNk +

1.125

log pk

)
,

where the last inequality comes from the fact that e
2
x < 1 + 3

x for x > 20000.
Using the trivial inequality

log logNk < log k + log log pk < 2 log pk

and the fact that pk > 20000 we obtain∏
p|Nk

(
1 +

1

p

)
<

6eγ

π2

(
log logNk +

1.125

log pk
+

6 log pk
pk

+
4

pk log pk

)

<
6eγ

π2
(log logNk + 0.12) ,

(1.1.1)
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which is better than the statement of the lemma. We can then test the re-
maining cases with 2 < k < 2263; the computation takes less than one second
in MAGMA.

The following lemma is not an elementary result. However, it easily follows
from [LFL21, Theorem 1.2].

Lemma 1.1.5. Let E⧸Q be an elliptic curve without complex multiplication.

If p > 5 is a prime number such that Im ρE,p ∼= G(p), where G(p) is the group
defined in Theorem 6, then p ≥ 19 and j(E) ∈ Z.

Proof. Suppose by contradiction that j(E) is not an integer. By [LFL21,
Theorem 1.2] we have p ∈ {7, 11, 13, 17, 37}. However, by Theorem 6 we know
that p ≡ 2 (mod 3), and so p ∈ {11, 17}. The case p = 11 cannot occur by
[Zyw15a, Theorem 1.6(i)], while the case p = 17 cannot occur by [BDM+23,
Theorem 1.2].

1.2 Faltings height of elliptic curves

We now give an upper bound on the stable Faltings height of an elliptic curve
over Q in terms of its j-invariant. Any elliptic curve E⧸Q can also be consid-
ered as an elliptic curve over C, so there exists a complex number τ ∈ H such
that E(C) ∼= C⧸Z⊕ τZ. We fix such a τ and set q = e2πiτ . Our results in this
section refine the properties of heights explained in [Sil86].

Definition 1.2.1. We will consider the standard fundamental domain for the
action of SL2(Z) as

F :=

{
z ∈ H : ℜ{z} ∈

(
−1

2
,
1

2

]
, |z| > 1

}
∪
{
eiθ :

π

3
≤ θ ≤ π

2

}
.

We begin with the following theorem, which combines [BP11a, Corollary
2.2] with [Paz19, Lemma 2.5].

Theorem 1.2.2. Let τ ∈ H be in the standard fundamental domain F and
let E⧸C be the corresponding elliptic curve. Set q = e2πiτ . We have

log |j(E)| ≤ max{log 3500, | log |q||+ log 2}

and

| log |q|| ≤ log(|j(E)|+ 970.8) < log |j(E)|+ 970.8

|j(E)|
.

Proof. The first inequality follows from [BP11a, Corollary 2.2], while the sec-
ond one is obtained from [Paz19, Lemma 2.5] using the fact that log(x+ a)−
log x = log

(
1 + a

x

)
< a

x .
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Corollary 1.2.3. In the setting of Theorem 1.2.2, if |j(E)| ≥ 3500, then

log |j(E)| − log 2 ≤ | log |q|| ≤ log |j(E)|+ 0.245.

Proof. We only need to notice that | log |q|| < log |j(E)| + log
(
1 + 970.8

3500

)
<

log |j(E)|+ 0.245.

Before stating the precise comparisons between heights that we need, we
record the following fact that we will use often.

Theorem 1.2.4. Let E⧸R be an elliptic curve isomorphic to C⧸Z⊕ τZ and

let q = e2πiτ . If τ is in the standard fundamental domain F for the action of
SL2(Z), then either q ∈ R (i.e. ℜ{τ} ∈ {0, 12}), or j(E) ∈ (0, 1728) (equiva-
lently, |τ | = 1).

Proof. By [Sil94, Proposition V.2.1] we know that the j-function gives a bi-
jection between R and the set C = C1 ∪ C2 ∪ C3, where C1 = {it | t ≥ 1},
C2 =

{
eiθ | π3 ≤ θ ≤

π
2

}
and C3 =

{
1
2 + it | t ≥

√
3
2

}
. Moreover, by conti-

nuity, it is easy to notice that j(C1) = [1728,+∞), j(C2) = [0, 1728] and
j(C3) = (−∞, 0]. Hence, if j(E) ̸∈ (0, 1728), then ℜτ ∈

{
0, 12
}
, which con-

cludes the proof.

Notation 1.2.5. Given x ∈ R, we will write log+ x to mean logmax{1, x}.

In the next result, as in the rest of the paper, we denote by hF (E) the
stable Faltings height of an elliptic curve E, with the normalisation of [Del85a,
Section 1.2].

Theorem 1.2.6. Let E⧸Q be an elliptic curve with stable Faltings height

hF (E). Let τ ∈ H be the point in the standard fundamental domain F such

that E(C) ∼= C⧸Z⊕ τZ, and set q = e2πiτ .

1. If |j(E)| > 3500, then

hF (E) >
h(j(E))

12
− 1

2
log log |j(E)| − 0.406 and (1.2.1)

hF (E) <
h(j(E))

12
− 1

2
log log |j(E)|+ 0.159, (1.2.2)

where h(x) is the logarithmic Weil height of x (i.e., if x = a
b with (a, b) =

1, we set h(x) = logmax{|a|, |b|}).

2. If |j(E)| ≤ 3500, then

1

12
h(j(E))− 1.429 < hF (E) <

1

12
h(j(E))− 0.135. (1.2.3)
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3. If j ∈ Z, then

hF (E) < − 1

12
log |q| − 1

2
log | log |q|| − 1

2
log 2− π2

3 log |q|
. (1.2.4)

4. We always have

hF (E) > − 1

12
log |q| − 1

2
log | log |q|| − 1

2
log 2− 2|q|

1− |q|
. (1.2.5)

Remark 1.2.7. It is well known that | hF (E) − h(j)
12 | < log(h(j) + 1) + O(1)

(see [Sil86, Proposition 2.1]), but the above theorem also gives a bound in the

opposite direction, namely, |hF (E)− h(j)
12 | >

1
2 log log |j|+O(1).

Proof. By [Sil86, Proposition 1.1] we have that hF (E) equals

1

12[K : Q]

log |NK⧸Q
(∆E⧸K

)| −
∑

v∈M∞
K

nv log
(
|∆(τv)|(π−1ℑ{τv})6

), (1.2.6)

where K⧸Q is a finite Galois extension over which E has semistable reduc-
tion everywhere, ∆E⧸K

is the minimal discriminant of E over K, M∞
K is

the set of the Archimedean places of K, τv is an element of H such that
E(Kv) ∼= C⧸Z+ τvZ, and ∆(τ) = (2π)12q

∏∞
n=1(1 − qn)24, with q = e2πiτ .

Note that [Sil86, Proposition 1.1] is formulated with a different normalisation
of the Faltings height, but it is easy to convert from Silverman’s conven-
tion to Deligne’s: specifically, the height h in [Sil86, Proposition 1.1] satisfies
h(E) = hF (E) − 1

2 log π. This difference is reflected in the factor π−1 in
equation (1.2.6).
Let ep, fp be respectively the ramification index and inertia degree in K of

the rational prime p, and let rp be the number of distinct primes ofOK dividing

p (the numbers ep, fp only depend on p sinceK⧸Q is a Galois extension). Given

that j = j(E) is a rational number, we have

NK⧸Q
(∆E⧸K

) =
∏

Q⊂OK
prime

∣∣∣∣ OK
Qmax{0,−vQ(j)}

∣∣∣∣ = ∏
p prime

(
pfp max{0,−epvp(j)}

)rp

=
∏

p prime

(
pmax{0,−vp(j)}

)[K:Q]
=

∏
p prime

(max{1, ∥j∥p})[K:Q] ,

where the first equality holds by [Sil09, Table 15.1] and the fact that E has
semistable, hence in particular multiplicative, reduction at primes dividing
the discriminant. For every v ∈ M∞

K we can assume that τv belongs to the
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standard fundamental domain F , so, since E is defined over Q, we may use
the same τv = τ for every v. Writing ℑ{τ} = − log |q|

2π = | log |q||
2π , we have

|∆(τ)|(π−1ℑ{τ})6 = (2π)12|q|
∞∏
n=1

|1− qn|24 · 2−6π12| log |q||6

= 26 |q| · | log |q||6
∞∏
n=1

|1− qn|24,

and so 12 hF (E) equals

∑
p prime

log+ ∥j∥p − log |q| − 6 log 2− 6 log | log |q|| − 24
∞∑
n=1

log |1− qn|. (1.2.7)

Using the fact that, for every z ∈ C such that |z| < 1, by triangular inequality
we have | log |1− z|| ≤ − log |1− |z||, from Lemma 1.1.1 we obtain

−24
∞∑
n=1

log |1− qn| < −24
∞∑
n=1

log(1− |q|n) < − 4π2

log |q|
. (1.2.8)

Replacing in equation (1.2.7), we get

hF (E) <
1

12

 ∑
p prime

log+ ∥j∥p − log |q| − 6 log 2− 4π2

log |q|
− 6 log | log |q||

 .

We note that for j ∈ Z we have ∥j∥p ≤ 1 for every prime p, and (1.2.4) follows.

To prove the upper bound in part 1, we note that log |j| = logmax{1, |j|},
and using Corollary 1.2.3 together with the assumption |j(E)| ≥ 3500 we
obtain

hF (E) <
1

12

 ∑
p prime

log+ ∥j∥p + log+ |j|+ 0.245

−6 log 2− 4π2

log |q|
− 6 log | log |q||

)
=

h(j)

12
+

0.245

12
− 1

2
log 2− π2

3 log |q|
− 1

2
log | log |q||

<
h(j)

12
− 0.326 +

π2

3(log |j| − log 2)
− 1

2
log(log |j| − log 2)

<
h(j)

12
− 1

2
log log |j|+ 0.159.
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On the other hand, using that log(1 + x) < x for every x > 0, we have

−2
∞∑
n=1

log |1− qn| ≥ −2
∞∑
n=1

log(1 + |q|n) > −2
∞∑
n=1

|q|n = − 2|q|
1− |q|

. (1.2.9)

Noting that logmax{1, ∥j∥p} ≥ 0 for every p, we see from equation (1.2.7)
that the inequality in (1.2.5) holds. To prove the lower bound in part 1, we
use log |j| > − log |q| > log |j| − log 2 (Theorem 1.2.2) in equation (1.2.7) to
obtain

hF (E) >
1

12

∑
p prime

log+ ∥j∥p +
1

12
log |j| − 7

12
log 2− 1

2
log log |j| − 4

|j| − 2

>
h(j)

12
− 1

2
log log |j| − 7

12
log 2− 2

1749
.

It remains to show part 2. Assume that |j(E)| ≤ 3500. Combining equations
(1.2.8) and (1.2.9) we have

− 24|q|
1− |q|

< −24
∞∑
n=1

log |1− qn| < − 4π2

log |q|
.

By Theorem 1.2.2 we know that π
√
3 ≤ 2πℑ{τ} = | log |q|| < log(3500 +

970.8) < 8.41, and so we have

− log |q| − 6 log | log |q||+ 4π2

| log |q||
< 2.533,

− log |q| − 6 log | log |q|| − 24|q|
1− |q|

> −4.828.

Using the inequality 0 ≤ log+ |j|, we can then write

12 hF (E) <
∑

p prime

log+ ∥j∥p + log+ |j| − 6 log 2 + 2.533,

which gives the desired upper bound. For the lower bound, we have that
log+ |j| ≤ log 3500, and then we conclude by writing

12 hF (E) >
∑

p prime

log+ ∥j∥p + log+ |j| − log 3500− 6 log 2− 4.828.

Remark 1.2.8. The above argument even gives

hF (E) ≤ h(j)

12
− 1

2
log log |j| − 1

2
log 2 + o(1) as |j| → ∞,
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yielding a better constant term as j grows. Explicitly, one has

hF (E) <
h(j)

12
− 1

2
log log |j| − 1

2
log 2 +

(
log 2

2
+
π2

3

)
1

log |j| − log 2
+

970.8

|j|
,

where we have used log(x − log 2) − log x = −
∑

n
(log 2)n

nxn > −
∑

n
(log 2)n

xn =

− log 2
x−log 2 , with x = log |j|.

Remark 1.2.9. Minimising the function

− 1

12
log x− 1

2
log | log x| − 1

2
log 2− 2x

1− x

over the interval (0, e−π
√
3], we obtain that for every elliptic curve E⧸Q we

have hF (E) > −0.74885. This fits well with the computation by Deligne of the
absolute minimum of the height [Del85a, pag. 29]. With our normalisation,
Deligne has shown that the minimum of hF (E) is approximately −0.74875,
attained for the elliptic curve with j = 0, for which |q| = e−π

√
3. Moreover,

this is the minimum height for elliptic curves over every number field.

Remark 1.2.10. For j ∈ Z, Theorem 1.2.6 implies that

hF (E) = − 1

12
log |q| − 1

2
log | log |q|| − 1

2
log 2 +O

(
1

log |q|

)
as |q| → 0.

1.3 Schur–Zassenhaus for p-adic matrices

Let p be an odd prime and let K be a finite extension of Qp with ring of
integers OK , uniformiser πK and residue field Fq = Fpk .
The following proposition is a profinite version of the Schur-Zassenhaus

theorem, and can be found in [Wil98, Proposition 2.3.3].

Proposition 1.3.1. Let G be a profinite group and let N be a normal subgroup

such that |N | and
∣∣∣G⧸N ∣∣∣ are coprime (where the cardinalities are supernatural

numbers defined as in [Wil98, Definition 2.1.1]). Then G has subgroups H
such that G = NH and H ∩ N = 1; moreover, all such subgroups H are
conjugate in G. In particular, for any such H we have an isomorphism G ∼=
H ⋉N , with the action given by conjugation.

Proposition 1.3.2. Let G′ < GLn(OK) be a subgroup and let π : GLn(OK)→
GLn

(
OK⧸πK

)
= GLn(Fq) be the canonical projection. Let G < G′ := π(G′)

be a subgroup of order prime to p.
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� There exists a subgroup G < G′ such that π induces an isomorphism
G ∼= G. Moreover, G is unique up to conjugation in G′.

� Suppose G = G′, let G be as above, and let N := kerπ ∩ G′. We have

G′ = GN ∼= G ⋉N ∼= G⋉N ,

where the action is given by conjugation of G on N .

Proof. Consider the groups

G′′ := {A ∈ G′ | π(A) ∈ G} and N := {A ∈ G′ | A ≡ I (mod πK)}.

It is not difficult to notice that N is a pro p-group, N ◁ G′′ and G
′′
⧸N = G.

By Proposition 1.3.1 there exists G < G′′ such that GN = G′′ and G ∩ N = 1,
hence

G =
G′′

N
=
GN
N
∼=

G
G ∩ N

= G.

This implies that |G| = |G|, and since π surjects G onto G, as π(G′′) =
π(GN ) = π(G), it is an isomorphism. Suppose now that Ĝ < G′ is an-
other group with the same property. Since π(Ĝ) = G, we have Ĝ < G′′ and
ĜN = G′′ = GN . Moreover, the homomorphism π|Ĝ is injective, so Ĝ ∩N = 1.

By Proposition 1.3.1 we conclude that G and Ĝ are conjugate in G′′ (and hence
in G′). The second part follows immediately from Proposition 1.3.1.

We finish this section with the following lemma, which is an adapted version
of Hensel’s lemma to matrices.

Lemma 1.3.3. Let m,n be positive integers. Fix A ∈Mn×n

(
OK⧸πmK

)
and let

A be its reduction modulo πK . Suppose that A has n distinct eigenvalues in Fp.
There exists an unramified extension L⧸K (hence such that OK⧸πmK ⊆

OL⧸πmL )

for which the characteristic polynomial of A has exactly n distinct roots in
OL⧸πmL , which are invariant under conjugation of A.

Proof. Consider a lift Ã of A inOK . Since A has distinct eigenvalues, the split-
ting field L of the characteristic polynomial of Ã is unramified. In particular,
we have that πL = πK and OK⧸πmK ⊆

OL⧸πmL . Consider the characteristic

polynomial f
Ã
of Ã and its roots λ̃1, . . . , λ̃n. We know that λ̃1, . . . , λ̃n ∈ OL

and we consider their reductions λ1, . . . , λn and λ1, . . . , λn modulo πmL and πL
respectively. By Hensel’s lemma, we know that λ1, . . . , λn are the unique lifts
of λ1, . . . , λn, which are the roots of f

Ã
(mod πL). In particular, λ1, . . . , λn

are the unique roots of the characteristic polynomial of A, which is fA = f
Ã

(mod πmL ). Moreover, they are invariant under conjugation, as fA is.



CHAPTER 2
p-adic Cartan groups

The aim of this chapter is to improve some of the results of [Zyw11]. In par-
ticular, we study some subgroups of GL2(Zp) with the main property of being
contained in C+

ns(p) once we consider their projection modulo p. We define
these subgroups N-Cartan lifts. We give a classification of all the possible
N-Cartan lifts satisfying some restrictive properties. This classification will
be used to prove that, given an elliptic curve E⧸Q without CM and a prime

p such that Im ρE,p ⊆ C+
ns(p), in most cases, there exists n ≥ 1 such that

Im ρE,pn = C+
ns(p

n) and Im ρE,p∞ ⊃ I + pnM2×2(Zp). This will allow us to
compute the index [GL2(Zp) : Im ρE,p∞ ] with quite good precision.

2.1 Cartan lifts

To study the possible images of a p-adic Galois representation attached to an
elliptic curve, we start by considering a generic subgroup of GL2(Zp) satisfying
some of the usual properties of these images. In particular, we will focus on
the Cartan case.

Definition 2.1.1. Given a prime p and a subgroup G < GL2(Zp), for every
n ≥ 1 we define:

� G(pn) := G (mod pn) ⊆ GL2

(
Z⧸pnZ

)
;

� Gn := {A ∈ G | A ≡ I (mod pn)}

Remark 2.1.2. It is not difficult to notice that G(pn) = G⧸Gn.
Let gl2(Fp) be the additive group of 2 × 2 matrices with coefficients in Fp

and let sl2(Fp) be the subgroup of trace 0 matrices. They are Lie algebras
over Fp when equipped with the usual bracket [A,B] = AB −BA.

25
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Definition 2.1.3. For every n ≥ 1, we have an injective group homomorphism
Gn⧸Gn+1

↪→ gl2(Fp), sending I + pnA to the class of A modulo p. We call gn

the image of this homomorphism, and sn := gn ∩ sl2(Fp).

Given a group G < GL2(Zp), throughout this section, we will call S :=
G∩SL2(Zp). Recall that det(I+xA) ≡ 1+x trA (mod x2) as polynomials in
x. We notice that if det(Gn) ⊆ 1 + pn+1Zp, then gn ⊆ sl2(Fp). In particular,

if G = S, then gn ⊆ sl2(Fp) for all n ≥ 1, and so sn is the image of Sn⧸Sn+1

in gl2(Fp).
As shown in [Zyw11, Lemma 2.2(i)], the groups gn have the following prop-

erty.

Lemma 2.1.4 (Zywina). If p is an odd prime, for every n ≥ 1 we have
gn ⊆ gn+1. If p = 2, the same statement holds for n ≥ 2.

Definition 2.1.5. Let p be an odd prime and let ε be the reduction modulo
p of the least positive integer which represents a quadratic non-residue in F×

p .
We define the following subgroups of GL2(Zp):

Borel: B :=

{(
a b

0 c

)∣∣∣∣∣ a, b, c ∈ Zp, a, c ∈ Z×
p

}
,

split Cartan: Csp :=

{(
a 0

0 b

)∣∣∣∣∣ a, b ∈ Z×
p

}
,

non-split Cartan: Cns :=

{(
a εb

b a

)∣∣∣∣∣ a, b ∈ Zp, (a, b) ̸≡ (0, 0) mod p

}
.

Define also C+
sp := Csp ∪

(
0 1

1 0

)
Csp and C+

ns := Cns ∪

(
1 0

0 −1

)
Cns. These

are the normalisers of Csp and Cns respectively.

Throughout this section, we will indicate with C a generic Cartan subgroup,
which is either Csp or Cns. Moreover, we will assume that p is an odd prime.

Definition 2.1.6. Let p be an odd prime and let G < GL2(Zp) be a subgroup.
We will say that G is an N-Cartan lift if it satisfies the following properties:

� G is closed;

� det(G) = Z×
p ;

� G(p) is contained in the normaliser of a Cartan subgroup, but is not
contained in the Cartan subgroup;
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� G(p) contains an element of the Cartan subgroup which is not a multiple
of the identity.

We will say that G is a split N-Cartan lift or a non-split N-Cartan lift if G(p)
is contained in the normaliser of a split or non-split Cartan respectively.

Let G < GL2(Zp) be a subgroup such that p ∤ |G(p)|. We notice that for
every n ≥ 1, the group G acts on Gn by conjugation, and hence also on the
quotient Gn⧸Gn+1

. This action factors through the group G(p). In particular,

this implies that gn is an Fp[G(p)]-module, with G(p) acting by conjugation.
We have the following result by Zywina ([Zyw11, Lemma 2.4]).

Lemma 2.1.7 (Zywina). Let G < GL2(Zp) be an N-Cartan lift with respect
to the Cartan group C. The groups gn are Fp[G(p)]-submodules of gl2(Fp).
Suppose that there exists an element in G(p)∩C(p) whose image in PGL2(Fp)
has order greater than 2. If G is a non-split N-Cartan lift, then we have a
decomposition in irreducible submodules gl2(Fp) = V1 ⊕ V2 ⊕ V3, where

V1 = Fp · Id, V2 = Fp

(
0 ε

1 0

)
, V3 = Fp

(
1 0

0 −1

)
⊕ Fp

(
0 ε

−1 0

)
.

If instead G is a split N-Cartan lift, then we have a decomposition in irreducible
submodules gl2(Fp) = V1 ⊕ V2 ⊕ V3, where

V1 = Fp · Id, V2 = Fp

(
1 0

0 −1

)
, V3 = Fp

(
0 1

1 0

)
⊕ Fp

(
0 1

−1 0

)
.

Finally, in both cases V3 is not a Lie subalgebra of gl2(Fp).

In [Zyw11, Lemma 2.4] Zywina assumes that the image of G(p) in PGL2(Fp)
contains an element of order at least 5. However, in his proof, this assumption
is only used to apply [Zyw11, Lemma 2.1(v)], and then an element of order
greater than 2 is sufficient.

Remark 2.1.8. If G = C is a Cartan subgroup, by a direct computation it is
easy to check that for every n ≥ 1 we have gn = V1⊕V2. Similarly, if G = C+,
since [C+ : C] = 2, we have gn = V1 ⊕ V2.

Remark 2.1.9. When every element in the image of G(p)∩C(p) in PGL2(Fp)
has order 1 or 2, one can verify that V3 decomposes into two irreducible

submodules. In the split case, V3 decomposes as Fp

(
0 1

1 0

)
⊕ Fp

(
0 1

−1 0

)
.

In the non-split case, V3 decomposes as Fp

(
1 0

0 −1

)
⊕ Fp

(
0 ε

−1 0

)
.
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Lemma 2.1.10 (Zywina). Suppose G < GL2(Zp) is a closed subgroup such
that detG ⊇ 1+ pZp and p ∤ |G(p)|. For every n ≥ 1 we have tr(gn) = Fp and
sn = gn ∩ sl2(Fp).

Proof. The proof is the same as that of [Zyw11, Lemma 2.5].

Corollary 2.1.11. If G < GL2(Zp) is an N-Cartan lift, then V1 ⊆ gn for
every n ≥ 1.

Proof. Using Lemma 2.1.7 we see that tr(V2 ⊕ V3) = 0, hence V1 ⊆ gn.

Lemma 2.1.12. Let G be an N-Cartan lift. Suppose that the image of G(p)∩
C(p) in PGL2(Fp) contains an element of order greater than 2.

1. If dim g1 = 2, then for every n > 1 we have dim gn ∈ {2, 4}, and if
dim gn = 4 for some n, then for every m > n the equality dim gm = 4
holds.

2. If dim g1 = 3, then dim gn = 4 for every n > 1.

Proof. To prove the first part, it suffices to notice that by Lemma 2.1.7 and
Corollary 2.1.11 we have g1 = V1 ⊕ V2, where V1, V2 and V3 are defined in
Lemma 2.1.7. Using Lemma 2.1.4 we see that for every n ≥ 1 we have either
gn = V1 ⊕ V2 or gm = gl2 for every m ≥ n, and hence the conclusion follows.
To prove the second part, we notice that g1 = V1 ⊕ V3 and if dim g2 < 4,
then g2 = g1 (by Lemma 2.1.4). By [Zyw11, Lemma 2.2(iv)], this implies that
g1 is a Lie subalgebra of gl2(Fp), hence also s1 = g1 ∩ sl2(Fp) = V3 is a Lie
subalgebra of gl2(Fp), which contradicts Lemma 2.1.7.

The following proposition is a stronger version of [Zyw11, Proposition 1.2].

Proposition 2.1.13. Let G < GL2(Zp) be an N-Cartan lift with respect to
the Cartan group C such that dim g1 > 1, and suppose that there exists an
element in G(p) ∩ C(p) whose image in PGL2(Fp) has order greater than 2.
For every integer n ≥ 1 we have the following.

1. If dim gn = 2, then G(pn) ⊆ C+(pn) and [C+(pn) : G(pn)] = [C+(p) :
G(p)];

2. If dim gn = 3, then n = 1 and G ⊃ I + p2M2×2(Zp);

3. If dim gn = 4, then G ⊃ I + pnM2×2(Zp).

Proof. Set S = G ∩ SL2(Zp). The proof of this proposition follows that of
[Zyw11, Proposition 2.3]. If dim gn = 3, by Lemma 2.1.12 we know that n = 1
and dim g2 = 4, so by [Zyw11, Lemma 2.2(ii)] we have G ⊃ I+p2M2×2(Zp). If
dim gn = 4, by [Zyw11, Lemma 2.2(ii)] we have G ⊃ I+pnM2×2(Zp). We now
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focus on the case dim gn = 2. By Corollary 2.1.11 we have that dim si = 1,
so by immediate induction, S1⧸Si+1

is of order pi for every i ∈ {1, . . . , n}. In

particular, lifting to S1 a non-zero element of s1 and projecting it to S(pn+1),
we find an element h = I + pA ∈ S(pn+1) such that A ̸≡ 0 (mod p). Since
h has order pn in G(pn+1), by cardinality arguments the group H := S1
(mod pn+1) is generated by h. As dim s1 = 1, by Lemma 2.1.7 the matrix A
(mod p) is a non-zero element of V2, hence in particular A (mod p) ∈ C(p).
Since H is stable under conjugation by G(pn+1) and A (mod p) is an element
of C(p), by [Zyw11, Lemma 2.1(iv)] we know that H ⊂ C(pn+1). We have

H =
{
g ∈ C(pn+1) ∩ SL2

(
Z⧸pn+1Z

)
: g ≡ I (mod p)

}
,

since the inclusion “⊆” is trivial and the equality follows by cardinality. Con-
sider the group C1(p

n+1) := {M ∈ C(pn+1) | M ≡ I (mod p)}: this is gen-
erated by the subgroups H and {(1 + pα)I}; indeed, they are disjoint and
the product of their cardinalities equals |C1(p

n+1)|. As G(pn+1) normalises
H, it also normalises the group C1(p

n+1), since every matrix in this group

can be written as M = (1 + pα)hk, for some k ∈ N and α ∈ Z⧸pn+1Z. Con-

sider an element I + pA ∈ GL2

(
Z⧸pn+1Z

)
: this is in C1(p

n+1) if and only if

A (mod pn) ∈ C(pn) ∪ {0}. For every g ∈ G and A ∈ C(pn) ∪ {0} we have
g−1(I+pA)g = I+pg−1Ag ∈ C1(p

n+1), and so g−1Ag (mod pn) ∈ C(pn)∪{0},
and it is 0 if and only if A = 0. This implies that G(pn) normalises C(pn),
and so G(pn) ⊆ C+(pn). However,

|G(pn)| = |G(p)| ·
n−1∏
i=1

|gi| = |G(p)| · p2n−2 = |G(p)| · |C
+(pn)|
|C+(p)|

,

and hence we have [C+(pn) : G(pn)] = [C+(p) : G(p)].

If G is an N-Cartan lift such that dim gn = 4 for sufficiently large n, a state-
ment equivalent to the proposition above (if we are not in the case dim g1 = 3)
is that if n is the largest positive integer such that G(pn) ⊆ C+

ns(p
n), then

G ⊃ I + pn+1M2×2(Zp). However, if we add the hypothesis that G contains
many scalar matrices, we can prove a stronger result.

Theorem 2.1.14. Let G < GL2(Zp) be an N-Cartan lift as in Proposition
2.1.13 and such that G ⊃ (1 + pZp)I. One of the following holds:

� G < C+ up to conjugation and [C+ : G] = [C+(p) : G(p)];

� There exists n ≥ 1 such that G ⊇ I + pnM2×2(Zp) and G(pn) ⊆ C+(pn)
up to conjugation, with [C+(pn) : G(pn)] = [C+(p) : G(p)];
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� G ⊇ I + p2M2×2(Zp) and

G(p2) ∼= G(p)⋉ (V1 ⊕ V3),

with Vi defined as in Lemma 2.1.7 and the semidirect product defined by
the conjugation action.

Proof. Suppose that dim g1 = 3. By Proposition 2.1.13(1) we know that G ⊃
I+p2M2×2(Zp). We can then apply Proposition 1.3.2 to obtain G ∼= G(p)⋉G1,
and projecting modulo p2 we have G(p2) ∼= G(p)⋉ g1, where by Lemma 2.1.7
we have g1 = V1 ⊕ V3. Suppose now dim g1 ̸= 3. It is sufficient to prove that,
given n ≥ 2, if dim gn−1 < 4 we have G(pn) ⊆ C+(pn) up to conjugation and
[C+(pn) : G(pn)] = [C+(p) : G(p)]. We divide the proof in 4 steps.
1. By Proposition 2.1.13 we know that dim gn−1 = 2 andG(pn−1) ⊆ C+(pn−1),
with [C+(pn−1) : G(pn−1)] = [C+(p) : G(p)].
2. We now prove that the subgroup G1(p

n) ⊆ G(pn) coincides with the group
H = C1(p

n) := {g ∈ C(pn) : g ≡ I (mod p)}. By the proof of Proposition
2.1.13 we know that

H2 :=
{
g ∈ C(pn) ∩ SL2

(
Z⧸pnZ

)
: g ≡ I (mod p)

}
⊂ G(pn),

moreover, by hypothesis we have that the group H1 = {(1+ pk)I mod pn} is
also contained in G(pn). We notice that |H1| = |H2| = pn−1 and |H| = p2n−2.
Moreover, H1 is normal in H, hence H1H2 is a subgroup of H ∩G(pn). It is
easy to notice that det(1+kp)I ≡ 1 (mod pn) if and only if k ≡ 0 (mod pn−1)
and so if and only if (1+kp)I ≡ I (mod pn). This implies that H1∩H2 = {I},
and so |H1H2| = |H1| · |H2| = |H|, in particular H = H1H2 ⊆ G(pn). As by
Lemma 2.1.12 we know that |G1(p

n)| =
∏n−1
i=1 |gi| = p2n−2 and H ⊆ G1(p

n),
we have that G1(p

n) = H.

3. Since p ∤ |G(p)|, by Proposition 1.3.2 there exists a subgroup G̃(p) < G

such that the projection modulo p induces an isomorphism G̃(p) ∼= G(p), and

modulo pn we have G(pn) = G̃(p) · G1(p
n) = G̃(p) · H, where we identified

G̃(p) with its projection modulo pn. Consider

Γ := {A ∈ GL2(Zp) | A (mod pn−1) ∈ C+(pn−1)} < GL2(Zp).

By Proposition 2.1.13 we know that G < Γ, and obviously C+ < Γ. By

Proposition 1.3.2, there is a group C̃+(p) < C+ isomorphic to C+(p) via the

projection modulo p such that C+ = C̃+(p) ·C+
1
∼= C̃+(p)⋉C+

1 . We can then
consider the unique subgroup G′ < C+ such that G′

1 = C+
1 and G′(p) = G(p).

By Proposition 1.3.2 we have G̃′(p) < C̃+(p), and since G,G′ < Γ we have

G̃(p) ≡ G̃′(p) (mod pn−1). Moreover, G̃(p) and G̃′(p) are conjugate in Γ, i.e.

there exists γ ∈ Γ such that γ−1G̃(p)γ = G̃′(p).
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4. We notice that G1(p
n) = G′

1(p
n) = C+

1 (pn) = H. If we identify G̃(p), G̃′(p)

and C̃+(p) with their projections modulo pn, we have

G(pn) = G̃(p) ·H, G′(pn) = G̃′(p) ·H, C+(pn) = C̃+(p) ·H.

Notice that γ−1Hγ = H: indeed, given I + pA ∈ H we have γ−1(I + pA)γ =
I + pγ−1Aγ ∈ H, as γ (mod pn−1) ∈ C+(pn−1). Therefore, we have

γ−1G(pn)γ = γ−1G̃(p)γ · γ−1Hγ = G̃′(p) ·H = G′(pn)

as desired. Finally, it is easy to check that

[C+(pn) : G(pn)] = [C+(pn) : G′(pn)] = [C+(p) : G(p)].





CHAPTER 3
Local properties

Let E⧸K be an elliptic curve without CM defined over a number field K, and
suppose that for some prime p we have Im ρE,pn ⊆ C+

ns(p
n) up to conjugacy.

In this chapter, we consider E as an elliptic curve over a completion Kλ for
various primes λ (including λ above p), and study the representation ρE,pn

upon restriction to Gal

(
Kλ⧸Kλ

)
, considered as a decomposition subgroup

of Gal

(
K⧸K

)
. In particular, we will show that these curves have potentially

good reduction for primes λ such that NK⧸Q
(λ) ̸≡ ±1 (mod pn). Moreover,

we will show that for sufficiently large pn the curve E has potentially good
supersingular reduction at primes above p.

The main arguments of the chapter rely on the study of the so-called canon-
ical subgroup of E and its connection with the Hasse invariant of E. These
arguments will allow us to prove different properties of E. First, we will give
some conditions on the j invariants of elliptic curves with mod-p representa-
tion strictly contained in the normaliser of a non-split Cartan subgroup. Then,
in Chapter 6 we will prove that the division fields K(E[pn]) have high ramifi-
cation index at primes above p, and we will use it to study the entanglement
phenomenon among primes p for which Im ρE,p ⊆ C+

ns(p).

3.1 The image of the inertia subgroups

Let K be a p-adic field with valuation v and let E be an elliptic curve defined
overK with potentially good reduction. If we consider the maximal unramified

extension Knr of K, the subgroup IK := Gal

(
K⧸Knr

)
< Gal

(
K⧸K

)
is the

33
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inertia subgroup of Gal

(
K⧸K

)
. By the Néron–Ogg–Shafarevich criterion,

the curve E has good reduction if and only if ρE,ℓ∞(IK) = {1} for every prime
ℓ ̸= p. Every elliptic curve with potentially good reduction acquires good
reduction over a finite extension L of Knr. This implies that the subgroup

IL < IK defined as Gal

(
K⧸L

)
is contained in the kernel of ρE,ℓ∞ for every

ℓ ̸= p. In particular, the representation ρE,ℓ∞ over Knr factors through the
quotient IL

IK
, i.e.

ρE,ℓ∞(IK) ↪→ IK
IL
∼= Gal

(
L⧸Knr

)
. (3.1.1)

If L is the minimal extension of Knr over which E acquires good reduction,
then (3.1.1) is an isomorphism. In particular, we have the following theorem
from [Kra90, Proposition 1, Théorèmes 1, 2, 3].

Theorem 3.1.1. Let E be an elliptic curve with potentially good reduction
over K and let L be the minimal extension of Knr over which E acquires good
reduction. Let ∆ be the minimal discriminant of E over Knr and let c4 be the
standard invariant associated with E. Let ℓ ̸= p be a prime.

1. If p ≥ 5, then L is the unique tamely ramified extension of Knr of degree
e ∈ {1, 2, 3, 4, 6} equal to the denominator of the fraction v(∆)

12 reduced
to lowest terms. In particular,

ρE,ℓ∞(IK) = Gal
(
L⧸Knr

)
∼= Z⧸eZ.

2. If p = 3, then

|ρE,ℓ∞(IK)| = [L : Knr] ∈ {1, 2, 3, 4, 6, 12}

depending on the valuation of ∆.

3. If p = 2, then

|ρE,ℓ∞(IK)| = [L : Knr] ∈ {1, 2, 3, 4, 6, 8, 24}

depending on the valuation of ∆ and c4.

The first part of Theorem 3.1.1(1) had been already studied by Serre in
[Ser72, Section 5.6].
In the case ℓ = p, we have the opposite phenomenon: the image of the

inertia via ρE,p is large. We will discuss it in details in Theorem 3.1.4 and in
the next section.
If we now consider an elliptic curve E defined over a number field K, and λ

a prime of K that does not divide p, we can consider the completion Kλ and
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Theorem 3.1.1 applies. We can then use it to prove some interesting properties
in the case where Im ρE,p is contained in the normaliser of a non-split Cartan
subgroup.

Proposition 3.1.2. Let E be an elliptic curve defined over a number field
K, n a positive integer, and p an odd prime such that Im ρE,pn ⊆ C+

ns(p
n) up

to conjugation. For any prime λ ⊆ OK that does not divide p and such that
NK/Q(λ) ̸≡ ±1 (mod pn), the elliptic curve E has potentially good reduction
at λ. Moreover, given p | p in K, if pn−1(p − 1) ∤ 2e(p|p), then the elliptic
curve E has potentially good reduction at p.

Proof. The proof follows and generalises those of [Lem19b, Proposition 3.3]
and [Lem19a, Proposition 2.2]. We can assume that E does not have CM, as
CM curves have potentially good reduction everywhere. Let λ | ℓ be a prime
of potentially multiplicative reduction, let EKλ

be the base change of E to
Kλ, and let Eq be the Tate curve with parameter q ∈ K×

λ , isomorphic to E
over a quadratic extension of Kλ. Rename E = EKλ

. There is a quadratic
character ψ such that ρEq ,pn

∼= ρE,pn ⊗ ψ, and we have

ρE,pn ∼= ψ ⊗

(
χpn ∗
0 1

)
=

(
ψχpn ∗
0 ψ

)
, (3.1.2)

where χpn is the cyclotomic character modulo pn. Consider an automorphism

σ ∈ Gal

(
Kλ⧸Kλ

)
, and set A := ρEq ,pn(σ) =

(
χpn(σ) ∗

0 1

)
. By our hy-

pothesis on Im ρE,pn there exists an element of C+
ns(p

n) conjugate to A (up
to changing sign by multiplying by −I). We now divide cases according to
whether χpn(σ) ≡ 1 (mod p) or χpn(σ) ̸≡ 1 (mod p).

(i) Suppose first that χpn(σ) ̸≡ 1 (mod p). We know that the roots of the
characteristic polynomial of A are 1 and χpn(σ). In particular, there
exists an element g in C+

ns(p
n) satisfying the polynomial equation (g −

1)(g−χpn(σ)) = 0. If g ∈ Cns(pn), then g = g (mod p) is either a scalar
matrix or it has eigenvalues in Fp2 \ Fp. In the first case, as 1 is an
eigenvalue of g, the matrix g is equal to the identity, contradicting the
fact that χpn(σ) ̸≡ 1 (mod p); the second case never occurs, as g has
a reducible characteristic polynomial. This implies that g ∈ C+

ns(p
n) \

Cns(p
n), and in particular, tr g = 0, which implies that χpn(σ) = −1.

(ii) If instead χpn(σ) ≡ 1 (mod p), then we can write A = I + pr

(
∗ ∗
0 0

)
,

with r ≤ n as large as possible. As for matrices in M2×2(Fp) the rank
is invariant under conjugation, if r < n there would be a matrix in gr of
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rank 1 (with gr defined as in Definition 2.1.3 for the group G = C+
ns),

which is impossible by Remark 2.1.8. This implies that A = I, and so
that χpn(σ) ≡ 1 (mod pn).

We have then proved that χpn(σ) ∈ {±1} for every σ. Suppose first that p ̸= ℓ.

If Frobλ is a Frobenius element in Gal

(
K⧸K

)
with respect to λ, we have that

NK/Q(λ) = χpn(Frobλ) ≡ ±1 (mod pn). If instead ℓ = p, as the character

χpn is surjective from Gal
(
Qp(ζpn)⧸Qp

)
, we must have [Kp(ζpn) : Kp] ≤ 2.

However, this implies that e(p|p) is a multiple of φ(p
n)

2 , because Qp(ζpn)⧸Qp
is

totally ramified.

Corollary 3.1.3. Let E be an elliptic curve defined over Q, n a positive
integer, and p an odd prime such that pn ̸= 3 and Im ρE,pn ⊆ C+

ns(p
n) up

to conjugation. For any prime ℓ ̸≡ ±1 (mod pn) the elliptic curve E has
potentially good reduction at ℓ.

We now focus on the case where E is defined over Q and the image of ρE,p is
a proper subgroup of C+

ns(p). By Theorem 6 we know that in this case Im ρE,p
is conjugate to the unique subgroup G(p) < C+

ns(p) of index 3, whenever
p > 37. However, by the results contained in [Zyw15a] one can obtain the
same conclusion for primes p ≥ 5.

We start by considering the image via ρE,p of the ℓ-inertia subgroup, for all
primes ℓ. We will draw different conclusions in the cases ℓ ̸= p and ℓ = p. We
first consider the case ℓ = p, which allows us to show that, for p ≡ −1 (mod 9),
the image of the residual representation modulo p cannot be isomorphic to
the subgroup G(p), and hence Im ρE,p ⊇ C+

ns(p) up to conjugacy. This is a
refinement of [LFL21, Proposition 1.4] (Theorem 6), itself an exposition of
results of Zywina [Zyw15a, Proposition 1.13], which states that if Im ρE,p ⊆
G(p), then p ≡ 2 (mod 3).

Theorem 3.1.4. Let E⧸Q be an elliptic curve without complex multiplication.

If p ̸= 2, 3 is a prime number such that Im ρE,p is conjugate to G(p), then p ≡ 2
(mod 3) and p ̸≡ −1 (mod 9).

Proof. Since det ◦ρE,p surjects onto F×
p and det(G(p)) = (F×

p )
3, we have

(F×
p )

3 = F×
p and hence p ≡ 2 (mod 3). Since the smallest prime p congruent

to −1 modulo 9 is 17, and since we already noticed that p must be equal to 2
modulo 3, it suffices to consider primes p ≥ 17. Choosing a suitable basis of

E[p], we can suppose Im ρE,p = G(p). We note that Gal

(
Qp⧸Qp

)
can be iden-

tified with a p-decomposition group of Gal

(
Q⧸Q

)
, and Ip := Gal

(
Qp⧸Qnr

p

)
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can be identified with the p-inertia, where Qnr
p is the maximal unramified ex-

tension of Qp. We also let Qtame
p be the maximal tamely ramified extension

of Qnr
p . We have:

Im ρE,p = ρE,p

(
Gal

(
Q⧸Q

))
> ρE,p

(
Gal

(
Qp⧸Qp

))
> ρE,p

(
Gal

(
Qp⧸Qnr

p

))
= ρE,p(Ip) =: I.

Notice that the restriction of ρE,p to Gal

(
Qp⧸Qtame

p

)
is trivial, because its

image is a p-group contained in G(p), which has 2(p2−1)
3 elements. Hence ρE,p

factors through the quotient, inducing a map from Gal
(
Qtame
p ⧸Qnr

p

)
which

we still denote by ρE,p. We have that

I = ρE,p(Ip) ∼= ρE,p

(
Gal

(
Qtame
p ⧸Qnr

p

))
∼= Gal

(
Qnr
p (E[p])⧸Qnr

p

)
.

Applying Corollary 3.1.3 we see that E has potentially good reduction at p.
Let K⧸Qnr

p
be the minimal extension of Qnr

p over which E ×SpecQ SpecQnr
p

acquires good reduction. Define the subgroup IK < Ip as Gal

(
Qp⧸K

)
. By

Theorem 3.1.1 we know that e := [K : Qnr
p ] ∈ {1, 2, 3, 4, 6}. By [Ser72, Section

1, Propositions 10, 11, 12] we know that either ρE,p(IK) contains an element of

order p2−1
e , or the image of ρE,p(IK) in PGL2(Fp) contains an element of order

p−1
gcd(e,p−1) . In the latter case, since the square of any element of C+

ns(p)\Cns(p)
is a scalar matrix and hence has order 2 in PGL2(Fp), every element in C+

ns(p)
has order dividing p+ 1 in PGL2(Fp). We then have that p−1

(e,p−1) | p+ 1, and

so p − 1 | 2e ≤ 12. However, this is impossible for p ≥ 17. This implies

that IK ∼= Gal
(
K(E[p])⧸K

)
contains an element of order p2−1

e . Actually,

by [Ser72, Section 1, Propositions 10, 12], this element is a generator of the

Galois group, and so
∣∣∣Gal

(
K(E[p])⧸K

)∣∣∣ = [K(E[p]) : K] = p2−1
e .

Qnr
p

K

K(E[p])

Qnr
p (E[p])

e|I|

p2−1
e
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Since Gal
(
Qtame
p ⧸Qnr

p

)
is a procyclic group, Gal

(
K(E[p])⧸Qnr

p

)
is cyclic (of

order p2−1
e · e = p2 − 1). This implies that I is contained in Cns, as every

element of C+
ns \ Cns has order dividing 2(p − 1), but a generator of I has

order at least p2−1
6 and p2−1

6 > 2(p − 1) for p > 11. As noticed in [LFL21,

Appendix B], p
2−1
|I| is necessarily odd, otherwise I would be contained in the

subgroup of squares of Cns, contradicting the fact that det ◦ρE,p|Ip surjects

onto F×
p . Moreover, p

2−1
|I| divides e, hence it is either 1 or 3. However, if we had

|I| = p2 − 1, the whole I = Cns would be contained in G(p), contradiction,

hence we must have I = p2−1
3 and e ∈ {3, 6}. Given that p ≡ 2 (mod 3),

we have e | p
2−1
3 ⇐⇒ 3e | p2 − 1 ⇐⇒ p ≡ −1 (mod 9). In particular,

whenever p ≡ −1 (mod 9), we have that e divides |I|, and so Qnr
p (E[p]) has

a subextension of degree e. Since K(E[p])⧸Qnr
p

is cyclic, it has a unique

subextension of degree e, hence K ⊂ Qnr
p (E[p]), and so Qnr

p (E[p]) = K(E[p]).
This implies that |I| = p2−1, and so Im ρE,p cannot be contained in G(p).

Remark 3.1.5. In the proof, we used the fact that when we are in the case
of “good reduction of height 1” (i.e. [Ser72, Section 1.11, Proposition 11]
applies), the image of the group I in PGL2(Fp) contains an element of order
p−1

(e,p−1) . This is the same argument used in [LFL21, Appendix B], however the

authors write p−1 instead of p−1
e . Their argument works anyway, as they are

assuming that p ≥ 19.

Remark 3.1.6. Theorem 3.1.4 provides the best congruence condition on p
that can be obtained by local arguments at p. Indeed, as shown in [Zyw15a,
Proposition 1.16 (iv)], if p ≡ 2, 5 (mod 9), the CM elliptic curve E : y2 =
x3 +16pk, with k ≡ −p+1

3 (mod 3), is such that Im ρE,p is conjugate to G(p).
However, there exist elliptic curves E′ without CM whose defining equations
are arbitrarily close to that of E in the p-adic metric. By continuity of the local
p-adic representation with respect to the coefficients of a defining equation
(Krasner’s lemma), taking E′ sufficiently close to E gives examples of non-
CM elliptic curves for which the image of ρE′,p, restricted to the decomposition
group at p, is contained in G(p).

We now consider the action of the ℓ-inertia for ℓ ̸= p, which allows us to
prove the following lemma.

Lemma 3.1.7. Let E⧸Q be an elliptic curve without complex multiplication.

If p > 5 is a prime number such that Im ρE,p is conjugate to G(p), then
j(E) = pd · c3, with d, c ∈ Z and d ≥ 0.

Proof. By Lemma 1.1.5 we know that j(E) ∈ Z. Let ℓ ̸= p be a prime that
divides j(E), let Qnr

ℓ be the maximal unramified extension of Qℓ, and let
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K⧸Qnr
ℓ

be the minimal extension over which Eℓ = E×SpecQ SpecQnr
ℓ acquires

good reduction. Let y2 = x3 + ax + b be a minimal model for E over Q
with discriminant ∆. By the Néron-Ogg-Shafarevich criterion, we know that

K is the minimal extension of Qnr
ℓ such that ρEℓ,p

(
Gal

(
Qℓ⧸K

))
is trivial,

hence Gal

(
Qℓ⧸K

)
= ker ρEℓ,p and Im ρEℓ,p

∼= Gal
(
K⧸Qnr

ℓ

)
. In particular,

Gal
(
K⧸Qnr

ℓ

)
embeds in G(p). Since by Theorem 3.1.4 we know that 3 ∤

|G(p)|, this implies that 3 ∤ [K : Qnr
ℓ ]. However, by Theorem 3.1.1 we know

that if 3 ∤ [K : Qnr
ℓ ], then 3 | vℓ(∆), and hence vℓ(j(E)) = vp

(
−123 · (4a)

3

∆

)
=

3vℓ(12) + 3vℓ(4a)− vℓ(∆) is divisible by 3.

3.2 The canonical subgroup

In this section, we will study the canonical subgroup of order p of E and its

connection with the ramification in the division field Knr
p (E[p])⧸Knr

p
. As a

consequence of these results, we will show some restrictive properties of the
j-invariant of elliptic curves E for which Im ρE,p ⊆ C+

ns(p).
The canonical subgroup of E[p] was first defined by Lubin and studied by

Lubin and Katz (see [Lub79] and [Kat73]). Most of the properties that we
will give below are due to them.
Let p be a prime and let K be a p-adic field. Denote by p the maximal ideal

of OK . Let E be an elliptic curve defined over K with good reduction at p.
Let Ê be the formal group associated with E and let E1(K) be the set of the
points in E(K) that reduce to the origin O modulo p. As explained in [Sil09,
Chapter VII, Proposition 2.2], there is an isomorphism Ê(p) ∼= E1(K). In
particular, if we consider the extension L = K(E[p]), with prime ideal P | p,
we have Ê(P)[p] ∼= E1(L)[p]. Hence, when E has supersingular reduction
modulo p, there is an isomorphism between the p-torsion subgroup of the
formal group and the p-torsion subgroup of the elliptic curve, i.e., Ê(P)[p] ∼=
E[p]. The group Ê(P) is by definition the set P endowed with the group
structure coming from the formal group Ê. Considering the points P̂ of Ê(P)
as elements of P, we can then refer to the valuation of P̂ ∈ Ê(P): it is simply
its valuation as an element of the field L.

Definition 3.2.1. If there exists λ ∈ R such that {P̂ ∈ Ê(P)[p] | v(P̂ ) ≥ λ}
is an order-p subgroup of Ê(P)[p], then this is called the canonical subgroup
of order p of E.

Remark 3.2.2. When E has ordinary reduction modulo p, there always exists a
canonical subgroup, given by Ê(P)[p] = E1[p], i.e., the kernel of the reduction
modulo p.
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Remark 3.2.3. The isomorphism E1(L) ∼= Ê(P) is given by the map (x, y) 7→

−x
y , hence it is compatible with the action of the Galois group Gal

(
K⧸K

)
.

The notion of canonical subgroup can be extended to the case of elliptic
curves defined over number fields.

Definition 3.2.4. Let K be a number field and let p | p be a prime of K.
Let E be an elliptic curve over K with potentially good reduction at p. Let
L be an extension of Kp such that E has good reduction over L. Given that
E(K)[p] = E(Kp)[p] = E[p], we define the canonical subgroup of order p of E
as the canonical subgroup of order p of E over L, if this exists.

Definition 3.2.5. If E is given by the equation y2 = f(x), following [Deu41]
we define the Hasse invariant A of E for a prime p as the coefficient of xp−1

in f(x)
p−1
2 .

Theorem 3.2.6. Let p ̸= 2 be a prime, let K be a number field and let p | p
be a prime of K. Let E⧸K be an elliptic curve with potentially good reduction
at p and let A be its Hasse invariant. The elliptic curve E has a canonical
subgroup of order p if and only if v(A) < p

p+1 .

Proof. If E has ordinary reduction, it has a canonical subgroup and vp(A) = 0,
hence from now on we assume that E is supersingular. Let c be the coefficient

of x
p2−p

2 in the division polynomial ψp(x). By [Smi23, Theorem 4.6] we know
that E has a canonical subgroup of order p if and only if vp(c) <

p
p+1 . However,

by [Deb14, Theorem 1], we know that c ≡ A (mod p). In particular, whenever
vp(A) < 1 we have that vp(c) = vp(A), giving the statement of the theorem. If
instead vp(A) ≥ 1, then c ≡ A ≡ 0 (mod p), and therefore also vp(c) ≥ 1.

The theory that leads to Theorem 3.2.6 is due to Lubin and Katz, but we
have relied on [Smi23] because it formulates the results in a way that is closer
to what we need.
The following lemma is a known fact which generalises [Ser72, Section 1,

Proposition 1].

Lemma 3.2.7. Let E be an elliptic curve over a p-adic field K and let p
be the prime of K above p. Suppose that E has good ordinary reduction at
p. For every positive integer n, the inertia group IK of K acts on E[pn] as(
χpn ∗
0 1

)
, where χpn is the cyclotomic character modulo pn.

Proof. Let µ be the p-adic cyclotomic character. Since E has ordinary reduc-
tion, we know that there is an exact sequence of Z[IK ]-modules

0 Tp(µ) TpE TpẼ 0,
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where TpẼ ∼= Zp has trivial action by IK . Indeed, IK acts trivially on TpẼ,
and since the determinant is cyclotomic, the other character must be the
cyclotomic character. In particular, modulo pn we have

0 µpn E[pn] Z⧸pnZ 0,

and the group IK acts on E[pn] as

(
χpn ∗
0 1

)
, where χpn is the cyclotomic

character modulo pn.

Lemma 3.2.8. Let p be an odd prime and let E be an elliptic curve over a p-
adic field K. Let p ⊆ K be a prime above p with ramification index e := e(p|p)
and let IK be the inertia group of K. Suppose that E has good reduction at p.

1. If E has ordinary reduction, E admits a canonical subgroup and for every
positive integer n then the group ρE,pn(IK) contains an element of order

pn−pn−1

gcd(pn−pn−1,e)
when projected in PGL2

(
Z⧸pnZ

)
.

2. If E has supersingular reduction and does not have a canonical subgroup,

then the group ρE,pn(IK) contains an element of order pn+1−pn−1

gcd(pn+1−pn−1,e)
.

Proof. If E has potentially good ordinary reduction, by Lemma 3.2.7 the
image of IK in PGL2 contains a subgroup isomorphic to χpn(IK). Since [IQp :
IK ] = e and |χpn(IQp)| = pn− pn−1, the order of χpn(IK) must be divisible by

pn−pn−1

gcd(pn−pn−1,e)
, and noting that the image of χpn is cyclic we obtain the desired

property. Moreover, in this case E always has a canonical subgroup, which
is the kernel of the reduction modulo p. Assume now that E has potentially
good supersingular reduction and that E does not have a canonical subgroup.
By [Smi23, Theorem 4.6] we know thatK(E[p]) ⊆ K(E[pn]) contains elements
with valuation 1

p2−1
, and hence the ramification degree of K(E[pn]) over K is

divisible by
p2 − 1

gcd(p2 − 1, [K : Qnr
p ∩K])

=
p2 − 1

gcd(p2 − 1, e)
.

Moreover, since the tame extensions of Knr are cyclic, there must be an ele-

ment in the inertia subgroup I(K(E[pn])/K) ∼= ρE,pn(IK) of order p2−1
gcd(e,p2−1)

.

If n > 1, since det ◦ρEL,p∞(IK) = (Z×
p )

e, there is also an element of ρE,pn(IK)

with determinant of order φ(pn)
(φ(pn),e) , and so ρE,pn(IK) contains an element of

order pn−pn−1

(pn−pn−1,e)
. In particular, we have an element in ρE,pn(IK) whose order

is the less common multiple of p2−1
gcd(e,p2−1)

and pn−pn−1

(pn−pn−1,e)
, and so with order

pn+1−pn−1

gcd(e,pn+1−pn−1)
.
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Theorem 3.2.9. Let E be an elliptic curve over a number field K and let p
be a prime. Let p ⊆ K be a prime above p with ramification index e := e(p|p).
Suppose that E has potentially good reduction at p and let L be the minimal
extension of Knr

p over which E acquires good reduction, with degree d = [L :
Knr

p ]. Suppose also that Im ρE,p ⊆ C+
ns(p).

1. If p > de+1 and p ̸= 2de+1, then E does not have a canonical subgroup
of order p.

2. If E has potentially good supersingular reduction modulo p and p ≥
max{de− 1, 3}, then E does not have a canonical subgroup of order p.

Proof. We start by proving part 1. Consider the subgroup I < Im ρE,p ob-
tained as the image of the inertia group of L. If E has potentially good su-
persingular reduction, part 2 of the theorem supersedes part 1, hence we may
assume that E has potentially good ordinary reduction. By Lemma 3.2.8 we
know that the image of I in PGL2(Fp) contains an element of order p−1

gcd(de,p−1) .

Since the square of any element of C+
ns(p)\Cns(p) is a scalar matrix and hence

has order 2 in PGL2(Fp), we have that p−1
(de,p−1) | p + 1, and so p − 1 | 2de.

However, this is impossible because p− 1 ̸= 2de and p− 1 > de.
Assume now that E has potentially good supersingular reduction and suppose
that E⧸L admits a canonical subgroup. By Theorem 3.2.6 we know that its
Hasse invariant A is a number in L with valuation 0 < vp(A) <

p
p+1 . How-

ever, vp(A) is a rational number with denominator dividing de. Suppose that
vp(vp(A)) > 0: we can write vp(A) =

αp
de , for some positive integer α. On the

other hand, we have αp
de <

p
p+1 , which gives 1 ≤ α < de

p+1 , contradicting the
hypothesis that p ≥ de − 1. This implies that vp(vp(A)) = 0. Let c be the

coefficient of x
p2−p

2 in the division polynomial Ψp(x) and let µ be its valuation.
By [Deb14, Theorem 1] we know that c ≡ A (mod p), and so vp(A) = µ. By
[Smi23, Theorem 4.6] we know that L(E[p]) contains elements of valuation
µ

p2−p . However, vp(µ) = 0, and so p must divide the degree [L(E[p]) : L],

which is a divisor of 2(p2 − 1), giving a contradiction.

Corollary 3.2.10. Let E be an elliptic curve over a number field K and let p
be a prime. Let p ⊆ K be a prime above p with ramification index e := e(p|p).
Suppose that Im ρE,p ⊆ C+

ns(p).

1. If p > 6e+1 and p ̸= 12e+1, then E does not have a canonical subgroup
of order p.

2. If E has potentially good supersingular reduction modulo p and p ≥
6e− 1, then E does not have a canonical subgroup of order p.

Proof. We notice that p ≥ 6e−1, and since 6e−1 > 2e+1 we have p−1 ∤ 2e.
By Proposition 3.1.2 this implies that E has potentially good reduction at p.
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Moreover, using that p ≥ 6e− 1 ≥ 5, by Theorem 3.1.1 we see that the degree
d = [L : Knr

p ] of the minimal extension of Knr
p over which E acquires good

reduction is at most 6. We then conclude by applying Theorem 3.2.9.

Corollary 3.2.11. Let E be an elliptic curve over Q. If p is a prime such that
p > 7 and p ̸= 13, and Im ρE,p ⊆ C+

ns(p), then E does not have a canonical
subgroup of order p.

Corollary 3.2.12. Let E be an elliptic curve over a number field K and let p
be a prime. Let p ⊆ K be a prime above p with ramification index e := e(p|p).
Suppose that Im ρE,p ⊆ C+

ns(p). If p > 6e + 1 and p ̸= 12e + 1, then E has
potentially good supersingular reduction modulo p.

Proof. We notice that by Proposition 3.1.2 the curve E has potentially good
reduction at p. It then suffices to combine Corollary 3.2.10 and Theorem 3.2.6,
using the fact that if A is the Hasse invariant of E, then vp(A) is equal to 0 if
and only if E has ordinary reduction modulo p.

The corollary above generalises [Ejd22, Proposition 3.1] written below to
arbitrary number fields.

Corollary 3.2.13. Let E be an elliptic curve over Q. If p is a prime such that
p > 7, p ̸= 13 and Im ρE,p ⊆ C+

ns(p), then E has potentially good supersingular
reduction modulo p.

Consider again the unique subgroup G(p) < C+
ns(p) of index 3. The next

proposition is one of the main goals of this section.

Proposition 3.2.14. Let E⧸Q be an elliptic curve without complex multipli-

cation. If p > 5 is a prime number such that Im ρE,p is conjugate to G(p),
then p4 | j(E).

Before proving the proposition above, we prove a p-adic property of j(E)
that we establish in the next lemma.

Lemma 3.2.15. Under the assumptions of Proposition 3.2.14, we have 3 ∤
vp(j(E)). In particular, by Lemma 1.1.5 we have vp(j(E)) > 0.

Proof. By Lemma 1.1.5 the curve E has potentially good reduction at p. Let
y2 = x3+ax+b be a minimal model for E over Q with discriminant ∆ and let
K⧸Qnr

p
be the minimal extension over which E×SpecQ SpecQnr

p acquires good

reduction. As shown in the proof of Theorem 3.1.4, we have 3 | [K : Qnr
p ],

hence by Theorem 3.1.1(1) the denominator of
vp(∆)
12 is divisible by 3, and so

3 ∤ vp(∆). Hence vp(j(E)) = vp

(
−123 · (4a)

3

∆

)
= 3vp(a)−vp(∆) is not divisible

by 3.
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Proof of Proposition 3.2.14. By Lemma 1.1.5 we can assume that p ≥ 19 and
that E has potentially good reduction everywhere. Let K⧸Qnr

p
be the minimal

extension over which E ×SpecQ SpecQnr
p acquires good reduction, let y2 =

x3 + ax + b be a model of good reduction for E over OK and let AK and
∆K be the Hasse invariant and the discriminant of this model respectively.
By Corollary 3.2.11 and Theorem 3.2.6 we know that vp(AK) ≥ p

p+1 . As the

ramification index of K over Qp is e ≤ 6, we have vp(AK) ∈ 1
eZ, and therefore

vp(AK) ≥ 1 since p > 5. The good reduction of E implies that vp(∆K) = 0,
and by Lemma 3.2.15 we have 0 < vp(j(E)) = 3vp(a) − vp(∆K) = 3vp(a).
Using that ∆K = −16(4a3 + 27b2), vp(a) > 0 and vp(∆K) = 0, we also have
that vp(b) = 0. We now compute the Hasse invariant. We have

(x3 + ax+ b)
p−1
2 =

∑
i+j+k= p−1

2

(
(p− 1)/2

i, j

)
x3i · ajxj · bk,

hence in particular

AK =
∑

i+j+k= p−1
2

3i+j=p−1

(
(p− 1)/2

i, j

)
ajbk =

∑
2j+3k= p−1

2

(
(p− 1)/2

j, k

)
ajbk.

Since by Theorem 6 we have p ≡ 2 (mod 3), the minimum value of j among
all the indices in the last sum is 1, hence it is not difficult to show that
vp(a) = vp(AK) ≥ 1. This implies vp(j(E)) = 3vp(a) ≥ 3. However, by
Lemma 3.2.15, we know that 3 ∤ vp(j(E)), and so vp(j(E)) ≥ 4.

For the proof of Proposition 3.2.14, the fact that Im ρE,p ⊆ G(p) is only
needed in the proof of Lemma 3.2.15 and to assume that p ≡ 2 (mod 3), so
we can repeat the whole argument without this assumption and obtain the
following.

Corollary 3.2.16. If E⧸Q is an elliptic curve without complex multiplica-
tion and p > 37 is a prime such that Im ρE,p is contained in the normaliser
of a non-split Cartan subgroup, then either vp(j(E)) = 0 or vp(j(E)) ≥ 3.
Moreover, in the latter case we always have p ≡ 2 (mod 3).

Proof. If p ≡ 2 (mod 3) the proof is exactly the same as that of Proposition
3.2.14, hence it suffices to show that if p ≡ 1 (mod 3) then vp(j(E)) = 0.
Following the argument in the proof of Proposition 3.2.14, assume by con-
tradiction that p ≡ 1 (mod 3) and vp(j(E)) > 0. Over a suitable extension
K of Qnr

p , we can write E as y2 = x3 + ax + b with vp(∆K) = vp(b) = 0
and 3vp(a) = vp(j(E)) > 0. We can then write the Hasse invariant as

AK = c · b
p−1
6 + a · d(a, b) for some constants c, d(a, b) ∈ OK with vp(c) = 0. It

follows that vp(AK) = 0, which gives a contradiction with Theorem 3.2.6 and
Corollary 3.2.11.



CHAPTER 4
Effective surjectivity theorem

Let E be an elliptic curve without CM defined over a number field K, and
let pn be a prime power for which the image of ρE,pn is contained in the
normaliser of a non-split Cartan subgroup. The aim of this chapter is to give
a good bound on pn in terms of the stable Faltings height of E. Moreover, we
also want to bound the product of all such prime powers. The main strategy
to obtain this kind of bound relies on the techniques developed by Masser
and Wüstholz [MW93b, MW93a] to bound the degree of a minimal isogeny
between two abelian varieties. Their argument was sharpened by Gaudron
and Rémond [GR14] in the case of elliptic curves. We will mainly follow the
proof of Gaudron and Rémond, taking advantage of some extra hypotheses
specific to our setting.

In Section 4.2, we will exploit the local properties studied in Chapter 3 to
provide even stronger bounds in the case where the j-invariant of the curve E
is not an algebraic integer.

4.1 Abelian periods and isogeny theorem

In this section, we give a generalised version of the effective surjectivity the-
orem of Le Fourn [LF16, Theorem 5.2], obtaining a bound on the product of
the prime powers pn for which the image of the representation ρE,pn is con-
tained either in a Borel subgroup or in the normaliser of a Cartan subgroup
of GL(E[pn]). There are two main differences with respect to [LF16, Theorem
5.2]: the first is that we are able to bound the product of prime powers and
not just the product of primes, the second is that in the non-split Cartan case
our version also applies non-trivially to curves of small height.
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Theorem 4.1.1. Let E be an elliptic curve without CM defined over a num-
ber field K. We denote by hF (E) the stable Faltings height of E (with the
normalisation of [Del85a, Section 1.2]). Let B, Csp, Cns be sets of odd primes
p such that Im ρE,p ⊆ G(p) up to conjugacy for G = B,C+

sp, C
+
ns respectively.

For every p ∈ B ∪ Csp ∪ Cns, let np be the largest positive integer such that

Im ρE,pnp ⊆ G(pn), and let Λ :=
∏
p∈B p

np
2
∏
p∈C p

np, where C := Csp ∪ Cns.

1. We have

Λ < 1454 · 2|C|[K : Q]

(
hF (E) +

7

2
log(hF (E) + 2.72) + 4 log Λ + 5

)
.

2. If B = Csp = ∅ we have

Λ < 1454 · 2|C|[K : Q]

(
hF (E) +

3

2
log(hF (E) + 2.72) + 2 log Λ + 2.6

)
.

3. If K = Q and B = Csp = ∅, we have

Λ < 1454 · 2|C|
(
hF (E) + 2 log Λ +

3

2
max{0, log(ℑ{τ})}+ 1.38

)
,

where τ is the point in the standard fundamental domain F of H such
that E(C) ∼= C⧸Z⊕ τZ.

Furthermore, if τσ ∈ F corresponds to the curve σ(E), for some σ : K ↪→ C,
and if we assume that ℑ{τσ} ≥ 15

π for every σ, we can replace the number
1454 with 1266.4 in all the inequalities.

We follow closely the approach of [LF16, Theorem 5.2] and [GR14, Theorem
1.4], but in parts (2) and (3) we are able to obtain much-improved constants by
noticing that certain auxiliary subvarieties considered in [GR14] are in fact all
trivial (see Lemma 4.1.11). Moreover, we are able to remove the dependence
on the number of primes in C in [LF16, Theorem 5.2]. Section 4.1 is entirely
devoted to proving Theorem 4.1.1.
We begin by recalling some crucial definitions from [GR14].

Definition 4.1.2. Let A be a complex abelian variety, let B ⊂ A be an
abelian subvariety of codimension t ≥ 1, and let L be a polarisation on A. We
define

x(B) :=

(
degLB

degLA

) 1
t

and x := min
B⊊A

x(B),

where degLA is the top self-intersection number of the line bundle L on A,
and similarly degLB.
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Let (A,L) be a polarised abelian variety defined over a number field K. Fix
an embedding σ : K ↪→ C and let (Aσ, Lσ) be the base-change of (A,L) to
C via σ. We will denote by B[σ] a proper abelian subvariety of Aσ such that
x(B[σ]) = x.

Definition 4.1.3. Let A be a complex abelian variety and let L be a polar-
isation on A. Let ∥ · ∥L be the norm induced by L on the tangent space tA,
and let ΩA be the period lattice. We define

ρ(A,L) := min{∥ω∥L | ω ∈ ΩA \ {0}}.

Remark 4.1.4. Let E be an elliptic curve defined over a number field K and
let L be its canonical principal polarisation. As explained in [GR14, Remark
3.3], given an embedding σ : K ↪→ C we have ρ(Eσ, Lσ)

−2 = ℑ{τσ}, where τσ
is the element in the standard fundamental domain F that corresponds to Eσ
and Lσ is the base-change of the polarisation L via σ.

Definition 4.1.5. Let A be an abelian variety defined over a number field K
and let σ : K ↪→ C be an embedding. Let L be a polarisation on A and let dσ
be the distance induced by Lσ on tAσ . We define

δσ = min{dσ(ω, tB[σ]) | ω ∈ ΩAσ \ tB[σ]},

where B[σ] is as in Definition 4.1.2.

We now begin the proof of Theorem 4.1.1 introducing the general setting;
then we will split the proof in different parts, distinguishing the case B, Csp ̸= ∅,
the case B, Csp = ∅ and K = Q, and the case B, Csp = ∅ and K ̸= Q. Similarly
to [LF16], we start by giving the construction of a particular quotient of the
abelian surface E×E. However, we will use a slightly different quotient, which
is more natural.

Choose an extension K ′
⧸K of degree 2|C| such that for every prime p ∈ C

we have

ρE,p

(
Gal

(
K⧸K ′

))
⊆ C(p) (4.1.1)

up to conjugation, where C(p) is either Csp(p) or Cns(p). Note that, if

ρE,p

(
Gal

(
K⧸K

))
is already contained in C(p), we choose K ′ to be an

arbitrary complex quadratic extension of K. Since the image of the com-
plex conjugation is not contained in C(p) for every p, the field K ′ is always a
complex field. We now construct a subgroup Gp of E[pnp ]2 for every p ∈ B∪C.

� p ∈ B: We define the group Gp as Γpnp × E[pnp ] ⊆ E × E, where Γpnp

is a cyclic subgroup of order pnp fixed by ρE,pnp . We have |Gp| = p3np .
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� p ∈ Csp: We define the group Gp as Γ1 × Γ2, where Γ1,Γ2 ⊂ E[pnp ] are
two independent cyclic subgroups of order pnp stabilised by ρE,pnp over
K ′. We have |Gp| = p2np .

� p ∈ Cns: Choose an element gp ∈ Cns(p
np) such that gp (mod p) /∈

F×
p · Id. We define the subgroup Gp as {(x, gp ·x) | x ∈ E[pnp ]}. We have
|Gp| = p2np .

It is not difficult to notice that all the groups Gp we defined are stable under
the action of the absolute Galois group ofK ′: indeed, this is clear by definition
in the case of the Borel and split Cartan subgroups, and it is true in the case
of the non-split Cartan as Cns(p

np) is abelian and for every γ ∈ Cns(pnp) we
have γ(x, gpx) = (γx, γgpx) = (γx, gp(γx)). We now consider the group

G :=
⊕
p∈B∪C

Gp ⊂ E × E.

Define

ΛB :=
∏
p∈B

pnp and ΛC :=
∏
p∈C

pnp .

By taking the quotient A of E × E by the subgroup G, we have an isogeny
φ : E × E → A defined over K ′ such that degφ = Λ3

BΛ
2
C . There exists

ψ : A → E × E such that ψ ◦ φ = [ΛBΛC ]E×E , so degψ = ΛBΛ
2
C = Λ2.

As explained in the proof of [LF16, Proposition 5.1], for every embedding
σ : K ′ ↪→ C, there is a canonical norm ∥ ·∥σ on the tangent space of Eσ, which
contains the period lattice ΩE,σ. As in [GR14, Part 7.3] and in the proof of
[LF16, Proposition 5.1], we choose an embedding σ0 such that there exists a
basis (ω0, τσ0ω0) of ΩE,σ0 for which τσ0 is as in Remark 4.1.4 and

∥ω0∥σ0 = max
σ

min
ω∈ΩE,σ\{0}

∥ω∥σ.

By Remark 4.1.4, this choice of σ0 minimizes ℑ{τσ} among all σ, as in [GR14,
Part 7.3]. Let ΩA,σ0 be the period lattice of Aσ0 . We want to show that there
exists an element χ ∈ ΩA,σ0 such that dψ(χ) = (ω0, τσ0ω0). To do this, we
prove the following lemma.

Lemma 4.1.6. For every embedding σ : K ′ → C, if ΩE,σ and ΩA,σ are the
period lattices of E and A with respect to σ, then dψ(ΩA,σ) ⊆ Ω2

E,σ contains
an element (ω1, ω2) such that ⟨ω1, ω2⟩Z = ΩE,σ.

Proof. The proof is similar to the second part of the proof of [LF16, Theorem
5.2], however [LF16, Lemma 5.3] can no longer be applied. Let tE × tE be the
tangent space of E×E with respect to the embedding σ, and let π : tE×tE →
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E×E be the projection. The lattice Ω := π−1(G) ⊂ tE×tE defines a quotient
abelian variety tE × tE⧸Ω isomorphic to A.

tE × tE tE × tE tE × tE

E × E A E × E

id

π

ΛBΛC

π

φ ψ

Let Ω′ := ΛBΛCΩ ⊆ ΩE × ΩE be the image of the lattice Ω under the homo-
thety ΛBΛC . This is equal to the image of ΩA via dψ, i.e. Ω′ = dψ(ΩA). We
want to show that Ω′ contains a basis of ΩE . Fix a basis (ẽ1, ẽ2) of ΩE . Let p

be a prime in B∪C and consider the image of Ω′ in
(
ΩE⧸pnpΩE

)2
. Multiplying

it by 1
pnp we can identify it with a subgroup of

(
ΩE/p

np⧸ΩE
)2

= E[pnp ]2. By

definition of Ω′, the image of 1
pnp Ω

′ in E[pnp ]2 is exactly ΛBΛC
pnp Gp = Gp. Iden-

tify E[pnp ] with F2
p choosing the basis π

(
ẽ1
pnp ,

ẽ2
pnp

)
= (e1, e2). We now prove

that for every Gp there is an element (x, y) ∈ Gp such that dete1,e2(x, y) = 1.
If p ∈ B, let (a, b) ∈ Γpnp be an element of order pnp . We can choose (c, d)
such that ad − bc = 1 (mod pnp), and hence the element ((a, b), (c, d)) ∈ Gp
has determinant 1.
If p ∈ Csp, similarly to the Borel case, given two elements (a, b) ∈ Γ1 and
(c, d) ∈ Γ2 of order pnp , we have ad − bc = k ̸≡ 0 (mod p), because Γ1

(mod p) ̸= Γ2 (mod p). We can then take (a′, b′) = (k−1a, k−1b) ∈ Γ1 such
that a′d− b′c = 1.
If p ∈ Cns, let e′1, e′2 be another basis of E[pn]. We have

det
e1,e2

(x, y) = det
e1,e2

(e′1, e
′
2) · det

e′1,e
′
2

(x, y),

hence it suffices to show that for a particular choice of a basis e′1, e
′
2, the group

dete′1,e′2 Gp contains the whole
(
Z⧸pnZ

)×
. Fix e′1, e

′
2 such that gp =

(
a εb

b a

)
with p ∤ b. We have

det(x, gp · x) = det

(
x1 ax1 + εbx2

x2 bx1 + ax2

)
= b(x21 − εx22) = b · det

(
x1 εx2

x2 x1

)
.

As detCns(p
n) =

(
Z⧸pnZ

)×
, the proof of the claim is obtained by varying x.

We showed that for every p ∈ B ∪ C there exists γp ∈ SL2

(
Z⧸pnp

)
such that

γp

(
e1

e2

)
∈ Ω′

⧸pnpΩ2
E
. Since the projection SL2(Z) →

∏
p∈B∪C SL2

(
Z⧸pnpZ

)



50 CHAPTER 4. EFFECTIVE SURJECTIVITY THEOREM

is surjective, there exists an element γ ∈ SL2(Z) such that

γ

(
ẽ1

ẽ2

)
∈ Ω′ + ΛBΛCΩ

2
E ⊆ Ω′.

Since (ẽ1, ẽ2) is a basis of ΩE , also γ(ẽ1, ẽ2) is a basis, and it is contained in
Ω′ as desired.

Using Lemma 4.1.6, composing ψ with an isomorphism of E × E, we can
assume that there exists an element χ ∈ ΩA,σ0 such that dψ(χ) = (ω0, τσ0ω0).
Setting ω = (ω0, τσ0ω0, χ) ∈ ΩE×E×A,σ0 , we define Aω as the minimal abelian
subvariety of (E×E×A)σ0 containing ω = (ω0, τσ0ω0, χ) in its tangent space.
As in the proof of [LF16, Proposition 5.1], one shows that

Aω := {(ψ(z), z) | z ∈ Aσ0} ⊂ (E × E ×A)σ0 .

Indeed, the inclusion Aω ⊆ {(ψ(z), z) | z ∈ Aσ0} is clear, and the projection
from Aω to E × E is a subvariety of (E × E)σ0 containing (ω0, τσ0ω0) in its
period lattice. As E is an elliptic curve without complex multiplication, the
endomorphism ring of E×E isM2×2(Z), therefore no strict abelian subvariety
of (E × E)σ0 contains (ω0, τσ0ω0) in its tangent space. This proves that the
dimension of Aω is at least 2, hence the equality above. We then see that the
complex abelian variety Aω can be defined over K ′. When we consider Aω as
being defined over K ′, we will write (Aω)σ for its base-change to C along a
given embedding σ : K ′ ↪→ C. The abelian variety Aω falls within the context
of [GR14, Part 7.3].
As explained in [LF16, Proposition 5.1], one can repeat the proof of Gaudron

and Rémond to obtain a bound on Λ similar to that of [LF16, Theorem 5.2].
However, we will change some details to improve the final result.
We choose a polarisation on Aω as in [GR14, Part 7.3], namely, in the

following way. Set n = ⌊|τσ0 |2⌋, let LE be the canonical principal polarisation
on Eσ0 and let π1, π2 be the projections from (E × E)σ0 on the two copies
of Eσ0 . We consider the polarisation L′ = π∗1L

⊗n
E ⊗ π∗2LE on (E × E)σ0 and

the isogeny f defined as the composition Aω
∼−→ Aσ0

ψ−→ (E × E)σ0 , where
the first isomorphism is given by the projection (ψ(z), z) 7→ z. We define the
polarisation L := f∗L′ on Aω, and as in [GR14, Part 7.3] we compute

degLAω = (deg f) degL′ E2 = 2nΛ2. (4.1.2)

Lemma 4.1.7. Let µ̂max(t∨Aω
) be the quantity defined in [GR14, Part 6.8].

The inequality

µ̂max(t∨Aω
) ≤ hF (E) + 2 log Λ +

1

2
log

n

π

holds.
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Proof. It suffices to combine the proof of [GR14, Lemma 7.6] with the remark
at the end of the proof of [LF16, Proposition 5.1], which gives hF (Aω) ≤
2 hF (E) + log Λ.

The following definition collects the notations that will be needed in the rest
of the proof.

Definition 4.1.8. Following [GR14, Parts 6.2 and 6.3], we set ε = 3
√
2−4
2 ,

θ = log 2
π and Sσ :=

⌊
θε
xδ2σ

⌋
, where x is as in Definition 4.1.2 and δσ is as in

Definition 4.1.5. We further define V = {σ : K ′ ↪→ C | Sσ ≥ 1}. For every
σ : K ′ ↪→ C choose B[σ] ⊂ (Aω)σ as in Definition 4.1.2. We introduce the
following quantities.

ℵ1 :=2max{0, µ̂max(t∨Aω
)}+ 5 log 2 +

2

[K ′ : Q]

∑
σ∈V

logmax

{
1,

1

ρ((Aω)σ, Lσ)

}
+

4

[K ′ : Q]

∑
σ∈V

log degLσ
B[σ] + ε log 12;

m :=
1

[K ′ : Q]

∑
σ∈V

1

δ2σ
.

By [GR14, Part 6], and in particular [GR14, Part 6.8], we have

ε log 2

(
εθ

x
m− 1

)
<

ε log 2

[K ′ : Q]

∑
σ∈V

Sσ ≤ ℵ1 +
πx

2

(
3

2
+

3θε

x

√
m+

(
θε

x

)2

m

)
,

where the inequality on the left is obtained by the definition of Sσ together
with the inequality ⌊x⌋ > x − 1, while the inequality on the right is that of
[GR14, Part 6.8, equation (14)] together with the estimate on ℵ2 obtained
by the Cauchy-Schwarz inequality on the same page of [GR14]. Solving the
inequality in

√
m, using that θ = log 2

π , we obtain

√
m <

3πx

2ε log 2

(
1 +

√
1 +

8

9πx

(
ℵ1 +

3π

4
x+ ε log 2

))
. (4.1.3)

We now want to find a bound on x in terms of n. Recall that ω =
(ω0, τσ0ω0, χ). We have

∥ω∥2L,σ0 = ∥(ω0, τσ0ω0)∥2L′,σ0 = n∥ω0∥2LE ,σ0
+ ∥τσ0ω0∥2LE ,σ0

.

Using Remark 4.1.4 we obtain

∥ω∥2L,σ0 = (n+ |τσ0 |2)∥ω0∥2LE ,σ0
= (n+ |τσ0 |2)ρ(Eσ0 , (LE)σ0)2

=
n+ |τσ0 |2

ℑ{τσ0}
≤ n+ |τσ0 |2√

|τσ0 |2 − 1
4

≤ 2n√
n− 1

4

,
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where the last inequality follows from the fact that the function n+t√
t−1/4

for

t ∈ [n, n+ 1] attains its maximum at t = n = ⌊|τσ0 |⌋.
Suppose now that σ0 /∈ V, and hence that Sσ0 = 0. We notice that x ≤

x(0) = 1√
degL Aω

= 1
Λ
√
2n

by equation (4.1.2). By definition of Sσ0 we have

1 >
θε

xδ2σ0
≥ θεΛ

√
2n

∥ω∥2L,σ0
≥
(
1

2
− 1

8n

) 1
2

θεΛ >

√
3

8
θεΛ,

that gives Λ <
√
8

θε
√
3
< 62, which is better than Theorem 4.1.1 (since hF (E) >

−0.75 by Remark 1.2.9). Thus, we can assume Sσ0 ≥ 1, and in particular, we
can assume that σ0 ∈ V.
SinceK ′ is a complex field, there exists an embedding σ0 ofK

′ different from
σ0, which is its complex conjugate, inducing the same norm ∥ · ∥Lσ0

= ∥ · ∥Lσ0

and such that δσ0 = δσ0 . Combining the fact that δ2σ0 ≤
2n√
n− 1

4

and that

σ0, σ0 ∈ V we obtain

m =
1

[K ′ : Q]

∑
σ∈V

1

δ2σ
≥ 1

[K ′ : Q]
· 2

δ2σ0
≥ 2

[K ′ : Q]
·
√
n− 1/4

2n
. (4.1.4)

We now notice that for every embedding σ we have

ρ((Aω)σ, Lσ) ≥ ρ(Eσ, (LE)σ). (4.1.5)

Indeed, for every period ω = (ω1, ω2, χ) ∈ ΩAω ,σ ⊆ Ω2
E,σ × ΩA,σ we have

∥ω∥2L,σ = n∥ω1∥2LE ,σ
+ ∥ω2∥2LE ,σ

≥ max{∥ω1∥2LE ,σ
, ∥ω2∥2LE ,σ

}.

We then have logmax
{
1, 1

ρ((Aω)σ ,Lσ)

}
≤ logmax

{
1, 1

ρ(Eσ ,(LE)σ)

}
. If we define

ℵ1 := 2 hF (E) + 4 log Λ + log
n

π
+ 5 log 2 +

4

[K ′ : Q]

∑
σ∈V

log degLσ
B[σ]

+
2

[K ′ : Q]

∑
σ

logmax

{
1,

1

ρ(Eσ, (LE)σ)

}
+ ε log 12,

(4.1.6)

by Lemma 4.1.7 we have ℵ1 ≤ ℵ1. We can then replace ℵ1 by ℵ1 in equation
(4.1.3), and by inequality (4.1.4) we obtain

(n− 1/4)
1
4√

n[K ′ : Q]
<

3πx

2ε log 2

(
1 +

√
1 +

8

9πx

(
ℵ1 +

3π

4
x+ ε log 2

))
. (4.1.7)
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By Remark 1.2.9, we have hF (E) ≥ −0.75 for every elliptic curve E. Since
Λ − 4 · 1266.4 log Λ < 2 · 1266.4(−0.75 + 1.38) holds for every Λ ≤ 57000, we
can assume Λ > 57000, otherwise Theorem 4.1.1 would trivially hold. Then
we have

ℵ1 > −1.5 + 4 log 57000 + 5 log 2 + ε log 12 > 44.

Using that x ≤ x(0) = 1
Λ
√
2n
≤ 1

Λ
√
2
(Lemma 4.1.11), this gives

8

9πx

(
ℵ1 +

3π

4
x+ ε log 2

)
>

8
√
2 · 57000
9π

· 44 > 106.

Since the function 1+
√
z√

1+z
is decreasing for z > 1, in equation (4.1.7) we obtain

(n− 1/4)
1
4√

n[K ′ : Q]
<

3πx

2ε log 2
· 1 + 1000√

106 + 1

√
2 +

8

9πx

(
ℵ1 +

3π

4
x+ ε log 2

)
.

Squaring both sides and bounding x with x(0) = 1√
2nΛ

we have√
n− 1/4

n[K ′ : Q]
<

9π2x2

4ε2(log 2)2
· 1.002 ·

(
2 +

8

9πx

(
ℵ1 +

3π

4
x+ ε log 2

))
=

2πx

ε2(log 2)2
· 1.002

(
ℵ1 + 3πx+ ε log 2

)
<

2.004π

ε2(log 2)2Λ
√
2n

(
ℵ1 + 0.085

)
,

where in the last inequality we bounded x with 1
57000

√
2
, since we are assuming

that Λ > 57000. We then obtained that

Λ < [K ′ : Q]

(
2− 1

2n

)− 1
2 2.004π

ε2(log 2)2
(ℵ1 + 0.085), (4.1.8)

and writing (2− 1
2n)

− 1
2 ≤

√
2
3 , we have

Λ < 727 [K ′ : Q]
(
ℵ1 + 0.085

)
. (4.1.9)

We now want to bound ℵ1. We will first do it in general, and then specialise
to the case B = Csp = ∅. We will use the following lemma.

Lemma 4.1.9. Let E be an elliptic curve defined over a number field K. We
have

1

[K : Q]

∑
σ:K↪→C

1

ρ(Eσ, (LE)σ)2
< 2.29 hF (E) + 6.21.
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Proof. If we call T := 1
[K:Q]

∑
σ

1
ρ(Eσ ,(LE)σ)2

, by [GR14, Proposition 3.2] we

have that either T < 3
π , which is better than the statement of the lemma by

Remark 1.2.9, or πT ≤ 3 log T + 6hF (E) + 8.66. In the latter case, we can
apply [Sma98, Lemma B.1] and obtain

T <
3

π
log

(
12

π
hF (E) + 5.52 + 4e2

)
+

6

π
hF (E) + 2.76 < 2.29 hF (E) + 6.21,

where in the last inequality we used that 12
π hF (E) + 5.52 + 4e2 > 32.2 for

hF (E) > −0.75, and that log x
x ≤ log 32.2

32.2 for x ≥ 32.2.

We can apply Lemma 4.1.9 and use the concavity of the logarithm to obtain

2

[K ′ : Q]

∑
σ:K′↪→C

logmax

{
1,

1

ρ(Eσ, (LE)σ)

}
=

1

[K ′ : Q]

∑
σ:K′↪→C

logmax

{
1,

1

ρ(Eσ, (LE)σ)2

}

≤max

{
0, log

(
1

[K ′ : Q]

∑
σ:K′↪→C

1

ρ(Eσ, (LE)σ)2

)}
< log(2.29 hF (E) + 6.21) < log(hF (E) + 2.72) + 0.829.

(4.1.10)

By the definition of B[σ] we have x = x(B[σ]) ≤ x(0), and so either

B[σ] = 0, which gives degLσ
B[σ] = 1, or

degLσ
B[σ]

degLσ
Aω
≤ 1√

degLσ
Aω

, which gives

degLσ
B[σ] ≤

√
degLσ

Aω. In particular, using equation (4.1.2) we have the
bound

4

[K ′ : Q]

∑
σ∈V

log degLσ
B[σ] ≤ 2 log degLσ

Aω

≤ 4 log Λ + 2 log n+ 2 log 2.

(4.1.11)

If we use inequalities (4.1.10) and (4.1.11) to bound ℵ1 and we replace it in
equation (4.1.9) we obtain

Λ < 727[K ′ : Q]
(
2 hF (E) + log(hF (E) + 2.72) + 8 log Λ

+ 3 log n− log π + 7 log 2 + 0.914 + ε log 12
)
.

By our choice of σ0, we know that 1
ρ(Eσ0 ,(LE)σ0 )

2 = ℑ{τσ0} is smaller than or

equal to the mean of the values ℑ{τσ}. Using Lemma 4.1.9 we then have

n ≤ |τσ0 |2 ≤ ℑ{τσ0}2 +
1

4
≤ (2.29 hF (E) + 6.21)2 +

1

4
,

and so
log n ≤ 2 log(hF (E) + 2.72) + 1.662. (4.1.12)
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We then obtain

Λ < 1454 [K ′ : Q]

(
hF (E) +

7

2
log(hF (E) + 2.72) + 4 log Λ + 5

)
= 1454 · 2|C|[K : Q]

(
hF (E) +

7

2
log(hF (E) + 2.72) + 4 log Λ + 5

)
,

concluding the proof of the first part of Theorem 4.1.1.

The non-split Cartan case

When B = Csp = ∅ we are able to obtain a better bound. To do this, we show
that the subvarieties B[σ] are equal to 0 for every embedding σ.
We distinguish cases according to whether Λ ≤

√
2n or Λ >

√
2n.

Lemma 4.1.10. If Λ ≤
√
2n, then Theorem 4.1.1 holds for E and Λ.

Proof. If Λ ≤
√
2n, we can write

Λ ≤
√
2⌊|τσ0 |2⌋ ≤

√
2|τσ0 |2 ≤

√
2

(
(ℑ{τσ0})2 +

1

4

)
≤
√
2ℑ{τσ0}+

1√
2
.

Remark 4.1.4 gives ℑ{τσ} = ρ(Eσ, Lσ)
−2, so by Lemma 4.1.9 we have

ℑ{τσ0} ≤
1

[K ′ : Q]

∑
σ

ℑ{τσ} ≤ 3 hF (E) + 6.5,

and therefore Λ < 5 hF (E) + 10, which is largely better than Theorem 4.1.1
(taking into account that hF (E) > −0.75 by Remark 1.2.9).

Lemma 4.1.11. Assume Λ >
√
2n and B = Csp = ∅. Given Aω considered as

an abelian variety over K ′ as above, for every σ : K ′ ↪→ C we have B[σ] = 0,
and hence x = 1

Λ
√
2n
.

Proof. Since Aω ∼= A, it is sufficient to prove the statement for A and L =

ψ∗L′. First, we notice that x(0) =
(

1
2nΛ2

) 1
2 = 1

Λ
√
2n
. Let us now consider an

arbitrary proper abelian subvariety B such that dimB > 0. The subgroups
of A correspond to those of E × E that contain the group

G =
∏
p∈Cns

{(x, gp · x) | x ∈ E[pnp ]}.

Since B is a proper subvariety of the abelian surface A, we have dimB = 1.
Hence, given the isogeny φ : E × E → A, the group φ−1(B) ⊂ E × E is an
algebraic subgroup of dimension 1 containing G. In particular, there exists an
elliptic curve C ⊂ E×E such that the algebraic group φ−1(B) is C̃ := ⟨C,G⟩,
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and C is the connected component of C̃ that contains 0. Since kerφ = G, we
have φ(C) = φ(C̃) = B, and C = [Λ](C) = ψ ◦φ(C) = ψ(B). By assumption,
E does not have CM, hence there exist two relatively prime integers a, b such
that

C = {(P,Q) ∈ E × E | aP = bQ}.

Therefore, we have degφ|C = | kerφ|C | = |C ∩ G|. We now notice that
C ∩G =

∏
p∈Cns

(C ∩Gp): indeed, the groups Gp are p-groups and hence have
pairwise coprime orders. The same holds for the subgroups C∩Gp. The group
C ∩G is generated by the groups C ∩Gp, and for every pair of primes p, q the
groups C ∩ Gp and C ∩ Gq intersect trivially: this implies that C ∩ G is the
direct product of the groups C ∩Gp. For every p we have

C ∩Gp = {(x, gp · x) | x ∈ E[pnp ] such that (a− bgp)x = 0} .

However, given

gp =

(
α εβ

β α

)
we have a− bgp =

(
a− bα −εbβ
−bβ a− bα

)
.

By assumption we have p ∤ β, hence if p ∤ b, we have that a− bgp is invertible
(since it is an element of Cns(p

np)). If instead p | b, then p ∤ a and so p ∤ a−bα,
and a−bgp is again invertible. This implies that C∩Gp = 0, and so C∩G = 0.
This shows that degφ|C = 1. We then have

Λ2 = deg[Λ]|C = (degψ|B)(degφ|C) = degψ|B,

and therefore degLB = degψ∗L′ B = (degψ|B) degL′ C ≥ Λ2. We can now
estimate

x(B) =
degLB

degLA
≥ Λ2

2nΛ2
=

1

2n
,

and so x(B) > x(0) = 1
Λ
√
2n

since Λ >
√
2n.

Remark 4.1.12. As B[σ] = 0 for every σ, we have ρ((Aω)σ, Lσ) = δσ.

Given ℵ1 as in (4.1.6), we can use Lemma 4.1.11 and inequality (4.1.10) to
obtain

ℵ1 < 2 hF (E) + log(hF (E)+2.72) + 4 logΛ + log
n

π
+ 5 log 2 + ε log 12 + 0.829.

Combined with (4.1.12) and (4.1.9), this yields

Λ < 1454 · 2|C|[K : Q]

(
hF (E) +

3

2
log(hF (E) + 2.72) + 2 log Λ + 2.6

)
,

proving the second part of Theorem 4.1.1.
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Suppose now that K = Q. Since E is defined over Q, we have that τσ =
τσ0 = τ for every embedding σ. We then have

2

[K ′ : Q]

∑
σ∈V

logmax

{
1,

1

ρ(Eσ, (LE)σ)

}
= max{0, logℑ{τ}}

and log n ≤ log |τ |2 ≤ log
(
ℑ{τ}2 + 1

4

)
. If |τ |2 < 2, we have log n = 0, if

instead |τ |2 ≥ 2, then ℑ{τ}2 ≥ 7
4 and so log

(
ℑ{τ}2 + 1

4

)
≤ log

(
8
7ℑ{τ}

2
)
=

2 log(ℑ{τ}) + log(8/7). We can combine the two cases by writing logn ≤
max{0, 2 log(ℑ{τ})}+ log(8/7). Bounding ℵ1 with

2 hF (E) + 4 log Λ− log π + 5 log 2 + ε log 12 + 3max{0, logℑ{τ}}+ log

(
8

7

)
,

by equation (4.1.9) we obtain

Λ < 1454 · 2|C|
(
hF (E) + 2 log Λ +

3

2
max{0, log(ℑ{τ})}+ 1.38

)
,

which proves part 3 of Theorem 4.1.1.

To conclude the proof of Theorem 4.1.1, we notice that for ℑ{τσ0} ≥ 15
π ,

we can write n ≥ |τσ0 |2 − 1 ≥ ℑ{τσ0}2 − 1 > 21.7. We can then estimate(
2− 1

2n

)− 1
2 ≤

√
44
87 . Hence, in equation (4.1.8) we can use the estimate(

2− 1

2n

)− 1
2 2.004π

ε2(log 2)2
≤ 633.2.

Repeating the rest of the proof in the same way we obtain the desired inequal-
ities.

4.2 Bounds for non-integral j-invariants

In this section, we show that in the setting of Section 4.1, if we assume that
j(E) /∈ OK , we can obtain stronger bounds on Λ whenever B = ∅. The ap-
proach here is completely different: instead of studying the complex structure
of E and the periods of auxiliary complex abelian varieties, we rely on local
arguments at primes p | p for which ρE,p is not surjective. Finally, we will use
these results to simplify the inequalities in the statement of Theorem 4.1.1.

Proposition 4.2.1. Let E be an elliptic curve defined over a number field K.
Let Csp, Cns be disjoint sets of odd primes p such that Im ρE,p ⊆ H(p) up to
conjugacy for H = C+

sp, C
+
ns respectively. Let np be the largest positive integer

such that Im ρE,pnp ⊆ H(pn) up to conjugacy, and let Λ :=
∏
p∈Csp∪Cns

pnp.
Then Λ divides

gcd
λ⊆OK prime

(max{0,−vλ(j(E))}).
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Proof. If j(E) ∈ OK the statement is trivial. Let λ be a prime of K such that
e := −vλ(j(E)) > 0 and let pn be a prime power such that pn | Λ. We want
to show that pn | e. We can assume that ζp ∈ K: indeed, p does not divide
[K(ζp) : K] and so the power of p that divides the valuation of j(E) at primes
of K(ζp) above λ is the same as that of the λ-adic valuation of j(E). Consider
E to be defined over Kλ, and let Eq be the Tate curve with parameter q ∈ K×

λ ,
isomorphic to E over a quadratic extension of Kλ. We know that vλ(q) = e.
Suppose first that p ∈ Cns: if χpn is the cyclotomic character modulo pn, there
is a quadratic character ψ such that ρEq ,pn

∼= ρE,pn ⊗ ψ, and we have

ρE,pn ⊗ ψ ∼=

(
χpn k

0 1

)
=

(
1 k

0 1

)
,

where k(σ) is such that σ
(
q

1
pn

)
= q

1
pn ζ

k(σ)
pn . Indeed, as shown in case (ii) of

the proof of Proposition 3.1.2, the image of an automorphism σ via χpn must be
±1, however it cannot be −1 because χp = χpn (mod p) is trivial, as ζp ∈ K.

By the definition of Cns, for every σ ∈ Gal

(
Kλ⧸Kλ

)
we know that Mσ :=

(ρE,pn⊗ψ)(σ) is conjugate to an element of C+
ns(p

n). Following the definitions
of Chapter 3, we call G := Im(ρE,p∞ ⊗ ψ) and G(pn) := Im(ρE,pn ⊗ ψ). Let

0 ≤ i ≤ n be such that Mσ =

(
1 upi

0 1

)
, for u ̸≡ 0 (mod p). If i = 0, then

Mσ (mod p) has non-diagonal Jordan form over Fp, and hence it cannot be

an element of C+
ns(p). If instead 0 < i < n, we can write Mσ = I+pi

(
0 u

0 0

)
,

and so there is an element in gi of rank 1 (where gi is defined in Definition
2.1.3). However, since G(pn) ⊆ C+

ns(p
n) up to conjugation, by Remark 2.1.8

the group gi is conjugate to a subgroup of V1 ⊕ V2 defined as in Lemma
2.1.7, which contains no matrices of rank 1. Since the rank is invariant under
conjugation, we have that i = n, and in particular Mσ = I. This implies that

k(σ) = 0 for every σ, and in particular that σ
(
q

1
pn

)
= q

1
pn . Hence q

1
pn ∈ Kλ,

and so pn | e.
If instead we have p ∈ Csp, there exists again a quadratic character ψ such
that

ρE,pn ⊗ ψ ∼=

(
χpn k

0 1

)
≡

(
1 k

0 1

)
(mod p),

with σ
(
q

1
pn

)
= q

1
pn ζ

k(σ)
pn . In particular, every element in Im ρE,pn can be

written as I + pA, with A of the form

(
∗ ∗
0 0

)
. Since C+

sp(p) does not contain

elements of order p, we must have k ≡ 0 (mod p). If we call G a group



4.2. BOUNDS FOR NON-INTEGRAL j-INVARIANTS 59

conjugate to Im ρEq ,p∞ such that ±G(pn) ⊆ C+
sp(p

n), we must have that for
every 1 ≤ i < n, every element in gi has rank at most 1. By Remark 2.1.8,

these elements must lie in V ⊕W , with V := Fp

(
1 0

0 0

)
andW := Fp

(
0 0

0 1

)
.

However, we must have that either gi ⊆ V or gi ⊆ W : indeed, if we had
0 ̸= x ∈ gi ∩ V and 0 ̸= y ∈ gi ∩ W , then the matrix x + y would lie
in gi, which is impossible as x + y has rank 2. By Lemma 2.1.4, we have
g1 ⊆ . . . ⊆ gn−1, hence they are all contained in the same subspace V or W .
Let i be the smallest integer for which gi ̸= 0. If we take a non-zero element
of gi, this is the image of an element in G(pn) of order pn−i. On the other
hand, as G(p) = {I}, we have

|G(pn)| =
n−1∏
t=1

|gt| =
n−1∏
t=i

|gt| = pn−i.

In particular, this implies that G(pn) is a cyclic p-group, as is H(pn) :=
Im(ρE,pn ⊗ ψ). Let

Mσ := (ρE,pn ⊗ ψ)(σ) = I + pi

(
a b

0 0

)

be a generator of H(pn), where i is as large as possible (i.e. either a or b are
coprime with p). If i ≥ n then Mσ = I, and so H(pn) = I: we conclude as in
the non-split case that pn | e. If i < n, we can assume that p ∤ a: indeed, if

we had p | a, modulo pi+1 we would have Mσ ≡ I + pi

(
0 b

0 0

)
(mod pi+1),

where b ̸≡ 0 (mod pi+1). In particular, we would have a non-zero element

x ∈ gi conjugate to

(
0 b

0 0

)
, and so such that trx = detx = 0. However,

this is impossible because such an element cannot lie in V ⊕ W . Consider

the element q
1
pn ζ

−b/a
pn : in the basis (ζpn , q

1
pn ) this is expressed as the vector

(−b/a, 1). We then have

σ(q
1
pn ζ

−b/a
pn )←→

(
1 + pia pib

0 1

)(
−b/a
1

)
=

(
−b/a
1

)
←→ q

1
pn ζ

−b/a
pn ,

and so σ(q
1
pn ζ

−b/a
pn ) = q

1
pn ζ

−b/a
pn . Since Mσ generates H(pn), this implies that

q
1
pn ζ

−b/a
pn is fixed by every automorphism, and so q

1
pn ζ

−b/a
pn ∈ Kλ. We conclude

as in the non-split case that vλ(q
1
pn ζ

−b/a
pn ) = e

pn ∈ Z, and hence pn | e.
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Theorem 4.2.2. Let E be an elliptic curve defined over a number field K
of degree d = [K : Q], n a positive integer, and p an odd prime such that
Im ρE,pn ⊆ C+

ns(p
n) up to conjugation. Suppose that j = j(E) /∈ OK , then

pn ≤ 1.6dnh(j)

log(1.6dnh(j))− log log(1.6dnh(j))
<

2.2dnh(j)

log(dnh(j))
.

Moreover, if pn−1(p− 1) ∤ 2d we have

pn <
dh(j) + 1.116

log(dh(j) + 1.116)− log log(d h(j) + 1.116)
< 1.68 · dh(j)

log(dh(j))
.

Proof. Let MK be the set of all places of K. We have

h(j) =
1

d

∑
ν∈MK

nν logmax{1, ∥j∥ν} ≥
1

d

∑
λ⊆OK prime
vλ(j)<0

nλ log ∥j∥λ, (4.2.1)

where nν are the local degrees, and the inequality is obtained by taking the
sum only over the finite places. We remark that, since j /∈ OK , the sum on the
RHS of equation (4.2.1) is non-zero. By Proposition 4.2.1 we know that for
every prime λ ⊆ OK such that vλ(j) < 0, we have pn ≤ −vλ(j). Moreover, we
have log ∥j∥λ = −vλ(j) logNK/Q(λ) ≥ pn logNK/Q(λ). By Proposition 3.1.2
we know that either λ | p or NK/Q(λ) ≡ ±1 (mod pn). This implies that
either p divides NK/Q(λ) or NK/Q(λ) ≥ pn − 1 ≥ p − 1. In both cases, by
equation (4.2.1) we have

d h(j) ≥
∑

λ⊆OK prime
vλ(j)<0

nλ log ∥j∥λ ≥ pn log(p− 1). (4.2.2)

As p ≥ 3, we have that dh(j) > 2. Moreover, we have log p
log(p−1) ≤ 1.6, hence we

can write 1.6dh(j) ≥ pn log p. The function xn log x is strictly increasing, and

its inverse function is n

√
nx

W (nx) , where W (x) is the Lambert W function. This

implies that pn ≤ 1.6dn h(j)
W (1.6dnh(j)) , and by [HH08, Theorem 2.1], using dh(j) >

2 > e
1.6n , we have

pn ≤ 1.6dnh(j)

log(1.6dn h(j))− log log(1.6dnh(j))
. (4.2.3)

If we now assume that pn−1(p − 1) ∤ 2d and take λ such that vλ(j) < 0, by
Proposition 3.1.2 we know that λ ∤ p, and so NK/Q(λ) ≡ ±1 (mod pn). Using
pn−1(p− 1) ∤ 2d we notice that pn ̸= 3, and hence pn ≥ 5. Similarly to above
we obtain

dh(j) ≥ pn log(pn − 1) = pn log(pn) + pn log

(
1− 1

pn

)
> pn log(pn)− 1.116,
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where we used that log(1−x)
x > −1.116 for x ∈

(
0, 15
)
. As before, the function

x log(x) has inverse x
W (x) , and using dh(j) + 1.116 ≥ 2 + 1.116 > e, we

can apply again [HH08, Theorem 2.1], obtaining the desired inequality. To
conclude the proof, it suffices to notice that the functions

1.6x

log(1.6x)− log log(1.6x)
and

x+ 1.116

log(x+ 1.116)− log log(x+ 1.116)

are smaller than cx
log x , for c = 2.2 and c = 1.68 respectively, whenever x > 2

(which is always the case for dh(j), as we proved above).

Corollary 4.2.3. Let E be an elliptic curve defined over Q, n a positive
integer, and p an odd prime such that Im ρE,pn ⊆ C+

ns(p
n) up to conjugation.

Suppose that j = j(E) /∈ Z and define b(j) := h(j)− logmax{1, |j|}. We have
that either pn = 3 or

pn <
b(j) + 0.527

log(2b(j) + 1.054)− log log(2b(j) + 1.054)
< 1.3 · b(j)

log b(j)
.

Proof. The proof is analogous to that of Theorem 4.2.2. First, we note that we
can replace h(j) with b(j) in equation (4.2.1), and that b(j) ≥ 2, as j /∈ Z. We
then note that by Corollary 3.1.3 we have ℓ ≡ ±1 (mod pn), but for pn ̸= 3
the number pn ± 1 is even and greater than 2. In particular, it cannot be
prime, and so ℓ ≥ 2pn − 1. Since pn ̸= 3 we have pn ≥ 5 and pn−1(p− 1) > 2,
so as in the proof of Theorem 4.2.2 we obtain

b(j) ≥ pn log(2pn − 1) = pn log(2pn) + pn log

(
1− 1

2pn

)
> pn log(2pn)− 0.527,

(4.2.4)

where we used that log(1−x)
x > −1.054 for x ∈

(
0, 1

10

)
. We notice that since

pn ≥ 5 we have b(j) ≥ 5 log 9 > 10. One can verify that the function x log(2x)
has inverse x

W (2x) , and since 2(b(j)+0.527) > e we can apply [HH08, Theorem

2.1] to obtain the desired inequality. We conclude the proof by noting that
the function x+0.527

log(2x+1.054)−log log(2x+1.054) is smaller than 1.3x
log x for x > 10.

Theorem 4.2.4. Let E be an elliptic curve over a number field K of degree
d over Q. Let Csp, Cns and Λ be as in Proposition 4.2.1 and suppose that
j(E) /∈ OK . We have

Λ ≤ d

log 2
h(j(E)).

Moreover, if K = Q we have

Λ ≤ 1

log 2
(h(j(E))− logmax{1, |j(E)|}) < 12

log 2
hF (E) + 25.
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Proof. Set j = j(E). As in equation (4.2.1) we have

[K : Q] h(j) ≥
∑

λ⊆OK prime
vλ(j)<0

nλ log ∥j∥λ,

and by Proposition 4.2.1 we have that for every λ in the sum above, the in-
equality log ∥j∥λ ≥ −vλ(j) log 2 ≥ Λ log 2 holds, and the hypothesis j(E) /∈
OK ensures there is at least one such prime ideal λ. If K = Q, as in Corol-
lary 4.2.3, we can replace h(j) with h(j) − logmax{1, |j|} to obtain the first
inequality. By Theorem 1.2.6, for |j| ≤ 3500 we have that

1

log 2
h(j) <

12

log 2
(hF (E) + 1.429) <

12

log 2
hF (E) + 25.

If instead |j| > 3500, we have

1

log 2
(h(j)− log |j|) < 1

log 2
(12 hF (E) + 6 log log |j| − log |j|+ 12 · 0.406)

<
12

log 2
hF (E) + 14,

which is even better.

Theorem 4.2.5. Let E⧸Q be an elliptic curve without CM, let C be the set of

all primes p > 2 such that Im ρE,p ⊆ C+
ns(p) up to conjugation, and let Λ be

as in Theorem 4.1.1. We have

Λ < 21000 (hF (E) + 40)1.308 .

Moreover, if we define

δ(x) :=
1

log(log(x+ 40) + 7.6)− 0.903

for every x > −0.75, we have

Λ < 14400 · (hF (E) + 40)0.907·δ(hF (E)) (hF (E) + 22.5) .

Proof. By Theorem 4.2.4 we can assume that j(E) ∈ Z, otherwise we would
have a better bound. Let τ ∈ H be the element in the standard fundamental
domain for the action of SL2(Z) corresponding to E, and let q = e2πiτ . By
Lemma 5.3.3, we can assume that 7 ∤ Λ and at most one among 3 and 5
divides Λ: indeed, if 7 divided Λ we would have Λ ≤ 504, which is better
than the statement of the theorem, while the case 15 | Λ never occurs. Since
it is known that there are no non-CM elliptic curves E with j(E) ∈ Z and
Im ρE,p ⊆ C+

ns(p) for p ∈ {11, 13, 17} (see [ST12, Theorem 1.2], [BDM+19,
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Corollary 1.3] and [BDM+23, Theorem 1.2]), we know that |C| ≤ 1 + |{p ≥
19 : p | Λ}|. This implies that

|C| ≤ max

{
log19 Λ, 1 + log19

Λ

3
, 1 + log19

Λ

5

}
= log19 Λ + 1− log19 3 < log19 Λ + 0.627.

Suppose first that | log |q|| ≤ 30: by Theorem 1.2.6(3) we obtain that hF (E) <

0.6. Using that ℑ{τ} = | log |q||
2π and writing 2|C| < 20.627 · Λlog19 2, by Theorem

4.1.1(3) we have that

Λ1−log19 2 < 1454 · 20.627
(
0.6 + 2 log Λ +

3

2
log

(
15

π

)
+ 1.38

)
.

Solving the inequality numerically we obtain that Λ < 2.41·106, which satisfies
the first statement of the theorem: indeed, by Remark 1.2.9 we have hF (E) >
−0.75, and so 20000·39.251.308 > 2.41·106. We can then assume that | log |q|| >
30, and hence by Theorem 1.2.6(4) that hF (E) > 0.45. By Theorem 4.1.1(2)
we have

Λ < 1266.4 · 2|C|
(
hF (E) +

3

2
log(hF (E) + 2.72) + 2 log Λ + 2.6

)
. (4.2.5)

The function (x + 3
2 log(x + 2.72) + 2.6)/(x + 8) is bounded by α := 1.0144,

so we have

Λ < 1266.4α · 2|C|
(
hF (E) +

2

α
log Λ + 8

)
. (4.2.6)

Using again the inequality 2|C| < 20.627 · Λlog19 2 we obtain

Λ1−log19 2 < 1266.4α · 20.627
(
hF (E) +

2

α
log Λ + 8

)
< 1984

(
hF (E) +

2

α
log Λ + 8

)
. (4.2.7)

Since Λ1−log19 2 − 2
α · 1984 log Λ > 0.225Λ1−log19 2 for Λ ≥ 2.34 · 106, we have

Λ <

(
1984

0.225

) 1
1−log19 2

(hF (E) + 8)
1

1−log19 2 < 145000 (hF (E) + 8)1.308 , (4.2.8)

which holds also for Λ < 2.34 · 106 (indeed, since hF (E) > 0.45, we have
145000 (hF (E) + 8)1.308 ≥ 145000 · 8.451.308 > 2.34 · 106), and hence for all
values of Λ. Using inequality (4.2.8) to bound log Λ in (4.2.7), we obtain

Λ1−log19 2 < 1984

(
hF (E) +

2.616

α
log (hF (E) + 8) + 31.5

)
. (4.2.9)
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The function x+ 2.616
α log(x+8)+ 31.5 is smaller than 1.1 · (x+35) for every

x > 0.45, hence we have

Λ < (1984 · 1.1)1.308 (hF (E) + 35)1.308

< 23300 · (hF (E) + 35)1.308 . (4.2.10)

Repeating this last step once more, using equation (4.2.10) in equation (4.2.7),
we obtain

20900 · (hF (E) + 40)1.308, (4.2.11)

concluding the proof of the first part of the theorem. We now focus on the
second part. We start by assuming again that | log |q|| > 30. Using the bound
on Λ given in equation (4.2.11) in equation (4.2.5), we obtain

Λ < 1266.4·2ω(Λ)(hF (E)+2.616 log(hF (E)+40)+1.5 log(hF (E)+2.72)+22.5),

where ω(Λ) is the number of distinct prime factors of Λ, and applying the
weighted AM-GM inequality we obtain

Λ < 1266.4 · 2ω(Λ) (hF (E) + 4.116 log(hF (E) + 26.42) + 22.5) . (4.2.12)

As we can assume that Λ ≥ 26, by [Rob83, Théorème 13] we have ω(Λ) ≤
log Λ

log log Λ−1.1714 , and by equation (4.2.11) we have

ω(Λ) <
1.308 log(hF (E) + 40) + log 20900

log(1.308 log(hF (E) + 40) + log 20900)− 1.1714

<
1.308 log(hF (E) + 40) + log 20900

log(log(hF (E) + 40) + 7.6)− 0.903
.

Suppose that hF (E) > 1.2 · 1015. We have the bounds δ(hF (E)) < 0.352 and
4.116 log(hF (E)+26.42)

hF (E) < 10−10, so replacing in equation (4.2.12) and bounding
1.308 · log 2 < 0.907, we obtain

Λ < 1266.5 · 20900log 2·δ(hF (E))(hF (E) + 40)0.907·δ(hF (E)) (hF (E) + 22.5)

< 14400 · (hF (E) + 40)0.907·δ(hF (E)) (hF (E) + 22.5) .

To complete the proof, it suffices to notice that for hF (E) ≤ 1.2 ·1015 we have

21000 (hF (E) + 40)1.308 < 14400 (hF (E) + 40)0.907·δ(hF (E)) (hF (E) + 22.5) ,

which also holds for | log |q|| ≤ 30, since in this case we have hF (E) < 0.6 (as
shown at the start of the proof).

Remark 4.2.6. If we assume Claim 5.3.1, we can repeat the proof of Theorem
4.2.5 replacing log19 2 with log101 2 and obtain the following better inequalities:

Λ < 11500 (hF (E) + 30)1.177
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and

Λ < 6200 · (hF (E) + 30)0.816·δ(hF (E)) (hF (E) + 21.5) ,

where

δ(x) :=
1

log (log(x+ 30) + 7.94)− 1.01
.





CHAPTER 5
Integral points on modular

curves

In this chapter, we present some techniques to study integral points on modu-
lar curves. In particular, we will focus on the case of non-split Cartan modular
curves.

Let X be a modular curve defined over Q. As usual, we denote with X(Q)
the set of its rational points. We say that a point P ∈ X(Q) is integral if
j(P ) ∈ Z, where j : X → X(1) is the standard j-map. We denote with X(Z)
the set of the integral points of X.

Studying the integral points of the modular curve X+
ns(N) is easier than

studying its rational points. In some cases, we are able to determine the set
X+
ns(N)(Z) but not the set X+

ns(N)(Q). For modular curves such as X+
sp(N),

the problem of studying the rational points can be reduced to that of studying
integral points. This is done via the formal immersion argument introduced
by Mazur [Maz78] to study the rational points of X0(N). Unfortunately, this
method does not apply to the curves X+

ns(N). However, in the case of the
subgroup G(p) ⊆ C+

ns(p) defined in Theorem 6, Le Fourn and Lemos proved
that for every prime p > 37 we have XG(p)(Q) = XG(p)(Z) (see Theorem 7).

We will introduce modular units of X, which are elements of the function
field of X with zeroes and poles only at the cusps. We can expand these

functions in their Fourier series in the parameter q = e
2πiτ
p . We will use them

to give some bounds on |q(E)| when E corresponds to a point in X(Q), which
gives in turn a bound on log |j(E)|. This is possible because the modular units

of a curve of level p are integral over the ring Z
[
1
p , j
]
, and hence integral over

the ring Z
[
1
p

]
when evaluated in an integral value of j. The bounds are

then obtained via two different methods: Baker’s bound for linear forms in

67



68 CHAPTER 5. INTEGRAL POINTS ON MODULAR CURVES

logarithms, as presented in [BS14, Sha14], and Runge’s method for modular
curves. The last one was developed by Bilu and Parent [BP11b] to determine
the integral points on the modular curves X+

sp(p).

In the first part of the chapter we will focus on the integral points onX+
ns(N)

for some small values ofN . In the second part, we will study the integral points
on the modular curve XG(p), where G(p) is the group defined in Theorem 6.
To conclude, we show that the curves XG(p) have no non-CM rational points.

5.1 Cusps of modular curves

We follow [LFL21] to deduce from [DR73] a parametrisation of the cusps of
modular curves, with our focus on the curves X+

ns(p
n).

Lemma 5.1.1. Given a positive integer N , there is a bijection between the

cusps of X(N) and the setMN ×
(
Z⧸NZ

)×
, where

MN :=

{
(a, b) ∈ Z⧸NZ×

Z⧸NZ : (N, a, b) = 1
}
⧸±1,

which is equivariant for the action of GL2

(
Z⧸NZ

)
(acting by its natural left

action on MN and by multiplication by the determinant on Z⧸NZ). More-

over, if σ ∈ Gal

(
Q⧸Q

)
and c is a cusp of X(N) corresponding to the pair((

a

b

)
, d

)
, then σ(c) corresponds to

σ ·

((
a

b

)
, d

)
:=

(
χN (σ)

−1

(
a

b

)
, χN (σ)

−1d

)
,

where χN is the cyclotomic character.

Proof. As in [LFL21, Lemma 2.1], by [DR73, 6, VI.5] we have a canonical

Galois and GL2

(
Z⧸NZ

)
equivariant bijection between the cusps of X(N)

and the set

S :=
Isom

(
µN × Z⧸NZ,

Z⧸NZ×
Z⧸NZ

)
⧸±U ,

where U is the set of matrices

U :=

{(
1 u

0 1

)
: u ∈ Hom

(
Z⧸NZ, µN

)}
,
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and the action of Gal

(
Q⧸Q

)
is induced by its natural action on µN and the

trivial one on Z⧸NZ. The action of GL2

(
Z⧸NZ

)
corresponds to left matrix

multiplication.
Given a class γ ∈ S represented by

(ζN , 0) 7→ (a, b), (1, 1) 7→ (c, d),

we associate with it the element((
a

b

)
, det γ

)
∈MN ×

(
Z⧸NZ

)×
,

where det γ := ad − bc. The function is well defined, because since γ is an
isomorphism we have (N, a, b) = 1, and every other representative of γ yields
the same element. Moreover, it is easy to see that this function is equivariant

with respect to the actions of GL2

(
Z⧸NZ

)
and of the Galois group.

We note that this function is surjective, as given

((
a

b

)
, x

)
with (N, a, b) = 1,

by Bezout’s identity there exist c, d such that ad − bc ≡ x (mod N), giving

the matrix γ =

(
a c

b d

)
∈ S. We now prove that it is injective. Given

γ, γ′ ∈ S with the same image inMN ×
(
Z⧸NZ

)×
, we have

(
aγ

bγ

)
=

(
aγ′

bγ′

)
and x = aγdγ − bγcγ = aγdγ′ − bγcγ′ . We can then notice that

γ−1γ′ =
1

x

(
dγ −cγ
−bγ aγ

)(
aγ cγ′

bγ dγ′

)
=

(
1 u

0 1

)

for some u ∈ Z⧸NZ, concluding the proof.

Corollary 5.1.2. If H is a subgroup of GL2

(
Z⧸NZ

)
, then there is a bijection

between the set of cusps of XH and the set H⧹
MN × (Z/NZ)×. Moreover, if

detH =
(
Z⧸NZ

)×
, this bijection induces a bijection between the set of cusps

of XH and H ∩ SL2 (Z/NZ)⧹
MN .

Proof. The proof is analogous to that of [LFL21, Corollary 2.2]. The first
statement immediately follows from Lemma 5.1.1 and the definition ofXH . To

prove the second statement, notice that, given a class in H⧹
MN × (Z/NZ)×,
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there is always a representative of this class of the form (v, 1), because detH =(
Z⧸NZ

)×
. Therefore, the map

H ∩ SL2 (Z/NZ)⧹
MN −→ H⧹

MN × (Z/NZ)×

given by v 7→ (v, 1) is well-defined and bijective.

Corollary 5.1.3. Let H be a subgroup of GL2

(
Z⧸NZ

)
such that detH =(

Z⧸NZ
)×

. Under the identification of Corollary 5.1.2, there is a one-to-one

correspondence between the Galois orbits of cusps of XH and the set H⧹
MN .

Proof. The proof is analogous to that of [LFL21, Corollary 2.3]. One can also
find it in [BBM21, Remark 2.2].

We now examine the case N = pn. We notice that the setMN becomes

Mpn =

{
(a, b) ∈ Z⧸pnZ×

Z⧸pnZ : p ∤ (a, b)
}
⧸±1 .

We notice that there is a correspondence between the set Mpn and the set
Cns(p

n)⧸±1. Indeed, consider an integer ε such that ε ∈ Z×
p and x2−ε ∈ Zp[x]

is an irreducible polynomial. If
√
ε is a root of that polynomial, modulo pn

we have

Cns(p
n) ∼=

(
Z⧸pnZ[

√
ε]
)×

=
{
a+ b

√
ε ∈ Z⧸pnZ[

√
ε] : p ∤ (a, b)

}
.

It is not difficult to see that there is a one-to-one correspondence Mpn →
Cns(p

n)⧸±1 given by (a, b) 7→ a + b
√
ε. Moreover, the action of the group

Cns(p
n) =

{(
a bε

b a

)
∈ GL2

(
Z⧸pnZ

)}
onMpn by left matrix multiplication

is the same as the left multiplication on Cns(p
n) ∼=

(
Z⧸pnZ[

√
ε]
)×

.

Corollary 5.1.4. The Galois group Gal

(
Q⧸Q

)
acts transitively on the cusps

of the modular curve Xns(p
n) (and hence also on the cusps of the curve

X+
ns(p

n)).

Proof. Since detCns(p
n) =

(
Z⧸pnZ

)×
, by Corollary 5.1.3, the Galois orbits

correspond to the elements of the set
Cns(pn)⧸±1
Cns(pn)

= {1}.



5.2. MODULAR UNITS 71

We now consider the case where N = p ≡ 2 (mod 3) and H is the subgroup
G(p) < C+

ns(p) defined in Theorem 6. We show that, unlike the case H =
C+
ns(p), the cusps of XG(p) form two distinct Galois orbits. This fact will be

crucial in the application of the Runge method in Section 5.4, as it gives the
existence of a non-trivial modular unit defined over Q.
We have the following lemma from [LFL21, Lemma 6.3].

Lemma 5.1.5. The set of cusps of XG(p) consists of two Galois orbits. One of

the orbits can be identified via Corollary 5.1.3 with the set Ocubes⧸±1 ⊂ Mp,
where

Ocubes :=

{(
a

b

)
∈ F2

p \ {0}

∣∣∣∣∣ a+ b
√
ε ∈ F×3

p2

}
.

Proof. As we noticed above, the action of Cns(p) on the setMp corresponds

to the multiplication of elements in F×
p2⧸±1 by elements in F×

p2
. Moreover,

the action of the element

(
1 0

0 −1

)
corresponds to the action of the Frobe-

nius automorphism on F×
p2
. We then see that the action of G(p) corresponds

to the multiplication by elements of (F×
p2
)3 and the action of the Frobenius

automorphism of Fp2 . It is not difficult to notice that Ocubes⧸±1 is an orbit.
Indeed, the product of two cubes is a cube and the Frobenius automorphism
of Fp2 preserves the cubes. Given an element γ ∈ F×

p2
\ (F×

p2
)3, we see that

F×
p2

= (F×
p2
)3 ⊔ γ(F×

p2
)3 ⊔ γ2(F×

p2
)3, and γ2 is obtained from γ by applying the

Frobenius automorphism. This implies that γ(F
×
p2
)3 ⊔ γ2(F×

p2
)3⧸±1 is another

orbit for the action of G(p).

5.2 Modular units

Let τ be an element in the upper half plane H. Define qk := e2πikτ and
e(k) := e2πik for every k ∈ Q.

Definition 5.2.1. Let N be a positive integer. For all (a, b) ∈ 1
NZ2 ∩ [0, 1)2,

with a, b not both 0, we define

ga,b(τ) = q
B2(a)

2 e(b(a− 1)/2)
∞∏
n=0

(1− qn+ae(b))(1− qn+1−ae(−b)),

where B2(x) = x2 − x+ 1
6 is the second Bernoulli polynomial.

Consider the set

MN :=
{
(a, b) ∈ Z⧸NZ×

Z⧸NZ : (N, a, b) = 1
}
,
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where MN⧸±1 = MN is the parametrising set from the previous section.

Consider a group G < GL2

(
Z⧸NZ

)
, and a subset O ⊂ MN stable by the

action of G on MN by left multiplication. We can identify (whenever it is not
ambiguous) the elements in the set MN with elements in 1

NZ2 ∩ [0, 1)2. If we
consider the modular curve XG of level N , this can be defined over a number
field K ⊆ Q(ζN ).

Theorem 5.2.2. Suppose (N, 6) = 1. For every pair (a, b) in MN consider
an integer m(a, b). If 12 |

∑
(a,b)∈MN

m(a, b) and 2 | m(a, b) for every (a, b),
then the function

U =
∏

(a,b)∈MN

g
m(a,b)N
a,b

is modular for Γ(N). Moreover, U is integral over Z[j], where j is the standard
j-function in Q(X(1)).

Proof. See [KL81, §3 Theorem 5.2] and [BP11b, Proposition 2.2].

Given the modular curve X(N), the set of modular units of X(N) modulo
constants form a free abelian multiplicative group of rank C−1, where C is the
number of cusps of X(N). The following lemma (which is a slightly improved
version of [BBM21, Lemma 4.8]) gives a dependence relation between the
generators ga,b.

Lemma 5.2.3. For every positive integer N , the set MN has cardinality

N2
∏

p prime
p|N

(
1− 1

p2

)
.

Proof. Suppose first that N = pn is a prime power. In this case, we can write

Mpn = {(a, b) : p ∤ ab} ∪ {(a, b) : p | a, p ∤ b} ∪ {(a, b) : p ∤ a, p | b}.

Hence we have

|MN | = φ(pn)2 + 2pnφ(pn) = p2n−2(p2 − 1)

as desired. Suppose now that N is the product of prime powers N =
∏
p|N p

n.
By the Chinese remainder theorem, we know that (a, b) ∈ MN if and only if

(a, b) ∈ Mpn for every p | N , where x represents the projection from Z⧸NZ
to Z⧸pnZ. Moreover, we have that |MN | =

∏
p|N |Mpn |, and the conclusion

follows.
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Lemma 5.2.4. For every N > 2, N ̸= 4, set

U =
∏

(a,b)∈MN

ga,b.

We have U = ΦN (1), where ΦN (x) is the N -th cyclotomic polynomial.

Proof. By Theorem 5.2.2 we know that every g12Na,b belongs to Q(ζN )(X(N)),

so does U12N . Since the set MN is stable under the action of GL2

(
Z⧸NZ

)
,

the function U12N is stable with respect to the Galois action over the field
Q(X(1)) (see [BBM21, Proposition 5.4]). In particular, U12N is a unit in the
function field Q(X(1)). However, X(1) has only one cusp, and hence there
are no non-constant units for X(1). In particular, U12N must be an element
of Q, and so U ∈ Q. By the expression of the functions ga,b, evaluating in
q = 0, this implies that

U =
∏

(a,b)∈MN

e(b(a− 1)/2) ·
∏

0<k<N
(k,N)=1

(1− e
2πik
N )

=
∏

(a,b)∈MN

e(b(a− 1)/2) · ΦN (1) = ζ · ΦN (1)

for some root of unity ζ. We now show that ζ = 1. To do that, it suffices to
show that ∑

(a,b)∈MN

b′(a′ −N) ≡ 0 (mod 2N2),

with a′ = Na and b′ = Nb (we recall that a, b ∈ 1
NZ2). Consider now the

permutation of MN given by (a′, b′) 7→ (a′, N − b′): this gives∑
(a,b)∈MN

b′(a′ −N) =
∑

(a,b)∈MN

(N − b′)(a′ −N),

and so ∑
(a,b)∈MN

2b′(a′ −N) =
∑

(a,b)∈MN

N(a′ −N).

Similarly we have∑
(a,b)∈MN

a′ =
∑

(a,b)∈MN

N − a′ =⇒
∑

(a,b)∈MN

2a′ = |MN | ·N,

and so ∑
(a,b)∈MN

b′(a′ −N) =
N

2

∑
(a,b)∈MN

(a′ −N) = −N
2 · |MN |

4
.
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To conclude it suffices to notice that either 8 divides N , and so |MN | ≡ 0
(mod 8), or there exists an odd prime p such that p | N , and so |MN | ≡ 0
(mod p2 − 1) and 8 | p2 − 1.

Corollary 5.2.5. Suppose (N, 6) = 1. Let G < GL2

(
Z⧸NZ

)
and XG the

corresponding modular curve defined over the number field K. If O ⊆ MN is
stable under the action of G and m ∈ Z is such that 12 | m|O| and 2 | m, then

U =
∏

(a,b)∈O

gmNa,b

belongs to K(XG). Moreover, U and AmN

U are integral over Z[j], where A = p
if N = pn is a prime power and A = 1 otherwise.

Proof. The function U is defined over K by Theorem 5.2.2 and by [BBM21,
Proposition 5.4]. The fact that U is integral over Z[j] follows from Theorem

5.2.2, while the integrality of A
mN

U is obtained applying Theorem 5.2.2 to the

product
∏

(a,b)/∈O g
mN
a,b = AmN

U .

When the level N is a prime p, one can prove the following better statement.

Theorem 5.2.6. Suppose p ≥ 5 is a prime. Let G < GL2(Fp) be a subgroup
containing −I such that p ∤ |G|, and let XG be the corresponding modular
curve defined over the number field K. Let O ⊆ Mp be a G-invariant subset
such that the relations∑

(a,b)∈O

a2 ≡
∑

(a,b)∈O

b2 ≡
∑

(a,b)∈O

ab ≡ 0 (mod p), (5.2.1)

2 | m and 12 | m|O| are satisfied. There exists k ∈ Z such that the function

U = ζkp
∏

(a,b)∈O

gma,b

belongs to K(XG). Moreover, U and pm

U are integral over Z[j].

Proof. By [BBM21, Theorem 5.5] we know that U belongs to K(XG). The
integrality of U and pm

U follows from Theorem 5.2.2 and Lemma 5.2.4.

If we consider the modular curve X(N), the function field Q(ζN )(X(N)) is a

Galois extension of Q(X(1)), with Galois group GL2

(
Z⧸NZ

)
. The functions

g12Na,b are generators of a finite index subgroup of the units of Q(ζN )(X(N)).
The Galois group of Q(ζN )(X(N)) over Q(X(1)) acts on the modular units
of the curve X(N), and the action is described (up to raising units to a suit-

able power) by the relations (g12Na,b )σ = g12N(a,b)σ for every σ ∈ GL2

(
Z⧸NZ

)
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(see [BBM21, Proposition 5.4] for a general description). If G is a sub-

group of GL2

(
Z⧸NZ

)
, we can describe the conjugates of a modular unit

U ∈ Q(ζN )(XG) in the field Q(ζN )(X(N)) in the same way.

We now study the modular units for the groups C+
ns(p

n) and G(p) < C+
ns(p).

We start by giving the following result presented in [LFL21, Proposition 6.4].

Theorem 5.2.7 (Le Fourn, Lemos). Let Ocubes be as in Lemma 5.1.5 and
define the function

U(τ) = ζ
∏

(a,b)∈Ocubes

g6a,b,

where ζ is a root of unity such that the coefficient of the lowest power of q in
U is 1. We have the following:

� U ∈ Q(XG(p)).

� The zeroes of U are the cusps at infinity (that is, the Galois orbit of the

cusp ∞ corresponding to Ocubes⧸±1 via Lemma 5.1.5), while its poles
are the other cusps.

� Both U and p6

U are integral over Z[j].

Proof. It immediately follows from Theorem 5.2.6 with m = 6, noting that
Ocubes satisfies the relations 5.2.1, that 12 | 6|Ocubes| and 2 | 6.

Remark 5.2.8. Le Fourn and Lemos in [LFL21, Proposition 6.4] choose m =
3. However, it seems that this choice of m shows that U is defined over
Q(ζp)(XG(p)), but does not ensure that there exists a root of unity ζ such that
ζ · U is defined over Q(XG(p)). In any case, they use this result to obtain an
inequality which is homogeneous in m, and hence also m = 12p would give
the same results.

5.3 Small levels

The aim of this section is to study the integral points on some modular
curves associated with normalisers of non-split Cartan subgroups. While the
curves X+

ns(N) contain infinitely many integral points for N = 1, 3, 4, 5, many
authors described the set of integral points on X+

ns(N) for small values of
N > 5. For example, Kenku [Ken85] determined the integral points of X+

ns(7),
Chen [Che99] proved that the integral points of X+

ns(15) are all CM, Schoof
[ST12] dealt with the case N = 11 and Baran [Bar09, Bar10] with the cases
N = 9, 16, 20, 21. Recently, Bajolet, Bilu and Matschke [BBM21] stated the
following.
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Claim 5.3.1. Let 7 < p < 100 be a prime and let P ∈ X+
ns(p)(Q). If j(P ) ∈ Z,

then P is a CM point.

Unfortunately, there seems to be a mistake in the article where they prove
this statement, so it might not be true. However, there is evidence that it is
very probably true. A detailed explanation of the mistake can be found in
Remark 5.3.10.

Theorem 5.3.2. Let N be a 100-smooth odd positive integer, i.e. an odd
positive integer such that for every prime p dividing N we have p ≤ 100.
Suppose that Claim 5.3.1 is true. If P ∈ X+

ns(N)(Q) is such that j(P ) ∈ Z
and P is not CM, then either N ∈ {1, 3, 5}, or

j(P ) ∈ {23 · 53 · 75, 215 · 75, 33 · 413 · 613 · 1493, 29 · 176 · 193 · 293 · 1493,
26 · 113 · 233 · 1493 · 2693}

We will prove this theorem in multiple steps.

Lemma 5.3.3. Consider the modular curves X+
ns(7), X

+
ns(9) and X

+
ns(3)×X(1)

X+
ns(5).

1. If P ∈ (X+
ns(3)×X(1)X

+
ns(5))(Q) is such that j(P ) ∈ Z, then P is a CM

point.

2. If P ∈ X+
ns(7)(Q) is such that j(P ) ∈ Z, then either P is a CM point or

j(P ) ∈ {23 · 53 · 75, 215 · 75, 29 · 176 · 193 · 293 · 1493,
26 · 113 · 233 · 1493 · 2693}

(5.3.1)

and for the corresponding elliptic curves EP we have [GL2(Ẑ) : Im ρEP
] ∈

{84, 504}.

3. If P ∈ X+
ns(9)(Q) is such that j(P ) ∈ Z, then either P is a CM point or

j(P ) = 33 · 413 · 613 · 1493 and for the corresponding elliptic curve EP
we have [GL2(Ẑ) : Im ρEP

] = 108.

Proof. The proof of part 1 can be found in [Che99, Corollary 6.5]. If P ∈
X+
ns(7)(Q) and j(P ) ∈ Z, by [Ken85] we know that either P is a CM point

or j(P ) belongs to the list (5.3.1). Actually, Kenku’s list in [Ken85] contains
some typos: in the j-invariants column one finds 22 · 53 · 75 and 75 · 25 instead
of 23 · 53 · 75 and 215 · 75. The correct j-invariants are computed, for example,
after equation (4.37) in [Elk99, p. 93]. By using the algorithm FindOpenImage

developed by Zywina in [Zyw22] we can compute the index of the image of
the adelic representations attached to elliptic curves with j-invariant in the
list (5.3.1). Indeed, the index of Im ρE only depends on j(E), as shown in
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[Zyw15b, Corollary 2.3]. The first two j-invariants of the list give rise to
elliptic curves with [GL2(Ẑ) : Im ρE ] = 84, while for the last two j-invariants
we have [GL2(Ẑ) : Im ρE ] = 504. For the level 9 case, we know by [Bar09,
Table 5.2] that P is either a CM point or j(P ) = 33 · 413 · 613 · 1493. We
can then compute the index [GL2(Ẑ) : Im ρEP

] by using again the algorithm
FindOpenImage.

We now want to compute the integral points on the modular curve X+
ns(25).

Before doing this, we need to define some modular units for the curve X+
ns(25)

over a suitable number field. We follow the work of Bajolet, Bilu and Matschke
[BBM21], generalising it to the case of non-split Cartan modular curves of
prime power level.

Let N be an odd prime power, say N = pn. Consider the normaliser

of the non-split Cartan subgroup C+
ns(p

n) < GL2

(
Z⧸pnZ

)
. We know that

det(C+
ns(p

n)) =
(
Z⧸pnZ

)×
. The group

(
Z⧸pnZ

)×
is cyclic of order φ(pn).

Let d be a divisor of φ(p
n)

2 and consider the unique subgroup H of
(
Z⧸pnZ

)×
of index d. We define GH < C+

ns(p
n) as det−1(H). Clearly we have [C+

ns(p
n) :

GH ] = d.

The modular curves XGH
and X+

ns(p
n) have the same geometrically in-

tegral model, however they are defined over different number fields. Let
K ⊆ Q(ζpn)

+ be the unique subfield such that [K : Q] = d. We have that XGH

is defined over K and if we consider the function fields of XGH
and X+

ns(p
n)

we have

Gal
(
K(XGH

)⧸Q(X+
ns(p

n))

)
∼= Gal

(
K⧸Q

)
∼= Z/pnZ⧸H ∼=

C+
ns(p

n)⧸GH .

The curve XGH
has the same cusps as the curve X+

ns(p
n), which are φ(pn)

2
cusps defined over the field Q(ζpn)

+. However, while X+
ns(p

n) has a single
Galois orbit of cusps (over Q), the curve XGH

has d different Galois orbits
over the field K.

Fix a generator ε of
(
Z⧸pnZ

)×
. We can assume that, up to conjugation,

C+
ns(p

n) =

{(
a b

εb a

)}
. Consider the set

O :=

{
(a, b) ∈Mpn

∣∣∣∣∣
(
a b

εb a

)
∈ GH

}
=
{
(a, b) ∈Mpn | a2 − εb2 ∈ H

}
.

This has cardinality p2n−2(p2−1)
d and is invariant under multiplication by GH .

By Corollary 5.2.5, if we have m ∈ {2, 6} such that 12 | m · φ(p
n)
d , then the
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function
U :=

∏
(a,b)∈O

gmp
n

a,b (5.3.2)

is an element ofK(XG). Moreover, both U and pmpn

U are integral over Z[j]. We
remark that by [BBM21, Proposition 5.4] the conjugates of U in the extension
K(XGH

)⧸Q(j) are given by

σU =
∏

(a,b)∈O

gmp
n

(a,b)σ =
∏

(a,b)∈Oσ

gmp
n

a,b

for σ ∈ GH ∼= Gal
(
K(XGH

)⧸Q(j)

)
.

We recall that a point P ∈ XG(Q) is said to be integral if j(P ) ∈ Z. If
we have an integral point P on XG, we can evaluate U in P and obtain
that U(P ) ∈ K is integral over Z, hence U(P ) ∈ OK . If we define η0 :=
NQ(ζpn )⧸K

(1− ζpn), we know that there is a single ideal p ⊂ OK dividing p, of

norm p, which is generated by η0. As also pmpn

U(P ) is integral over Z, it follows

that U(P ) ∈ p = (η0). If we call η1, . . . , ηd−1 ∈ OK a choice of generators of
the free part of the group of units of OK (we recall that K is contained in the
totally real field Q(ζpn)

+), we have

U(P ) = ±ηb00 · η
b1
1 · . . . · η

bd−1

d−1

for some b0, . . . , bd−1 ∈ Z with b0 ≥ 0. Given ϕ ∈ Gal
(
K(XGH

)⧸Q(j)

)
we

can consider the restriction of ϕ to K. As noticed in [BBM21, Propositions
6.4 and 6.5] we have (ϕU)(P ) = ϕ(U(P )), hence we can write

ϕU(P ) = ±ϕ(η0)b0 · ϕ(η1)b1 · . . . · ϕ(ηd−1)
bd−1 .

If we choose an order on the elements of Gal
(
K⧸Q

)
= {ϕ0, . . . , ϕd−1}, we

can define the d × d real matrix H = (log |ϕk(ηi)|)0≤k,i≤d−1. This is non-
singular, since η0, η1, . . . , ηd−1 are multiplicatively independent. Indeed, if the
kernel of the matrix contains a line, there exist a d-tuple r = (r0, . . . , rd−1)
of integers arbitrarily close to the line such that the Hr has arbitrarily small
values. However, Hr represents (up to sign) an element in OK \ {0, 1} and
its conjugates, which cannot be all too close to 1 at the same time, giving a
contradiction. Let A = (αk,i)0≤k,i≤d−1 be the inverse matrix of H. We have

bk =

d−1∑
i=0

αk,i log |ϕiU(P )|

for every 0 ≤ k ≤ d− 1.
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Remark 5.3.4. By Lemma 5.2.4 we know that
∏d−1
i=0 ϕi(U(P )) = pmp

n
, and so

it is easy to notice that b0 = mpn.

Definition 5.3.5. Let (a, b) ∈MN . We define

ℓa,b := Ordq(ga,b) = B2(a)/2 and ρa,b :=

 −eπib(a−1) if a ̸= 0

−eπib(a−1)(1− e2πib) if a = 0.

Given a subset O ⊆MN we define

ℓO :=
∑

(a,b)∈O

ℓa,b and
∏

(a,b)∈O

ρa,b.

The fundamental domain in the upper half plane H corresponding to the
modular curve XG is the union of fundamental domains of the curve X(1),
and every cusp of XG represents the point at infinity of one of these domains.
As P is a point on XG, there exists a fundamental domain in which P is lying,
and in particular, there exists a cusp c which is closer to P than all the other
cusps (the cusp in the projective closure of the fundamental domain). There
exists σ ∈ SL2(Z) such that σ(P ) lies in the standard fundamental domain
for SL2(Z), and so such that σ(c) =∞. We define the parameter qc = e2πiστ ,
which is the q-expansion in the cusp c, i.e. such that qc(c) = 0. With this
choice of q we can write

log |U(P )| = mpnℓOσ log |qc(P )|+mpn log |ρOσ|+O1(mp
2n|O||qc(P )|

1
pn ),

where f(x) = O1(x) means that |f(x)| ≤ x, and hence

log |U(P )| ≤ mpnℓOσ log |qc(P )|+mpn log |ρOσ|+mp2n|O|. (5.3.3)

Indeed, this follows from the definition of U together with [BBM21, Corollary
4.6].

Notation 5.3.6. Let c be a cusp of XG and let σ ∈ SL2(Z) be such that σ(c) =
∞ as above. For every k = 0, . . . , d− 1 consider the following quantities:

δc,k = −mpn
d−1∑
i=0

αk,iℓOϕiσ, θc,k = mpn
d−1∑
i=0

αk,i log |ρOϕiσ|,

Θ =
mp4n−2(p2 − 1)

d
max
k

d−1∑
i=0

|αk,i|.

As noticed in [BBM21, Remark 7.1], by the definitions above we have δc,0 =
0 for every cusp c, and at least one δc,i is non-zero (indeed, U is non-constant,
as it is a non trivial product of multiplicatively independent functions).
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Similarly to [BBM21, Section 6.1] we can notice that the curve XG has φ(pn)
2

cusps defined over Q(ζpn)
+ , and that a good set of representatives in P1(Q)

for the cusps is
{
σ̃c(∞) | c ∈ (Z/pnZ)×⧸±1

}
, where σ̃c is a lift to SL2(Z) of the

matrix σc =

(
a cb

εb ca

)
∈ SL2

(
Z⧸pnZ

)
, for some a, b such that a2−εb2 = c−1.

Here, each c ∈ (Z/pnZ)×⧸±1 corresponds to a different cusp.

Proposition 5.3.7. If d is odd, we have that θc,k ∈ mpnZ for every c, k and
θc,0 = mpn. Moreover, up to changing the choice of η0 by one of its conjugates,
we can assume that θc,1 = . . . = θc,d−1 = 0. If instead d is even, for every
cusp c we have that (θc,0, . . . , θc,d−1) /∈ Qd.

Proof. Since O is invariant under the action of GH , there is an action of
C+
ns(p

n)⧸GH
∼= Z/pnZ⧸H ∼= Gal

(
K⧸Q

)
on the set {O,Oϕ1, . . . ,Oϕd−1} of

the cosets of O in Mpn . Here, the automorphisms id = ϕ0, ϕ1, . . . , ϕd−1 can

be taken to be representatives of C
+
ns(p

n)⧸GH such that ϕi ∈ Cns(p
n) and

detϕi = εi. If we call G′
H = GH ∩ Cns(pn), we can write

O :=

{
(a, b) ∈Mpn

∣∣∣∣∣
(
a b

εb a

)
∈ GH

}
= (1, 0) ·G′

H ,

and so Oϕi = (1, 0) · G′
Hϕi = {(a, b) ∈ Mpn | a2 − εb2 ∈ εiH}. If we identify

the cusp c with c ∈ Z/pnZ⧸±1, by the parametrisation above, we have σc =(
ac bc

εbc ac

)(
1 0

0 c

)
for some ac, bc such that a2c − εb2c = c−1. As the group

Cns(p
n) is abelian we have

Oϕiσc = (1, 0) ·G′
Hϕi

(
ac bc

εbc ac

)(
1 0

0 c

)
=
{
(a, cb) ∈Mpn | a2 − εb2 ∈ εic−1H

}
(5.3.4)

=
{
(c−1a, b) ∈Mpn | a2 − εb2 ∈ εicH

}
. (5.3.5)

We now want to compute the absolute value of the constants ρOϕiσc . As
the absolute value does not change under multiplication by roots of unity, by
Definition 5.3.5 we see that

|ρOϕiσc | =
∏

(0,b)∈Oϕiσc

|1− ζbpn | =
∏

b∈Z/pnZ
−εb2∈εicH

|1− ζbpn | =
∏

b2∈−εi−1cH

|1− ζbpn |.

By definition of H, we know that −1 ∈ H, because d | φ(p
n)

2 (or equivalently
H has even order), and so −εi−1cH = εi−1cH. We now treat separately the
case when d is odd and the case when d is even.
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� d is odd. In this case, either εi−1c is a square or not. If it is a square,
then

{b | b2 ∈ εi−1cH} =
√
εi−1c · {b | b2 ∈ H} =

√
εi−1cH.

If instead εi−1c is not a square, consider h ∈ H a generator of H. Then h
is not a square and we can write εi−1cH = εi−1chH. Repeating the same
argument we obtain {b | b2 ∈ εi−1cH} =

√
εi−1chH. Define γ :=

√
c if c

is a square and γ :=
√
ch if c is not a square. We notice that

{b | b2 ∈ εi−1cH} = (
√
εh)i−1γH,

and in particular, that the set {(0, b) ∈ Oσc} is equal to the coset γ√
εh
H

and that applying ϕi corresponds to multiplication by (εh)
i
2 . If we

consider i = 0, there are integers t1, . . . , td−1 and an automorphism

ϕ ∈ Gal
(
K⧸Q

)
such that

|ρOσc | =
∏

b∈ γ√
εh
H

|1−ζbpn | =
∏
b∈H
|1−ζ

√
εhγ−1b

pn | = |ϕ(η0)| = |η0 ·ηt11 ·. . .·η
td−1

d−1 |,

and for every i = 0, . . . , d− 1 we have

|ρOϕiσc | =
∏

b∈(εh)
i−1
2 γH

|1− ζbpn | =
∏
b∈H
|1− ζ(εh)

1−i
2 γ−1b

pn |

= |ϕiϕ(η0)| = |ϕi(η0) · ϕi(η1)t1 · . . . · ϕi(ηd−1)
td−1 |.

Notice that up to changing the choice of η0 by a conjugate, we can
assume that ϕ = id, and so t1 = . . . = td−1 = 0. We can rewrite these
relations as

H


1

t1
...

td−1

 =


log |ρOσc |
log |ρOϕ1σc |

...

log |ρOϕd−1σc |

 ,

and so 
1

t1
...

td−1

 = A


log |ρOσc |
log |ρOϕ1σc |

...

log |ρOϕd−1σc |

 =
1

mpn


θc,0

θc,1
...

θc,d−1

 .

� d is even. In this case, every element of H is a square. If εi−1c is not
a square we have {b | b2 ∈ εi−1cH} = ∅, and so |ρOϕiσc | = 1. Suppose
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that θc,0, . . . , θc,d−1 are all rationals: up to raise to a power r, we can
assume they are integers. We notice that they are not all zero: indeed,
in that case we would have ρOϕiσc = 1 for every i, but this is impossible

as
∏d−1
i=0 ρOϕiσc =

∏
(a,b)∈Mpn

ρa,b = p. Then, given i such that εi−1c is
not a square, we have

1 = |ρOϕiσc |
rmpn = |ϕi(η0)θc,0ϕi(η1)θc,1 . . . ϕi(ηd−1)

θc,d−1 |.

The number ϕi(η0)
θc,0ϕi(η1)

θc,1 . . . ϕi(ηd−1)
θc,d−1 is real, and hence it

must be ±1. However, this is impossible since ϕi(η0), . . . , ϕi(ηd−1) are
multiplicatively independent.

Lemma 5.3.8. Let P be an integral point on XG, c its nearest cusp and
qc := qc(P ). For k = 0, . . . d− 1 we have

bk = δc,k log |qc|−1 + θc,k +O1

(
Θ|qc|

1
pn

)
.

Proof. The proof is analogous to that of [BBM21, Proposition 7.2]. It follows
from equation (5.3.3) noting that the same relation holds when we substitute
U with ϕU and O with Oϕ.

Proposition 5.3.9. If P ∈ X+
ns(25)(Q) is such that j(P ) ∈ Z, then P is a

CM point.

Proof. By [Sha14] and [Cai22] we obtain the bound log |j(P )|, | log |qc(P )|| ≤
101000. We now follow [BBM21, Section 9] to reduce the bound via the

Baker–Davenport method. Take H ⊆
(
Z⧸25Z

)×
as previously such that

d = [C+
ns(25) : GH ] = 5 and K ⊂ Q(ζ25) the unique subfield such that

d = [K : Q] = 5: in this case it suffices to take m = 2 to define a modular unit
U as above, indeed |O| = 2·25·24

5 = 240 is divisible by 12. By Proposition 5.3.7
for every cusp c we can change the definition of η0 so that |θ0| = |ρOσc |, and
this implies that θc,1, . . . , θc,d−1 = 0. Set Ω0 = 101000 and initialise Ω = Ω0.
By Lemma 5.3.8 we have bk ≤ Bk := |δc,k|Ω + Θ for every k = 1, . . . , d − 1.
For every i, j such that δc,i, δc,j ̸= 0, by Lemma 5.3.8 we can write

δc,jbi − δc,ibj = O1

(
Θ(|δc,i|+ |δc,j |)|qc|

1
25

)
,

and in particular setting δ :=
δc,i
δc,j

we have

bi − δbj = O1

(
Θ(1 + |δ|)|qc|

1
25

)
.

We remark that after this step there is a mistake in [BBM21], as the authors
assume that θc,i, θc,j are not integers, but this is false every time that d is odd,
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as shown in Proposition 5.3.7. We discuss this in detail in Remark 5.3.10. If
bj = 0, then we have |δc,j log |qc|| ≤ Θ|qc|

1
25 . Taking the logarithm we obtain

1

25
| log |qc|| ≤ log | log |qc||+

1

25
| log |qc|| ≤ log

∣∣∣∣ Θδc,j
∣∣∣∣ . (5.3.6)

We can then suppose that bj ̸= 0, and therefore we can write∣∣∣∣ bibj − δ
∣∣∣∣ = Θ(1 + |δ|)|qc|

1
25

|bj |
≤ Θ(1 + |δ|)|qc|

1
25 .

We can then compute the best rational approximation r of δ with denominator

bounded by Bj and notice that
∣∣∣ bibj − δ∣∣∣ ≥ |r − δ|. We eventually obtain

| log |qc|| ≤ 25 log

(
Θ(1 + |δ|)
|r − δ|

)
, (5.3.7)

which is usually a much better bound than Ω. Indeed, the expected value of
|r−δ| is around B−2

j , which has the size of Ω. We now proceed by substituting

Ω with the maximum among 25 log
∣∣∣ Θ
δc,j

∣∣∣ and 25 log
(
Θ(1+|δ|)
|r−δ|

)
, and iterating

the process while Ω keeps decreasing. This allows us to obtain the bound
| log |qc|| ≤ 1063.

We now test all possible j-invariants with absolute value smaller than e1100.
Our method is much more efficient than that of [BBM21] and only takes a few
seconds. However, it is ad hoc for the modular curve X+

ns(25). Consider the
map X+

ns(25) → X+
ns(5). An integral point on X+

ns(25) must give an integral
point on the curve X+

ns(5). The modular curve X+
ns(5) has genus 0 and is

isomorphic to P1, and the j-map X+
ns(5)→ X(1) is given by

j5(t) =
53(t+ 1)(2t+ 1)3(2t2 − 3t+ 3)3

(t2 + t− 1)5
(5.3.8)

(see for example [Zyw15a, Theorem 1.4]). This implies that there exists a
rational number t such that j(P ) = j5(t). The resultant between the polyno-
mials 53(t+1)(2t+1)3(2t2−3t+3)3 and (t2+ t−1)5 is 575. If we write t = X

Y ,
withX,Y coprime integers, and F (X,Y ) = 53(X+Y )(2X+Y )3(2X2−3XY +
3Y 2)3, then

gcd
(
F (X,Y ), (X2 +XY − Y 2)5

)
| 575Y 10.

However, j(P ) is an integer, and so (X2+XY −Y 2)5 also divides 575Y 10. As
X,Y are coprime, we obtain that X2 + XY − Y 2 = ±5d, with 0 ≤ d ≤ 15.
If d > 0, it is easy to notice that X and Y must be coprime with 5. Writing
X = 1

2(−Y ±
√
5Y 2 ± 4 · 5d) we see that 5Y 2 ± 4 · 5d is a square, and so its
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5-adic valuation must be even. This implies that d ≤ 1. We then want to
solve the following Pell equations:

5Y 2 −D2 = ±4 5Y 2 −D2 = ±20,

which replacing D = 5E reduce to

5Y 2 −D2 = ±4 Y 2 − 5E2 = ±4.

So we just need to solve the equations u2 − 5v2 = ±4. As Q(
√
5) has class

number 1, we have solutions
uk = ±

((
1+

√
5

2

)k
+
(
1−

√
5

2

)k)
vk = ± 1√

5

((
1+

√
5

2

)k
−
(
1−

√
5

2

)k)
for k ≥ 0, such that u2k − 5v2k = (−1)k · 4. All the possible solutions in X,Y
are 

X = −vk±uk
2

Y = vk

X2 +XY − Y 2 = (−1)k


X = −uk±5vk

2

Y = uk

X2 +XY − Y 2 = (−1)k+1 · 5

and hence j(P ) ∈
{
(−1)kF (X,Y ), (−1)k+1

55
F (X,Y )

}
. As the solutions of Pell’s

equation grow exponentially (and so does F (X,Y )), we have logarithmically
fewer cases to test. To test the curves, we first compute the set of the j-
invariants of points on X+

ns(5) with j < e1100. Then for every j in the list we
choose an elliptic curve E such that j(E) = j and we search a small prime p
of good reduction (it is sufficient to test a single curve by Lemma 5.4.27). We
compute the characteristic polynomial of the Frobenius of the curve reduced
modulo p and we check if this is the characteristic polynomial of an element
of C+

ns(25) when reduced modulo 25. If it is, then we consider the next small
prime p of good reduction, otherwise we remove j from the list. The algorithm
takes a few seconds and it outputs a list of 9 CM j-invariants, which are the
only integral points of X+

ns(25).

Remark 5.3.10. We now give some more details on why there is a problem
in [BBM21]. In [BBM21, Section 9] the authors define λ = δ2θ1−δ1θ2

δ1
and

assume that there exists an integer r such that the number rδ is close to an
integer, while rλ is not. However, by Proposition 5.3.7 we know that λ ∈ Z[δ],
and so rλ will be close to an integer too. To see this easily notice that,
similarly to the first part of the proof of Proposition 5.3.9, one can assume
that θ1 = · · · = θd−1 = 0, and so λ = 0.
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We are now ready to prove Theorem 5.3.2.

Proof of Theorem 5.3.2. If we write N =
∏
peii , for every pi the j map factors

through a map X+
ns(N) → X+

ns(p
k) defined over Q for every 1 ≤ k ≤ ei.

This implies that a rational point P on X+
ns(N) with j(P ) ∈ Z maps to a

rational point on X+
ns(p

ei
i ) with the same j-invariant. Assuming Claim 5.3.1

this implies that N = 3a · 5b · 7c. By Lemma 5.3.3(3) we have that either
j(P ) = 33 · 413 · 613 · 1493 or P does not map to X+

ns(9)(Q), so we can assume
that a ≤ 1. Similarly, by Proposition 5.3.9 and Lemma 5.3.3(2) we can assume
that b ≤ 1 and c = 0. To conclude, it suffices to notice that by Lemma 5.3.3(1)
the exponents a and b cannot be both equal to 1.

5.4 Proper subgroups of C+
ns(p)

In this section, we give the proofs of Theorem 8 and Theorem 9. To do this,
we will study the integral points of the modular curves XG(p), where G(p)
is defined as the unique subgroup of index 3 of C+

ns(p) (see Theorem 6). By
Lemma 1.1.5, we know that for p > 5 the set of integral points of XG(p)

coincides with the set of rational points. The main strategy involved in the
proof is the Runge method for modular curves, developed by Bilu and Parent
[BP11a]. This is the same strategy applied by Le Fourn and Lemos to prove
that there are no non-CM elliptic curves E such that Im ρE,p ∼= G(p) for
p > 1.4 · 107 (Theorem 7).
Le Fourn and Lemos’s proof of Theorem 7 is based on two fundamental steps:

first, they show that an elliptic curve satisfying the hypothesis of Theorem 7
has integral j-invariant (via the formal immersion method of Mazur). Second,
they prove an upper bound on |j(E)| by combining Runge’s method with
an effective surjectivity theorem showing that Im ρE,p = GL(E[p]) for all p
greater than an explicit bound depending on j(E).
The first step works in complete generality: Le Fourn and Lemos actually

prove that j(E) is integral for p /∈ {2, 3, 5, 7, 11, 13, 17, 37} and we can show
that this is true for every p > 5, so, in order to prove Theorem 9, we can
assume j(E) ∈ Z. Our main contribution lies in a much sharper upper bound
on |j(E)|, which we achieve through three main innovations: First, we apply
the sharp effective surjectivity theorem proved in Chapter 4 (i.e. Theorem
4.1.1). Secondly, we exploit the local properties studied in Chapter 3, such as
ruling out all primes p ≡ −1 (mod 9) and proving that j(E) can be written
as pkc3 for some integers c ≥ 0 and k ≥ 4. When we eventually reduce
the proof of Theorem 8 to an explicit calculation, this latter relation has
the effect of dividing by three on a logarithmic scale the number of tests we
have to perform, significantly reducing the computational component of our
approach. Finally, the third and most significant innovation is our much more
detailed study of the modular units on the curve XG(p). The main ingredients
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that lead to our improved bound on log |j(E)| are sharp bounds on character
sums, which essentially draw on Weil’s method to treat Kloosterman sums
[Wei48], an idea based on Abel’s summation to amplify certain cancellation
phenomena among roots of unity, and direct computations to fully exploit the
extent of these cancellations. All of these improvements are crucial to lowering
the bound on log |j(E)| to values that are computationally tractable, and the
result we obtain is sharp enough that the final computation takes less than
two minutes of CPU time.

The Runge method for modular curves

The aim of this section is to prove Proposition 5.4.16, which gives the absolute
upper bound log |j(E)| ≤ 39 + log 2 for all elliptic curves E⧸Q which satisfy

Im ρE,p ∼= G(p) for some prime number p. This should be contrasted with the
estimate log |j(E)| ≤ 27000 given in [LFL21].

For technical reasons, in the whole section we work with the quantity | log |q||
instead of log |j(E)|, where q = e2πiτ and τ is a point in the upper half plane
H corresponding to E(C). By Theorem 1.2.2, whenever τ is in the standard
fundamental domain F , estimates on log |j(E)| translate into estimates on
| log |q|| and vice versa.

The improved bound is obtained in two steps. In Proposition 5.4.5, we
obtain a preliminary bound on | log |q|| which is already sharper than [LFL21,
Proposition 6.1] (O( 4

√
p) instead of O(

√
p), with the key improvement given

by Lemma 5.4.8). This allows us to prove that p < 103000: we then use this
to re-estimate | log |q|| and obtain the final bound | log |q|| < 39.

From now on we will always assume that p is a prime greater than 5 for
which Im ρE,p is conjugate to G(p). This also implies by Theorem 6 that p ≡ 2
(mod 3) and by Lemma 1.1.5 that j(E) ∈ Z.
By Theorem 5.2.7, we can define the function

U := ζ
∏

(a,b)∈Ocubes

g6a,b,

where ζ is a root of unity, such that U ∈ Q(XG(p)) and both U and p6

U are
integral over Z[j]. We then obtain the following result.

Corollary 5.4.1. For every P ∈ XG(p)(Q) such that j(P ) is an integer, U(P )
is an integer dividing p6. In particular, 0 ≤ log |U(P )| ≤ 6 log p.

We now introduce the auxiliary quantities that we will have to bound in our
proof.

Definition 5.4.2. Set e(z) := e2πiz for every z ∈ C. We define functions
Ra1,a2 = Ra1,a2(q) as follows. For all (a1, a2) ∈ 1

pZ
2 ∩ [0, 1)2, with a1, a2 not
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both 0, we define

Ra1,a2 =

∞∏
n=0

(1− qn+a1e(a2))(1− qn+1−a1e(−a2))

for a1 ̸= 0, and

R0,a2 =
∞∏
n=1

(1− qne(a2))(1− qne(−a2)).

We further set
R =

∏
(pa1,pa2)∈Ocubes

R6
a1,a2 ,

where we identify pa1, pa2 ∈ [0, p− 1]∩Z with their residue classes modulo p.

Remark 5.4.3. We have
∏p−1
a2=1(1 − e(a2)) = p, because

∏p−1
a2=1(x − e(a2)) =

1 + x+ x2 + . . .+ xp−1.

Remark 5.4.4. Whenever p ≡ 2 (mod 3), we have F×
p = F×3

p , and so F×
p ⊆ F×3

p2
.

This implies that (0, a2) ∈ Ocubes for every a2 ∈ F×
p , because a2

√
ε = a2

ε ·
√
ε
3

is a cube in Fp2 , since it is the product of two cubes.

The last two remarks imply that when p ≡ 2 (mod 3) we can write U =
ζ · qOrdq(U) · p6 ·R, hence

log |U | = Ordq(U) log |q|+ 6 log p+ log |R|. (5.4.1)

Comparing log |q| with p Our next goal is to establish the following bound
on log |q| in terms of p.

Proposition 5.4.5. Let E⧸Q be an elliptic curve and set q = e2πiτ , where τ ∈
H corresponds to the complex elliptic curve E(C). Suppose that | log |q|| ≥ 30.
If p > 5 is a prime number such that p ≡ 2 (mod 3) and Im ρE,p is conjugate
to G(p), then

| log |q|| ≤ 2
√
2π · 101

10
√
102

· 4
√
p+ 1.65.

The proof of this result will occupy all of this section. The argument relies
on estimating the various terms in equation (5.4.1). In particular, we need to
compute the order at infinity of U and bound the contribution of log |R|. The
latter is the hard step; we take care of the former in the next lemma.

Lemma 5.4.6. We have

Ordq(U) =
p2 − 1

3p
.
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The calculation of Ordq(U) already appears in [LFL21, Proposition 6.5],
but unfortunately, due to an arithmetic error, the result is incorrect. For the
sake of completeness, we repeat the calculation below. Note that the second
half of [LFL21, Proposition 6.5], namely the statement that |ρU | = (p−1)3, is
also incorrect: by Remark 5.4.3 and Remark 5.2.8 we actually have |ρU | = p6.

Proof. By Remark 5.4.4, we know that (0, a2) ∈ Ocubes for every a2 ∈ F×
p . On

another hand, on F×
p ×Fp, the function (a1, a2) 7→ a1 has fibres with constant

cardinality, because Ocubes is stable under multiplication by F×
p . In particular,

the cardinality of each fibre is (p2−1)/3−(p−1)
p−1 = p−2

3 . Hence

Ordq(U) =6

(
(p− 1) · 1

2
B2(0) +

p− 2

3

p−1∑
a1=1

1

2
B2

(
a1
p

))
=
p2 − 1

3p
.

Our next objective is to estimate log |R|.

Proposition 5.4.7. We have

| log |R|| ≤ −
8π2p

√
p

3 log |q|
.

Proof. The inequality | log |z|| ≤ | log z| holds for every z ∈ C× and every
choice of a branch of the logarithm. Indeed, if z = r · eiθ, we have | log |z|| =
| log r| ≤ | log r + iθ + 2kπi| = | log z|. Thus, it suffices to bound | logR|. As
(a, b) is in Ocubes if and only if (−a,−b) is, we have

R =
∏

(pa1,pa2)∈Ocubes

R6
a1,a2

=

(
p−1∏
b=1

∞∏
n=1

(1− qne(b/p))12
)
·

 ∏
(pa1,pa2)∈Ocubes

a1 ̸=0

∞∏
n=0

(1− qn+a1e(a2))12

 .
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We can further write

logR = 6
∑

(pa1,pa2)∈Ocubes

logRa1,a2

= 6

p−1∑
b=1

logR0, b
p
+ 6

∑
(pa1,pa2)∈Ocubes

a1 ̸=0

logRa1,a2

= 12

p−1∑
b=1

∞∑
n=1

log(1− qne(b/p)) + 12
∑

(pa1,pa2)∈Ocubes
a1 ̸=0

∞∑
n=0

log(1− qn+a1e(a2))

= −12
p−1∑
b=1

∞∑
n=1

∞∑
k=1

qkn

k
·e(kb/p)− 12

∑
(pa1,pa2)∈Ocubes

a1 ̸=0

∞∑
n=0

∞∑
k=1

qk(n+a1)

k
· e(ka2).

Define now c(a) :=
∑

b∈F (a) e(b/p) with F (a) := {b ∈ Fp | (a, b) ∈ Ocubes}
for a ̸≡ 0 (mod p). We extend the definition to a ≡ 0 (mod p) by setting
c(a) = c(0) := p−2

3 .

The sum
∑p−1

b=1 e(kb/p) equals either −1 or p − 1 if respectively k ̸≡ 0
(mod p) or k ≡ 0 (mod p). Moreover, we also have

∑
b∈F (a) e(kb/p) = c(ka):

indeed, b is in F (a) if and only if kb is in F (ka), because k is an element of
F×
p and therefore a cube in F×

p2
. Hence we obtain

logR = 12

∞∑
n=1

∑
k ̸≡0(p)

qkn

k
− 12(p−1)

∞∑
n=1

∑
k≡0(p)
k>0

qkn

k
− 12

p−1∑
a=1

∞∑
n=0

∞∑
k=1

q
k(n+a

p
)

k
·c(ka)

= 12

∞∑
n=1

∞∑
k=1

qkn

k
− 12p

∞∑
n=1

∑
k≡0(p)
k>0

qkn

k
− 12

p−1∑
a=1

∞∑
n=0

∞∑
k=1

q
k(n+a

p
)

k
· c(ka).

We notice that the definition we have given for c(0) is compatible with this
chain of equalities. Indeed, whenever k ≡ 0 (mod p), for a fixed a1 ̸= 0 we
have

∑
a2∈F (a1)

e(0·a2) = |F (a1)| = p−2
3 = c(0), as we noticed at the beginning

of the proof of Lemma 5.4.6.

Lemma 5.4.8. For every s ∈ F×
p we have |c(s)| ≤ 4

3

√
p.

Proof. For a+ b
√
ε ∈ Fp2 we have

(a+ b
√
ε)3 = a3 + 3εab2 + (3a2b+ εb3)

√
ε.
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To characterise the set F (s) we write a3 + 3εab2 = s. Note that, since s ̸= 0,
we always have a ̸= 0. Writing ep(x) := e(x/p) and t = b

a , this gives

c(s) =
∑

x∈F (s)

ep(x) =
1

3

∑
a,b∈Fp

a3+3εab2=s

ep(3a
2b+ εb3)

=
1

3

∑
a,t∈Fp

a3(1+3εt2)=s

ep(a
3(3t+ εt3)) =

1

3

∑
t∈Fp

1+3εt2 ̸=0

ep

(
s(3t+ εt3)

1 + 3εt2

)
,

where the second and last equalities are due to the fact that, for c ∈ F×
p ,

the equation z3 = c has 3 solutions in Fp2 and 1 solution in Fp (since p ≡ 2
(mod 3)). We now use the following result by Perel’muter [Per69, Theorem 1],
obtained via a generalisation of Weil’s strategy [Wei48] to bound Kloosterman
sums.

Let φ ∈ Fp(t) be a rational function with poles S = {t1, . . . , tℓ} ⊆ Fp∪{∞}.
We have ∣∣∣∣∣∣

∑
t∈Fp\S

ep(φ(t))

∣∣∣∣∣∣ ≤ (ℓ+ deg(φ)− 2)
√
p.

In our case we have that φ(t) = s(3t+εt3)
1+3εt2

has 2 poles other than ∞, hence we
get

|c(s)| ≤ 1

3
(3 + 3− 2)

√
p =

4

3

√
p,

as desired.

Thanks to this lemma, we now have all the tools needed to complete the
proof of Proposition 5.4.7. We notice that

p−1∑
a=1

∞∑
n=0

∞∑
k=1

q
k(n+a

p
)

k
· c(ka) =

∑
n̸≡0(p)

∞∑
k=1

q
nk
p

k
· c(kn).

Isolating the terms involving c(0) and using c(0) = p−2
3 , we can rearrange the
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sums as follows:

logR = 12
∞∑
n=1

∞∑
k=1

qkn

k
− 12

∞∑
n=1

∑
k≡0(p)
k>0

q
k
p
·pn

k/p
− 12

∑
n̸≡0(p)

∞∑
k=1

q
nk
p

k
· c(kn)

= 12

 ∞∑
n=1

∞∑
k=1

qkn

k
−
∑
n≡0(p)
n>0

∞∑
k=1

qkn

k

− 12

 ∑
n̸≡0(p)

∞∑
k=1

q
nk
p

k
· c(kn)



= 12
∑
n̸≡0(p)

∞∑
k=1

qkn

k
− 12

 ∑
n̸≡0(p)

∑
k ̸≡0(p)

q
nk
p

k
· c(kn) + p− 2

3

∑
n̸≡0(p)

∞∑
k=1

qnk

pk


= α

∑
n̸≡0(p)

∞∑
k=1

qkn

k
− 12

∑
n̸≡0(p)

∑
k ̸≡0(p)

q
nk
p

k
· c(kn) + 16

√
p
∑
n̸≡0(p)

∞∑
k=1

qnk

pk
,

where α = 12− 4(p−2)
p − 16

√
p

p . We now notice that α ≤ 8 for all p and apply
Lemma 5.4.8 to estimate logR:

| logR| ≤ 8
∑
n̸≡0(p)

∞∑
k=1

|q|kn

k
+ 12

∑
n̸≡0(p)

∑
k ̸≡0(p)

|q|
nk
p

k
·|c(kn)|+ 16

√
p
∑
n̸≡0(p)

∑
k≡0(p)
k>0

|q|
nk
p

k

≤ 8

∞∑
n=1

∞∑
k=1

|q|kn

k
+ 16

√
p
∑
n̸≡0(p)

∑
k ̸≡0(p)

|q|
nk
p

k
+ 16
√
p
∑
n̸≡0(p)

∑
k≡0(p)
k>0

|q|
nk
p

k

= 8
∞∑
n=1

∞∑
k=1

|q|kn

k
+ 16

√
p
∑
n̸≡0(p)

∞∑
k=1

|q|
nk
p

k

= 8

∞∑
n=1

∞∑
k=1

|q|kn

k
− 16
√
p

∞∑
n=1

∞∑
k=1

|q|kn

k
+ 16
√
p

∞∑
n=1

∞∑
k=1

|q|
nk
p

k

= (16
√
p− 8)

∞∑
n=1

log(1− |q|n)− 16
√
p

∞∑
n=1

log(1− |q|
n
p ).

To complete the proof, it suffices to notice that

∞∑
n=1

log(1− |q|n) < 0

and that

−16√p
∞∑
n=1

log(1− |q|
n
p ) ≤ −

16π2
√
p

6 log(|q|
1
p )

= −
8π2p

√
p

3 log |q|

by Lemma 1.1.1.
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Let now τP be a point in the fundamental domain of XG(p) that corresponds
to a point P ∈ XG(p)(Q) with j(P ) ∈ Z. There exists γ ∈ SL2(Z) such that
τ = γ−1(τP ) is in the standard fundamental domain F of X(1); in particular,
it is in the domain corresponding to the cusp ∞ (i.e., ∞ is the cusp closest to
τ). We remark that (U ◦γ)(τ) ∈ Z, since by Corollary 5.4.1 we have U(P ) ∈ Z.
Up to Galois conjugation (which fixes P but changes the cusps), we can

choose an embedding XG(p)(Q) ↪→ XG(p)(C) such that either γ is the identity
or γ (mod p) is an element in Cns(p) ∩ SL2(Fp) that does not lie in G(p).
Indeed, this can be seen from the parametrisation of the cusps given in [LFL21,
Section 2] and the fact that the cusps of XG(p) split into two Galois orbits,
see [LFL21, Lemma 6.3]. From now on, whenever we write γ we will refer to
the second case, in which γ (mod p) is an element of Cns(p) ∩ SL2(Fp) not in
G(p), unless otherwise specified.

Remark 5.4.9. By Remark 5.4.4, we have that (0, b) ∈ Ocubes for every b ∈ F×
p ,

hence every cusp in γ−1Ocubes is parametrised by a pair (a, b) such that a ̸= 0.
The function U ◦γ is a modular unit on XG(p) (though not necessarily defined
over Q), and the element γ acts by permutation on the set F2

p \ {0}. From
this, it is easy to see that we have

log |U ◦ γ| = Ordq(U ◦ γ) log |q|+ log |Rγ |,

where
Rγ =

∏
(a,b)∈γ−1Ocubes

R6
a
p
, b
p

. (5.4.2)

Lemma 5.4.10. We have

Ordq(U ◦ γ) = −
p2 − 1

6p
.

This is proven by a calculation analogous to that of Lemma 5.4.6. The
result also appears in [LFL21], where however it is affected by the same arith-
metic error as [LFL21, Proposition 6.5]. The next proposition bounds logRγ
similarly to Proposition 5.4.7; we will not directly make use of this result, but
some of the arguments in its proof will be useful later.

Proposition 5.4.11. We have

| log |Rγ || < −
8π2p

√
p

3 log |q|
.

Proof. The proof is analogous to that of Proposition 5.4.7. We notice that for
every (a1, a2) ∈ γ−1Ocubes we have a1 ̸= 0, hence

logRγ = −12
∑
n̸≡0(p)

∞∑
k=1

q
nk
p

k
· cγ(kn),
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where cγ(a) :=
∑

b∈Fγ(a)
e(b/p) and Fγ(a) := {b ∈ Fp

∣∣ (a, b) ∈ γ−1Ocubes} for
a ̸= 0 and c(0) = p+1

3 . To adapt Lemma 5.4.8 to the case of cγ , we notice that
if γ−1 acts as multiplication by x+y

√
ε on F×

p2
for some x, y ∈ Fp (as explained

in [LFL21, Lemma 6.3]), then the function φ(t) of Lemma 5.4.8 becomes

φ(t) = s
(3t+ εt3)x+ (1 + 3εt2)y

(1 + 3εt2)x+ (3t+ εt3)εy
,

giving again |cγ(s)| ≤ 4
3

√
p. The rest of the proof of Proposition 5.4.7 carries

through.

We remark that, even though the bound on | log |Rγ || is the same as that on
| log |R||, the order at infinity of the function U is halved in this case, that is,
|Ordq(U ◦γ)| = 1

2 |Ordq U |. This leads to a weaker bound on | log |q|| in terms
of p, which is what we are really interested in for the proof of Proposition
5.4.5. To obtain a sharper bound on | log |Rγ ||, we consider a different p-th
root of q.

Remark 5.4.12. We note that in order to prove Proposition 5.4.5, it suffices
to consider τ ∈ H lying in the standard fundamental domain F and such
that |τ | > 1. Indeed, q(τ) = q(τ + n) for every n ∈ Z, hence without loss of
generality we can consider ℜτ ∈

(
−1

2 ,
1
2

]
, and if |τ | ≤ 1 then | log |q|| ≤ 2π <

2
√
2π·101

10
√
102
· 4
√
p+ 1.65.

From Theorem 1.2.4 we know that if E corresponds to τ ∈ H in the standard
fundamental domain F not lying on the lower boundary

{
eiθ
∣∣ π

3 ≤ θ ≤
π
2

}
,

then q ∈ R. This is true for all the fundamental domains of the form F + n
for n ∈ Z. We notice that, for τ ∈ F and q > 0, we have ℜτ = 0 and therefore

q
1
p ∈ R. However, if q < 0, we have ℜτ = 1

2 and q
1
p = e

2πiτ
p is not real.

However, we can consider τ ′ := τ+ p−1
2 ∈ F+ p−1

2 , which gives the same value

of q and is such that e
2πiτ ′

p ∈ R is the p-th real root of q.
We then repeat the previous construction changing the choice of τ . Let τP

be a point in the fundamental domain of XG(p) that corresponds to a point
P ∈ XG(p)(Q) with j(P ) ∈ Z. There exists γ ∈ SL2(Z) such that τ = γ−1(τP )
is in the standard fundamental domain F if q > 0, and in the fundamental
domain F + p−1

2 if q < 0. As before, up to Galois conjugation, we can take
γ to be either the identity or an element whose reduction modulo p lies in
Cns(p)∩SL2(Fp) but not in G(p) – this is again because the point P is defined
over Q and therefore fixed by the Galois action, while there are two orbits of
cusps.
All the previous estimates still hold for this new choice of τ and we can

take advantage of the new choice of the p-th root of q to improve the bound

on log |Rγ |. To distinguish the two different p-th roots, we will write q

(
1
p

)
to

denote the root that maps the real numbers to themselves.
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Proposition 5.4.13. Let τ = γ−1τP ∈ H be as above and such that j(τ) ̸∈
(0, 1728). We have

log |Rγ(τ)| = −
1

2
logR(τ).

Proof. As in Proposition 5.4.11 we have

logRγ(τ) = −12
∑
n̸≡0(p)

∞∑
k=1

q

(
nk
p

)
k
· cγ(kn),

where cγ(a) :=
∑

b∈Fγ(a)
e(b/p) and Fγ(a) := {b ∈ Fp | (a, b) ∈ γ−1Ocubes} for

a ̸= 0 and c(0) = p+1
3 .

As explained in [LFL21, Lemma 6.3], the action of γ−1 on the cusps of XG(p)

corresponds to the multiplication by (x+ y
√
ε) on F×

p2⧸±1 for some x, y ∈ Fp.
It is then easy to see that Ocubes ⊔ γ−1Ocubes ⊔ γ−2Ocubes = F2

p \ {(0, 0)},
and that (a, b) ∈ γ−1Ocubes if and only if (a,−b) ∈ γ−2Ocubes. Therefore, we
obtain that cγ(k) = cγ2(k) and c(k) + cγ(k) + cγ2(k) = 0 for every k ∈ F×

p .
This implies that c(k) is real (this can also be seen directly from the definition
of Ocubes) and that ℜ{cγ(k)} = −1

2c(k) for every k ̸≡ 0 (mod p).
Using that q ∈ R by Theorem 1.2.4 and that log |z| = ℜ{log z} for every
z ∈ C×, we have

log |Rγ(τ)| = ℜ{logRγ(τ)} = −12
∑
n̸≡0(p)

∞∑
k=1

q

(
nk
p

)
k
· ℜ{cγ(kn)}

= 6
∑

n,k ̸≡0(p)

q

(
nk
p

)
k
· c(kn)− 4(p+ 1)

∑
n̸≡0(p)

∑
k≡0(p)

q

(
nk
p

)
k

= 6
∑

n,k ̸≡0(p)

q

(
nk
p

)
k
· c(kn)− 4(p+ 1)

p

∑
n̸≡0(p)

∞∑
k=1

qnk

k
.

On the other hand, similarly to the proof of Proposition 5.4.7 we have

logR(τ) = 12
∑
n̸≡0(p)

∞∑
k=1

qkn

k
− 12

∑
n̸≡0(p)

∞∑
k=1

q

(
nk
p

)
k
· c(kn).

By isolating the terms containing c(0), we obtain

logR(τ) = 12
∑
n̸≡0(p)

∞∑
k=1

qkn

k
− 12

∑
n,k ̸≡0(p)

q

(
nk
p

)
k
· c(kn)− 4(p− 2)

p

∑
n̸≡0(p)

∞∑
k=1

qnk

k

= −12
∑

n,k ̸≡0(p)

q

(
nk
p

)
k
· c(kn) + 8(p+ 1)

p

∑
n̸≡0(p)

∞∑
k=1

qnk

k
,



5.4. PROPER SUBGROUPS OF C+
ns(p) 95

concluding the proof.

We are now ready to prove Proposition 5.4.5.

Proof of Proposition 5.4.5. By Remark 5.4.12 it suffices to prove the state-
ment for τ ∈ F +n, where n ∈ Z and F is the standard fundamental domain,
and such that τ does not lie on the lower boundary. Suppose first that P is
close to a cusp lying in the Galois orbit corresponding to Ocubes (i.e., the case
in which γ = Id). Evaluating U in τ = τP we obtain

Ordq(U) log |q| = − log |R(τ)| − 6 log p+ log |U(τ)|,

and the triangle inequality yields

|Ordq(U) log |q|| ≤ | log |R(τ)||+ | − 6 log p+ log |U(τ)||.

By Corollary 5.4.1 we have 0 ≤ log |U(τ)| ≤ 6 log p, and hence | logU(τ) −
6 log(p)| ≤ 6 log p. Combining this with Proposition 5.4.7 and Lemma 5.4.6
we finally obtain

p2 − 1

3p
| log |q|| ≤ 6 log p+

8π2p
√
p

3| log |q||
.

Suppose instead that P is close to a cusp lying in the other Galois orbit
(i.e., the case in which γ ̸= Id). Evaluating U ◦ γ in τ = γ−1τP (lying in F or
in F + p−1

2 depending on the sign of q, as above) and proceeding in the same
way (using Lemma 5.4.10 and Proposition 5.4.13 instead of Lemma 5.4.6 and
Proposition 5.4.7 respectively), we obtain the inequality

p2 − 1

6p
| log |q|| ≤ 6 log p+

4π2p
√
p

3| log |q||
.

We now set x = | log |q||. So far we have obtained, respectively for γ = Id and
γ ̸= Id,

p2 − 1

3p
x2 − 6x log p−

8π2p
√
p

3
≤ 0 (5.4.3)

p2 − 1

6p
x2 − 6x log p−

4π2p
√
p

3
≤ 0. (5.4.4)

The first inequality implies the second, so (independently of whether γ = Id
or not) we get that x satisfies (5.4.4), and therefore

x ≤ 18p log p

p2 − 1
+

√
182p2(log p)2

(p2 − 1)2
+

8π2p2
√
p

p2 − 1
.
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Using that
√
a2 + b2 ≤ a+ b we obtain

x ≤ f(p) := 36p log p

p2 − 1
+

2
√
2πp 4
√
p√

p2 − 1
.

Since the function f(t) is smaller than 30 for t ∈ [2, 100] we can assume that
p > 100, and then we obtain

x ≤ 36p log p

p2 − 1
+

2
√
2πp 4
√
p√

p2 − 1
≤ 36 · 101 · log 101

100 · 102
+

2
√
2π · 101

10
√
102

· 4
√
p

≤ 2
√
2π · 101

10
√
102

· 4
√
p+ 1.65,

which concludes the proof.

Remark 5.4.14. We notice that in the proof of Proposition 5.4.5 we showed
that if E is a non-CM elliptic curve and 5 < p < 100 is a prime such that
Im ρE,p is conjugate to G(p), then | log |q|| < 30. In particular, this implies
that every time that we assume | log |q|| ≥ 30 we are implicitly assuming that
p > 100.

Corollary 5.4.15. Let E⧸Q be an elliptic curve without complex multiplica-

tion and set q = e2πiτ , where τ ∈ H corresponds to the complex elliptic curve
E(C). Let p > 5 be a prime number such that Im ρE,p is conjugate to G(p).
If | log |q|| ≥ 30, then p < 103000.

Proof. By Theorem 6 we can assume that p ≡ 2 (mod 3). Writing log(ℑ{τ}) =
1
2π | log |q||, by Theorem 4.1.1(3) we have

Λ < 2533

(
hF (E) + 2 log Λ +

3

4π
log | log |q||+ 1.38

)
.

We recall that by Theorem 7 we have that j(E) ∈ Z, indeed we can assume
that p > 37, as smaller primes satisfy the condition p < 103000. We can then
apply Theorem 1.2.6(3) to bound hF (E) in the inequality above with

− 1

12
log |q| − 1

2
log | log |q|| − 1

2
log 2− π2

3 log |q|
,

obtaining a linear bound on p in terms of | log |q||. On the other hand, by
Proposition 5.4.5 we have

| log |q|| ≤ 2
√
2π · 101

10
√
102

· 4
√
p+ 1.65,

and we obtain an explicit inequality in p, which can be numerically solved.
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The upper bound on p given by Corollary 5.4.15 is sharper than the cor-
responding bound in Theorem 7, but it is still not good enough to test all
the remaining primes by the direct computation we describe in Section 5.4.
For this reason, in the next section we improve on Proposition 5.4.5. The
intermediate result we just obtained will be an important ingredient in this
improvement.

Abel summation and a sharper bound on log |q|

Proposition 5.4.5 improves the bound on logR given in [LFL21] by considering
cancellation among roots of unity. In particular, the argument in [LFL21]
used the trivial estimate |c(k)| ≤ p−2

3 , which we replaced by |c(k)| ≤ 4
3

√
p

using Lemma 5.4.8. In this section, we show that by rearranging the sums in
logR using partial summation, we obtain an expression for logR which gives
even more cancellations. This leads to a further improvement of the bound
of Proposition 5.4.7 and ultimately to the following result, which supersedes
Proposition 5.4.5.

Proposition 5.4.16. Let E⧸Q be an elliptic curve without complex multipli-

cation and set q = e2πiτ , where τ ∈ H corresponds to the complex elliptic
curve E(C). If p > 5 is a prime number such that Im ρE,p is conjugate to
G(p), then | log |q|| < 39.

To prove this result, we can and do assume that | log |q|| ≥ 30. By Remark
5.4.14 this implies that p > 100. By Corollary 5.4.15 and Theorem 3.1.4
we can also assume that p is less than 103000 and that it satisfies p ≡ 2, 5
(mod 9). We keep the notation from the previous section. Similarly to the
proof of Proposition 5.4.13 we have

logR = −12
∑

n,k ̸≡0(p)

q
kn
p

k
· c(kn) + 8(p+ 1)

p

∑
n̸≡0(p)

∞∑
k=1

qnk

k
.

Writing m = kn we have

logR = −12
∑

m̸≡0(p)

∑
k|m

q
m
p

k
· c(m) +

8(p+ 1)

p

∑
n̸≡0(p)

∞∑
k=1

qkn

k
. (5.4.5)

Using Lemma 1.1.1, we bound the second term as follows:∣∣∣∣∣∣8(p+ 1)

p

∑
n̸≡0(p)

∞∑
k=1

qkn

k

∣∣∣∣∣∣ < 8(p+ 1)

p

∞∑
n=1

∞∑
k=1

|q|kn

k
<

8(p+ 1)π2

6p| log |q||
. (5.4.6)
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This quantity is bounded uniformly in p. We now focus on the first sum in
equation (5.4.5), which we denote by S. By partial summation, we have

S = −12
∑

m̸≡0(p)

∑
k|m

q
m
p

k
· c(m) = −12

∑
m̸≡0(p)

q
m
p

∑
k|m

c(m)

k

= −12
∞∑
s=1

(q
s
p − q

s+1
p )D(s),

(5.4.7)

where

D(s) :=
∑
m≤s

m ̸≡0(p)

∑
k|m

c(m)

k
. (5.4.8)

The idea of using this rewriting of S is that, when p is large, the factor

q
s
p − q

s+1
p = q

s
p (1 − q

1
p ) becomes small, because |q

1
p − 1| = |e

log q
p − 1| ≈

| log |q||
p . Provided that D(s) does not grow too quickly, the factor of p in

the denominator leads to a much better upper bound on S, hence on logR,
than that provided by Proposition 5.4.7. We now give two different estimates
for |D(s)|, one for s < p and one for s ≥ p, in Lemmas 5.4.17 and 5.4.21
respectively.
Consider all the primes p smaller than a fixed bound M . For s < p we have

D(s) =
∑
m≤s

∑
k|m

c(m)

k
,

and we can write |D(s)| ≤ C√p
√
s for some C = C(M).

Lemma 5.4.17. Let M = 103000 and C = 4.25. We have |D(s)| ≤ C
√
p
√
s

for all s < p < M with p prime, p ≡ 2, 5 (mod 9).

Proof. We get a suitable value of C by explicitly computing the values of
D(s) for all primes p ≡ 2, 5 (mod 9) up to M and for s = 1, . . . , p − 1.
More precisely, in order to quickly compute D(s) we obtain the values of
the coefficients c(m) using Rader’s FFT algorithm [Rad68] applied to the
characteristic function of the set F (m). Indeed, every c(m) is defined as the
(non-normalised) Fourier transform of the characteristic function 1F (m) of the
set F (m). Computing the fast Fourier transform is the most expensive step of

the algorithm, taking time O(p log p). Since there are O
(

M
logM

)
primes up to

M (this remains true also restricting to the congruence classes 2, 5 mod 9), the
asymptotic complexity of the algorithm is O(M2). ForM = 1.03 ·105, the run
time of our implementation [FL23a] is of a few hours on modest hardware.

Remark 5.4.18. It is important to notice that the value of D(s) depends on the
choice of ε (see equation (0.1)). All the calculations in this section, including



5.4. PROPER SUBGROUPS OF C+
ns(p) 99

in particular that of Lemma 5.4.17, are performed by taking as ε the image
in Fp of the least positive integer which is a quadratic non-residue modulo p.

Remark 5.4.19. For the computationally accessible values ofM , one can check
that the optimal C(M) grows very slowly: for example, C(104) ≈ 3.789,
C(105) ≈ 4.246 and C(106) ≈ 5.169.

Remark 5.4.20. The choice of the form of the bound in Lemma 5.4.17 is
supported by the following heuristics. We assume that the coefficients c(m)
are pseudo-random values in the interval

[
−4

3

√
p, 43
√
p
]
. Since σ−1(m) =∑

k|m
1
k = O(log logm), the quantity D(s) is the sum of s random values in the

interval
[
−α√p log log s, α√p log log s

]
for some constant α, so we expect it to

be O(
√
ps(log log s)2). By taking small values of p (for example, p < 103000)

and s < p, we can essentially treat (log log s)2 as a constant.

In the regime s ≥ p, it will be enough to use the following easier upper
bound on D(s):

Lemma 5.4.21. Let p be a prime and let s ≥ p be an integer. We have
|D(s)| < 2π2

9 s
√
p.

Proof. It suffices to note that by Lemma 5.4.8 we have

|D(s)| ≤
∑
m≤s

m ̸≡0(p)

∑
k|m

|c(m)|
k
≤ 4

3

√
p

s∑
k=1

⌊ s
k
⌋∑

ℓ=1

1

k
≤ 4

3

√
p

s∑
k=1

s

k2
<

4π2

18
s
√
p.

We now combine these results to prove the following.

Proposition 5.4.22. Let E, p, q be as in Proposition 5.4.5 and let R be as in
Definition 5.4.2. Let D(s) be as in equation (5.4.8) and let C be the minimum
constant such that |D(s)| ≤ C√ps for s < p. If x := | log |q|| ≥ 30, then

| log |R|| ≤ 6Cp
√
π

x
1
2

· 1.28 + 10

3
π2e−xp

√
p+

4(p+ 1)π2

3px
.

Proof. Since 2πℑτ = | log |q|| ≥ 30, we know that ℑτ > 1, and hence we may
also assume that τ is in the standard fundamental domain F for the action
of SL2(Z), since every fundamental domain containing such a τ is obtained as
F + n for n ∈ Z, but integer translations do not change the value of q. We
start by estimating the sum S defined in equation (5.4.7), dividing it into two
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parts. Using Lemmas 5.4.17 and 5.4.21 we obtain

|S| ≤ 12 |1− q
1
p |

∞∑
s=1

|q|
s
p |D(s)|

≤ 12C
√
p |1− q

1
p |

p−1∑
s=1

|q|
s
p
√
s +

8

3
π2
√
p |1− q

1
p |

∞∑
s=p

|q|
s
p s.

(5.4.9)

We now use the following elementary fact: if f : R≥0 → R≥0 is a differentiable
function with a single local maximum in x0 ∈ R≥0, then

∞∑
n=1

f(n) <

∫ ∞

1
f(x)dx+ f(x0).

Since d
ds(|q|

s
p
√
s) = |q|

s
p
√
s
(
log |q|

1
p + 1

2s

)
, the function |q|

s
p
√
s is increasing

for s ≤ − 1
2 log |q|1/p = p

2| log |q|| and decreasing for larger values of s. We then

have the following estimate:

p−1∑
s=1

|q|
s
p
√
s <

∞∑
s=1

|q|
s
p
√
s <

∫ ∞

1
|q|

s
p
√
s ds+ |q|

1
2| log |q||

√
p

2| log |q||

<

∫ ∞

0
e
− | log |q||

p
s√
s ds+ e−

1
2

√
p

2| log |q||

=
p
√
p

| log |q||
3
2

√
π

2

(
1 +

√
2| log |q||
p
√
πe

)
.

Using Proposition 5.4.5, and using the fact that by Remark 5.4.14 we can
assume p > 100, we have

| log |q||
p

<
2
√
2π · 101

10
√
102 p

3
4

+
1.65

p
≤ 2
√
2π · 4

√
101

10
√
102

+
1.65

101
< 0.3,

and so
p−1∑
s=1

|q|
s
p
√
s <

p
√
p

| log |q||
3
2

√
π

2
· 1.15.

To estimate the sum of the terms with s ≥ p, we use the following fact. If
x ∈ (0, 1), then

∞∑
s=p

xss = x
d

dx

∞∑
s=p

xs = x
d

dx

xp

1− x
= xp

(
p

1− x
+

x

(1− x)2

)
.
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Putting everything together, equation (5.4.9) yields

|S| ≤ 6Cp
√
p |1−q

1
p |
√
πp

| log |q||
3
2

·1.15+8

3
π2|q|√p |1−q

1
p |

(
p

1− |q|
1
p

+
|q|

1
p

(1− |q|
1
p )2

)
.

Applying Lemmas 1.1.2 and 1.1.3 we obtain

|S| ≤ 6Cp
√
p

(
| log |q||

p
+
π

p

) √
πp

| log |q||
3
2

· 1.15

+
8

3
π2|q|√p

(
1− |q|

1
p + |q|

1
2p
π

p

)(
p

1− |q|
1
p

+
|q|

1
p

(1− |q|
1
p )2

)
,

which we rewrite as

|S| ≤ 6Cp
√
π

| log |q||
1
2

· 1.15
(
1 +

π

| log |q||

)

+
8

3
π2|q|√p

(
1 +

|q|
1
2p

1− |q|
1
p

· π
p

)(
p+

|q|
1
p

1− |q|
1
p

)
.

Using Lemma 1.1.3 again we have

|q|
1
2p

1− |q|
1
p

=
|q|

1
2p

(1− |q|
1
2p )(1 + |q|

1
2p )

<
1

1 + |q|
1
2p

· 2p

| log |q||
<

2p

| log |q||
,

and using the assumption | log |q|| ≥ 30 we obtain

|S| < 6Cp
√
π

| log |q||
1
2

· 1.28 + 8

3
π2|q|√p

(
1 +

2π

| log |q||

)(
p+

p

| log |q||

)
≤ 6Cp

√
π

| log |q||
1
2

· 1.28 + 8

3
π2|q|p√p · 1.25.

Bounding the sums in equation (5.4.5) and recalling equation (5.4.6), we have
obtained

| log |R|| ≤ 6Cp
√
π

x
1
2

· 1.28 + 10

3
π2|q|p√p+ 4(p+ 1)π2

3px
,

which concludes the proof (recalling that x = | log |q||).

Corollary 5.4.23. Let E, p, q be as in Corollary 5.4.15 and let R be as in
Definition 5.4.2. If | log |q|| ≥ 30, then

| log |R|| ≤ 58 · p

| log |q||
1
2

+ 0.45.
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Proof. By Proposition 3.2.14 we have p4 | j(E), and Theorem 1.2.2 implies
first 30 ≤ x ≤ log(|j(E)| + 970.8), so |j(E)| > 3500, and then |j(E)| ≤ 2

|q| .

Therefore, we have p4|q| ≤ |j(E)| · |q| ≤ 2. By Proposition 5.4.22 we obtain

| log |R|| ≤ 6Cp
√
π

x
1
2

· 1.28 + 20π2

3p2
√
p
+

4(p+ 1)π2

3px
.

The result follows by using C ≤ 4.25 (Lemma 5.4.17, which we can use thanks
to Corollary 5.4.15), x ≥ 30 and p > 100 (which we can assume by Remark
5.4.14).

We now notice that all the arguments we applied to logR are also valid
for logRγ . We can then give an analogue of Corollary 5.4.23 for logRγ . As
before, we have

logRγ = −12
∑

n,k ̸≡0(p)

q
nk
p

k
· cγ(kn)−

4(p+ 1)

p

∑
n̸≡0(p)

∞∑
k=1

qnk

k

= −12
∞∑
s=1

(q
s
p − q

s+1
p )Dγ(s)−

4(p+ 1)

p

∑
n̸≡0(p)

∞∑
k=1

qnk

k
,

where

Dγ(s) :=
∑
m≤s

m̸≡0(p)

∑
k|m

cγ(m)

k

is an analogue of D(s) in this context.

Lemma 5.4.24. For every prime p < 103000 with p ≡ 2, 5 (mod 9), the
following hold:

1. for s < p, we have |Dγ(s)| < Cγ
√
ps with Cγ = 2.81.

2. for s ≥ p, we have |Dγ(s)| < 2π2

9 s
√
p.

Proof. The proof is analogous to those of Lemmas 5.4.17 and 5.4.21.

Reasoning as in the proof of Proposition 5.4.22 we obtain the following.

Proposition 5.4.25. Let E, p, q be as in Proposition 5.4.5 and let Rγ be as in
equation (5.4.2). Let Cγ be the minimum constant such that |Dγ(s)| ≤ Cγ

√
ps

for s < p. If x := | log |q|| ≥ 30, then

| log |Rγ || ≤
6Cγp

√
π

x
1
2

· 1.28 + 10

3
π2e−xp

√
p+

2(p+ 1)π2

3px
.
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Since we know that it suffices to consider primes up to 103000 (Corollary
5.4.15), we can use the bound on the value of Cγ provided by Lemma 5.4.24
to obtain the following numerical estimate.

Corollary 5.4.26. Let E, p, q be as in Corollary 5.4.15 and let Rγ be as in
equation (5.4.2). If | log |q|| ≥ 30, then

| log |Rγ || ≤ 38.26 · p

| log |q||
1
2

+ 0.23.

We can finally prove the main result of this section.

Proof of Proposition 5.4.16. Suppose | log |q|| ≥ 30. As in the previous sec-
tion, from the two possible equations

log |U | = Ordq(U) log |q|+ 6 log p+ log |R|
log |U ◦ γ| = Ordq(U ◦ γ) log |q|+ log |Rγ |

we obtain the inequalities

p2 − 1

3p
| log |q|| ≤ 6 log p+ | log |R||,

p2 − 1

6p
| log |q|| ≤ 6 log p+ | log |Rγ ||.

Comparing Corollary 5.4.23 with Corollary 5.4.26 we notice that it suffices to
consider the second inequality. Writing x = | log |q|| we have

p2 − 1

6p
x ≤ 6 log p+ 38.26

p√
x
+ 0.23.

By Remark 5.4.14 we can assume that p > 100, hence

x
√
x− 2

√
x− 230 ≤ 0,

which implies x < 39.

Conclusion of the proof of Theorems 8 and 9

We recall the statement of Theorem 9 (Theorem 8 follows): there exists no
pair (E, p), where E is an elliptic curve over Q without CM and p > 5 is a
prime for which the image of the representation ρE,p is the group G(p) (up
to conjugacy). Suppose by contradiction that such a pair exists. We consider
the base change of E to C (along the unique embedding Q ↪→ C). There is
a unique τ in the standard fundamental domain F of the upper half plane H
that corresponds to E(C); we set q = e2πiτ . In this setting, in the previous
sections we have proved the following properties:
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� j(E) is an integer: follows from Lemma 1.1.5;

� p ≡ 2, 5 (mod 9): follows from Theorem 3.1.4;

� p4 | j(E): follows from Proposition 3.2.14;

� |j(E)| ≤ 2 · e39: follows from Proposition 5.4.16 and Theorem 1.2.2;

� p < 20400: we know that p4 ≤ |j(E)| ≤ 2 · e39, hence p ≤ 4
√
2 · e

39
4 <

20400;

� j(E) = pd · c3 for d ∈ {4, 5} and c ∈ Z: by Lemma 3.1.7, we know that

j(E) = pd·c3, and by Proposition 3.2.14 we also know that d ≥ 4. We can
assume that d ∈ {4, 5, 6}, since higher exponents can be reduced modulo
3 by reabsorbing the factors of p in c3. Moreover, by Lemma 3.2.15 the
case d = 6 does not occur, hence we can assume that d ∈ {4, 5}.

To complete the proof of Theorem 8 and Theorem 9, we check directly, for
all primes p < 20400, whether there exists any pair (E, p) as above. To be
able to test a finite number of curves, we also need the following well-known
lemma.

Lemma 5.4.27. If E and E′ are two non-CM elliptic curves over Q with
j(E) = j(E′), p > 2 is a prime, and H ⊆ GL(E[p]) is a subgroup that
contains − Id, then Im ρE,p ⊆ H if and only if Im ρE′,p ⊆ H.

Proof. Since either E′ ∼= E or E′ is a quadratic twist of E, the statement
follows from [Sut16, Corollary 5.25].

We now proceed as follows (see [FL23a]):

1. For every odd prime p ≡ 2, 5 (mod 9) with 5 < p < 20400, every d ∈
{4, 5} and every integer c ̸= 0 in the interval

[
− 3
√
2 · e13p−

d
3 , 3
√
2 · e13p−

d
3

]
,

we take an integral model E of a curve E/Q with j-invariant j(E) =
pd · c3.

2. We loop over primes ℓ distinct from p, in increasing order. For each such
prime ℓ:

a) We check if E has good reduction at ℓ. If it does, we continue with
(b); otherwise, we move on to the next prime ℓ.

b) We compute aℓ = ℓ+1−|Ẽ(Fℓ)| by counting the Fℓ-rational points
of E modulo ℓ.
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c) We check whether the roots of the polynomial t2−aℓt+ℓ ∈ Fp[t] are

cubes in F×
p2

(note that λ ∈ F×
p2

is a cube if and only if λ
p2−1

3 = 1).
If they are cubes, we continue with the next prime ℓ. If they are
not, we mark j(E) = pd ·c3 as ruled out and continue with the next
candidate (p, d, c).

The algorithm terminates, in the sense that every candidate j-invariant is
marked as ruled out : the loop in step 2 is always broken by finding some
prime ℓ (in fact, ℓ < 200 in all cases) for which the roots of t2 − aℓt + ℓ are
not cubes in F×

p2
. We claim that this proves Theorem 8. Indeed, suppose by

contradiction that there exists a pair (E1, p) such that E1 is a non-CM elliptic
curve over Q and p is a prime for which Im ρE1,p is conjugate to G(p). Then,
by the discussion above we know that j(E1) is of the form pd · c3 for some
p, d, c satisfying the conditions in step 1 (note that j = 0 gives a CM elliptic
curve), so the curve E we construct in this step is a quadratic twist of E1. By
Lemma 5.4.27, the image of ρE,p is conjugate to a subgroup of G(p) (note that
− Id ∈ G(p)), and by fixing a basis, we can assume that it is in fact contained
in G(p).
On the other hand, let ℓ be a prime for which the roots of t2 − aℓt + ℓ are

not cubes in F×
p2

(the output of the algorithm shows that such a prime exists),

and let Fℓ ∈ Gal

(
Q⧸Q

)
be a Frobenius corresponding to ℓ. The element

ρE,p(Fℓ) has characteristic polynomial t2−aℓt+ℓ. Since ρE,p(Fℓ) is in G(p), it
satisfies at least one of the following: aℓ = 0 (if ρE,p(Fℓ) lies in the normaliser
C+
ns(p), but not in the Cartan Cns(p) itself), or ρE,p(Fℓ) is the cube of some

element gℓ in GL2(Fp) (if it lies in the subgroup of cubes of Cns(p)). In both
cases, the eigenvalues of ρE,p(Fℓ) are cubes in F×

p2
: if aℓ = 0, this follows from

the fact that the roots of the characteristic polynomial are ±
√
−ℓ, and −ℓ is

a cube in F×
p since p ≡ 2 (mod 3); if aℓ ̸= 0, it follows from the fact that the

eigenvalues of ρE,p(Fℓ) are the cubes of the eigenvalues of gℓ. However, the
choice of ℓ shows that the eigenvalues of ρE,p(Fℓ) are not cubes in F×

p2
: the

contradiction shows that the pair (E1, p) cannot exist, which concludes the
proof of Theorem 8.
To conclude the proof of Theorem 9 it suffices to notice that for p = 5 there

are many curves E for which Im ρE,5 is conjugate to G(5), as suggested by
[Zyw15a, Theorem 1.4 (ii)] (for example the curve y2 = x3 − 950x − 11480,
with LMFDB label 70400.bg1).

Remark 5.4.28. Our algorithm [FL23a] terminates in around 2 minutes. Since
the running time is clearly exponential in the bound on log |j(E)|, it would
have been impossible to carry out this calculation without a sharp absolute
bound on log |q|, such as that given by Proposition 5.4.16. To showcase the
sharpness of our bound, we point out that even just knowing log |j(E)| < 50

https://www.lmfdb.org/EllipticCurve/Q/70400/bg/1
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would have led to a perfectly tractable computation: our algorithms test all
j with log |j| < 50 in about an hour and a half. On the other hand, it is clear
that the bound log |j(E)| < 162 which follows from Proposition 5.4.5 and
Corollary 5.4.15 would have been too loose to carry out the final calculation
as described in this section. Indeed, knowing log |j(E)| < 39 we have to test
645552 pairs (j-invariant, prime); with only log |j(E)| < 50 the number rises
to ≈ 2.8 · 107, and with log |j(E)| < 162 to ≈ 4.6 · 1023.



CHAPTER 6
p-adic and adelic Galois

representations

Given an elliptic curve E⧸Q without complex multiplication and a prime num-
ber p, the main aim of this chapter is to study the image of the p-adic Galois
representations ρE,p∞ attached to E, as well as the adelic representation ρE .
In particular, we will focus on the case where ρE,p has image contained in the
normaliser of a non-split Cartan subgroup. This is the only case not covered
by Theorem 12 (apart from the curve 49.196.9.1). We will show that, thanks
to the classification given in Chapter 2, if n is the smallest integer for which
Im ρE,p∞ ⊇ I + pnM2×2(Zp), then the image of ρE,pn is exactly C+

ns(p
n) in

almost all cases. This allows us to obtain the precise value of the p-adic index
[GL2(Zp) : Im ρE,p∞ ] depending on n. Using Theorem 4.2.5 we are then able
to give a bound on the product of the p-adic indices in terms of the stable
Faltings height of the curve E.

We also give a bound on the index of the adelic representation ρE . To do
this, we study the entanglement of division fields at primes p for which the
image of ρE,p is contained in the normaliser of a non-split Cartan subgroup.
This allows us to give a bound on the adelic index in terms of the product of
the p-adic indices. The main ingredient to obtain a good bound is the study
of the ramification index of p in Q(E[pn]). Indeed, when the image of ρE,pn

is contained in the normaliser of a non-split Cartan subgroup, p is ‘almost
totally’ ramified in Q(E[p]). On the other hand, by Theorem 3.1.1 we know
that the ramification index of p in Q(E[N ]) for p ∤ N is low. This shows
that the intersection Q(E[p])∩Q(E[N ]) is small. The ramification arguments
rely on the work of Lozano-Robledo [LR16] and Smith [Smi23]. All these
properties are proved in Section 6.3.

107
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The entanglement properties of Section 6.3 are combined in Lemma 6.4.10,
which together with the effective surjectivity Theorem 4.2.5, gives a bound on
the index [GL2(Ẑ) : Im ρE ] in terms of the Faltings height hF (E). We then
conclude this chapter providing another bound on the adelic index in terms
of the conductor of E.

6.1 Images of p-adic Galois representations

Fix an elliptic curve E⧸Q and an odd prime p, and write G := Im ρE,p∞ and

S := G ∩ SL2(Zp). The aim of this section is to show that G is often an
N-Cartan lift (as defined in Chapter 2), and that in this case many of the
propositions of Chapter 2 apply. We start by proving the following.

Proposition 6.1.1. Let E⧸Q be an elliptic curve without CM and let p be an

odd prime such that G(p) ⊆ C+
ns(p). Then the group G is a non-split N-Cartan

lift.

Proof. Since det ◦ρE,p∞ is the p-adic cyclotomic character, it follows that
det(G) = Z×

p . By [Ser81, Lemme 17] we know that G(p) ̸⊂ Cns(p). By
the open image theorem ([Ser72, Section 4.4, Théorème 3]) we know that G
is open in GL2(Zp), and hence it is closed. Finally, we need to show that
G(p) ∩ Cns(p) contains an element which is not a multiple of the identity.
It is easy to notice that every element in C+

ns(p) \ Cns(p) has order dividing
2(p − 1), and the same holds for scalar matrices. Suppose by contradiction
that G(p) ∩ Cns(p) consists of multiples of the identity. In particular, every
element of G(p) has order dividing 2(p − 1). Suppose now that p > 11. By
Corollary 3.1.3 we know that E has potentially good reduction at p. If we
consider the subgroup I < Im ρE,p obtained as the image of a pro-p inertia

subgroup of Gal

(
Q⧸Q

)
, by Theorem 3.1.1, Theorem 3.2.9 and Lemma 3.2.8

we know that there exists e ∈ {1, 2, 3, 4, 6} such that either I contains an

element of order p2−1
e , or the image of I in PGL2(Fp) contains an element of

order p−1
e . In the former case, we get a contradiction, because p2−1

e ∤ 2(p− 1)
for p > 11. In the latter case, since the square of any element of C+

ns(p)\Cns(p)
is a scalar matrix, we have that p−1

e | 2. However, this can happen only for
p = 13, which does not occur by [BDM+19, Corollary 1.3]. To conclude, it
suffices to notice that for p ∈ {3, 5, 7, 11} the statement follows from [Zyw15a,
Theorems 1.2, 1.4, 1.5, 1.6].

For G = Im ρE,p∞ consider the Lie algebras gi as in Definition 2.1.3.

Lemma 6.1.2. Let E⧸Q be an elliptic curve and p an odd prime such that

G(p) ⊆ C+
ns(p). We have dim gn ≥ 2 for every n ≥ 1.



6.1. IMAGES OF p-ADIC GALOIS REPRESENTATIONS 109

Lemma 6.1.2 is the same as [Ejd22, Proposition 3.2], however, our version
also holds for p ∈ {3, 5, 7, 13}. For every prime p > 7 and p ̸= 13, this is a
consequence of the fact that if G(p) ⊆ C+

ns(p), then E has potentially good
supersingular reduction at p (Corollary 3.2.13). To treat the remaining primes,
we first prove the following lemma.

Lemma 6.1.3. Let E⧸Q be an elliptic curve and p an odd prime such that

E has potentially good ordinary reduction at p. If p ≥ 5, we have G(p2) ̸⊆
C+
ns(p

2). If p = 3, we have G(27) ̸⊆ C+
ns(27); moreover, if E has good ordinary

reduction at 3 we have G(9) ̸⊆ C+
ns(9).

Proof. Let Qnr
p be the maximal unramified extension of Qp and let K be

the minimal extension of Qnr
p over which E acquires good reduction. By

Theorem 3.1.1 we know that e := [K : Qnr
p ] ∈ {1, 2, 3, 4, 6, 12}. Let IK <

Gal

(
K⧸K

)
be the inertia subgroup. By Lemma 3.2.7 we know that IK acts

on E[pn] as

(
χpn ∗
0 1

)
, where χpn is the cyclotomic character modulo pn.

Suppose first that p > 3. If we consider n = 2, since (e, p) = 1 we notice

that p + 1 ∈ Imχp2 =
(
Z⧸p2Z

)×e
. In particular, there exists an element g

in ρE,p2(IK) conjugate to

(
p+ 1 k

0 1

)
that satisfies the polynomial equation

(g − 1)(g − p− 1) = 0. Suppose by contradiction that g ∈ C+
ns(p

2). It is easy
to check that g ≡ I (mod p), and so also k ≡ 0 (mod p). In particular, if we
write k = ph we have

(
p+ 1 k

0 1

)
= I + p

(
1 h

0 0

)
= I + pA.

By Proposition 6.1.1 we know that G is an N-Cartan lift, and by Remark
2.1.8 A must be conjugate to an element of V1⊕V2 described in Lemma 2.1.7.
However, A has rank 1, which is impossible as elements of V1 ⊕ V2 only have
rank 0 or 2. Suppose now that p = 3: then either E has good reduction
at 3, so we have e = 1 and we can repeat the same proof as for p > 3,
or E has bad reduction at 3. In the latter case, since v3(e) ≤ 1, we notice
that 32 + 1 ∈ Imχ27, and hence there is an element g ∈ ρE,27(IK) conjugate

to

(
32 + 1 k

0 1

)
. Suppose that g ∈ C+

ns(27). We see as before that k ≡ 0

(mod 3) and if k ̸≡ 0 (mod 9) we would have a non-zero element of the form



110 CHAPTER 6. p-ADIC AND ADELIC GALOIS REPRESENTATIONS

(
0 u

0 0

)
in g1, which is impossible. We then conclude as before that we have

an element conjugate to

(
1 h

0 0

)
inside V1 ⊕ V2, which is impossible.

Proof of Lemma 6.1.2. By Corollary 2.1.11 we know that V1 ⊆ g1, and hence
dim g1 > 0. Suppose by contradiction that dim g1 = 1, and so that g1 = V1.

By Proposition 1.3.2 we know that there exists a lift G̃(p) < G of G(p) isomor-

phic to it via the projection such that G = G̃(p)G1, and up to conjugation of G

in GL2(Zp) we can assume that G̃(p) < C+
ns. Since g1 = V1, modulo p2 we ob-

tain that G(p2) = G̃(p) ·{(1 + pα)I}α∈Fp
< C+

ns(p
2) and [C+

ns(p
2) : G(p2)] = p.

If p = 3, the curve E corresponds to a rational point on [LMF24, Modular
Curve 9.81.1.a.1], with equation x3−6x2y+3x2z+6xyz−6xz2−y3−6yz2+z3 =
0 in P2. However, this equation has no solutions modulo 27, and hence such
a curve E does not exist. If instead p > 3, by Corollary 3.1.3, we know that
the curve E has potentially good reduction modulo p. If E has potentially
ordinary reduction at p, we can apply Lemma 6.1.3 to get a contradiction. If
E has potentially supersingular reduction at p, we can use Proposition 3.2.9
to show that E does not have a canonical subgroup of order p, and so by
[Smi23, Theorem 1.1] we have that if R ∈ E[p2] \ E[p], then p2 | [Q(R) : Q] |
[Q(E[p2]) : Q]. We know that |g1| = [Q(E[p2]) : Q(E[p])] = [Q(E[p2]):Q]

[Q(E[p]):Q] , and

since p ∤ [Q(E[p]) : Q] we obtain that p2 | |g1|. The conclusion follows from
Lemma 2.1.4.

Remark 6.1.4. In the proof above, the statement about ramification in division
fields that allows us to show that p2 | [Q(R) : Q] is due to Lozano-Robledo
[LR16, Theorem 1.2(2)]. However, as pointed out in [Smi23], his proof is
incorrect. A correct version is provided in [Smi23, Theorem 1.1], which is the
same we used in the proof.

Theorem 6.1.5. Let E⧸Q be an elliptic curve without CM and set G :=

Im ρE,p∞. Let p be an odd prime such that Im ρE,p ⊆ C+
ns(p) up to conjugation

and let n ≥ 1 be the smallest integer such that Im ρE,p∞ ⊇ I + pnM2×2(Zp).
One of the following holds:

� G(pn) = C+
ns(p

n) up to conjugation.

� n = 2 and

G(p2) ∼= C+
ns(p)⋉

{
I + p

(
a εb

−b c

)}
,

with the semidirect product defined by the conjugation action.

https://beta.lmfdb.org/ModularCurve/Q/9.81.1.a.1/
https://beta.lmfdb.org/ModularCurve/Q/9.81.1.a.1/
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� p = 5 and G corresponds to the group with RSZB label 5.30.0.2.

� p = 3 and ±G corresponds to one of the groups with RSZB labels
3.6.0.1, 3.12.0.1, 9.18.0.1, 9.18.0.2, 9.36.0.1, 9.36.0.2,
9.36.0.3.

Proof. We show that G satisfies the hypotheses of Theorem 2.1.14. First, we
know by Proposition 6.1.1 that G is a non-split N-Cartan lift. By Lemma
6.1.2 we also know that dim g1 > 1. Moreover, by [LT22, Theorem 3.16] we
know that for p > 3 we have G ⊇ (1 + pZp)I.
Suppose first that p > 5. By Theorem 9 we know that G(p) = C+

ns(p),
and hence the image of G(p) ∩ Cns(p) = Cns(p) in PGL2(Fp) contains an
element of order greater than 2. We can then apply Theorem 2.1.14. As
G ⊇ I+pnM2×2(Zp), we have eitherG(pn) ⊆ C+

ns(p
n) with [C+

ns(p
n) : G(pn)] =

[C+
ns(p) : G(p)] = 1, or n = 2 and G(pn) ∼= G(p)⋉(V1⊕V3), and the conclusion

follows.
If p = 5, then by Theorem 9 we have [C+

ns(p) : G(p)] ∈ {1, 3}. If G(p) =
C+
ns(p), we can repeat the argument above. If instead [C+

ns(p) : G(p)] =
3, the argument above does not work anymore, because every element of
G(p)∩Cns(p) has order 2 in PGL2(Fp). Using [RSZB22, Theorem 1.6] we see
that either G corresponds to a modular curve with infinitely many rational
points, or G(25) ⊆ C+

ns(25), or G has RSZB label 25.50.2.1 or 25.75.2.1.
In the last case, we see that G(5) ∈ {C+

sp(5), C
+
ns(5)}, and so we don’t have

[C+
ns(p) : G(p)] = 3. In the first case we can check in [SZ17, Table 2] that the

only possible case is the group with RSZB label 5.30.0.2: indeed, this is the
unique group with G(5) contained in C+

ns(5) and index of the form 30 · 5k. If
G(25) ⊆ C+

ns(25), then G must be contained in the group with RSZB label
25.750.46.1, which is, in turn, contained in the group with RSZB label
25.50.2.1. However, this last group has been ruled out in [BDM+23, Section
5.3]. Indeed, the modular curve associated with it has 2 rational points: one is
a CM point, and the other corresponds to an elliptic curve with G(5) = C+

ns(5),
as we can check in [RSZB22, Table 1].
If p = 3, by [Zyw15a, Theorem 1.2] we can consider the three following cases:
G(3) = C+

ns(3), or G(3) = C+
sp(3), or G(3) is contained in Csp(3). In the first

case, we have that E[3] is an irreducible Galois module, and then by [LT22,
Proposition 3.12] we have again that G ⊇ (1 + 3Z3)I. Moreover, the image
of C+

ns(3) in PGL2(F3) contains an element of order 4, hence we can apply
Theorem 2.1.14 and conclude as for p > 5. If G(3) = C+

sp(3), we can apply
[RSZB22, Theorem 1.6] to show that either G(9) ⊂ C+

ns(9) or G appears
in [SZ17, Table 1]. If G(9) ⊂ C+

ns(9), then G(9) is contained in the group
corresponding to the modular curve with RSZB label 9.54.2.2, which has no
non-cuspidal non-CM points by [RSZB22, Section 8.2]. If instead G appears
in [SZ17, Table 1], we can notice that since G(3) = C+

sp(3) the index of G
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must be of the form 6 · 3k, and the only such groups in the table are those
corresponding to the modular curves with RSZB labels 3.6.0.1, 9.18.0.1,
9.18.0.2. Suppose now that G(3) ⊆ Csp(3). In particular, this implies
that G(3) is contained in a Borel subgroup, so ±G must correspond to a
modular curve in the finite list given in [RSZB22, Corollary 1.1]. However,
the only curves in the list for which ±G(3) ⊆ Csp(3) are those with RSZB
labels 3.12.0.1, 9.36.0.1, 9.36.0.2, 9.36.0.3.

6.2 p-adic indices

In this section, we provide some bounds on the indices of the images of the
p-adic Galois representations attached to E. In particular, we will mainly
focus on the case where Im ρE,p is contained in the normaliser of a non-split
Cartan subgroup.

Proposition 6.2.1. Let E⧸Q be an elliptic curve without complex multiplica-

tion and let p be an odd prime such that Im ρE,p ⊆ C+
ns(p) up to conjugation,

with equality holding in the case p = 3. Let n ≥ 1 be the largest integer for
which Im ρE,pn ⊆ C+

ns(p
n). We have

[GL2(Zp) : Im ρE,p∞ ] ∈


{
p2−p
2 , p

3−p2
2 , 30

}
for n = 1{

p−1
2 · p

2n−1
}

for n > 1,

where [GL2(Zp) : Im ρE,p∞ ] = 30 for p = 5.

Proof. Suppose first that Im ρE,p = C+
ns(p). This implies that we are in one

of the first two cases of Theorem 6.1.5, and so if n is the smallest integer
such that Im ρE,p∞ ⊇ I + pnM2×2(Zp), then either Im ρE,pn = C+

ns(p
n), or

n = 2 and Im ρE,p2 is a group of order 2(p2−1)p3. In particular, we have that

[GL2(Zp) : Im ρE,p∞ ] ∈
{
p−1
2 · p

2n−1, p
3−p2
2

}
. If instead Im ρE,p ⊊ C+

ns(p), by

Theorem 6.1.5 we know that pn = 5 and [GL2(Zp) : Im ρE,p∞ ] = 30.

Corollary 6.2.2. Let E⧸Q be an elliptic curve without complex multiplication

and let p be an odd prime such that Im ρE,p ⊆ C+
ns(p) up to conjugation, with

equality holding in the case p = 3. Let n ≥ 1 be the largest integer for which
Im ρE,pn ⊆ C+

ns(p
n). We have

[GL2(Zp) : Im ρE,p∞ ] ≤ p− 1

2p
· p3n.

Proof. If [GL2(Zp) : Im ρE,p∞ ] ̸= 30 the statement easily follows from Propo-
sition 6.2.1. If instead [GL2(Zp) : Im ρE,p∞ ] = 30, then pn = 5 and 30 <
5−1
10 · 5

3 = 50.
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We now give two propositions to bound the p-adic index in some cases in
which Im ρE,p is not contained in the normaliser of a non-split Cartan. These
cases will be the only ones that can occur whenever there exists a large prime
p for which Im ρE,p ⊆ C+

ns(p).

Proposition 6.2.3. Let E⧸Q be an elliptic curve without complex multipli-

cation that does not admit any rational 2-isogeny. Then either [GL2(Z2) :
Im ρE,2∞ ] divides 32, or j(E) is one among

−3 · 182499203

1716
, −7 · 17231878060803

7916

and [GL2(Ẑ) : Im ρE ] = 128.

Proof. By [RZB15, Theorem 1.1], [RZB15, Corollary 1.3], and [RZB15, Re-
mark 1.5] we know that either j(E) is one among the two numbers in the
statement, or the index [GL2(Z2) : Im ρE,2∞ ] divides 96. In the first case,
we can compute the index of the adelic representation using the algorithm
FindOpenImage.m developed in [Zyw22]. Indeed, by [Zyw15b, Corollary 2.3]
we know that the index only depends on j-invariant. We now focus on the
second case. Since E admits a rational 2-isogeny if and only if Im ρE,2 is con-
tained in a Borel subgroup, we notice that E admits a rational 2-isogeny if
and only if the index [GL2(Z2) : Im ρE,2∞ ] is divisible by 3. The conclusion
follows.

Proposition 6.2.4. Let E⧸Q be an elliptic curve without complex multiplica-
tion.

� If Im ρE,3 = GL2(F3), then [GL2(Z3) : Im ρE,3∞ ] ≤ 27;

� If Im ρE,5 is conjugate to the exceptional subgroup 5S4, then

[GL2(Z5) : Im ρE,5∞ ] = [GL2(F5) : Im ρE,5] = 5.

Proof. By [RSZB22, Theorem 1.6] we know that either Im ρE,27 ⊆ C+
ns(27)

or Im ρE,3∞ corresponds to a group in [SZ17, Table 1]. As Im ρE,3 is equal
to GL2(F3), the index [GL2(Z3) : Im ρE,3∞ ] must be a power of 3. How-
ever, the largest power of 3 among the indices of [SZ17, Table 1] is 27, hence
[GL2(Z3) : Im ρE,3∞ ] ≤ 27. If Im ρE,5 = 5S4 we have [GL2(F5) : Im ρE,5] =
5. Similarly to Lemma 2.1.7 one can easily check that the only non-trivial
F5[5S4]-submodules of gl2(F5) are F5 · Id and sl2(F5). However, if we set
G := Im ρE,5∞ , by Lemma 2.1.10 we know that F5 · Id is contained in g1, and
so we have g1 ∈ {F5 · Id, gl2(F5)}. If g1 = F5 · Id, then E corresponds to a
rational point on the modular curve with RSZB label 25.625.36.1, which
has no rational points by [RSZB22, Section 8.6]. To conclude, we notice that
if g1 = gl2(F5), by Lemma 2.1.12 we have that [GL2(Z5) : G] = 5.
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6.3 Entanglement

Let E be an elliptic curve defined over a number field K and let p be a
prime for which Im ρE,pn ⊆ C+

ns(p
n) for some n. In this section, we study the

entanglement between the pn-torsion and the rest of the torsion. The key tool
of our method is the ramification of primes of potentially good supersingular
reduction in division fields. In particular, we will notice that p has high
ramification index in K(E[pn]): this relies on the work of Lozano-Robledo
[LR16] and Smith [Smi23] on the valuation of the pn-torsion points of the
formal group associated with E. On the other hand, every other prime q ̸= p
has very small ramification index in K(E[pn]): this follows from a variant
of the Néron–Ogg–Shafarevich criterion introduced in Theorem 3.1.1. This
suggests that the intersection of two division fields K(E[pn])∩K(E[qm]) such
that Im ρE,pn ⊆ C+

ns(p
n) and Im ρE,qm ⊆ C+

ns(q
m) should be very small.

Theorem 6.3.1. Let E be an elliptic curve defined over a number field K and
let p be a prime. Let p ⊆ K be a prime above p such that E has potentially
good supersingular reduction at p, and let e := e(p|p) be its ramification index.
Suppose that p ≥ 6e − 1 and that there exists an integer n ≥ 1 such that
Im ρE,pn ⊆ C+

ns(p
n) up to conjugation. Let F be the compositum

F :=
∏

q prime
q ̸=p

K(E[q∞]).

There exists η ∈ {1, 2, 3} such that if E has good reduction at p we have η = 1,
and for every extension K ⊆ K ′ ⊆ K unramified at p, setting F ′ = FK ′ we
have that[

K ′(E[pn]) : F ′ ∩K ′(E[pn])
]

is a multiple of
p2n−2(p2 − 1)

gcd(2ηe, p2 − 1)
, and

Gal
(
K ′(E[pn])⧸F ′ ∩K ′(E[pn])

)
has an element of order

pn−1(p2 − 1)

gcd(2ηe, p2 − 1)
.

Moreover,

Gal
(
K ′(E[pn])⧸F ′(ζp∞) ∩K ′(E[pn])

)
has an element of order

pn−1(p+1)

gcd(ηe, p+1)
.

Proof. Let Kp be the completion of K at p. Consider the maximal unramified

extension Knr
p of Kp. We clearly have K ′Kp ⊆ Knr

p . Let L⧸Knr
p

be the

minimal extension over which E acquires good reduction. As p ≥ 6e− 1 ≥ 5,
by [Kra90, Proposition 1] we have d := [L : Knr

p ] ∈ {1, 2, 3, 4, 6}. By the

Néron–Ogg–Shafarevich criterion, for every prime q ̸= p, as L(E[q∞])⧸L is
unramified, we have L(E[q∞]) = L, and so F ′L = L. By Proposition 3.2.9,
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we know that E does not have a canonical subgroup, so by Lemma 3.2.8 we

know that Gal
(
L(E[pn])⧸L

)
contains an element of order (p2−1)pn−1

gcd(de,p2−1)
. This

proves the first part of the theorem, as Gal
(
L(E[pn])⧸L

)
embeds into

Gal
(
F ′(E[pn])⧸F ′

)
∼= Gal

(
K ′(E[pn])⧸F ′ ∩K ′(E[pn])

)
.

We now prove that L(E[pn])∩L(ζp∞) is equal to L(ζpn). First we notice that

L(ζpn) ⊆ L(E[pn]). Since L(ζp∞)⧸L(ζpn) is a procyclic extension, every proper

subextension must contain L(ζpn+1). It then suffices to show that ζpn+1 /∈
L(E[pn]). However, this is true as Gal

(
L(ζpn+1)⧸L

)
contains elements of

order pn, since L⧸Qnr
p

is a tamely ramified extension, while Gal
(
L(E[pn])⧸L

)
is a subgroup of C+

ns(p
n), and hence does not contain elements of order pn.

Since L(ζp)⧸L is totally ramified, we have [L(ζp) : L] = (p−1)
gcd(de,p−1) . As p ≥

6e − 1 ≥ de − 1, we necessarily have p ∤ de, and so [L(ζpn) : L(ζp)] = pn−1,

because L(ζpn)⧸L(ζp) is totally wildly ramified. This implies that [L(ζpn) :

L] = (p−1)pn−1

gcd(de,p−1) .

L(E[pn], ζp∞)

L(E[pn]) L(ζp∞)

L(ζpn)

L FKnr
p (ζp∞)

FKnr
p Knr

p (ζp∞)

Knr
p

k· (p
2−1)p2(n−1)

gcd(de,p2−1)

(p−1)pn−1

gcd(de,p−1)

d
gcd(d,p−1)

d

We then obtain that the degree of L(E[pn])⧸L(ζpn) is a multiple of

gcd(de, p− 1)

gcd(de, p2 − 1)
· (p+ 1)pn−1.

Moreover, since F ′ ⊆ L, we have that

[K ′(E[pn]) : F ′(ζp∞) ∩K ′(E[pn])] = [F ′(E[pn], ζp∞) : F ′(ζp∞)]
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is a multiple of

[L(E[pn], ζp∞) : L(ζp∞)] = [L(E[pn]) : L(ζp∞)∩L(E[pn])] = [L(E[pn]) : L(ζpn)].

In particular, we showed that the degree [K ′(E[pn]) : F ′(ζp∞)∩K ′(E[pn])] is a

multiple of gcd(de,p−1)
gcd(de,p2−1)

· (p+1)pn−1. To conclude, it suffices to show that there

exists η ∈ {1, 2, 3} such that D := gcd(de,p2−1)
gcd(de,p−1) is a divisor of gcd(ηe, p + 1).

Suppose first that de is odd: then (de, p2 − 1) = (de, p− 1)(de, p+ 1), and so
D = (de, p + 1). Moreover, d is odd and therefore d ∈ {1, 3}. We can then
take η = d. Suppose now that de is even: then we can write

(de, p2 − 1) = 2

(
de

2
,
p2 − 1

2

)
=


(
de
2 , p− 1

)
(de, p+ 1) if p ≡ 1 (mod 4)

(de, p− 1)
(
de
2 , p+ 1

)
if p ≡ 3 (mod 4).

If p ≡ 3 (mod 4), we have D =
(
de
2 , p+ 1

)
, and then we conclude, as for

d ∈ {1, 2, 3, 4, 6} we have that de
2 divides either 2e or 3e. If instead p ≡ 1

(mod 4), we treat separately the cases in which e is odd or e is even. If e
is odd, then we must have d ∈ {2, 4, 6}, and so v2(de) ≤ v2(p − 1). This

implies that
( de

2
,p−1)

(de,p−1) = 1
2 , and in particular D = 1

2(de, p + 1), which divides(
d
2 · e, p+ 1

)
. We can then take η = d

2 . If e is even, then either d is odd, and

so D =
( de

2
,p−1)

(de,p−1) · (de, p+1) divides (de, p+1), with de ∈ {e, 3e} and η = d, or

d is even. In the latter case, we have that v2(de) ≥ 2 > 1 = v2(p+ 1), and so
(de, p+1) =

(
de
2 , p+ 1

)
. This implies that D divides (de, p+1) =

(
d
2 · e, p+ 1

)
and we can take η = d

2 . To conclude, it suffices to show that when E has good
reduction at p we have η = 1. To do that, we notice that in all the cases above
η is a divisor of d, and since E has good reduction the degree d must be 1.

Corollary 6.3.2. Let E⧸Q be a non-CM elliptic curve and let p > 7 and

n ≥ 1 be integers such that p is prime and Im ρE,pn ⊆ C+
ns(p

n). Let F be the
compositum

F :=
∏

q prime
q ̸=p

Q(E[q∞]).

There exists η ∈ {1, 2, 3} such that

[F (E[pn]) : F ] is a proper multiple of
p2n − p2n−2

12
, and

[FQab(E[pn]) : FQab] is a multiple of
pn + pn−1

η
.

Moreover, if E has good reduction at p we have η = 1.
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Proof. We notice that we can assume that E has potentially good supersin-
gular reduction modulo p. Indeed, by Corollary 3.2.13 the prime p is always
supersingular for p > 7 and ̸= 13. However, by [BDM+19, Corollary 1.3] we
know that for p = 13 the image of ρE,p is not contained in C+

ns(p). Consider
the set R := {r ≥ 1 : p ∤ r} and define the extension K = Q({ζr}r∈R). As p
is unramified in K, by Theorem 6.3.1 we know that there exists η ∈ {1, 2, 3}
such that

[FQab(E[pn]) : FQab] = [FK(ζp∞ , E[pn]) : FK(ζp∞)]

= [K(E[pn]) : FK(ζp∞) ∩K(E[pn])]

is a multiple of pn+pn−1

η . The fact that [F (E[pn]) : F ] is a proper multiple of
p2n−p2n−2

12 immediately follows from Theorem 6.3.1.

Lemma 6.3.3. Let E be an elliptic curve over a field K and let p be a prime.
Let B be a set of primes such that for every q ∈ B the prime p does not divide
q(q2− 1). Define m :=

∏
q∈B q (possibly a supernatural number) and consider

the compositum K(E[m∞]) :=
∏
q∈BK(E[q∞]). We have

K(E[m∞], E[p]) ∩K(E[p∞]) = K(E[p]).

Proof. Set F := K(E[m∞]). We notice that for every q ∈ B we have

p ∤ [K(E[q]) : K] | #GL2(Fq) = q(q − 1)2(q + 1).

As F is the composite of K(E[q∞]) for q ∈ B and K(E[q∞])⧸K(E[q]) is a

pro-q extension, this implies that F does not contain any finite subextension

with degree multiple of p. In particular, the same holds for F (E[p])⧸K(E[p]).

On the other hand, K(E[p∞]) is a pro-p extension of K(E[p]), and so the field
F (E[p]) ∩K(E[p∞]) must be equal to K(E[p]).

Corollary 6.3.4. Let E⧸Q be a non-CM elliptic curve and let p > 7 be a

prime such that Im ρE,p = C+
ns(p). Let B be a set of primes such that for

every q ∈ B the prime p does not divide q(q2 − 1). Define m :=
∏
q∈B q

(possibly a supernatural number), and consider the compositum Q(E[m∞]) :=∏
q∈B Q(E[q∞]). We have

[Qab(E[m∞]) ∩Qab(E[p∞]) : Qab] ≤ 6.

Moreover, if E has good reduction at p we have

[Qab(E[m∞]) ∩Qab(E[p∞]) : Qab] ≤ 2.
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Proof. By Lemma 6.3.3 we know that

Qab(E[m∞]) ∩Qab(E[p∞]) ⊆ Qab(E[m∞], E[p]) ∩Qab(E[p∞]) = Qab(E[p]).

In particular, we can rewrite

Qab(E[m∞]) ∩Qab(E[p∞]) = Qab(E[m∞]) ∩Qab(E[p]),

and so it suffices to compute

[
Qab(E[m∞]) ∩Qab(E[p]) : Qab

]
=

[
Qab(E[p]) : Qab

]
[Qab(E[p]) : Qab(E[m∞]) ∩Qab(E[p])]

=

[
Qab(E[p]) : Qab

]
[Qab(E[m∞], E[p]) : Qab(E[m∞])]

.

However, by Corollary 6.3.2 we know that
[
Qab(E[m∞], E[p]) : Qab(E[m∞])

]
is at least p+1

3 (and greater than or equal to p+1 in the case of good reduction),
and [

Qab(E[p]) : Qab
]
= [Q(E[p]) : Q(E[p]) ∩Qab] ≤ [Q(E[p]) : Q(ζp)]

=
[Q(E[p]) : Q]

[Q(ζp) : Q]
= 2(p+ 1).

Lemma 6.3.5. Let E⧸Q be an elliptic curve without CM. Let P be a set of
primes containing 2, 3, 5 and all primes p for which ρE,p is not surjective.
Let m be the product of all the primes in P and write Zm :=

∏
p∈P Zp and

ρE,m∞ :=
∏
p∈P ρE,p∞. Call S := ρE

(
Gal

(
Q/Qab

))
< SL2(Zp) and SP its

image under the projection on SL2(Zm). We have

[GL2(Ẑ) : Im ρE ] =
[
SL2(Ẑ) : S

]
= [SL2(Zm) : SP ] = [GL2(Zm) : Im ρE,m∞ ] .

Proof. The first and the third equalities follow from surjectivity of det ◦ρE
onto Ẑ×. To prove the second inequality, it suffices to notice that we can view S
as a closed subgroup of

∏
p Sp ⊆

∏
p SL2(Zp) = SL2(Ẑ), and by [Ser98, IV §3.4

Lemma 5] we know that S contains the subgroup
∏
p/∈P SL2(Zp), concluding

the proof.

Lemma 6.3.6. Let E be an elliptic curve defined over a field K. Let m,n
be coprime squarefree supernatural numbers. Set G := Im ρE and define Gm,
Gn, Gmn to be its projections on GL2(Zm), GL2(Zn), GL2(Zmn) respectively.
We have

[Gm ×Gn : Gmn] = [K(E[m∞]) ∩K(E[n∞]) : K].
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Proof. Set F := K(E[m∞]) ∩K(E[n∞]). If we write

Gm = Gal
(
K(E[m∞])⧸K

)
and Gn = Gal

(
K(E[n∞])⧸K

)
,

we know that Gmn = Gal
(
K(E[(mn)∞])⧸K

)
is isomorphic to the subgroup

of Gm ×Gn described as {(σ, τ) ∈ Gm ×Gn : σ|F = τ |F }. We conclude the
proof noting that [Gm ×Gn : Gmn] = [F : K].

Corollary 6.3.7. Let K be a number field and let E⧸K be an elliptic curve
without CM. Let m,n be coprime squarefree supernatural numbers. Set G :=
Im ρE and S := ρE(Gal(K/KQab)), and define Gm, Gn, Gmn, Sm, Sn, Smn
to be their projections on GL2(Zm), GL2(Zn), GL2(Zmn), SL2(Zm), SL2(Zn),
SL2(Zmn) respectively. The index [GL2(Zmn) : Gmn] is equal to

[GL2(Zm) : Gm] · [GL2(Zn) : Gn] · [K(E[m∞]) ∩K(E[n∞]) : K]

and the index [SL2(Zmn) : Smn] is equal to

[SL2(Zm) : Sm] · [SL2(Zn) : Sn] · [KQab(E[m∞]) ∩KQab(E[n∞]) : KQab].

Proof. The first statement follows from Lemma 6.3.6 noting that

[GL2(Zmn) : Gmn] = [GL2(Zmn) : Gm ×Gn] · [Gm ×Gn : Gmn]

= [GL2(Zm) : Gm] · [GL2(Zn) : Gn] · [Gm ×Gn : Gmn].

The second statement is proved in the same way replacing K with KQab.

6.4 Bound on the adelic index

The aim of this section is to combine the results from the previous chapters to
obtain a bound on the index of the image of the adelic Galois representation of
an elliptic curve E⧸Q without CM. In particular, we will combine the classifi-

cation of p-adic images (Theorem 6.1.5) and the effective surjectivity theorem
(Theorem 4.2.5) to obtain a bound on the contribution given by those primes
for which Im ρE,p is contained in the normaliser of a non-split Cartan. We
will then give a bound for the index at the other non-surjective primes and
a bound for the entanglement phenomenon among all primes. To do this, we
will use some results about the degree of entanglement fields given in Section
6.3. The following theorem is the main result of this section.

Theorem 6.4.1. Let E⧸Q be an elliptic curve without CM. We have

[GL2(Ẑ) : Im ρE ] < 9.5 · 1020(hF (E) + 40)4.42.
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Moreover, if we define

δ(x) :=
1

log(log(x+ 40) + 7.6)− 0.903

for every x > −0.75, we have

[GL2(Ẑ) : Im ρE ] < 3.4 · 1020 · (hF (E) + 22.5)3+4.158·δ(hF (E)).

In particular, we have [GL2(Ẑ) : Im ρE ] < hF (E)
3+O

(
1

log log hF (E)

)
as hF (E)

tends to ∞.

Remark 6.4.2. If we compare this result with Theorem 17 we see that the
constant and the exponent are much better. In particular, exp(1.9 · 1010) is
replaced with 9.5 · 1020, while the exponent 12395 is replaced with 4.42.

Before proving Theorem 6.4.1, we will give many intermediate lemmas and
propositions, that allow us to organise the proof in different steps. We will
treat separately the cases where the elliptic curve E satisfies the uniformity
conjecture or not, and we will distinguish cases according to whether j(E) is
an integer or not.

Lemma 6.4.3. Let E⧸Q be an elliptic curve without CM and let p be a prime
number such that Im ρE,p is contained in an exceptional subgroup, i.e. a proper
subgroup of GL2(Fp) which is not contained in a Borel subgroup or in the
normaliser of a Cartan subgroup. There are two possible cases:

� p = 5 and [GL2(F5) : Im ρE,5] = 5;

� p = 13, the j-invariant j(E) is one among

24 · 5 · 134 · 173

313
, −212 · 53 · 11 · 134

313
,

218 · 33 · 134 · 1273 · 1393 · 1573 · 2833 · 929
513 · 6113

,

(6.4.1)

and [GL2(Ẑ) : Im ρE ] = 182.

Proof. By [Ser81, §8.4, Lemme 18] we know that p ≤ 13. Using [Zyw15a,
Theorems 1.1, 1.2, 1.4, 1.5, 1.6, 1.8] and [Zyw15a, Remark 1.9], we note that
there are just two possible groups: one for p = 5 with index 5 and one for
p = 13 with index 91 (respectively 5S4 and 13S4). However, by [BDM+23,
Theorem 1.1] we know that in the case p = 13 the j-invariant must belong to
the list (6.4.1). We can then apply the algorithm FindOpenImage developed
in [Zyw22] to compute the index of Im ρE , which is 182. Indeed, by [Zyw15b,
Corollary 2.3] the index only depends on the j-invariant.
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We collect together the facts we know about the possible images of ρE,p in
the following proposition.

Proposition 6.4.4. Let E⧸Q be an elliptic curve without CM. If j(E) is one
of the j-invariants of the following list

−11 · 1313, −112, −172 · 1013

2
, −17 · 3733

217
, −7 · 113

−7 · 1373 · 20833, 24 · 5 · 134 · 173

313
, −212 · 53 · 11 · 134

313
,

218 · 33 · 134 · 1273 · 1393 · 1573 · 2833 · 929
513 · 6113

,

(6.4.2)

then [GL2(Ẑ) : Im ρE ] ≤ 2736. Suppose now that j(E) is not in the list above.

� If Im ρE,p is contained in a Borel subgroup, then p ∈ {2, 3, 5, 7, 13}.

� If Im ρE,p is contained in the normaliser of a split Cartan subgroup, then
p ≤ 7.

� If Im ρE,p is contained in the normaliser of a non-split Cartan subgroup
and p ≥ 5, then either Im ρE,p = C+

ns(p) and p ∈ {5, 7, 11} ∪ {N ≥ 19},
or [C+

ns(p) : Im ρE,p] = 3 and p = 5.

� If Im ρE,p is contained in an exceptional subgroup but is not contained
in one of the groups in the cases above, then p = 5 and [GL2(Z5) :
Im ρE,5∞ ] = 5.

Proof. To prove that the j-invariants in the list have [GL2(Ẑ) : Im ρE ] ≤
2736, it suffices to notice that by [Zyw15b, Corollary 2.3] the index only
depends on the j-invariant, and then we can compute it using the algorithm
FindOpenImage developed in [Zyw22]. If j(E) is not in the list, the statement
follows combining Theorem 3, Theorem 4, Theorem 9, [BDM+19, Corollary
1.3], [BDM+23, Theorem 1.2], and Lemma 6.4.3.

Another result we will use is the following theorem by Lemos ([Lem19a,
Theorem 1.1] and [Lem19b, Theorem 1.4]).

Theorem 6.4.5 (Lemos). Let E⧸Q be an elliptic curve without CM. Suppose
that there exists a prime q for which Im ρE,q is contained either in a Borel sub-
group or in the normaliser of a split Cartan subgroup: then ρE,p is surjective
for every p > 37.

Lemos’s arguments actually show the following stronger statement.
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Theorem 6.4.6. Let E⧸Q be an elliptic curve without CM and let p > 13

be a prime such that Im ρE,p ⊆ C+
ns(p). For every prime q ̸= p, the image of

ρE,q is contained neither in a Borel subgroup nor in the normaliser of a split
Cartan subgroup.

Proof. By Theorem 3, we know that if E admits a rational q-isogeny then q
belongs to the set {2, 3, 5, 7, 11, 13, 17, 37}. However, by [Lem19a, Proposition
2.1] we know that either j(E) ∈ Z or q ∈ {11, 17, 37}. If E admits a rational
isogeny of degree q ∈ {11, 17, 37}, by Theorem 3 we know that j(E) is one
among

−11 · 1313,−112,−172 · 1013

2
,−17 · 3733

217
,−7 · 1373 · 20833,−7 · 113.

One can check on the LMFDB [LMF24] that in these cases Im ρE,p is not
contained in C+

ns(p) for p > 13. If instead Im ρE,q is contained in the normaliser
of a split Cartan subgroup, then by [Lem19b, Proposition 1.5] we know that
j(E) ∈ Z. From now on, we can therefore assume that j(E) ∈ Z. Following
the proof of [Lem19b, Theorem 1.4] we have that if Im ρE,q ⊆ C+

sp(q) then
j(E) ∈ {−5000,−1728}, for which Im ρE,p is not contained in C+

ns(p) for
p > 13. If j(E) ∈ Z and the image of ρE,q is contained in a Borel subgroup,
then following the proof of [Lem19a, Theorem 1.1] we have that j(E) belongs
to the list in [Lem19a, p. 142], and one can check again on the LMFDB that
none of those curves admits a prime p > 13 for which Im ρE,p ⊆ C+

ns(p).

Combining Proposition 6.4.4 and Theorem 6.4.6 we obtain the following.

Proposition 6.4.7. Let E⧸Q be an elliptic curve without CM. Suppose that

j(E) does not belong to the list (6.4.2). One of the following holds.

(A) There exists p > 13 such that Im ρE,p = C+
ns(p), and for every q ̸= 5 for

which ρE,q is not surjective we have Im ρE,q ⊆ C+
ns(q).

(B) For every p > 13 the representation ρE,p∞ is surjective.

Proof. Suppose first that there exists p > 13 such that Im ρE,p ⊆ C+
ns(p).

By Theorem 9 we know that Im ρE,p = C+
ns(p). Using Theorem 6.4.6 we

see that if q is a prime for which ρE,q is not surjective and its image is not
contained in C+

ns(q), then it must be contained in an exceptional subgroup.
By Proposition 6.4.4 this implies that q = 5. If instead there are no primes
p > 13 for which Im ρE,p ⊆ C+

ns(p), by Proposition 6.4.4 we see that ρE,p
is surjective for every p > 13. By [Ser98, IV-23, Lemma 3] we have that
ρE,p∞

(
Gal

(
Q/Qab

))
= SL2(Zp), and by surjectivity of the determinant this

implies that Im ρE,p∞ = GL2(Zp).
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Definition 6.4.8. Let E⧸Q be an elliptic curve without CM. For every integer

n > 1 set Zn =
∏
p|n Zp and ρE,n∞ =

∏
p|n ρE,p∞ : Gal

(
Q⧸Q

)
→ GL2(Zn).

For any coprime integers m,n > 1, using Corollary 6.3.7 and the surjectivity
of det ◦ρE define

Ind(m) := [GL2(Zm) : Im ρE,m∞ ] = [SL2(Zm) : Im ρE,m∞ ∩ SL2(Zm)] ,

Ent(m,n) :=
Ind(mn)

Ind(m) Ind(n)
= [Q(E[m∞]) ∩Q(E[n∞]) : Q]

= [Qab(E[m∞]) ∩Qab(E[n∞]) : Qab].

We are now ready to prove Theorem 6.4.1. We will split the proof in multiple
step and cases, to make it clearer.

Proposition 6.4.9. Let E be an elliptic curve without CM and suppose that
j(E) does not belong to the list (6.4.2). Consider the two cases (A) and (B)
of Proposition 6.4.7. In the respective cases we have

(A) Let Cns be the set of the primes p ≥ 7 such that Im ρE,p ⊆ C+
ns(p), and

let β be the number of primes in Cns at which E has bad reduction. We
have

[GL2(Ẑ) : Im ρE ] ≤ ∆7 · 2|Cns|−β · 6β · Ind(30) ·
∏
p∈Cns

Ind(p),

where

∆7 :=


1 if 7 /∈ C,

8 if 7 ∈ C and E has good reduction at 7,

8
3 if 7 ∈ C and E has bad reduction at 7.

(B) Let {2, 3, 5} ⊆ L ⊆ {2, 3, 5, 7, 11, 13} be the set of primes containing
2, 3, 5 and every p for which ρE,p is not surjective. Let mp be the product
of primes q < p that belong to L. We have

[GL2(Ẑ) : Im ρE,p] ≤
∏
p∈L

Ent(mp, p) Ind(p).

Proof. Case (B) follows from the definition of Ent(mp, p) and Ind(p), we then
focus on case (A). By Theorem 6.4.6 we know that for every prime p, if
the representation ρE,p is not surjective, its image is contained either in the
normaliser of a non-split Cartan or in an exceptional subgroup. If Im ρE,p is
contained in an exceptional subgroup, we know by Lemma 6.4.3 that either
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p = 5 and Im ρE,5∞ has index 5 or the index of Im ρE is 182, and hence satisfies
the inequality in the statement of the lemma. We will then assume that for
every prime p for which ρE,p is not surjective, either Im ρE,p ⊆ C+

ns(p) or p = 5
and [GL2(Z5) : Im ρE,5∞ ] = 5. Define the set P := {2, 3, 5} ∪ C and consider
m :=

∏
p∈P p. Lemma 6.3.5 yields[

GL2(Ẑ) : Im ρE

]
=
[
SL2(Ẑ) : S

]
= Ind(m). (6.4.3)

Define Cns := C \{3, 5}, let p be the largest prime in Cns and set B := P \{p}.
If p > 7, by Corollary 6.3.7 and Corollary 6.3.4 we have

Ind(m) = Ent(m/p, p) · Ind(m/p) · Ind(p) ≤ 6 · Ind(m/p) · Ind(p). (6.4.4)

Similarly, if we further assume that E has good reduction at p, we have

Ind(m) ≤ 2 · Ind(m/p) · Ind(p).

If instead p = 7, we have that m
p = 30, and so we can apply Lemma 6.3.3. In

particular, we obtain

Ent(m/p, p) = [Qab(E[(m/p)∞]) ∩Qab(E[p∞]) : Qab]

= [Qab(E[(m/p)∞]) ∩Qab(E[p]) : Qab]

≤ [Qab(E[p]) : Qab] ≤ |C+
ns(7)| = 16,

and so
Ind(m) ≤ 16 · Ind(30) · Ind(7).

We can now iterate this argument on m
p in place of m, so that we obtain

Ind(m) ≤ ∆7 · 2|Cns|−β · 6β · Ind(30) ·
∏
p∈Cns

Ind(p)

as desired.

Lemma 6.4.10. Let E⧸Q be an elliptic curve without CM. Define C as the

set of all odd primes p for which Im ρE,p ⊆ C+
ns(p). Let β be the number of

primes p > 5 in C for which E has bad reduction at p. For every p ∈ C, call np
the largest integer n for which Im ρE,pn ⊆ C+

ns(p
n), and define Λ :=

∏
p∈C p

np.
Suppose that C contains a prime greater than 13 (Case (A) of Proposition
6.4.7). We have

[GL2(Ẑ) : Im ρE ] ≤ 2488320 ·∆7 · 3β · Λ3,

where

∆7 :=


1 if 7 /∈ C,

8 if 7 ∈ C and E has good reduction at 7,

8
3 if 7 ∈ C and E has bad reduction at 7.
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Proof. Set Cns = C \ {3, 5}. As we are in case (A) of Proposition 6.4.9, we
have

[GL2(Ẑ) : Im ρE ] ≤ ∆7 · 2|Cns|−β · 6β · Ind(30) ·
∏
p∈Cns

Ind(p).

We notice that
Ind(30) = Ind(5) · Ind(6) · Ent(6, 5).

Call Sm the projection of Im ρE∩SL2(Ẑ) in SL2(Zm). We know that Im ρE,5 is
SL2(F5), or it is conjugate to either a subgroup of C+

ns(5), or to the exceptional
subgroup 5S4. If Im ρE,5 = SL2(F5) we know by [Ser98, IV §3.4 Lemma 3]
that S5 = SL2(Z5). We can apply Goursat’s lemma to show that the image of

S30 in the product S6
N6
× SL2(Z5)

N5
corresponds to the graph of an isomorphism

S6
N6

∼= SL2(Z5)
N5

, where N6 and N5 are the kernels of the projections on S5 and S6
respectively. However, the group S6 is solvable, while following the description
of Occ(GL2(Zp)) in [Ser98, IV-25] we see that SL2(Z5) contains PSL2(F5) in
its composition series. This implies that N5 must surject onto PSL2(F5). In
particular, by [Ser98, IV §3.4 Lemmas 2 and 3] this implies that N5 = SL2(Z5),
and so

Ind(30) = Ind(6) · Ind(5) = Ind(6).

In the non-split Cartan case, we can apply Lemma 6.3.3 and obtain

Ent(6, 5) = [Qab(E[6∞]) ∩Qab(E[5∞]) : Qab]

= [Qab(E[6∞]) ∩Qab(E[5]) : Qab]

≤ [Qab(E[5]) : Qab] ≤ |C+
ns(5)| = 12.

In the exceptional case, in the same way as for the Cartan we have Ent(6, 5) ≤
24. Define ∆5 as 12 if Im ρE,5 ⊆ C+

ns(5), as ∆5 := 24 if Im ρE,5 = 5S4, and as
1 otherwise. Combining all cases we have

[GL2(Ẑ) : Im ρE ] ≤ ∆5∆7 · 2|Cns|−β · 6β · Ind(6)
∏

p∈C\{3}

Ind(p).

We now notice that both S2 and S3 are solvable, and that S2 has just one copy
of Z⧸3Z in its composition series, while S3 has 3 copies of Z

2Z in its composition

series. The quotients S2
N2

∼= S3
N3

will then have order less than or equal to 24.
In particular, we have Ent(6) ≤ 24, and so Ind(6) ≤ 24 · Ind(2) · Ind(3). If we
set P := C ∪ {2, 3, 5} we obtain

[GL2(Ẑ) : Im ρE ] ≤ 24∆5∆7 · 2|Cns|−β · 6β ·
∏
p∈P

[GL2(Zp) : Im ρE,p∞ ]. (6.4.5)

By Theorem 6.4.6 we know that Im ρE,3 is contained neither in a Borel sub-
group nor in the normaliser of a split Cartan subgroup. In particular, by
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[Zyw15a, Theorem 1.2] we know that it must be either equal to the normaliser
of a non-split Cartan or to GL2(F3). By Proposition 6.2.4 we know that if
3 /∈ C, then Ind(3) ≤ 27. On the other hand, if 3 ∈ C then by Corollary 6.2.2
we have Ind(3) ≤ 33n3−1. In all cases, we can write Ind(3) ≤ 3max{3,3n3−1} ≤
27 · 33n3 . Similarly, if ρE,5 is not surjective and 5 /∈ C, we can apply Proposi-
tion 6.2.4 to obtain that Ind(5) = 5, and so ∆5 Ind(5) = 120. If instead 5 ∈ C,
by Corollary 6.2.2 we have Ind(5) ≤ 2

5 · 5
3n5 , and ∆5 Ind(5) ≤ 24

5 · 5
3n5 . Since

if ρE,5 is surjective we have Ind(5) = 1, in all cases we can write ∆5 Ind(5) ≤
120·53n5 . By Proposition 6.2.3, we know that either [GL2(Ẑ) : Im ρE ] = 128 or
Ind(2) ≤ 32. We can exclude the first case, as it is better than the inequality
in the statement of the lemma. For all the other p ∈ P, we know that p ∈ C,
and by Corollary 6.2.2 we have Ind(p) ≤ p3np

2 . Replacing all these bounds in
equation (6.4.5) we obtain

[GL2(Ẑ) : Im ρE ] ≤ 24 · 32 · 27 · 120 ·∆7 · 2|Cns|−β · 6β · 33n3 · 53n5
∏
p∈Cns

p3np

2

= 2488320 ·∆7 · 3β · Λ3.

Lemma 6.4.11. Let E⧸Q be an elliptic curve without CM. Define C as the

set of all odd primes p for which Im ρE,p ⊆ C+
ns(p). For every p ∈ C, call np

the largest integer n for which Im ρE,pn ⊆ C+
ns(p

n), and define Λ :=
∏
p∈C p

np.
Suppose that j(E) does not belong to the list (6.4.2) and that ρE,p is surjective
for every prime p > 13 (Case (B) of Proposition 6.4.7). We have

[GL2(Ẑ) : Im ρE ] ≤ 4.3 · 1012 · Λ2.

Proof. By Theorem 3, we know that if p is an odd prime for which E has a
rational p-isogeny, then p ∈ {3, 5, 7, 13}. Define the set P = {2, 3, 5} ∪ {p |
ρE,p is not surjective} ⊆ {2, 3, 5, 7, 11, 13}, and set as before m :=

∏
p∈P p and

S := ρE
(
Gal

(
Q/Qab

))
. By Lemma 6.3.5 we have [GL2(Ẑ) : Im ρE ] = Ind(m).

Define the set Bp := {q ∈ P : q < p} and writemp :=
∏
q∈Bp

q (wherem2 = 1).
By Proposition 6.4.7 we have

Ind(m) =
∏
p∈P

Ind(p) · Ent(mp, p). (6.4.6)

If p ≥ 5 we can apply Lemma 6.3.3 and obtain

Kp := Qab(E[p∞]) ∩Qab(E[m∞
p ]) = Qab(E[p]) ∩Qab(E[m∞

p ]).

Moreover, similarly to the proof of Lemma 6.3.3, since the Galois group

Gal

(
Qab(E[m∞

p ])⧸Qab

)
does not contain any finite group of order divisi-

ble by p in its composition series, the field Kp must be a subextension of
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Qab(E[p])⧸Qab of degree coprime with p. In particular, if Pp is a p-Sylow of

Sp, we have that [Kp : Qab] ≤ [Sp : Pp], and so

Ind(p) · Ent(mp, p) = [SL2(Zp) : Sp] · [Kp : Qab] ≤ [SL2(Zp) : Pp]. (6.4.7)

We now proceed by providing a bound on the indices of the groups Pp prime
by prime, assuming that ρE,p∞ is not surjective. To optimise the bound, we
will bound the degree [K3 : Qab] together with the index [SL2(Z2) : S2], even
if they correspond to different primes.

� p = 13. We can apply Proposition 6.4.4 to show that Im ρE,13 is con-
tained in a Borel subgroup. By Theorem 11 we have that the 13-Sylow
of GL2(Z13) is contained in Im ρE,13∞ , and so by Lemma 2.1.10 and
Lemma 2.1.4 we have that P13 is the 13-Sylow of SL2(Z13). We then
obtain [SL2(Z13) : P13] ≤ 12 · 14.

� p = 11. By Proposition 6.4.4, Im ρE,11 is equal to the normaliser of
a non-split Cartan subgroup. In particular, by Proposition 6.2.1 and
Corollary 6.3.4 we have [SL2(Z11) : S11] · [K11 : Qab] ≤ 5 · 112n11 · 6 =
30 · 112n11 .

� p = 7. By [RSZB22, Theorem 1.6] we see that there are three possible
cases: the index [SL2(Z7) : S7] has 7-adic valuation at most 1 (as we can
check in the online supplement of [SZ17]), the image of ρE,7 is contained
in C+

ns(7), or E corresponds to one of the two exceptional points in
[RSZB22, Table 1]. In the last case, we can compute that [GL2(Ẑ) :
Im ρE ] = 224. In the Cartan case, using Proposition 6.2.1 we have
[SL2(Z7) : P7] ≤ (72 − 1) · 72n7 . If instead the 7-adic valuation of the
index is at most 1, we obtain [SL2(Z7) : P7] ≤ (72 − 1) · 7. In all cases,
we have [SL2(Z7) : P7] ≤ 7 · 48 · 72n7 .

� p = 5. Similarly to the case p = 7, by [RSZB22, Theorem 1.6] we
have three cases: [SL2(Z5) : S5] has 5-adic valuation at most 1, or
Im ρE,25 ⊆ C+

ns(25), or E corresponds to one of two exceptional points

with [GL2(Ẑ) : Im ρE ] ∈ {200, 300}. In the Cartan case we have n5 ≥ 2,
so by Proposition 6.2.1 we have [SL2(Z5) : P5] ≤ (52 − 1) · 52n5−1. As in
the first case we have [SL2(Z5) : P5] ≤ 24 · 5, we obtain that in all cases
[SL2(Z5) : P5] ≤ 5 · 24 · 52n5 .

� p = 3. Again, by [RSZB22, Theorem 1.6] we have that either [SL2(Z3) :
S3] ≤ 27, or Im ρE,27 ⊆ C+

ns(27). By Theorem 6.1.5 and Proposition
6.2.1, in both cases we have [SL2(Z3) : S3] ≤ 27 · 32n3 .

� p = 2. Since m2 = 1 by definition, we have [K2 : Qab] = 1. As shown

in the proof of Proposition 6.4.10, we know that [K3 : Qab] = Ent(3, 2)
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divides 24. We recall that the index [SL2(Z2) : S2] is divisible by 3 if
and only if E admits a rational 2-isogeny (i.e. if Im ρE,2 is contained in a

Borel subgroup). Equivalently, the extension Qab(E[2∞])⧸Qab is a pro-2

extension if and only if E admits a rational 2-isogeny. If E has a rational
2-isogeny, [K3 : Qab] divides 8, and by [RZB15, Corollary 1.3] the index
[SL2(Z2) : S2] must divide 96. If instead E has no rational 2-isogenies,
by Proposition 6.2.3 we can assume that the index [SL2(Z2) : S2] divides
32. In both cases, we have [SL2(Z2) : S2]·[K3 : Qab]·[K2 : Qab] ≤ 96·8 =
32 · 24 = 768.

Writing Λ =
∏
p∈P p

np , combining the bounds above with equations (6.4.6)
and (6.4.7), we obtain

[SL2(Zm) : SP ] ≤ 168 · 30 · 336 · 120 · 27 · 768 · Λ2 ≤ 4.3 · 1012 · Λ2, (6.4.8)

concluding the proof.

Proposition 6.4.12. Let E⧸Q be an elliptic curve without CM. If there exists

a prime q > 13 such that Im ρE,q ⊆ C+
ns(q), then Theorem 6.4.1 holds.

We now give the final part of the proof of Theorem 6.4.1, treating separately
cases (A) and (B) of Proposition 6.4.7.

Proof of Theorem 6.4.1. We notice that if j(E) belongs to the list (6.4.2),
by Proposition 6.4.4 we have [GL2(Ẑ) : Im ρE ] ≤ 2736, hence we can assume
that j(E) is not in the list.
Suppose first that case (A) of Proposition 6.4.7 holds. Let C be the set of all
odd primes p such that Im ρE,p ⊆ C+

ns(p) and let Cns = C \ {3, 5}. For every
p ∈ C, define np as the largest integer n for which Im ρE,pn ⊆ C+

ns(p
n), and let

Λ :=
∏
p∈C p

np . By Lemma 6.4.10 we know that

[GL2(Ẑ) : Im ρE ] ≤ 2488320 ·∆′
7 · 3|Cns| · Λ3, (6.4.9)

where we can assume that ∆′
7 := 1 if 7 /∈ C and ∆′

7 := 8
3 otherwise: indeed,

we have ∆7 · 3β ≤ max{1 · 3|Cns|, 83 · 3
|Cns|, 8 · 3|Cns|−1}, so we can set ∆′

7 :=
min{∆7,

8
3}. As in the proof of Theorem 4.2.5, we treat separately the cases

in which j(E) ∈ Z and j(E) /∈ Z.
Suppose first that j(E) /∈ Z. We can write 2488320 · ∆′

7 ≤ 6635520. By
Proposition 6.4.4 we know that Cns ⊆ {7, 11} ∪ {p ∈ Cns | p ≥ 19}, and so, as
in the proof of Theorem 4.2.5 we have

|Cns| ≤ max

{
log19 Λ, 1 + log19

Λ

7
, 1 + log19

Λ

11
, 2 + log19

Λ

77

}
≤ log19 Λ + 1− log19 7 < log19 Λ + 0.525.
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Applying Theorem 4.2.4 we obtain

[GL2(Ẑ) : Im ρE ] < 6635520 · 3log19 Λ+0.525 · Λ3 < 6635520 · 30.525 · Λ3+log19 3

< 6635520 · 30.525 ·
(

12

log 2

)3+log19 3

· (hF (E) + 1.5)3+log19 3

< 1.78 · 1011 · (hF (E) + 1.5)3.38. (6.4.10)

We can now write |Cns| ≤ |C| = ω(Λ), which is the function counting the
distinct prime divisors of Λ. We can assume that Λ ≥ 26, otherwise we would
get a stronger statement, hence by [Rob83, Théorème 13] and Theorem 4.2.5
we have

ω(Λ) <
log Λ

log log Λ− 1.1714
<

1.308 log(hF (E) + 40) + log 21000

log(1.308 log(hF (E) + 40) + log 21000)− 1.1714

< (1.308 log(hF (E) + 40) + log 21000)δ(hF (E)).

Using this bound in equation (6.4.9) and applying again Theorem 4.2.4 we
obtain

[GL2(Ẑ) : Im ρE ] < 6635520·3log 21000·δ(hF (E))(hF (E)+40)1.308·log 3·δ(hF (E)) ·Λ3

< 9 · 109(hF (E) + 40)1.308·log 3·δ(hF (E)) · Λ3

< 9 · 109
(

12

log 2

)3
(hF (E) + 40)1.437·δ(hF (E))(hF (E) + 1.5)3

< 5 · 1013(hF (E) + 40)1.437·δ(hF (E))(hF (E) + 1.5)3,

where we used that 3log 21000·δ(hF (E)) < 1340 for hF (E) > −0.75 (which can
be assumed by Remark 1.2.9). This inequality is better than the statement of
the theorem.
Suppose now that j(E) ∈ Z. By Lemma 5.3.3(2) we know that either j(E)
belongs to the list (5.3.1) and [GL2(Ẑ) : Im ρE ] ≤ 504, or 7 /∈ Cns. In the
former case, the theorem trivially holds, hence we can assume that 7 /∈ Cns.
By [ST12] we also have that 11 /∈ Cns. Using again Proposition 6.4.4, we
obtain that |Cns| ≤ log19 Λ and ∆′

7 = 1, hence applying Theorem 4.2.5 to
equation (6.4.9) we have

[GL2(Ẑ) : Im ρE ] < 2488320 · 3log19 Λ · Λ3 < 2488320 · Λ3+log19 3

< 2488320 · (21000)3+log19 3 · (hF (E) + 40)1.308·(3+log19 3)

< 9.5 · 1020 · (hF (E) + 40)4.42.

Assume now that hF (E) > 4 · 1015. We have

2488320 · 3log 21000·δ(hF (E)) < 1.13 · 108.
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As before, we can apply Theorem 4.2.5 in equation (6.4.9) to obtain

[GL2(Ẑ) : Im ρE ] < 2488320 · 3log 21000·δ(hF (E))(hF (E) + 40)1.308·log 3·δ(hF (E))Λ3

< 1.13 · 108 ·144003(hF (E)+40)4.158·δ(hF (E))(hF (E)+22.5)3

< 3.38 · 1020(hF (E) + 40)4.158·δ(hF (E))(hF (E) + 22.5)3.

To conclude, it suffices to notice that for hF (E) ≥ 1015 we have(
x+ 40

x+ 22.5

)4.158·δ(hF (E))

< 1 + 10−5

and for hF (E) ≤ 1015 we have

9.5 · 1020(hF (E) + 40)4.42 < 3.4 · 1020(hF (E) + 22.5)3+4.158·δ(hF (E)).

Assume now that we are in case (B) of Proposition 6.4.7. By Lemma 6.4.11
and Theorem 4.2.5 we have

[GL2(Ẑ) : Im ρE ] < 4.3 · 1012 · 210002 · (hF (E) + 40)2.616

< 1.9 · 1021 · (hF (E) + 40)2.616,

which is better than the first statement of the theorem for hF (E) > −0.75.
Similarly, we have

[GL2(Ẑ) : Im ρE ] ≤ 4.3 · 1012 · Λ2

< 4.3 · 1012 · 144002(hF (E)+40)1.814·δ(hF (E))(hF (E)+22.5)2

< 9 · 1020 · (hF (E) + 40)1.814·δ(hF (E))(hF (E) + 22.5)2,

which is again better than the second statement of the theorem for hF (E) >
−0.75.

A bound in terms of the conductor

We conclude this chapter by giving another bound on the index of the adelic
representation ρE . This new bound is given in terms of the conductor and
not in terms of the height as before. In particular, we prove an effective and
improved version of [Zyw11, Theorem 1.1(ii)].

Theorem 6.4.13. Let E⧸Q be an elliptic curve without CM. Let N be the

product of the primes of bad reduction of E and let ω(N) be the number of
prime factors of N . We have

[GL2(Ẑ) : Im ρE ] < 2488320
(
51N(1 + log logN)

1
2

)3ω(N)
.
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To prove this result, we improve Proposition 3.3 of the article of Zywina
[Zyw11] applying the sharpened version of a lemma of Kraus [Kra95] obtained
in Chapter 1. The proof is very similar to that of Zywina, however, we have
to slightly modify his argument to make it work for the prime p = 3.

Let p be an odd prime such that Im ρE,p ⊆ C+
ns(p) and consider the quadratic

character εp defined as

εp : Gal

(
Q⧸Q

)
ρE,p−→ C+

ns(p) −→
C+
ns(p)

Cns(p)
∼= {±1}.

We can identify εp with a Dirichlet character of the absolute Galois group of
Q. If p > 3, Serre showed that the character εp is unramified at all primes
ℓ that do not divide N (see [Ser72, Section 5.8, (c2)]). If instead p = 3,
by the Néron–Ogg-Shafarevich criterion εp is unramified at all primes ℓ such
that ℓ ∤ 3N . We will show that, for our purpose, we can assume that ε3 is
unramified at 3 whenever 3 ∤ N .

Lemma 6.4.14. Let p be an odd prime and let εp be defined as above. The
character εp is unramified at all primes ℓ ∤ pN . Moreover, we have the follow-
ing.

� If p > 3 and p ∤ N , the character εp is unramified at p.

� If 3 ∤ N and Im ρE,9 ⊆ C+
ns(9), the character ε3 is unramified at 3.

Proof. We follow the proof of Serre for p > 3 and we show that in our case
the argument also works for p = 3. The fact that εp is unramified at ℓ ∤ pN
follows from the Néron–Ogg–Shafarevich criterion. Since p ∤ N , the curve
E has good reduction at p. By [Ser72, Section 1.11, Propositions 11 and
12] we know that the image I := ρE,p(Ip) of the inertia subgroup Ip at p is

either a group of the form

(
∗ 0

0 1

)
or a group of order p2 − 1, depending on

whether the curve E has ordinary or supersingular reduction respectively. In
the latter case, the group I is contained in Cns(p), because every element in
C+
ns(p) \ Cns(p) has order dividing 2(p − 1) and p2 − 1 > 2(p − 1) (see also

[Ser72, Section 2.2, Proposition 14]). If instead E has ordinary reduction at
p, for p > 3 there exists an element in I with eigenvalues λ1, λ2 ∈ Fp such that
λ1 ̸= ±λ2. However, every element in C+

ns(p) has eigenvalues conjugate over
Fp2 up to sign, and hence this case never occurs (see also again [Ser72, Section
2.2, Proposition 14]). On the other hand, if p = 3 and Im ρE,9 ⊆ C+

ns(9), by
Lemma 6.1.3 the curve E cannot have ordinary reduction at 3.

If ℓ ∤ N , we can consider the reduction Ẽ of E modulo ℓ. As usual, we define
the number aℓ(E) := ℓ+ 1− |Ẽ(Fℓ)|.



132 CHAPTER 6. p-ADIC AND ADELIC GALOIS REPRESENTATIONS

Lemma 6.4.15. Let E be a non-CM elliptic curve defined over Q and let
pn ̸= 3 be an odd prime power such that Im ρE,pn ⊆ C+

ns(p
n). Let N be the

product of the primes for which E has bad reduction and let εp be defined as
above. If ℓ ∤ N is a prime for which εp(ℓ) = −1, then aℓ(E) ≡ 0 (mod pn).

Proof. By Lemma 6.4.14, for every ℓ ∤ N we have that εp and ρE,pn are
unramified. The condition εp(ℓ) = −1 means that ρE,pn(Frobℓ) ∈ C+

ns(p
n) \

Cns(p
n), and hence it is an element with trace equal to 0. This implies that

aℓ(E) ≡ tr(ρE,pn(Frobℓ)) ≡ 0 (mod pn).

Lemma 6.4.16. Let E be a non-CM elliptic curve defined over Q and let N
be the product of the primes for which E has bad reduction. If there exists an
odd prime p such that Im ρE,p ⊆ C+

ns(p), then N > 5.

Proof. As there are no elliptic curves defined over Q with good reduction at all
primes, it suffices to show that N /∈ {2, 3, 5}. If N = 2, as proved in [Ogg66],
we must have that j(E) ∈ {123, 203, 663, 27, 25 ·73}, and since E does not have
CM we have j(E) ∈ {27, 25 · 73}. We can use the algorithm FindOpenImage.m

from [Zyw22] to show that in these cases there are no primes p > 2 such that
Im ρE,p ⊆ C+

ns(p). Indeed, by Lemma 5.4.27 this property only depends on
the j-invariant of E. If N = 3, we can use the classification of elliptic curves
with conductor of the form 2a · 3b given by Coghlan [Cog67], and republished
in [BK06, Table 4], which shows that there are no non-CM elliptic curves with
conductor a power of 3. If N = 5, by modularity theorem [BCDT01] we know
that E corresponds to a non-trivial cusp form for one of the modular groups
Γ0(5) and Γ0(25). However, the vector spaces S2(Γ0(5)) and S2(Γ0(25)) are
trivial, and hence there are no elliptic curves with N = 5.

Proposition 6.4.17. Let E be a non-CM elliptic curve defined over Q. Let
N be the product of the primes for which E has bad reduction and let ε be a
quadratic Dirichlet character with conductor dividing N · lcm(N, 2). If N > 2,
there exists a prime ℓ ∤ N with

ℓ < 312 ·N2(1 + log logN)

such that ε(ℓ) = −1 and aℓ(E) ̸= 0.

Proof. Set E1 := E and consider the elliptic curve E2 obtained by twisting E1

by the character ε. Let ℓ be a prime that does not divide N . By definition,
E2 has good reduction at ℓ and aℓ(E2) = ε(ℓ)aℓ(E1). In particular, we notice
that aℓ(E2) ̸= aℓ(E1) if and only if aℓ(E) ̸= 0 and ε(ℓ) = −1. Hence, it
suffices to prove that there exists a small prime ℓ such that aℓ(E2) ̸= aℓ(E1).
First, we notice that there exists a prime ℓ ∤ N such that aℓ(E) ̸= 0 and
ε(ℓ) = −1, otherwise E would have complex multiplication by the quadratic
field that corresponds to ε. Let Ni be the conductor of Ei and define N ′

i :=
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Ni
∏
q|N q

di(q), where di(q) = 0, 1 or 2 if Ei has additive, multiplicative or

good reduction respectively, at q. If M is the least common multiple of N ′
1

and N ′
2, by [Del85b, Section 5 C] there exists a prime ℓ ≤ M

6

∏
q|M

(
1 + 1

q

)
such that aℓ(E1) ̸= aℓ(E2). This last property is implied by the modularity of
E1 and E2, which follows by [BCDT01]. We see that M divides the number
26 · 33 ·N2. In particular, since N > 2, we can apply Lemma 1.1.4 to obtain

ℓ ≤ 25 · 32 ·N2
∏
q|N

(
1 +

1

q

)
< 312 ·N2(1 + log logN).

Remark 6.4.18. Notice that by the proof of Proposition 6.4.17 we can actually
deduce that if N is a prime greater than 3, then

ℓ ≤ N(N + 1)

6
.

Indeed, this follows from the fact that M actually divides N2.

Proposition 6.4.19. Let E be a non-CM elliptic curve over Q. Let N be the
product of the primes for which E has bad reduction. Let ω(N) be the number
of prime divisors of N . Let M be the minimum positive integer such that if
ρE,pn(GQ) ⊆ C+

ns(p
n) for an odd prime power pn ̸= 3, then pn divides M . We

have

M <
(
35.33 ·N(1 + log logN)

1
2

)ω(N)
for every N , and

M ≤
√

2N(N + 1)

3
for N prime.

Moreover, if j(E) /∈ Z we have M ≤ N2

4 − 1.

Proof. By Lemma 6.4.16 we notice that we can assume that N > 5. Set N0 :=
N if N is odd, and N0 := 2N if N is even. Let V1 be the group of quadratic

characters of
(
Z⧸N0Z

)×
. We may view V1 as a vector space of dimension

ω(N) over F2. We define a sequence of primes ℓ1, . . . , ℓω(N) relatively prime
to N such that aℓi(E) ̸= 0 for every i and for every non-trivial character
ε ∈ V1 there exists an i for which ε(ℓi) = −1. We proceed by induction on i.
Choose a non-trivial character αi ∈ Vi. By Proposition 6.4.17 there exists a
prime ℓi ∤ N smaller than 312 · N2(1 + log logN) such that αi(ℓi) = −1 and
aℓi(E) ̸= 0. Let Vi+1 be the subspace of Vi consisting of characters ε such
that ε(ℓi) = 1. The space Vi+1 has dimension at most ω(N) − i over F2. In
particular, Vω(N)+1 = 1, and so the sequence of primes ℓ1, . . . , ℓω(N) has the

desired property. Define the integerM ′ :=
∏ω(N)
i=1 |aℓi(E)|. If pn ̸= 3 is a prime

power such that Im ρE,pn ⊆ C+
ns(p

n), there exists i such that εp(ℓi) = −1, and
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hence by Lemma 6.4.15 we have pn | |aℓi(E)|, that implies pn | M ′, and in
particular M ≤M ′. By the Hasse’s bound, for every ℓi we have

|aℓi(E)| ≤ 2
√
ℓi < 35.33 ·N

√
1 + log logN,

and hence M ′ <
(
35.33 ·N(1 + log logN)

1
2

)ω(N)
. Notice that by Remark

6.4.18, if N = ℓ is prime we have the stronger inequality M ′ = |aℓ(E)| ≤√
2ℓ(ℓ+1)

3 .

Suppose now that j(E) /∈ Z. By Proposition 3.1.2 we know that if ℓ is a prime
of potentially multiplicative reduction, for every odd prime power pn such that
Im ρE,pn ⊆ C+

ns(p
n) we have pn | ℓ2 − 1. We then notice that M | ℓ2 − 1. If

N is composite, we have ℓ ≤ N
2 , and hence M ≤ N2

4 − 1. If N = ℓ is prime,

we have M ≤
√

2ℓ(ℓ+1)
3 ≤ ℓ2

4 − 1, where the last inequality holds because by
Lemma 6.4.16 we can assume that ℓ > 5.

We now divide the proof of Theorem 6.4.13 in two cases, according to
whether we are in case (A) or (B) of Proposition 6.4.7.

Proof of Theorem 6.4.13. Define the set C := {p ≥ 3 | Im ρE,p ⊆ C+
ns(p)}. For

every p ∈ C, let np be the largest integer n such that Im ρE,pn ⊆ C+
ns(p

n), and
define Λ :=

∏
p∈C p

np . Set

β := |{p ∈ C : p > 5 and E has bad reduction at p}| ≤ min{ω(Λ), ω(N)}.

We notice that j(E) does not belong to the list (6.4.2), otherwise by Propo-
sition 6.4.4 we would have [GL2(Ẑ) : Im ρE ] ≤ 2736, which is better than the
statement of the theorem. Suppose first that we are in case (A) of Proposition
6.4.7, i.e. that C contains a prime p > 13. By Lemma 6.4.10 we have

[GL2(Ẑ) : Im ρE ] ≤ 2488320 ·∆7 · 3β · Λ3,

where ∆7 ∈
{
1, 83 , 8

}
. If j(E) ∈ Z, we can assume that 7 /∈ C: indeed, using

Lemma 5.3.3(1) we have that either [GL2(Ẑ) : Im ρE ] ≤ 504, which is better
than the statement of the theorem, or 7 /∈ C. In particular, we may assume
that ∆7 = 1. Moreover, in the proof of Lemma 6.4.10 we used the bound
[GL2(Z3) : Im ρE,3∞ ] ≤ 3max{3,3n3−1} ≤ 27 · 33n3 , hence we can assume that
n3 ̸= 1. We can then apply Proposition 6.4.19 and obtain

[GL2(Ẑ) : Im ρE ] ≤ 2488320 · 3ω(N) ·
(
35.33 ·N(1 + log logN)

1
2

)3ω(N)

= 2488320
(
35.33

3
√
3 ·N(1 + log logN)

1
2

)3ω(N)

< 2488320
(
51N(1 + log logN)

1
2

)3ω(N)
.
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If j(E) /∈ Z then we can bound ∆7 ≤ 8 and using Proposition 6.4.19 we obtain

[GL2(Ẑ) : Im ρE ] < 8 · 2488320
(
N2

4
− 1

)3

(6.4.11)

< 2488320
(
51N(1 + log logN)

1
2

)3ω(N)

for ω(N) > 1, and

[GL2(Ẑ) : Im ρE ] < 8 · 2488320
(
2N(N + 1)

3

) 3
2

(6.4.12)

< 2488320
(
51N(1 + log logN)

1
2

)3ω(N)

for ω(N) = 1.
Suppose now that we are in case (B) of Proposition 6.4.7, i.e. that for every
prime p > 13 the representation ρE,p is surjective. By Lemma 6.4.11 we have

[GL2(Ẑ) : Im ρE ] < 4.3 · 1012 · Λ2. Moreover, we notice that in the proof
of Lemma 6.4.11, in the case ‘p = 3’, we used the bound [SL2(Z3) : S3] ≤
3max{3,2n3−1} ≤ 27 · 32n3 , and hence we can assume that n3 ̸= 1. We treat
again separately the cases j(E) ∈ Z and j(E) /∈ Z. If j(E) is not an integer,
we can apply Proposition 6.4.19 to obtain

[GL2(Ẑ) : Im ρE ] < 4.3 · 1012 · Λ2 < 4.3 · 1012 ·
(
N2

4
− 1

)2

for every N , and

[GL2(Ẑ) : Im ρE ] < 4.3 · 1012 · 2
3
N (N + 1) for N prime.

One can verify that the first inequality is always better than the statement
of the theorem for ω(N) > 1, while for ω(N) = 1 we can use the second
inequality, which is better than the statement of the theorem for N > 5 (which
we can assume by Lemma 6.4.16). If instead j(E) is an integer, by [BDM+19,
Corollary 1.3] and [ST12] we can assume that 11, 13 /∈ C. In particular, if we
look at the case ‘p = 11’ in the proof of Lemma 6.4.11, we deduce that ρE,11
must be surjective (otherwise its image would be contained in a Borel and we
would have [GL2(Ẑ) : Im ρE ] ≤ 2736), and hence we can save a factor 30 in
equation (6.4.8). We then obtain

[GL2(Ẑ) : Im ρE ] <
4.3 · 1012

30
· Λ2 <

4.3 · 1012

30

(
51N(1 + log logN)

1
2

)2ω(N)

for every N , and

[GL2(Ẑ) : Im ρE ] <
4.3 · 1012

30

(
2N(N + 1)

3

)ω(N)

for N prime.
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The first inequality is always better than the statement for ω(N) > 1, and the
second is better as well for ω(N) = 1. Indeed, in both cases we have N > 5
by Lemma 6.4.16.
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