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Introduction

Let K be a number field and let E be an elliptic curve defined over K. It is
known that for a positive integer N, the set of N-torsion points of E is a free
Z/NZ—mOdule of rank 2, i.e.

EIN]:={PeEE)|N -P=0}=L/\yxL/\y

with the isomorphism given by a choice of Z/ vz-basis of E[N]. The action
of the absolute Galois group of K on the N-torsion points of E defines a
representation

pp. : Gal (K/K) — Aut(E[N]) = GL, (Z/NZ) .

If p is a fixed prime, we can restrict to values of N of the form p™ and take
the limit over n. We then obtain the representation

pEp= : Gal <K/K> — Aut(TpE) = GLQ(ZP),

where T, = lim E [p"] is the p-adic Tate module of E. If we take the product
over all primes, we obtain the adelic representation

I rep: Gal (K/K> — [[ Aut(T,E) = GLy(Z),

PE =
p prime p prime

which is the representation given by the action of the absolute Galois group
of K on all the torsion points of F.

In 1972 Serre [Ser72] proved his celebrated open image theorem, stating
that if the elliptic curve E does not have (potential) complex multiplication,
then the representation pp peo is surjective for almost all primes. He actually
proved a stronger statement [Ser72, Théoreme 3|: if E' does not have com-
plex multiplication, then the image of the adelic representation pg is open;
equivalently, the image of pr has finite index in GLg(z). From now on, we
will say for simplicity that £ does not have complex multiplication (CM) if it
has no potential complex multiplication. In the same paper, Serre asked the
following question.
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Question 1 (Serre’s uniformity question). Let K be a number field. Does
there exist a constant N, depending only on K, such that for every non-CM
elliptic curve E/K and for every prime p > N the residual representation

pip : Gal (K/K> — GLy(F,)

18 surjective?

Although this problem has been widely studied, the question is still open,
even in the case K = Q. At least in this case, it is conjectured that it can be
answered affirmatively (see for example [Zywl5a, Conjecture 1.12] or [Sutl16,
Conjecture 1.1]).

Conjecture 2. For every elliptic curve E/Q without CM and for every prime
p > 37, the representation pg.p is surjective.

Over the years, many mathematicians provided various partial results to-
wards an answer to Conjecture 2. Whenever the representation pg , is not sur-
jective, its image must be contained in a maximal subgroup of GLy(F,). Serre
classified [Ser72, Section 2] all the maximal subgroups of GLa(F,) and proved
that they can be of three types: some so-called ‘exceptional’ subgroups, the
Borel subgroups, and the normalisers of (split or non-split) Cartan subgroups.
He then showed [Ser81, §8.4, Lemma 18] that for p > 13 the exceptional sub-
groups cannot contain the image of pg,. Later, Mazur [Maz78] proved that
there are no isogenies of prime degree p between non-CM elliptic curves over
Q for p > 37: this is equivalent to the fact that for p > 37 the image of pg,
is not contained in a Borel subgroup. More precisely, he proved the following
theorem.

Theorem 3 (Mazur). Let E/@ be an elliptic curve without CM, and let p be a
prime such that E admits a rational isogeny of degree p. One of the following
holds:

e pc{23,57,13};

e p=11 and j(E) € {-11%, —11-1313};

e p=17 and j(E) € {-271-17%.1013, —2717.17.373%};
e p=237 and j(E) € {-7-113, —7.137%.2083%}.

More recently, Bilu and Parent developed their version of Runge’s method
for modular curves [BP11a], which allowed them to prove [BP11b] that the
image of pg j is not contained in the normaliser of a split Cartan subgroup for
sufficiently large p. The result was then sharpened by Bilu—Parent—Rebolledo
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[BPR13], who showed that the same statement holds for every p > 11, with
the possible exception of p = 13. Finally, it was extended to also cover the
prime p = 13 by means of the so-called quadratic Chabauty method [BDM*19].
These results together give the following theorem.

Theorem 4. Let E/@ be an elliptic curve without CM. For every primep > 7
the image of the representation pg p is not contained in the normaliser of a
split Cartan subgroup.

Thus, the only case that remains open is that of normalisers of non-split
Cartan subgroups. In particular, Conjecture 2 can be reformulated in the
following way.

Conjecture 5. Let E/ be an elliptic curve without complex multiplication.
If p is a prime such that the image of pgp is contained in the normaliser of a
non-split Cartan subgroup, then p < 11.

Actually, Conjecture 5 is a little bit stronger, because it also implies that
there are no non-CM elliptic curves E for which Im pg ), is contained in the
normaliser of a non-split Cartan subgroup for 13 < p < 37. Unfortunately,
the techniques applied in the other cases, such as Runge’s method, cannot be
applied to the modular curves corresponding to normalisers of non-split Cartan
subgroups. However, some partial results have been obtained even in this
case. In particular, Zywina [Zywlba] and Le Fourn-Lemos [LFL21] studied
the possibility that the image of pg ) is strictly contained in the normaliser of
a non-split Cartan subgroup. We now recall their results.

Assuming p > 2, we let ¢ be the reduction modulo p of the least positive
integer which represents a quadratic non-residue in F,;. We denote by Cis (p)
the non-split Cartan group

cuin={ (1 )

and by C,f,(p) its normaliser, obtained as Cy,s(p) U (1 0 ) Chs(p).

a,b €y, (a,b) # (0,0)} (0.1)

0 -1
Theorem 6 (Zywina). Suppose that pg, is not surjective for a non-CM el-
liptic curve E/@ and a prime p > 37.
e Ifp=1 (mod 3), then Im pg, is conjugate to C;f,(p) in GLa(F)).
e Ifp=2 (mod 3), then Im pg, is conjugate in GLo(F,) either to C;,(p)
or to the group

1 0

0 _1> a® ’ a € Cns(p)} c Ct(p).

G(p) == {d® | a€ Cps(p)}U { (
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This theorem follows from Proposition 1.13 of the unpublished preprint
[Zyw1ba]. A full proof is available in print as [LFL21, Proposition 1.4]. In
their paper [LFL21], Le Fourn and Lemos studied the case where Im pg,, is
conjugate to G(p), ruling out this possibility for all sufficiently large primes
[LFL21, Theorem 1.2].

Theorem 7 (Le Fourn, Lemos). Let E/@ be an elliptic curve without complex

multiplication. If p > 37 is a prime number such that Im pg, = G(p), then
p<1.4-10" and j(E) € Z.

In the introduction to [LFL21], the authors describe the difficulties in ex-
tending their result to primes smaller than 1.4 - 107. In particular, they show
that for any prime p > 37 and elliptic curve E/@ without CM for which
Impg, = G(p), we have log |j(E)| < max{12000,7,/p} < 27000, which to-
gether with the fact that j(F) € Z shows that there are only finitely many
(Q-isomorphism classes of) curves to check. However, as they point out, there
seems to be no easy way to handle the remaining cases algorithmically.

In our first result, corresponding to the preprint [FL23b], we deal with the
remaining primes to prove the following simple dichotomy in Serre’s uniformity
question.

Theorem 8. Let E/@ be an elliptic curve without complexr multiplication and
let p > 37 be a prime number. The image of pgp is either GL(E[p]) or the
normaliser of a non-split Cartan subgroup of GL(E|[p]).

For p < 37, the images of the mod-p representations attached to elliptic
curves over Q have been studied extensively (see [Zyw15a, RSZB22, BDM*23]
for the state of the art). Combined with Theorem 8, this allows us to show
the following.

Theorem 9. Let E/@ be an elliptic curve without CM and let p > 5 be a

prime such that the image of pg,p is contained in C/ (p). If Impg, = G(p)
then p=5. In all the other cases, Im pg, = C;}.(p).

Similar to the observation of Le Fourn and Lemos in [LFL21, Theorem
1.3], Theorems 8 and 9 also completely settle a question of Najman [Najl18],
improving [LFL21, Theorem 1.3]. Let d > 1 be a positive integer and let
Igp(d) be the set of prime numbers p for which there exists a rational elliptic
curve E/@ without complex multiplication and an isogeny ¢ : E — E’ of
degree p defined over a field K of degree [K : Q] < d. From Mazur’s work
(Theorem 3) we know that Ip(1) = {2,3,5,7,11,13,17,37}, and Najman’s
question concerns the sets Ig(d) for d > 2. As a consequence of [LFL21,
Proposition 1.4] and Theorem 9 we obtain:
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Theorem 10. For every positive integer d we have
Ig(d) = Ig(1) U {p prime | p < d—1}.

This is an unconditional version of [Najl8, Theorem 4.1], and the proof
relies on the same arguments.

A more general goal is to classify all the possible images of pg inside GLg(i).
This is known as Mazur’s ‘Program B’ [Maz77]. In recent years, much progress
has been made in the case of elliptic curves defined over Q. Most of the
results are given either in the ‘vertical’ or ‘horizontal’ direction, i.e. they either
classify the possible images of the p-adic representations pg peo, or study the
entanglement phenomenon at composite level.

A lemma of Serre [Ser98, IV-23, Lemma 3| implies that, for p > 5, the
p-adic representation attached to E/Q is surjective if and only if the mod-p
representation is surjective. In particular, to classify all the possible images of
PEpe=, it suffices to consider the case where pg ) is not surjective. Greenberg
[Grel2] and Greenberg-Rubin-Silverberg—Stoll [GRSS14] classified the p-adic
representations pg peo for p > 5 under the assumption that Im pg , is contained
in a Borel subgroup. We present their result for non-CM elliptic curves.

Theorem 11. Let E/Q be an elliptic curve without CM and let p > 5 be
a prime such that E admits a rational p-isogeny (i.e., such that Imppg ) is
contained in a Borel subgroup).

e If p > 5 then Impp po D I + pMayo(Zy), and in particular (GLa(Z,y) -
Im pg peo] = [GL2(Fp) : Im pg p).

o If p=2>5, then [GLa(Zs5) : Im pp 50| divides 5{GLa(F5) : Im pg 5].

Proof. The statement follows combining [Grel2, Theorems 1 and 2|, Theorem
3, [Grel2, Remark 4.2.1], and the main result of [GRSS14]. O

We remark that, by Theorem 3, the above result only applies to the primes
{5,7,11,13,17,37}.

Later, Rouse and Zureick-Brown [RZB15] completely classified all the pos-
sible 2-adic images. Then, Sutherland and Zywina [SZ17] described all the
possible open subgroups G < GLQ(Z) for which there are infinitely many iso-
morphism classes of elliptic curves E/Q with Im pp = G. Eventually, Rouse,
Zureick-Brown and Sutherland [RSZB22| gave a detailed description of all the
possible p-adic images for all primes p whenever the image of pg , is not con-
tained in the normaliser of a non-split Cartan. We will refer to the modular
curves classified in [RSZB22] by the labels they were given there, which we
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will call RSZB labels. We now give the precise statement of their theorem.
Given an integer € which is not a square modulo p, denote by

ny 1L 0) [a eb
CMP)'{(O il) (b a)

the normaliser of a non-split Cartan subgroup of GLo (Z/pnz> (see Chapter
2 for definitions).

a,b e Z/p”Z? (a7 b) 7_é (07 0) mod p}

Theorem 12 ([RSZB22, Theorem 1.6]). Let E/@ be an elliptic curve without
CM. Let p be a prime number and set G := Im pg . Ezactly one of the
following is true:

e the modular curve Xg has infinitely many rational points and £G is
listed in [SZ17, Tables 1-4];

e the modular curve X¢q has an ‘exceptional’ rational point, and the pair
(G,j(F)) appears in the finite list in [RSZB22, Table 1];

e G (mod p") is contained in C,;,(p") for p™ € {33,52,7%,112}U{p prime |
p=19};

o (G is a subgroup of one of the groups with RSZB label 49.147.9.1 or
49.196.9.1.

Building on the work of Zywina [Zyw1ba], we give a restricted list of sub-
groups G < GLa(Z,) such that Im pg pe is possibly equal to G whenever
Im pg, is contained in the normaliser of a non-split Cartan, dealing with
the cases not covered by Theorem 12. We will prove the following result as
Theorem 6.1.5.

Theorem 13. Let E/Q be an elliptic curve without CM. Let p be an odd prime
such that Im pp, C Cl(p) up to conjugation, and let n > 1 be the smallest

integer such that Im pg peo O I + p"Mayo(Zy). One of the following holds:
e p = 3 and £Impp 3~ is conjugate to one of the groups with RSZB
labels 3.6.0.1, 3.12.0.1, 9.18.0.1, 9.18.0.2, 9.36.0.1, 9.36.0.2,
9.36.0.3;

e p =5 and the image of pg s~ is the group with RSZB label 5.30.0.2
up to conjugation;

e The image of pgpn is equal to Cf (p™) up to conjugation;
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Im pp 2 = CF (p) x {I+p ( ab €b> }
— C

with the semidirect product defined by the conjugation action.

e n=2and

While the eight groups with RSZB labels given in the first two cases of
Theorem 13 actually occur for some elliptic curves F, the last two cases con-
jecturally never occur for large values of p. In particular, we know examples
of elliptic curves E for which Im pgn = Cf (p™) only for p™ < 11, while the
last case is only known to happen for p = 3.

On the other hand, many authors have studied the ‘horizontal’ entanglement
classification problem, i.e.the classification of intersections of division fields at
different primes, which we call entanglement fields. Serre [Ser72, Proposition
22] proved that for every non-CM elliptic curve E defined over Q, the image
of pp lies in an index-2 subgroup of GLy(Z), even if the p-adic representation
pE.p is surjective for every prime p. More recent results focus on the study of
the intersection of Q(E[p]) and Q(E[q]) for two different primes p, ¢, usually
small (see for example [BJ16, Morl9, DM22, JM22, DLR23]). In Section
6.3, we prove some general theorems to bound the degree of entanglement
fields, especially in the case where one of the division fields has Galois group
contained in the normaliser of a non-split Cartan. We then give a bound
on the growth of the adelic index with respect to the product of the p-adic
indices due to the entanglement phenomenon. In particular, in Lemma 6.4.10
(precisely, equation (6.4.5)) we show the following.

Proposition 14. Let E/@ be a non-CM elliptic curve that does not satisfy
Congecture 5 and let a be the number of primes p > 5 for which the image of
pEp is contained in C,f (p). We have

[GLy(Z) : Tm pp] <1536 - 6* [ [GLa(Zp) : Im pppoe].

p prime

A problem equivalent to Question 1 (uniformity question) is the following.

Question 15. Let K be a number field. Does there exist a constant N, de-
pending only on K, such that for every non-CM elliptic curve E/K we have

[GLy(Z) : Im pg] < N?

The equivalence between the two questions can be shown in the following
way: if there exists an integer M such that for every prime p greater than
M the mod-p representation is surjective, then by [Ser98, IV-23, Lemma 3]
the same holds for p-adic representations. Consider now, for every prime p
smaller than or equal to M, all the possible subgroups of GLa(IF,) and their
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corresponding modular curves. Some of these curves will have finitely many
K-rational points and we can ignore them. For the other modular curves, if we
consider a rational point on one of them and the corresponding elliptic curve
E, either the image of the p-adic representation pg pe contains the group
I +pMsy2(Z,) (and hence the p-adic index is bounded), or E corresponds to
a K-rational point on a level p? modular curve. We can then repeat the same
argument for modular curves of level p?, and go on with higher powers of p.
Since the genus of the modular curves grows with the level, there exists an
integer n such that all the modular curves of level p™ have genus greater than
1, and then they will have a finite number of K-rational points by Faltings
theorem (see [Ara08, Theorem 1.3]). This gives a bound on the indices of
the p-adic representations. Serre proved that the image of pp has finite index
in the product [[Im pg p over the finite set of primes containing 2,3,5 and
those primes for which pg peo is not surjective [Ser98, IV-26, Lemma 5]. Since
for every p the pro-p Sylow subgroup of GL2(Z,) has a finite index, it suffices
to show that the intersection of the image of [] pg p~ with the product of the
pro-p Sylow subgroups has finite index. However, a subgroup of a product
of p-groups (for different primes p) is a product of subgroups, and since the
projections on GLy(Z,) have finite index, so have their product.

Recently, Zywina [Zyw11] provided a bound on the adelic index in the case
where the elliptic curve E is defined over Q, polynomial in terms of the height
h(j(E)). Moreover, he also gave a bound in terms of the conductor of E.

Theorem 16 (Zywina). Let E be a non-CM elliptic curve defined over Q.

1. There are absolute constants C' and v such that
[GLa(Z) : Tm pgg) < C(max{1,h(j(E))})",
where W(j(E)) is the logarithmic Weil height of the j-invariant of E.

2. Let N be the product of the primes of bad reduction of E. There is an
absolute constant C' such that

)

R 1\ 24w(N)
[GLy(Z) : Im pg] < C (68N(1 +log log N)§>

where w(N) is the number of distinct prime divisors of N.

The bound in terms of the height of j(E) relies on previous results of Masser
and Wiistholz on isogenies [MW93b, MW93a]. Their results were made ex-
plicit by many authors, and optimised by Gaudron and Rémond. For example,
in [GR14] they gave a bound on the minimal degree of an isogeny between two
elliptic curves which is quadratic in the stable Faltings height of the curves
(the stable Faltings height of an elliptic curve E is approximately % h(j(E))
as shown in Theorem 1.2.6). Both of Zywina’s bounds are ineffective. Later,
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Lombardo gave a bound for the adelic index for elliptic curves defined over a
generic number field [Lom15, Corollary 9.3 and Remark 1.1]. His proof ex-
ploits Gaudron—-Rémond’s improvements to the isogeny theorem. This bound
is effective and polynomial in terms of the Faltings height of the curve.

Theorem 17 (Lombardo). Let E be a non-CM elliptic curve defined over a
number field K and let hx(E) be the stable Faltings height of E. We have

GLa(2) : pr (Gal(K/K))| < - [K : QI - max {1, hx(E), log[K : QY

where v1 = exp(1.9 - 101°) and v, = 12395.

On the other hand, Zywina’s bound in terms of the conductor is proved
building on previous work of Serre and Kraus. In particular, given a non-
CM elliptic curve E defined over Q, under GRH Serre [Ser81, Theorem 22]
obtained the following bound in terms of the conductor for the largest prime
p for which pg ), is not surjective.

Theorem 18 (Serre). Let E/Q be an elliptic curve without CM and let N be
the product of the primes of bad reduction of E. Suppose that the generalised
Riemann hypothesis is true. There exists a constant ¢ such that for every
prime number p > clog N (loglog N)3 the representation PEp 15 surjective.

Later, Kraus [Kra95] proved a similar unconditional effective result for mod-
ular elliptic curves. Thanks to the modularity theorem [BCDTO01], this is now
known to be true for every elliptic curve.

Theorem 19 (Kraus). Let E/@ be an elliptic curve without CM and let N
be the product of the pqimes of bad reduction of E. For every prime number
p > 68N (1 +loglog N)2 the representation pgy is surjective.

Cojocaru [Coj05] extended Kraus’s result to bound the product of the
primes p for which the representation pg, is not surjective. However, as
Zywina notes in [Zywll, Remark 3.4], there seems to be a mistake in her
proof. Recently, Mayle and Wang [MW24] gave an effective sharp version of
Serre’s result assuming GRH.

One of the main aim of this thesis is to provide some bounds on the adelic
index when FE is an elliptic curve defined over Q. In particular, in Theorem
6.4.1 we give a bound in terms of the stable Faltings height of the curve which
is much better than that of Lombardo. Moreover, we give an effective and
improved version of Zywina’s bound in terms of the radical of the conductor.

eorem . Let e an elliptic curve without .

Th 20. I E/@ b llipti ithout CM.

1. If hr(E) is the stable Faltings height of E, we have
[GLy(Z) : Im pg) < 9.5 - 102 (b (E) + 40)**2.
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2. We have

3”(@)

(GL2(Z) : Im p] < hz(E)

as hr(E) tends to oo, where the constant is explicit.

3. If N is the product of the primes of bad reduction of E and w(N) is the
number of distinct prime factors of N, we have

~ 3w(N)
[GLo(Z) : Tm pp] < 2488320 (51N(1 +loglog N)%) :

Description of contents

In this thesis, we present the proofs of Theorems 8, 9 and 20. We now briefly
describe the strategy behind these proofs.

The proofs of Theorems 8 and 9 follow that of Theorem 7 by Le Fourn and
Lemos. Their proof is based on two fundamental steps: first, they show that
an elliptic curve satisfying the hypothesis of Theorem 7 has integral j-invariant
(via the formal immersion method of Mazur). Second, they prove an upper
bound on |j(E)| by combining Runge’s method with an effective surjectivity
theorem, showing that Im pg, = GL(E[p]) for all p greater than an explicit
bound depending on j(E).

The first step works in complete generality: Theorem 7 gives the integrality
of j(F) as soon as p > 37, so — in order to prove Theorem 8 — we can assume
Jj(E) € Z. Our main contribution lies in a much sharper upper bound on
|7(E)|, which we achieve through three main innovations:

e We prove a sharp effective surjectivity theorem (in the spirit of [MW93a],
[Lom15], and [LF16, Theorem 5.2]) by refining the proof of the effective
isogeny theorem of Gaudron and Rémond [GR14]. The main results
we show are Theorem 4.1.1 and Theorem 4.2.5. We obtain substan-
tially improved constants by showing that certain auxiliary subvarieties
considered in the proof are all trivial in our case (see Lemma 4.1.11).

e Second, we perform a detailed analysis of the local properties of the
representations pg ;. This analysis yields several improvements, such as
ruling out all primes p = —1 (mod 9) (Theorem 3.1.4) and proving that
p* divides j(FE) (Proposition 3.2.14). Furthermore, we show that j(E)
can be written as p¥c? for some integer c. When we eventually reduce
the proof of Theorem 8 to an explicit calculation, this latter relation has
the effect of dividing by three on a logarithmic scale the number of tests
we have to perform, significantly reducing the computational component
of our approach.
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e Finally, the third and most significant innovation is our much more de-
tailed study of the modular units on the curve Xg(,). The main ingre-
dients that lead to our improved bound on log|j(E)| are sharp bounds
on character sums, which essentially draw on Weil’s method to treat
Kloosterman sums [Weid8], an idea based on Abel’s summation to am-
plify certain cancellation phenomena among roots of unity, and direct
computations to fully exploit the extent of these cancellations. All of
these improvements are crucial to lowering the bound on log|j(E)| to
values that are computationally tractable (see Theorem 5.4.16), and the
result we obtain is sharp enough that the final computation takes less
than two minutes of CPU time.

We now describe the strategy behind the proof of Theorem 20. It combines
the different results described above about the growth of the adelic index in
the ‘vertical’ and ‘horizontal’ directions. In particular, the proof consists of
three main steps.

e For every odd prime p, we classify the possible images of pg ,» whenever
the image of pg, is contained in the normaliser of a non-split Cartan
(Theorem 13). The main aim will be to show that if n is the smallest
integer for which Im pg pe contains I + p"Maya(Zy), then the image of
pEpn is exactly C) (p™). This will allow us to obtain a good bound on
the p-adic index.

e We generalise the effective surjectivity theorem to show that the product
of the prime powers p™ for which the image of pg,» is contained in
C;t.(p") is bounded linearly in the stable Faltings height of F (Theorems
4.1.1 and 4.2.5). This is used to bound the product of the p-adic indices
for all the primes p such that Impg, C C)f (p). While in the proofs
of Theorems 8 and 9 the most important improvement concerned the
applicability of the theorem to curves with small height, in this case
the main improvements are the generalisation of Le Fourn’s theorem
([LF16, Theorem 5.2]) to product of prime powers and the elimination
of the dependence on the cardinality of C, where C is the set of primes
p for which the mod-p representation is contained in the normaliser of
Cartan subgroup.

e We give a bound on the entanglement phenomenon among all primes
to obtain a bound on the adelic index from the bound on the product
of the p-adic indices obtained via the surjectivity theorem. The main
ingredient to obtain a good bound is the study of the ramification index
of p in the field Q(E[p"]). Indeed, when the image of pg p» is contained
in the normaliser of a non-split Cartan subgroup, p is ‘almost totally’
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ramified in Q(E[p]). On the other hand, by a variant of the Néron-Ogg—
Shafarevich criterion (see Theorem 3.1.1) we know that the ramification
index of p inside Q(E[N]) for p 4 N is low. This shows that the inter-
section Q(E[p]) N Q(E[N]) is small. These ramification arguments rely
on the work of Lozano-Robledo [LR16] and Smith [Smi23].

We now summarise the contents of each chapter and describe their main
goal.

In Chapter 1, we give some preliminary results used throughout the thesis.
We begin by giving some elementary lemmas. Then, we study in detail the
stable Faltings height of elliptic curves defined over the rationals. We conclude
the chapter with a profinite version of the Schur-Zassenhaus lemma and an
application to groups of matrices in the p-adic numbers.

In Chapter 2, we study the subgroups of GLa(Z,,) that satisfy some restric-
tive conditions. In particular, we consider the subgroups that — modulo p —
are contained in the normaliser of a non-split Cartan (but not in the Cartan)
and that contain all the homotheties, i.e. the elements in Z; - I. We prove
some theorems about the structure of these groups, which we call N-Cartan
lifts. These results will play a crucial role in the classification of the possible
images of the representations pg pe, because one can show that if p is a prime
such that Im pg, C C)¥ (p), then Im pg oo is an N-Cartan lift.

In Chapter 3, we investigate the local properties of the representations pg ,»
when their image is contained in the normaliser of a non-split Cartan sub-
group. We show that F has potentially good reduction at every prime ¢ # +1
(mod p") (Proposition 3.1.2). Then, given a prime ¢, we describe the image
of the f-inertia group via pg,. This will allow us to show that if the image
of pgp is contained in the subgroup G(p) defined in Theorem 6 then p # —1
(mod 9), and j(E) can be written as p?-c®. We then introduce the central topic
of the chapter, the canonical subgroup. We show that if Im pg ) is contained
in Cf.(p) then E does not have a canonical subgroup of order p (Theorem
3.2.9). This implies that the p-adic valuation of the Hasse invariant of F is
quite large, a fact we will use to show that if Im pg, C G(p) then the p-adic
valuation of j(F) is at least 4.

In Chapter 4, precisely in Theorem 4.1.1, we provide our version of the effec-
tive surjectivity theorem. We modify and improve the proofs of Le Fourn’s the-
orem ([LF16, Theorem 5.2]) and Gaudron-Rémond’s theorem ([GR14, The-
orem 1.4]). In particular, we obtain a better result via two main improve-
ments: the first is to show that certain auxiliary abelian varieties called B,
are all trivial (Lemma 4.1.11), making the bound efficacious for elliptic curves
with small height. The second improvement consists in a generalisation of Le
Fourn’s theorem in order to consider the products of prime powers (instead
of the product of primes). We then conclude the chapter by proving some
bounds on the prime powers p" for which Im pg ,» is contained in the nor-
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maliser of a Cartan subgroup whenever j(E) ¢ Z. In fact, in this case one can
obtain much better constants. The proofs of these last results only rely on
local arguments, and hence have a completely different approach with respect
to the periods theorem.

In Chapter 5, we study the existence of non-CM integral points on the
modular curves X, (N), i.e. rational points P € X,I,(N)(Q) such that j(P) €
Z. We introduce the modular units, which are the main tool used to compute
integral points. They will be exploited in two different ways: via Baker’s
bound for linear forms in logarithms and via Runge’s method for modular
curves. The first one is used in [BS14] to show that every elliptic curve such
that Im pg ,, is contained in C;f,(p) has j-invariant uniformly bounded in terms
of p. The bound obtained is really large, but one can lower it using some
techniques of diophantine approximation and then test the remaining cases.
We will follow this strategy to show that the curve X,',(25) has no non-CM
integral points (Proposition 5.3.9). The Runge method is used instead to find
the integral points on the curve X (), where G(p) is the group defined in
Theorem 6. Indeed, this is the strategy followed by Le Fourn and Lemos to
obtain their first bound on p in Theorem 7. However, we will conduct a deeper
study of the modular units involved to obtain stronger bounds. To this end,
we take into account the cancellation among roots of unity in their Fourier
expansion. In particular, we follow Weil’s strategy for bounding Kloosterman’s
sums. Using Abel’s summation we then rewrite the sums of roots of unity
we already estimated in a different form to amplify as much as possible the
cancellation phenomena. We conclude the chapter by proving Theorems 8
and 9. Combining the bound obtained via Runge’s method with the effective
surjectivity theorem, we obtain an absolute bound on the j-invariant of elliptic
curves E with Im pg , = G(p). Since by Theorem 7 these curves have integral
j-invariant, we are left with a finite number of them. As proved in Chapter
3, the j-invariant of F must be of the form p? - ¢3, with d > 4 and p = 2,5
(mod 9). These restrictive properties reduce a lot the number of admissible
j-invariants. We can then test the remaining curves by checking directly that
none of them satisfies Im pg , = G(p).

In Chapter 6, we apply the classification results proved in Chapter 2 to de-
scribe the possible images of the representations pg ,eo: in Proposition 6.2.1
this allows us to explicitly compute the p-adic indices at every p in terms of
the smallest power p" for which Im pg pee O I+ p"Maya(Zy). Then, we study
the entanglement of division fields in the non-split Cartan case. Using a re-
sult by Lozano-Robledo [LR16] and Smith [Smi23], we show that if Im pg p»
is contained in C;f,(p™) then the ramification index of p in Q(E[p"]) is at least

2n—2

p2n+, which is quite close to the degree [Q(E[p"]) : Q] (Theorem 6.3.1).

In particular, p is almost totally ramified in Q(E[p"]). On the other hand,
by Theorem 3.1.1 we know that for every other prime ¢ # p, the ramifica-
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tion index of p in Q(E[¢*°]) is at most 6. This implies that the intersection
Q(E[¢*])NQ(E[p"™]) has small, uniformly bounded degree. We use this fact to
bound the adelic index [GLQ(Z) : Im pg] in terms of the product of the p-adic
indices [GL2(Zp) : Im pg peo| (equation (6.4.5)). Combining these results with
the effective surjectivity theorem (Theorem 4.2.5), we obtain a bound on the
adelic index in terms of the stable Faltings height of the curve. We conclude
the Ch/e\tpter by using results in the previous sections to give another bound on
[GL2(Z) : Im pg] in terms of the radical of the conductor of E. The proof of
this result follows that of Zywina [Zyw11], which builds on previous work of
Serre [Ser81] and Kraus [Kra95].



CHAPTER

Preliminaries

In this chapter we collect some auxiliary results that will be used in some
proofs in the other chapters. In particular, we provide explicit comparisons
between the stable Faltings height of an elliptic curve over the rationals and
its modular height, i.e. the logarithmic Weil height of its j-invariant. Then,
we give a variant of Schur—Zassenhaus lemma for p-adic matrices.

1.1 Elementary lemmas

We start by recalling the following lemma, which can be found in [BPR13,
Lemma 3.5].

Lemma 1.1.1 (Bilu, Parent, Rebolledo). For every x € (0,1) we have

2

—Zlog(l—xk) pp—

Pt 6logx

The next two lemmas will be useful for the proof of Theorem 8 and Theorem
9. In particular, we will use them in the parts of our argument that rely on
the complex interpretation of modular curves.

Lemma 1.1.2. Let p be a positive integer. Let T € H be a point in the standard
fundamental domain for the action of SLo(Z) (as defined in Definition 1.2.1),

2miT

1 . 1
, and let g» be the p-th root of q given by (e*™)r = e » . We

let q= 627TiT
have

1 1 1
1—gr| <1—lql7 + Wg.

15
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Proof. Since 7 is in the standard fundamental domain, we have |R{7}| < 3,
1 1 .
hence we can write g» = |q|7e? with || < 2. By using that via® + 6% < |a|+[b|

for all real numbers a and b, and that cosf > 1 — %, we obtain

1 1 2

11— g5 = /(1= lgf? cos)2 + Jg| sin? 6
1 2
:\/1—2|q\50089+|q|5

1 1
— (0 JalF)? 1 20alF (1 — cost)
1 1
<1—|ql» + |q|200],

with equality holding only for # = 0, and the lemma follows. O

Lemma 1.1.3. Let p > 1 be an integer and let x € (0,1). We have

1
» o logz|.
1. 1—zr < b

1
9 L L P

1

Proof. Both results are obtained from the inequality logy < y—1, with y = z»
1

and y = x P respectively. O

The following Lemma will be used in the proof of Theorem 20 and consists in
an effective variant of Merten’s theorem. Given an integer N > 2, we want to

bound the product Hp| N (1 + %) over the prime divisors of N. A first result

was given by Kraus in [Kra95], which bounds the product with 4(1+loglog N).
In the same article [Kra95], in a note at the end of the paper, he wrote that
Serre remarked that one can improve the bound by replacing the constant 4
with 2.4. More recently, in [SP11, Corollary 2] the authors proved that the
product above is bounded by €7 loglog N, where v is the Euler-Mascheroni
constant and e” ~ 1.78. Exploiting the results contained in [SP11], we show
that we can actually replace the constant in Kraus’s lemma with % =~ 1.081,
which is asymptotically optimal (as shown in [SP11, Proposition 3]).

Lemma 1.1.4. Let N > 6 be a positive integer. We have
1 6eY

H <1 + > < %(1 +loglog N).
P m

pIN

p prime

Proof. First of all, we notice that if the statement holds for a number N,
then it holds for all the numbers N’ > N divisible by the same primes as N,
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hence it suffices to verify the inequality for squarefree numbers. Moreover, if
N = H,’f:l p; and N’ = H,’f:l q; with p; < g; for every i, then

HpIN (1 T %) > l_[qlN’ (1 T %) i
1+loglogN — 1+loglog N" ~

indeed, this is true if and only if

k
b1 1/p; - 1 +log <Zi:1 10gpi>

II

el Vai = 14 log (Zfﬂ log Qi)

which is true because LHS > 1 and RHS < 1. Therefore, it suffices to
consider the primorials N = Hle p;, where p; is the i-th prime number and
k > 3, and the numbers N whose radical is smaller than 7. In the latter case,
it suffices to notice that either IV is a power of a prime, and in this case we

have
Hp|N <1 + %) < 3 1< 6e”
1+1loglog N ~ 2(1+loglog7) w2’
or N has radical equal to 6, and so we have N > 12 and
HP‘N(H%) PO &5 SRR 1
1+loglogN — 1+ loglog12 2

If instead N is the primorial Ny, suppose first that k£ > 2263 (or equivalently
pr > 20000). By [SP11, Proposition 4] we have

k 6 2
I (1+2) 11 (1+ 1) = 2220 (i - 122)

p| Ny, p i=1 pi log px

6e” 1.125 6e” 1.125

3
i 2-(loglogNk—|—>,
08 Pk ™ Pk 0g Pk

where the last inequality comes from the fact that er <1 + % for > 20000.
Using the trivial inequality

loglog Ni, < log k + loglog pr, < 2log pi

and the fact that pp > 20000 we obtain

1 6e” 1.125 61 4
H <1 + > < % (loglogNk + + 08 Pk + )

log pp. k % log Dy,
A &P b PRIOBPR/ 1)

6e”
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which is better than the statement of the lemma. We can then test the re-
maining cases with 2 < k£ < 2263; the computation takes less than one second
in MAGMA. O

The following lemma is not an elementary result. However, it easily follows
from [LFL21, Theorem 1.2].

Lemma 1.1.5. Let E/@ be an elliptic curve without complexr multiplication.
If p > 5 is a prime number such that Im pg, = G(p), where G(p) is the group
defined in Theorem 6, then p > 19 and j(E) € Z.

Proof. Suppose by contradiction that j(E) is not an integer. By [LFL21,
Theorem 1.2] we have p € {7,11,13,17,37}. However, by Theorem 6 we know
that p = 2 (mod 3), and so p € {11,17}. The case p = 11 cannot occur by
[Zyw15a, Theorem 1.6(i)], while the case p = 17 cannot occur by [BDM*23,
Theorem 1.2]. O

1.2 Faltings height of elliptic curves

We now give an upper bound on the stable Faltings height of an elliptic curve
over QQ in terms of its j-invariant. Any elliptic curve E/ can also be consid-
ered as an ell (BUC curve over C, so there exists a complex number 7 € H such
that E(C 77, @ r7- We lix such a 7 and set ¢ = e2™7 Our results in this
section reﬁne the properties of heights explained in [Sil86].

Definition 1.2.1. We will consider the standard fundamental domain for the
action of SLa(Z) as

11 o T m
F.Z{ZGH.%{Z}E<—2,2:|,|Z’>1}U{€ §<9§§}.

We begin with the following theorem, which combines [BP11a, Corollary
2.2] with [Paz19, Lemma 2.5].

Theorem 1.2.2. Let 7 € H be in the standard fundamental domain F and
let E/C be the corresponding elliptic curve. Set ¢ = e*™7. We have

log |(E)| < max{log 3500, |log |q|| + log 2}

and
, 970.8
|log lq| < log(|7(E)| +970.8) < log|j(E)| + GE)
Proof. The first inequality follows from [BP11a, Corollary 2.2], while the sec-
ond one is obtained from [Paz19, Lemma 2.5] using the fact that log(x +a) —

logz =log (14 %) < 2. O
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Corollary 1.2.3. In the setting of Theorem 1.2.2, if |j(E)| > 3500, then
log |j(E)| —log2 < |log|q|| < log|j(E)| +0.245.

Proof. We only need to notice that |log|q|| < log|j(E)| + log (1 + 208) <
log |7(E)| 4+ 0.245. O

Before stating the precise comparisons between heights that we need, we
record the following fact that we will use often.

Theorem 1.2.4. Let E/R be an elliptic curve isomorphic to (C/Z @ 17, and
let ¢ = €*™7. If T is in the standard fundamental domain F for the action of
SLy(Z), then either ¢ € R (i.e. R{r} € {0,1}), or j(E) € (0,1728) (equiva-

lently, |T| =1).

Proof. By [Sil94, Proposition V.2.1] we know that the j-function gives a bi-
jection between R and the set C = C7 U Cy U C3, where C7 = {it | t > 1},

Cy = {ew | % <fg< g} and C3 = {% +it|t> ?} Moreover, by conti-
nuity, it is easy to notice that j(C7) = [1728,+00), j(Cs) = [0,1728] and
§(Cs) = (—00,0]. Hence, if j(E) ¢ (0,1728), then R € {0, 1}, which con-
cludes the proof. O

Notation 1.2.5. Given z € R, we will write log™ x to mean logmax{1,x}.

In the next result, as in the rest of the paper, we denote by hx(F) the
stable Faltings height of an elliptic curve E, with the normalisation of [Del85a,
Section 1.2].

Theorem 1.2.6. Let E/@ be an elliptic curve with stable Faltings height
hr(E). Let 7 € H be the point in the standard fundamental domain F such
that E(C) = C/Z @ 77, and set g = e2miT

1. If |5(E)| > 3500, then

hr(E) > h(Jl(f)) _ %loglog G(E)| —0.406  and  (1.2.1)
hr(E) < h(jl(f)) — %loglog |7(E)| 4+ 0.159, (1.2.2)

where h(x) is the logarithmic Weil height of x (i.e., if x = § with (a,b) =
1, we set h(z) = log max{|al, |b|}).

2. If |7(E)| < 3500, then

113 h(j(B)) — 1.429 < hy(E) < % h(j(E)) — 0.135. (1.2.3)
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3. If j € Z, then

1 2

1 1
hr(F) < ——1 — —log |l ——log2 — —. 1.2.4
F(B) < =15 logla| — 5 log[log|g]| — 5 log 3Tz d] (1.2.4)
4. We always have
1 1 1 2|q|
hr(E) > ——1 — —log|l — =log2— . 1.2.5
F(B) > —15loglg| = 5 log[log|ql| —  log g (1.2.5)

Remark 1.2.7. It is well known that |hr(E) — %] < log(h(y) + 1) + O(1)
(see [Sil86, Proposition 2.1]), but the above theorem also gives a bound in the
opposite direction, namely, | hz(E) — %] > Lloglog |j] + O(1).

Proof. By [Sil86, Proposition 1.1] we have that hx(E) equals

M log [Nig, (A, )l = D mulog (JAm)I(77'S{R})°) |, (1:26)

veEMg

where K/ is a finite Galois extension over which E has semistable reduc-
tion everywhere, Ag 7, is the minimal discriminant of E over K, My is
the set of the Archimedean places of K, 7, is an element of H such that
E(K,) = C/Z—FTWZ’ and A(1) = (27m)2q I, - g")*, with ¢ = €™,
Note that [Sil86, Proposition 1.1] is formulated with a different normalisation
of the Faltings height, but it is easy to convert from Silverman’s conven-
tion to Deligne’s: specifically, the height A in [Sil86, Proposition 1.1] satisfies
h(E) = hy(E) — 4logm. This difference is reflected in the factor 7=! in
equation (1.2.6).

Let ep, fp be respectively the ramification index and inertia degree in K of
the rational prime p, and let r, be the number of distinct primes of O dividing
p (the numbers ey, f, only depend on p since K/Q is a Galois extension). Given
that j = j(F) is a rational number, we have

Qmax{(g,lfm(a’)}‘: I1 (pff'max{oﬁepvp(j)})’“l)

NK/Q(AE/K) = H

QCOK p prime
prime
0. . [K:Q] . K:
_ H (pma {0, vp(])}) = H (maX{la ||.7||p})[ Q )
p prime p prime

where the first equality holds by [Sil09, Table 15.1] and the fact that E has
semistable, hence in particular multiplicative, reduction at primes dividing
the discriminant. For every v € Mp® we can assume that 7, belongs to the
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standard fundamental domain F, so, since E is defined over Q, we may use

. 1 1
the same 7, = 7 for every v. Writing 3{7} = _logld %, we have

2 2

A@)|(x ' S{TH = 2m)2lgl [T 11— ¢"** - 27%7 2| log |q]|°
n=1

oo
=2%|g| - |log |gll® T It — ¢"1*,

n=1

and so 12hz(FE) equals

o
> log* |jll, —loglql — 6log2 — 6log |log|q|| — 24 Y "log |1 — ¢"[. (1.2.7)

p prime n=1

Using the fact that, for every z € C such that |z| < 1, by triangular inequality
we have |log |1 — z|| < —log |1 — |z||, from Lemma 1.1.1 we obtain

472

= 1.2.8
log |q| (1.28)

o0 o0
—24210g 1—¢" < —24210g(1 —lqI") <
n=1 n=1

Replacing in equation (1.2.7), we get

1 .
he(E) < — | > log"|ljll, —loglg| — 6log2 —

472
= 6log|l
T P og | log |q||

log |q

p prime

We note that for j € Z we have ||j||, < 1 for every prime p, and (1.2.4) follows.

To prove the upper bound in part 1, we note that log|j| = logmax{1,|j|},
and using Corollary 1.2.3 together with the assumption [j(E)| > 3500 we
obtain

1
+ . + .
hr(B) < 75| D log™ Iljlly +log™ |j| +0.245
p prime
472
—6log2 — —— — 6log|log |q]|
log |q|
h(j) 0245 1 w2 1
= BT g0 ~ Clog|l
12 T 12 21982 giogyg 3 iollesldl
h(j) 7 i |
<=2 032 — ~log(log |j| — log 2
12 T 3logj| —log) ~ 2 elloslil —log2)
h(j) 1 ,
DI D ogl 159.
<5 ~glog og|j| +0.159
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On the other hand, using that log(1 4+ ) < x for every x > 0, we have

n q
—221og\1—g|> 221og1+\q| > 22|| = H’q,. (1.2.9)

Noting that log max{1, ||j||,} > 0 for every p, we see from equation (1.2.7)
that the inequality in (1.2.5) holds. To prove the lower bound in part 1, we
use log [j| > —log|q| > log|j| — log2 (Theorem 1.2.2) in equation (1.2.7) to
obtain

7 4
hr 210g+||.7”p+ 10g|]|—*10g2—*10g10g\]\—Hj
pprlme J
h(j) 7
) _ 71 log |j] - =1 .
> 5 og log || 082 = 7o

It remains to show part 2. Assume that |j(£)| < 3500. Combining equations
(1.2.8) and (1.2.9) we have

24q
‘ ’ —24Zlog|1—q | < log\q]

By Theorem 1.2.2 we know that mv/3 < 273{7} = |log|q|| < log(3500 +
970.8) < 8.41, and so we have

472
—log |q| — 6log | log |q|| + m < 2.533,

q
logI(JI—GlogllogIQIl— ||(|1|> —4.828.

Using the inequality 0 < log™ |j|, we can then write
12hF(E) < Y log* ], +log™ |j| — 6log 2 + 2.533,
p prime

which gives the desired upper bound. For the lower bound, we have that
log™ |j| < log 3500, and then we conclude by writing

12hz(E) > > log" [|j]l, +log* |j| — log 3500 — 6log2 — 4.828. [

p prime

Remark 1.2.8. The above argument even gives

h(g 1
hr(E) < ") Dioglog|jl — Llog2 + 0(1) as |jl - oo,

N —
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yielding a better constant term as j grows. Explicitly, one has

2

h(y) 1 1 log2 1 970.8
hr(F) < —* — - logl ——1 2 —
#(B) < 357 —glogloglil = gloe2+ { 5=+ 5 ) om0 + )
where we have used log(xz —log2) —logax = =) (ljlgxi > =3 (1°g2
—IE)I%);Z,WithmzlogUL

Remark 1.2.9. Minimising the function

2z
1 _

1 1 1
—Elogaz - ilog\log:d - §log2 -

over the interval (0, e‘”ﬂ], we obtain that for every elliptic curve E/Q we
have hr(E) > —0.74885. This fits well with the computation by Deligne of the
absolute minimum of the height [Del85a, pag. 29]. With our normalisation,
Deligne has shown that the minimum of hx(F) is approximately —0.74875,
attained for the elliptic curve with j = 0, for which |¢| = e~mV3, Moreover,
this is the minimum height for elliptic curves over every number field.

Remark 1.2.10. For j € Z, Theorem 1.2.6 implies that

1 1 1 1
() =~y ol — 3 log log | - 51062 +0 (1)

as |g| — 0.

1.3 Schur—Zassenhaus for p-adic matrices

Let p be an odd prime and let K be a finite extension of Q, with ring of
integers Ok, uniformiser 7 and residue field Fg = Fx

The following proposition is a profinite version of the Schur-Zassenhaus
theorem, and can be found in [Wil98, Proposition 2.3.3].

Proposition 1.3.1. Let G be a profinite group and let N be a normal subgroup
such that |N| and ‘G/N‘ are coprime (where the cardinalities are supernatural

numbers defined as in [Wil98, Definition 2.1.1]). Then G has subgroups H
such that G = NH and H N N = 1; moreover, all such subgroups H are
conjugate in G. In particular, for any such H we have an isomorphism G =
H x N, with the action given by conjugation.

Proposition 1.3.2. Let G’ < GL,,(Ok) be a subgroup and let 7w : GL,(Ok) —
GL, (OK/WK) = GL,,(F,) be the canonical projection. Let G < G' := w(G’
be a subgroup of order prime to p.
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e There exists a subgroup G < G’ such that 7 induces an isomorphism
G = G. Moreover, G is unique up to conjugation in G'.

e Suppose G = G, let G be as above, and let N :=kerm NG'. We have
G =GN=2GxN=ZGxN,
where the action is given by conjugation of G on N .

Proof. Consider the groups

Gg"={Aed | n(A) e G} and N:={4Ae€d |A=1 (modmg)}.

It is not difficult to notice that N is a pro p-group, N' <1 G” and Q’”/N, =G.
By Proposition 1.3.1 there exists G < G” such that GN = G” and GNN =1,
hence
(9 _GN . G

NN T GnN
This implies that |G| = |G|, and since 7 surjects G onto G, as ©(G") =
7(GN) = 7(G), it is an isomorphism. Suppose now that G < G is an-
other group with the same property. Since W(Q\) = (G, we have QA < G" and
GN =G" =GN. Moreover, the homomorphism 7| G Is injective, so GNN = 1.
By Proposition 1.3.1 we conclude that G and QA are conjugate in G” (and hence
in G'). The second part follows immediately from Proposition 1.3.1. O

=g.

We finish this section with the following lemma, which is an adapted version
of Hensel’s lemma to matrices.

Lemma 1.3.3. Let m,n be positive integers. Fix A € Mpxn (OK/W?> and let
A be its reduction modulo wg . Suppose that A has n distinct eigenvalues in F,.

There exists an unramified extension L/ i (hence such that OK/W? C OL/ﬂan )

for which the characteristic polynomial of A has exactly n distinct roots in
L/ﬂ,an, which are invariant under conjugation of A.

Proof. Consider a lift Aof Ain Ok. Since A has  distinct eigenvalues, the split-
ting field L of the characteristic polynomial of A is unramified. In particular,
we have that 7, = mx and OK/W}? - OL/WT. Consider the characteristic

polynomial fg of A and its roots Xl, ... ,Xn. We know that Xl, .. ,Xn e Oy,

and we consider their reductions Ai, ..., A\, and A1, ..., A, modulo w7t and 7y,
respectively. By Hensel’s lemma, we know that Ay, ..., A, are the unique lifts
of A1,..., A, which are the roots of f; (mod 7z). In particular, A,..., A\,

are the unique roots of the characteristic polynomial of A, which is f4 = f3
(mod 77"). Moreover, they are invariant under conjugation, as f4 is. O



CHAPTER
p-adic Cartan groups

The aim of this chapter is to improve some of the results of [Zyw11]. In par-
ticular, we study some subgroups of GL2(Z,) with the main property of being
contained in C;f,(p) once we consider their projection modulo p. We define
these subgroups N-Cartan lifts. We give a classification of all the possible
N-Cartan lifts satisfying some restrictive properties. This classification will
be used to prove that, given an elliptic curve E/Q without CM and a prime
p such that Impg, C C;f.(p), in most cases, there exists n > 1 such that
Impp ;= CH(p") and Im pgpee D I + p"Mayxo(Zy). This will allow us to
compute the index [GL2(Z)p) : Im pg peo| with quite good precision.

2.1 Cartan lifts

To study the possible images of a p-adic Galois representation attached to an
elliptic curve, we start by considering a generic subgroup of GL2(Z),) satisfying
some of the usual properties of these images. In particular, we will focus on
the Cartan case.

Definition 2.1.1. Given a prime p and a subgroup G < GL3(Z,), for every
n > 1 we define:

o G =G (mod ") € GLa (Zng);
e G, ={AeG|A=1T (modp")}

Remark 2.1.2. It is not difficult to notice that G(p") = G/Gn‘

Let gly(F,) be the additive group of 2 x 2 matrices with coefficients in I,
and let sly(F,) be the subgroup of trace 0 matrices. They are Lie algebras
over F, when equipped with the usual bracket [A, B] = AB — BA.

25
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Definition 2.1.3. For every n > 1, we have an injective group homomorphism
GWGHH — gly(F)p), sending I + p" A to the class of A modulo p. We call g,

the image of this homomorphism, and s,, := g,, N sla(F)).

Given a group G < GL3(Z,), throughout this section, we will call S :=
GNSLy(Zy). Recall that det(I +xA) = 1+xtr A (mod 2?) as polynomials in
z. We notice that if det(G,) C 1+ p"*1Z,, then g, C sla(F,). In particular,
if G =9, then g,, C sly(F),) for all n > 1, and so s, is the image of S7VSn+1
in gly(Fp).

As shown in [Zyw1l, Lemma 2.2(i)], the groups g, have the following prop-
erty.

Lemma 2.1.4 (Zywina). If p is an odd prime, for every n > 1 we have
On C gnt1- If p =2, the same statement holds for n > 2.

Definition 2.1.5. Let p be an odd prime and let € be the reduction modulo
p of the least positive integer which represents a quadratic non-residue in }F;.
We define the following subgroups of GL2(Z,):

Borel: B .= a b
0 c
split Cartan: Csp = { (g Z)

a,b,c € Ly, a,cGZ;},

a,bEZ;},

non-split Cartan: Chs = { (Z €b> ‘a, be Zy, (a,b) #(0,0) mod p} .
a
0 1 . 1 0
Define also Cf, := C, U Csp and Cyf; := Cps U Cps. These
0 0 —

are the normalisers of Cy, and C), respectively.

Throughout this section, we will indicate with C' a generic Cartan subgroup,
which is either Cy, or (5. Moreover, we will assume that p is an odd prime.

Definition 2.1.6. Let p be an odd prime and let G < GL2(Z,,) be a subgroup.
We will say that G is an N-Cartan lift if it satisfies the following properties:

e (G is closed;

e det(G) =Z;

D

e G(p) is contained in the normaliser of a Cartan subgroup, but is not
contained in the Cartan subgroup;
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e ((p) contains an element of the Cartan subgroup which is not a multiple
of the identity.

We will say that G is a split N-Cartan lift or a non-split N-Cartan lift if G(p)
is contained in the normaliser of a split or non-split Cartan respectively.

Let G < GL2(Z,) be a subgroup such that p { |G(p)|. We notice that for
every n > 1, the group G acts on GG, by conjugation, and hence also on the
quotient G’VG L This action factors through the group G(p). In particular,

n
this implies that g, is an F,[G(p)]-module, with G(p) acting by conjugation.
We have the following result by Zywina ([Zywll, Lemma 2.4]).

Lemma 2.1.7 (Zywina). Let G < GL2(Z,) be an N-Cartan lift with respect
to the Cartan group C. The groups g, are F,[G(p)]-submodules of gly(Fp).
Suppose that there exists an element in G(p) NC(p) whose image in PGLy(F))
has order greater than 2. If G is a non-split N-Cartan lift, then we have a
decomposition in irreducible submodules gly(F,) = Vi & Vo & V3, where

0 ¢ 1 0 0 ¢
Vi=F,-Id, Vo=TF , Va=T oF .

If instead G is a split N-Cartan lift, then we have a decomposition in irreducible
submodules gly(F,) = Vi @ Vo @ V3, where

1 0 01 0 1
Vi=F, 1d, Vo=F , V3=F ®F :

Finally, in both cases V3 is not a Lie subalgebra of gly(IF)p).

In [Zyw11, Lemma 2.4] Zywina assumes that the image of G(p) in PGLy(IF,)
contains an element of order at least 5. However, in his proof, this assumption
is only used to apply [Zywll, Lemma 2.1(v)], and then an element of order
greater than 2 is sufficient.

Remark 2.1.8. If G = C is a Cartan subgroup, by a direct computation it is
easy to check that for every n > 1 we have g,, = V1 @ V5. Similarly, if G = C'T,
since [Ct : C] =2, we have g, = V] & Va.

Remark 2.1.9. When every element in the image of G(p) N C(p) in PGLy(F))
has order 1 or 2, one can verify that V3 decomposes into two irreducible

submodules. In the split case, V3 decomposes as I, (O 1) o F, ( 0 1).
10 -1 0

In the non-split case, V3 decomposes as [F), (1 0 o, 0 6).
0 —1 -1 0
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Lemma 2.1.10 (Zywina). Suppose G < GLa(Z,) is a closed subgroup such
that det G D 1+ pZ, and p 1 |G(p)|. For everyn > 1 we have tr(g,) =F, and
Sp = gn Nsly(Fp).

Proof. The proof is the same as that of [Zyw1l, Lemma 2.5]. O

Corollary 2.1.11. If G < GL2(Zp) is an N-Cartan lift, then Vi C g, for
every n > 1.

Proof. Using Lemma 2.1.7 we see that tr(Va @ V3) = 0, hence V; C g,. O

Lemma 2.1.12. Let G be an N-Cartan lift. Suppose that the image of G(p)N
C(p) in PGL2(F,) contains an element of order greater than 2.

1. If dimg; = 2, then for every n > 1 we have dimg, € {2,4}, and if
dimg, = 4 for some n, then for every m > n the equality dimg,, = 4

holds.
2. If dimg; = 3, then dimg, = 4 for every n > 1.

Proof. To prove the first part, it suffices to notice that by Lemma 2.1.7 and
Corollary 2.1.11 we have gy = Vi @ Vo, where Vi, V5 and V3 are defined in
Lemma 2.1.7. Using Lemma 2.1.4 we see that for every n > 1 we have either
gn = V1 & Vs or g, = gl, for every m > n, and hence the conclusion follows.
To prove the second part, we notice that g1 = Vi @ V3 and if dimgo < 4,
then go = g1 (by Lemma 2.1.4). By [Zywll, Lemma 2.2(iv)], this implies that
g1 is a Lie subalgebra of gly(F,), hence also s; = g1 Nslp(F,) = V3 is a Lie
subalgebra of gly(IF,), which contradicts Lemma 2.1.7. O

The following proposition is a stronger version of [Zyw11, Proposition 1.2].

Proposition 2.1.13. Let G < GL3(Z,) be an N-Cartan lift with respect to
the Cartan group C such that dimg; > 1, and suppose that there exists an
element in G(p) N C(p) whose image in PGLy(FF,) has order greater than 2.
For every integer n > 1 we have the following.

1. If dimg, = 2, then G(p™) C C*(p") and [CT(p™) : G(p™)] = [CT(p) :
G(p)l;

2. Ifdimg, =3, thenn =1 and G D I + p*Max2(Zy);
3. If dimg, =4, then G D I + p"Mayxa(Zp).

Proof. Set S = G N SLy(Zp). The proof of this proposition follows that of
[Zyw11, Proposition 2.3]. If dim g,, = 3, by Lemma 2.1.12 we know that n = 1
and dim go = 4, so by [Zyw11, Lemma 2.2(ii)] we have G D I +p*Maxo(Z,). If
dim g, =4, by [Zyw1l, Lemma 2.2(ii)] we have G D I +p"May2(Z,). We now
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focus on the case dimg, = 2. By Corollary 2.1.11 we have that dims; = 1,
so by immediate induction, 1/51'4- . is of order p’ for every i € {1,...,n}. In
particular, lifting to S1 a non-zero element of s; and projecting it to S(p™*!),
we find an element h = I + pA € S(p"*!) such that A # 0 (mod p). Since
h has order p" in G(p"*!), by cardinality arguments the group H := S
(mod p"*1) is generated by h. As dims; = 1, by Lemma 2.1.7 the matrix A
(mod p) is a non-zero element of V5, hence in particular A (mod p) € C(p).
Since H is stable under conjugation by G(p"*!) and A (mod p) is an element
of C(p), by [Zyw11l, Lemma 2.1(iv)] we know that H C C(p"*!). We have

H= {g € C(p"™) NSLy (Z/anZ) tg=1 (mod p)}7

since the inclusion “C” is trivial and the equality follows by cardinality. Con-
sider the group C(p"*!) := {M € C(p"*™!) | M = I (mod p)}: this is gen-
erated by the subgroups H and {(1 4+ pa)I}; indeed, they are disjoint and
the product of their cardinalities equals |C(p"*1)|. As G(p"*!) normalises
H, it also normalises the group Cj(p"*!), since every matrix in this group

can be written as M = (1 + pa)h¥, for some k € N and o € Z/anZ. Con-

sider an element I + pA € GLq (Z/p”‘HZ): this is in C1(p™*!) if and only if

A (mod p") € C(p") U{0}. For every g € G and A € C(p") U {0} we have
g (I+pA)g = I+pg—Ag € Ci(p"), and so g~ ' Ag (mod p") € C(p™)U{0},
and it is 0 if and only if A = 0. This implies that G(p™) normalises C(p"),
and so G(p") C C*(p"). However,

n—1
ny| _ . | — C2n—2 _ ‘]C+(p”)\
IG(P™)| = |G(p)| J:ll gl = |G(p)| - p G(p)] O

and hence we have [CT(p") : G(p")] = [CT(p) : G(p)]. O

If G is an N-Cartan lift such that dim g,, = 4 for sufficiently large n, a state-
ment equivalent to the proposition above (if we are not in the case dim g; = 3)
is that if n is the largest positive integer such that G(p™) C C/,(p™), then
G D I+ p""t Msyo(Z,). However, if we add the hypothesis that G contains
many scalar matrices, we can prove a stronger result.

Theorem 2.1.14. Let G < GL2(Zy,) be an N-Cartan lift as in Proposition
2.1.13 and such that G O (14 pZ,)I. One of the following holds:

e G < CT up to conjugation and [CT : G] = [CT(p) : G(p)];

e There exists n > 1 such that G D I + p"Mayxo(Z,) and G(p™) C C*(p")
up to conjugation, with [C*(p") : G(")] = [C*(p) : G(p)];
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e GDOI +p2M2><2(Zp) and
G(p*) = G(p) x (V1 & V3),

with V; defined as in Lemma 2.1.7 and the semidirect product defined by
the conjugation action.

Proof. Suppose that dim g; = 3. By Proposition 2.1.13(1) we know that G D
I+p*May2(Z,). We can then apply Proposition 1.3.2 to obtain G 2 G(p) x Gy,
and projecting modulo p? we have G(p?) = G(p) x g1, where by Lemma 2.1.7
we have g1 = V1 & V3. Suppose now dim g1 # 3. It is sufficient to prove that,
given n > 2, if dimg,_1 < 4 we have G(p") C CT(p") up to conjugation and
[CT(p™) : G(p™)] = [CF(p) : G(p)]. We divide the proof in 4 steps.

1. By Proposition 2.1.13 we know that dim g,,_; = 2 and G(p" ') C C*(p"~ 1),
with [C* (1) : G )] = [C* (p) : G(p)].

2. We now prove that the subgroup G1(p™) C G(p") coincides with the group
H = Ci(p") :={g9g € C(p") : g = I (mod p)}. By the proof of Proposition
2.1.13 we know that

Hy = {g € C(p")NSLy (Z/an> :g=1 (modp }
+
1

moreover, by hypothesis we have that the group H; = {(1+ pk)I mod p"} is
also contained in G(p"). We notice that |Hy| = |Hs| = p"~1 and |H| = p*" 2.
Moreover, Hi is normal in H, hence H1H> is a subgroup of HNG(p ) It is
easy to notice that det(1+kp)I =1 (mod p") if and only if k =0 (mod p"~!)
and so if and only if (1+kp)I = I (mod p™). This implies that HyNHy = {[},
and so |HHo| = |Hy| - |Ha| = |H|, in particular H = H1Hs C G(p"™). As by
Lemma 2.1.12 we know that |Gy (p™)| = [1/=] |g:| = p**~2 and H C G (p"),
we have that G1(p") = H. -

3. Since p { |G(p)|, by Proposition 1.3.2 there exists a subgroup G(p) < G
such that the projection modulo p induces an isomorphism G(p) = G(p), and
modulo p" we have G(p") = G(p) - G1(p™) = G(p) - H, where we identified

—_~—

G(p) with its projection modulo p™. Consider
[:={A € GLy(Z,) | A (mod p"~ 1) € CT(p" 1)} < GLa(Z,).

By Proposition 2.1.13 we know that G < T', and obviously C* < I'. By
Proposition 1.3.2, there is a group C+ (p) <C* isomorphic to C*(p) via the

projection modulo p such that C* = C”“( )-Of = C’+( ) x Cf". We can then
consider the unique subgroup G’ < C7T such that G} = C;" and G’(p) = G(p).

By Proposition 1.3.2 we have (37(/) < C’+( ), and since G,G" < T we have
G(p) = G'(p) (mod p™~1). Moreover, G( ) and G’( ) are conjugate in I, i.e.
there exists v € I' such that 'y*lG( )y =G'(p )
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—_—~

4. We notice that G1(p") = G (p") = Cf (p") = H. If we identify G(p), G'(p)

and C*(p) with their projections modulo p", we have

—~— —_—~—

Gp")=G(p)-H, G'@")=G(p)-H  C (p")=CH(p) H.

Notice that y"'H~y = H: indeed, given I + pA € H we have v~ }(I + pA)y =
I+py tAy e H,as vy (mod p"') € Ct(p"~!). Therefore, we have

—~

TGy =Gy -y Hy = Gl (p) - H = G'(p")
as desired. Finally, it is easy to check that

[CHP™) : GEM)] =[CT (") : G'(P")] = [CT(p) : G(p)]. O






CHAPTER

Local properties

Let E/ i be an elliptic curve without CM defined over a number field K, and
suppose that for some prime p we have Im pg ,» C CF,(p™) up to conjugacy.
In this chapter, we consider E as an elliptic curve over a completion K for
various primes A (including A above p), and study the representation pg ,»

upon restriction to Gal K A/ Ky | considered as a decomposition subgroup

of Gal <K/ K) . In particular, we will show that these curves have potentially

good reduction for primes A such that Ng /Q()\) # +1 (mod p™). Moreover,

we will show that for sufficiently large p™ the curve E has potentially good
supersingular reduction at primes above p.

The main arguments of the chapter rely on the study of the so-called canon-
ical subgroup of E and its connection with the Hasse invariant of E. These
arguments will allow us to prove different properties of E. First, we will give
some conditions on the j invariants of elliptic curves with mod-p representa-
tion strictly contained in the normaliser of a non-split Cartan subgroup. Then,
in Chapter 6 we will prove that the division fields K (E[p"]) have high ramifi-
cation index at primes above p, and we will use it to study the entanglement
phenomenon among primes p for which Im pg, C C/(p).

3.1 The image of the inertia subgroups

Let K be a p-adic field with valuation v and let £ be an elliptic curve defined
over K with potentially good reduction. If we consider the maximal unramified

extension K™ of K, the subgroup Ik := Gal (K/Km«> < Gal (K/K> is the

33
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inertia subgroup of Gal <K/ K) By the Néron—Ogg—Shafarevich criterion,

the curve E has good reduction if and only if pg oo (Ig) = {1} for every prime
¢ # p. Every elliptic curve with potentially good reduction acquires good
reduction over a finite extension L of K™ . This implies that the subgroup

I, < Ik defined as Gal (K/ L> is contained in the kernel of pg ¢ for every
¢ # p. In particular, the representation pg ¢ over K" factors through the
quotient ;TLN ie.
1
ppe(Ix) — -5 2 Gal <L/Knr> . (3.1.1)
» —[L
If L is the minimal extension of K™ over which E acquires good reduction,

then (3.1.1) is an isomorphism. In particular, we have the following theorem
from [Kra90, Proposition 1, Théorémes 1, 2, 3].

Theorem 3.1.1. Let E be an elliptic curve with potentially good reduction
over K and let L be the minimal extension of K™ over which E acquires good
reduction. Let A be the minimal discriminant of E over K™ and let c4 be the
standard invariant associated with E. Let £ # p be a prime.

1. Ifp > 5, then L is the unique tamely ramified extension of K™ of degree
e € {1,2,3,4,6} equal to the denominator of the fraction % reduced
to lowest terms. In particular,

pE = (Ir) = Gal (L/Km“) =2, .

2. If p=3, then
pee (i) = [+ K™ € {1,2,3,4,6,12}
depending on the valuation of A.
3. If p=2, then
lpEe~(IK) =[L: K" €{1,2,3,4,6,8,24}
depending on the valuation of A and c4.

The first part of Theorem 3.1.1(1) had been already studied by Serre in
[Ser72, Section 5.6].

In the case ¢ = p, we have the opposite phenomenon: the image of the
inertia via pg p is large. We will discuss it in details in Theorem 3.1.4 and in
the next section.

If we now consider an elliptic curve F defined over a number field K, and A
a prime of K that does not divide p, we can consider the completion K and
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Theorem 3.1.1 applies. We can then use it to prove some interesting properties
in the case where Im pg ), is contained in the normaliser of a non-split Cartan
subgroup.

Proposition 3.1.2. Let E be an elliptic curve defined over a number field
K, n a positive integer, and p an odd prime such that Im pg yn C CH(p") up
to conjugation. For any prime A C Ok that does not divide p and such that
Nk (M) # £1 (mod p™), the elliptic curve E has potentially good reduction
at X. Moreover, given p | p in K, if p"*(p — 1) { 2e(p|p), then the elliptic
curve E has potentially good reduction at p.

Proof. The proof follows and generalises those of [Lem19b, Proposition 3.3]
and [Lem19a, Proposition 2.2]. We can assume that E does not have CM, as
CM curves have potentially good reduction everywhere. Let A | £ be a prime
of potentially multiplicative reduction, let Fx, be the base change of £ to
K, and let E; be the Tate curve with parameter ¢ € K ;, isomorphic to E
over a quadratic extension of K. Rename F = FEf,. There is a quadratic
character ¢ such that pg, ,n = pppr @1, and we have

PEp Z=Y O (Xgn i) = (wf)”” ;;) , (3.1.2)

where x,» is the cyclotomic character modulo p". Consider an automorphism

K n(o) *
o € Gal (KVK)\>, and set A 1= pg, (o) = Xpo( ) ) By our hy-

pothesis on Im pp yn there exists an element of C)f(p™) conjugate to A (up
to changing sign by multiplying by —I). We now divide cases according to
whether x,n(0) =1 (mod p) or xpn(0) #1 (mod p).

(i) Suppose first that x,»(c) # 1 (mod p). We know that the roots of the
characteristic polynomial of A are 1 and x,» (o). In particular, there
exists an element g in C;f,(p") satisfying the polynomial equation (g —
1)(g—xpn(0)) =0. If g € Cps(p™), then g = g (mod p) is either a scalar
matrix or it has eigenvalues in F,2 \ F,. In the first case, as 1 is an
eigenvalue of g, the matrix g is equal to the identity, contradicting the
fact that xpn(0) # 1 (mod p); the second case never occurs, as g has
a reducible characteristic polynomial. This implies that g € C/F,(p") \
Chs(p™), and in particular, tr g = 0, which implies that xn(c) = —1.

(ii) If instead xpn(c) = 1 (mod p), then we can write A = I + p" ; ; )

with r < n as large as possible. As for matrices in Msy2(F,) the rank
is invariant under conjugation, if r < n there would be a matrix in g, of
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rank 1 (with g, defined as in Definition 2.1.3 for the group G = C,),
which is impossible by Remark 2.1.8. This implies that A = I, and so
that xpn (o) =1 (mod p™).
We have then proved that x,» (o) € {£1} for every 0. Suppose first that p # £.
If Frob) is a Frobenius element in Gal (K/ K) with respect to A, we have that
Ngg(A) = xpr(Froby) = £1 (mod p"). If instead ¢ = p, as the character
Xpr 1s surjective from Gal (QP(CP")/Q]D), we must have [K,(Grn) @ Kp] < 2.

However, this implies that e(p|p) is a multiple of @(gn), because o )/Qp is
totally ramified.

Corollary 3.1.3. Let E be an elliptic curve defined over Q, n a positive
integer, and p an odd prime such that p" # 3 and Impgpn C C;(p™) up
to conjugation. For any prime { # +1 (mod p™) the elliptic curve E has
potentially good reduction at £.

We now focus on the case where E is defined over Q and the image of pg, is
a proper subgroup of C,f (p). By Theorem 6 we know that in this case Im pg
is conjugate to the unique subgroup G(p) < C,.(p) of index 3, whenever
p > 37. However, by the results contained in [Zywl5a] one can obtain the
same conclusion for primes p > 5.

We start by considering the image via pg ), of the /-inertia subgroup, for all
primes £. We will draw different conclusions in the cases ¢ # p and £ = p. We
first consider the case £ = p, which allows us to show that, for p = —1 (mod 9),
the image of the residual representation modulo p cannot be isomorphic to
the subgroup G(p), and hence Im pg, 2 C;f,(p) up to conjugacy. This is a
refinement of [LFL21, Proposition 1.4] (Theorem 6), itself an exposition of
results of Zywina [Zyw15a, Proposition 1.13], which states that if Im pg, C
G(p), then p =2 (mod 3).

Theorem 3.1.4. Let E/@ be an elliptic curve without complex multiplication.

If p # 2,3 is a prime number such that Im pg ,, is conjugate to G(p), thenp = 2
(mod 3) and p Z —1 (mod 9).

Proof. Since detopp, surjects onto FY and det(G(p)) = (F))®, we have
(Fy )3 = F) and hence p = 2 (mod 3). Since the smallest prime p congruent
to —1 modulo 9 is 17, and since we already noticed that p must be equal to 2
modulo 3, it suffices to consider primes p > 17. Choosing a suitable basis of

Elp], we can suppose Im pg , = G(p). We note that Gal <Qp/@p> can be iden-

tified with a p-decomposition group of Gal (Q/Q>, and I, := Gal <@P/@m>
p
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can be identified with the p-inertia, where Q)" is the maximal unramified ex-
tension of Q,. We also let Qzame be the maximal tamely ramified extension
of Q;". We have:

e (%) o (5

> PEp (Gal (QIV@ZT>> = ppp(lp) =1 1.

Notice that the restriction of pg ), to Gal (QIVQtame> is trivial, because its
( -1

image is a p-group contained in G(p), which has elements. Hence pg

tame

factors through the quotient, inducing a map from Gal( p /Qnr) which
P
we still denote by pg . We have that

I=pey(ly) = ppp <Gal (@Z"me/ Z)) =~ Gal <@Z’"(E[p])/ gr> .

Applyi I)é ng Corollary 3.1.3 we see that E has potentially good reduction at p.
Let /Qnr be the minimal extension of Q”” over which E Xgpecq Spec Q”T

acquires good reduction. Define the subgroup Ix < I, as Gal <QIV K)

Theorem 3.1.1 we know that e := [K : Q"] € {1,2,3,4,6}. By [Ser72, Section
1, Propositions 10, 11, 12] we know that either pg (/i) contains an element of
order Le_l or the image of pg ,(Ix) in PGLy(F),) contains an element of order
ﬁy;ﬁl) In the latter case, since the square of any element of C,f;(p) \ Cps(p)
is a scalar matrix and hence has order 2 in PGLy(F,), every element in C;f(p)

has order dividing p + 1 in PGLy(F,). We then have that ( 1) | p+ 1, and
so p— 1| 2e < 12. However, this is impossible for p > 17 This implies
that Ix = Gal (K (B [p])/K) contains an element of order 1’%. Actually,
by [Ser72, Section 1, Propositions 10, 12|, this element is a generator of the
Galois group, and so ‘Gal (K(E[p])/K>‘ = [K(Ep]) : K] = Pl

€

Q" (Elp))

N
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Since Gal (Q;ame/(@m) is a procyclic group, Gal (K (B [p])/(@n'r) is cyclic (of
P P

order p2T—1 -e = p? —1). This implies that I is contained in C,, as every
element of C;f, \ Cps has order dividing 2(p — 1), but a generator of I has

S

order at least pZT_l and 2% > 2(p — 1) for p > 11. As noticed in [LFL21,
Appendix B], pTTTl is necessarily odd, otherwise I would be contained in the
subgroup of squares of Cy;, contradicting the fact that detopp p|s, surjects

2— . . . . . .
onto IF;. Moreover, % divides e, hence it is either 1 or 3. However, if we had

|I| = p? — 1, the whole I = C,,s would be contained in G(p), contradiction,

hence we must have I = % and e € {3,6}. Given that p = 2 (mod 3),

we have e | pQT_l <~ 3e|p’ -1 <= p= -1 (mod9). In particular,

whenever p = —1 (mod 9), we have that e divides ||, and so Q" (E[p]) has
a subextension of degree e. Since K(E [p])/(@nr is cyclic, it has a unique
p

subextension of degree e, hence K C Q)" (E[p]), and so Qp" (E[p]) = K(E[p]).
This implies that |I| = p?—1, and so Im pg , cannot be contained in G(p). [

Remark 3.1.5. In the proof, we used the fact that when we are in the case
of “good reduction of height 17 (i.e. [Ser72, Section 1.11, Proposition 11]
applies), the image of the group I in PGLy(F,) contains an element of order

(ep];_ll). This is the same argument used in [LFL21, Appendix B], however the

authors write p — 1 instead of %. Their argument works anyway, as they are
assuming that p > 19.

Remark 3.1.6. Theorem 3.1.4 provides the best congruence condition on p
that can be obtained by local arguments at p. Indeed, as shown in [Zyw15a,
Proposition 1.16 (iv)], if p = 2,5 (mod 9), the CM elliptic curve E : y? =
x3 4+ 16pF, with k = —% (mod 3), is such that Im pg , is conjugate to G(p).
However, there exist elliptic curves E’ without CM whose defining equations
are arbitrarily close to that of F in the p-adic metric. By continuity of the local
p-adic representation with respect to the coefficients of a defining equation
(Krasner’s lemma), taking E’ sufficiently close to E gives examples of non-
CM elliptic curves for which the image of pgr , restricted to the decomposition

group at p, is contained in G(p).

We now consider the action of the f-inertia for ¢ # p, which allows us to
prove the following lemma.

Lemma 3.1.7. Let E/@ be an elliptic curve without complex multiplication.

If p > 5 is a prime number such that Impg, is conjugate to G(p), then
J(B) =p%- 3, withd,c € Z and d > 0.

Proof. By Lemma 1.1.5 we know that j(E) € Z. Let £ # p be a prime that
divides j(F), let Q}" be the maximal unramified extension of Q, and let
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K/Qnr be the minimal extension over which E; = E Xgpecq Spec Q" acquires

good reduction. Let y? = 23 + az + b be a minimal model for E over Q
with discriminant A. By the Néron-Ogg-Shafarevich criterion, we know that

K is the minimal extension of Q" such that pg, , <Gal <Q€/ K>> is trivial,

hence Gal <QK/K> = kerpg, , and Impg, , = Gal (K/@?r). In particular,

al (K/Q?r) embeds in G(p). Since by Theorem 3.1.4 we know that 3 {
|G(p)|, this implies that 3 { [K : Q}"]. However, by Theorem 3.1.1 we know
that if 31 [K : Q}"], then 3 | v¢(A), and hence v/(j(E)) = vy (—123 . %) =
3ve(12) + 3ve(4a) — ve(A) is divisible by 3.

3.2 The canonical subgroup

In this section, we will study the canonical subgroup of order p of F and its
nr
connection with the ramification in the division field p (Elp D/ nr. As a

consequence of these results, we will show some restrictive properties of the
j-invariant of elliptic curves E for which Im pg, C C/f (p).

The canonical subgroup of E[p] was first defined by Lubin and studied by
Lubin and Katz (see [Lub79] and [Kat73]). Most of the properties that we
will give below are due to them.

Let p be a prime and let K be a p-adic field. Denote by p the maximal ideal
of Ok. Let F be an elliptic curve defined over K with good reduction at p.
Let E be the formal group associated with E and let E1(K) be the set of the
points in E(K) that reduce to the origin O modulo p. As explained in [Sil09,
Chapter VII, Proposition 2.2], there is an isomorphism E(p) =~ Fi(K). In
particular, if we consider the extension L = K (E[p|), with prime ideal B | p,
we have E(P)[p] = Ei(L)[p]. Hence, when E has supersingular reduction
modulo p, there is an isomorphism between the p-torsion subgroup of the
formal group and the p-torsion subgroup of the elliptic curve, i.e., E (B)[p] =
E[p]. The group E(‘B) is by definition the set B endowed w1th the group
structure coming from the formal group E. Considering the points Pof E (B)
as elements of P, we can then refer to the valuation of PekE (P): it is simply
its valuation as an element of the field L.

Definition 3.2.1. If there exists A € R such that (P e E(P)[p] | v(P) > A}
is an order-p subgroup of E()[p], then this is called the canonical subgroup
of order p of E.

Remark 3.2.2. When E has ordinary reduction modulo p, there always exists a
canonical subgroup, given by E(*B)[p] = E1[p], i.e., the kernel of the reduction
modulo p.
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Remark 3.2.3. The isomorphism F; (L) = E() is given by the map (z,y) —

—%, hence it is compatible with the action of the Galois group Gal (K/ K>

The notion of canonical subgroup can be extended to the case of elliptic
curves defined over number fields.

Definition 3.2.4. Let K be a number field and let p | p be a prime of K.
Let E be an elliptic curve over K with potentially good reduction at p. Let
L be an extension of K, such that I has good reduction over L. Given that
E(K)[p| = E(K,)[p] = E|p], we define the canonical subgroup of order p of E
as the canonical subgroup of order p of E over L, if this exists.

Definition 3.2.5. If F is given by the equation 32 = f(z), following [Deu41]
we define the Hasse invariant A of E for a prime p as the coefficient of zP~!

in f(ac)]%1

Theorem 3.2.6. Let p # 2 be a prime, let K be a number field and let p | p
be a prime of K. Let E/K be an elliptic curve with potentially good reduction
at p and let A be its Hasse invariant. The elliptic curve E has a canonical
subgroup of order p if and only if v(A) < ﬁ.

Proof. 1f E has ordinary reduction, it has a canonical subgroup and v,(A4) = 0,
hence from now on we assume that E is supersingular. Let ¢ be the coefficient

2
of 22" in the division polynomial Yp(z). By [Smi23, Theorem 4.6] we know
that E has a canonical subgroup of order p if and only if v, (c) < }%. However,
by [Deb14, Theorem 1], we know that ¢ = A (mod p). In particular, whenever
vp(A) < 1 we have that vy(c) = vp(A), giving the statement of the theorem. If
instead v,(A) > 1, then ¢ = A =0 (mod p), and therefore also v,(c) > 1. O

The theory that leads to Theorem 3.2.6 is due to Lubin and Katz, but we
have relied on [Smi23] because it formulates the results in a way that is closer
to what we need.

The following lemma is a known fact which generalises [Ser72, Section 1,
Proposition 1].

Lemma 3.2.7. Let E be an elliptic curve over a p-adic field K and let p
be the prime of K above p. Suppose that E has good ordinary reduction at
p. For every positive integer n, the inertia group Ix of K acts on E[p"] as

(Xpn *> , where xpn is the cyclotomic character modulo p™.
0 1

Proof. Let p be the p-adic cyclotomic character. Since E has ordinary reduc-
tion, we know that there is an exact sequence of Z[Ix]-modules

0 —— Tp(p) » T,E T,E 0,
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where TpE & Zyp has trivial action by Ix. Indeed, Ik acts trivially on TpE ,
and since the determinant is cyclotomic, the other character must be the
cyclotomic character. In particular, modulo p™ we have

0 Sy E[p"] —— Z/an — 0,
and the group Ik acts on E[p"] as <Xp : *>, where x,» is the cyclotomic
0 1
character modulo p™. O

Lemma 3.2.8. Let p be an odd prime and let E be an elliptic curve over a p-
adic field K. Letp C K be a prime above p with ramification index e := e(p|p)
and let I be the inertia group of K. Suppose that & has good reduction at p.

1. If E has ordinary reduction, E admits a canonical subgroup and for every
positive integer n then the group pgn(Ix) contains an element of order

2" hen projected in PGL (Z/ n )
ged(pm—p"~te) 2\ 7"p"Z):

2. If E has supersingular reduction and does not have a canonical subgroup,
n+41 n—1
then the group pgpn (1K) contains an element of order gcdf op

ged(prFl—pn=le)
Proof. If E has potentially good ordinary reduction, by Lemma 3.2.7 the
image of I in PGLy contains a subgroup isomorphic to x,» (/). Since [Ig, :
Ix] = e and |xp»(Ig,)| = p™ — p" !, the order of xpn (Ix) must be divisible by

pn_ n—1

ged(pn—pn~i.e)’
property. Moreover, in this case E always has a canonical subgroup, which

is the kernel of the reduction modulo p. Assume now that F has potentially
good supersingular reduction and that F does not have a canonical subgroup.
By [Smi23, Theorem 4.6] we know that K (F[p]) C K(E[p"]) contains elements
with valuation %_1, and hence the ramification degree of K(E[p"]) over K is
divisible by

and noting that the image of x,» is cyclic we obtain the desired

p’—1 S
ged(p? — 1, [K = Qprn K]) ~ged(p? — 1,e)

Moreover, since the tame extensions of K™ are cyclic, there must be an ele-
. . : -~ 2_
ment in the inertia subgroup I(K(E[p"])/K) = pgpn (I ) of order ﬁpil).
If n > 1, since det opp, peo (Ik) = (Z, )¢, there is also an element of pg yn (Ir)
o(p")
) (e(p™).e)’
order m. In particular, we have an element in pg pn (/5 ) whose order
is the less common multiple of o d’(’;;gl_l) pﬁn_;ﬂﬁl’e),
n+1l_,n—1

p P O

ged(epnFl—pn=1)-

with determinant of order

and so pgpn([x) contains an element of

and so with order

and 0
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Theorem 3.2.9. Let E be an elliptic curve over a number field K and let p
be a prime. Let p C K be a prime above p with ramification index e := e(p|p).
Suppose that E has potentially good reduction at p and let L be the minimal
extension of Ky over which E acquires good reduction, with degree d = [L
K], Suppose also that Im pg, C CF (p).

1. Ifp>de+1 and p # 2de+1, then E does not have a canonical subgroup
of order p.

2. If E has potentially good supersingular reduction modulo p and p >
max{de — 1,3}, then E does not have a canonical subgroup of order p.

Proof. We start by proving part 1. Consider the subgroup I < Impg , ob-
tained as the image of the inertia group of L. If £ has potentially good su-
persingular reduction, part 2 of the theorem supersedes part 1, hence we may
assume that F has potentially good ordinary reduction. By Lemma 3.2.8 we
know that the image of I in PGLy(IF)) contains an element of order Wi}_”.

Since the square of any element of C;f,(p) \ Cps(p) is a scalar matrix and hence
has order 2 in PGLy(F,), we have that m | p+ 1, and so p — 1 | 2de.
However, this is impossible because p — 1 # 2de and p — 1 > de.

Assume now that E has potentially good supersingular reduction and suppose
that E/ 7, admits a canonical subgroup. By Theorem 3.2.6 we know that its
Hasse invariant A is a number in L with valuation 0 < v,(4) < ﬁl How-
ever, vp(A) is a rational number with denominator dividing de. Suppose that
vp(vp(A)) > 0: we can write vp(A) = %2, for some positive integer a. On the
other hand, we have Z£ < I +1’ which gives 1 < a < ‘iel, contradicting the

hypothesis that p > de — 1. This implies that vp(vp(A)) = 0. Let ¢ be the

2
coefficient of 2" 2 in the division polynomial VU, (z) and let p be its valuation.
By [Debl14, Theorem 1] we know that ¢ = A (mod p), and so v,(A) = p. By
[Smi23, Theorem 4.6] we know that L(E[p|) contains elements of valuation
p2“_ 5~ However, vp(p) = 0, and so p must divide the degree [L(E[p]) : L],
which is a divisor of 2(p? — 1), giving a contradiction. O

Corollary 3.2.10. Let E be an elliptic curve over a number field K and let p
be a prime. Let p C K be a prime above p with ramification index e := e(p|p).
Suppose that Im pg, C CF.(p).

1. If p > 6e+1 and p # 12e+1, then E does not have a canonical subgroup
of order p.

2. If E has potentially good supersingular reduction modulo p and p >
6e — 1, then E does not have a canonical subgroup of order p.

Proof. We notice that p > 6e — 1, and since 6e — 1 > 2e+ 1 we have p—1 1 2e.
By Proposition 3.1.2 this implies that E has potentially good reduction at p.
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Moreover, using that p > 6e—1 > 5, by Theorem 3.1.1 we see that the degree
d = [L : K] of the minimal extension of K" over which E acquires good
reduction is at most 6. We then conclude by applying Theorem 3.2.9. O

Corollary 3.2.11. Let E be an elliptic curve over Q. If p is a prime such that
p > 7 and p # 13, and Impg, C C;i.(p), then E does not have a canonical
subgroup of order p.

Corollary 3.2.12. Let E be an elliptic curve over a number field K and let p
be a prime. Let p C K be a prime above p with ramification index e := e(p|p).
Suppose that Im pp, C Ci(p). If p > 6e+ 1 and p # 12e + 1, then E has
potentially good supersingular reduction modulo p.

Proof. We notice that by Proposition 3.1.2 the curve E has potentially good
reduction at p. It then suffices to combine Corollary 3.2.10 and Theorem 3.2.6,
using the fact that if A is the Hasse invariant of £, then v,(A) is equal to 0 if
and only if £ has ordinary reduction modulo p. O

The corollary above generalises [Ejd22, Proposition 3.1] written below to
arbitrary number fields.

Corollary 3.2.13. Let E be an elliptic curve over Q. If p is a prime such that
p>T7,p#13 andImpg, C Cl (p), then E has potentially good supersingular
reduction modulo p.

Consider again the unique subgroup G(p) < C;f,(p) of index 3. The next
proposition is one of the main goals of this section.

Proposition 3.2.14. Let E/Q be an elliptic curve without complex multipli-
cation. If p > 5 is a prime number such that Im pg ), is conjugate to G(p),

then p* | §(E).

Before proving the proposition above, we prove a p-adic property of j(E)
that we establish in the next lemma.

Lemma 3.2.15. Under the assumptions of Proposition 3.2.14, we have 3 1
vp(§(E)). In particular, by Lemma 1.1.5 we have v,(j(E)) > 0.

Proof. By Lemma 1.1.5 the curve E has potentially good reduction at p. Let

y? = 23 +ax+b be a minimal model for E over Q with discriminant A and let

K/Qm“ be the minimal extension over which F Xgpec @ Spec Q" acquires good
p

reduction. As shown in the proof of Theorem 3.1.4, we have 3 | [K : Q)]

vp(A)
12

31 vp(A). Hence vy(j(E)) = vy (—123 . %) = 3up(a) —vp(A) is not divisible
by 3. O

hence by Theorem 3.1.1(1) the denominator of is divisible by 3, and so
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Proof of Proposition 3.2.14. By Lemma 1.1.5 we can assume that p > 19 and
that E has potentially good reduction everywhere. Let K/Qnr be the minimal
P

extension over which E Xgpecq Spec Q)" acquires good reduction, let y? =
z3 4+ ax + b be a model of good reduction for E over Ok and let Ax and
Ak be the Hasse invariant and the discriminant of this model respectively.
By Corollary 3.2.11 and Theorem 3.2.6 we know that v,(Ax) > ﬁ. As the

ramification index of K over Q,, is e < 6, we have v,(Ag) € 1Z, and therefore
vp(Ag) > 1 since p > 5. The good reduction of E implies that v,(Ag) =0,
and by Lemma 3.2.15 we have 0 < v,(j(E)) = 3vp(a) — vp(Ax) = 3vp(a).
Using that Ax = —16(4a® + 27b?), v,(a) > 0 and v,(Ak) = 0, we also have
that v, (b) = 0. We now compute the Hasse invariant. We have

_ ~1)/9 o
i+j+k=251 bJ

hence in particular

A=Y <(p_1)/2>ajbk_ 3 <(p;7;)/2>ajbk'

i+j+h=251 “J 2j+3k=E51

3i4+j=p—1
Since by Theorem 6 we have p = 2 (mod 3), the minimum value of j among
all the indices in the last sum is 1, hence it is not difficult to show that
vp(a) = vp(Ag) > 1. This implies v,(j(E)) = 3vp(a) > 3. However, by
Lemma 3.2.15, we know that 3 { v,(j(£)), and so v,(j(E)) > 4. O

For the proof of Proposition 3.2.14, the fact that Impg, C G(p) is only
needed in the proof of Lemma 3.2.15 and to assume that p = 2 (mod 3), so
we can repeat the whole argument without this assumption and obtain the
following.

Corollary 3.2.16. If E/@ is an elliptic curve without complex multiplica-
tion and p > 37 is a prime such that Im pg , is contained in the normaliser
of a non-split Cartan subgroup, then either vy(j(E)) = 0 or vy(j(E)) > 3.
Moreover, in the latter case we always have p =2 (mod 3).

Proof. If p = 2 (mod 3) the proof is exactly the same as that of Proposition
3.2.14, hence it suffices to show that if p = 1 (mod 3) then v,(j(E)) = 0.
Following the argument in the proof of Proposition 3.2.14, assume by con-
tradiction that p = 1 (mod 3) and v,(j(£)) > 0. Over a suitable extension
K of Qp", we can write E as y* = z° + ax + b with v,(Ag) = v,y(b) = 0
and 3vp(a) = vp(j(£)) > 0. We can then write the Hasse invariant as
Axg = ¢ b5 +a- d(a,b) for some constants ¢, d(a,b) € Ok with v,(c) = 0. It
follows that v,(Ag) = 0, which gives a contradiction with Theorem 3.2.6 and
Corollary 3.2.11. I
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Effective surjectivity theorem

Let E be an elliptic curve without CM defined over a number field K, and
let p" be a prime power for which the image of pg,» is contained in the
normaliser of a non-split Cartan subgroup. The aim of this chapter is to give
a good bound on p” in terms of the stable Faltings height of E. Moreover, we
also want to bound the product of all such prime powers. The main strategy
to obtain this kind of bound relies on the techniques developed by Masser
and Wiistholz [MW93b, MW93a] to bound the degree of a minimal isogeny
between two abelian varieties. Their argument was sharpened by Gaudron
and Rémond [GR14] in the case of elliptic curves. We will mainly follow the
proof of Gaudron and Rémond, taking advantage of some extra hypotheses
specific to our setting.

In Section 4.2, we will exploit the local properties studied in Chapter 3 to
provide even stronger bounds in the case where the j-invariant of the curve F
is not an algebraic integer.

4.1 Abelian periods and isogeny theorem

In this section, we give a generalised version of the effective surjectivity the-
orem of Le Fourn [LF16, Theorem 5.2], obtaining a bound on the product of
the prime powers p" for which the image of the representation pg ,n is con-
tained either in a Borel subgroup or in the normaliser of a Cartan subgroup
of GL(E[p"]). There are two main differences with respect to [LF16, Theorem
5.2]: the first is that we are able to bound the product of prime powers and
not just the product of primes, the second is that in the non-split Cartan case
our version also applies non-trivially to curves of small height.

45
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Theorem 4.1.1. Let E be an elliptic curve without CM defined over a num-
ber field K. We denote by hr(E) the stable Faltings height of E (with the
normalisation of [Del85a, Section 1.2]). Let B,Csp,Cps be sets of odd primes
p such that Im pg, € G(p) up to conjugacy for G = B,Cf, CX, respectively.
For every p € BUCsp U Cys, let ny, be the largest positive integer such that
Im pg me ©€ G(p"), and let A := Hpezsp%p [Ipec P, where C := Csp U Cps.

1. We have

A < 1454 - 2C1[K : Q] <h;(E) + glog(h;(E) +2.72) + 4log A + 5) .

2. If B=Csp =0 we have

A <1454 - 201K - Q] <hf(E) + g log(hr(E) + 2.72) + 2log A + 2.6) .

3. If K =Q and B =Cs, =0, we have
A < 1454 - 2/l (hf(E) + 2log A + gmaX{O, log(S{r})} + 1.38) :

where T is the point in the standard fundamental domain F of H such

that B(C) = Cry o .

Furthermore, if 7, € F corresponds to the curve o(E), for some o : K — C,
and if we assume that {75} > % for every o, we can replace the number
1454 with 1266.4 in all the inequalities.

We follow closely the approach of [LF16, Theorem 5.2] and [GR14, Theorem
1.4], but in parts (2) and (3) we are able to obtain much-improved constants by
noticing that certain auxiliary subvarieties considered in [GR14] are in fact all
trivial (see Lemma 4.1.11). Moreover, we are able to remove the dependence
on the number of primes in C in [LF16, Theorem 5.2]. Section 4.1 is entirely
devoted to proving Theorem 4.1.1.

We begin by recalling some crucial definitions from [GR14].

Definition 4.1.2. Let A be a complex abelian variety, let B C A be an
abelian subvariety of codimension ¢ > 1, and let L be a polarisation on A. We
define

o=

and x := min z(B),
BCA

degr B
B) =
#(B) (degL A>

where deg; A is the top self-intersection number of the line bundle L on A,
and similarly deg; B.
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Let (A, L) be a polarised abelian variety defined over a number field K. Fix
an embedding ¢ : K — C and let (A, L,) be the base-change of (A, L) to
C via 0. We will denote by B[o] a proper abelian subvariety of A, such that
z(Blo]) = x.

Definition 4.1.3. Let A be a complex abelian variety and let L be a polar-
isation on A. Let || - ||z be the norm induced by L on the tangent space t4,
and let 24 be the period lattice. We define

p(A, L) = min{|lw]z | w € 24\ {0}}.

Remark 4.1.4. Let E be an elliptic curve defined over a number field K and
let L be its canonical principal polarisation. As explained in [GR14, Remark
3.3], given an embedding o : K < C we have p(E,, Ly)~ 2 = ${7,}, where 7,
is the element in the standard fundamental domain F that corresponds to E,
and L, is the base-change of the polarisation L via o.

Definition 4.1.5. Let A be an abelian variety defined over a number field K
and let 0 : K < C be an embedding. Let L be a polarisation on A and let d,,
be the distance induced by L, on t4, . We define

O = min{da(w,tBM) ‘ w € QAU \tB[a}}a
where B[o] is as in Definition 4.1.2.

We now begin the proof of Theorem 4.1.1 introducing the general setting;
then we will split the proof in different parts, distinguishing the case B, Csp, # 0,
the case B,Csp = ) and K = Q, and the case B,Cs, = 0 and K # Q. Similarly
to [LF16], we start by giving the construction of a particular quotient of the
abelian surface E£x E. However, we will use a slightly different quotient, which
is more natural. )

Choose an extension £ /| of degree 2I¢l such that for every prime p € C
we have

PEp (Gal (K/K/>> C C(p) (4.1.1)

up to conjugation, where C(p) is either Cy,(p) or Cys(p). Note that, if
PEp <Gal <K/K>> is already contained in C(p), we choose K’ to be an

arbitrary complex quadratic extension of K. Since the image of the com-
plex conjugation is not contained in C(p) for every p, the field K’ is always a
complex field. We now construct a subgroup G/, of E[p™)? for every p € BUC.

e p € B: We define the group G, as I';np x E[p™r] C E x E, where I'pnp
is a cyclic subgroup of order p™ fixed by pg . We have |G| = p*"».
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e p € Csp: We define the group G, as I'y x I'g, where I'1, I’y C E[p™] are
two independent cyclic subgroups of order p"» stabilised by pg ,n» over
K'. We have |G| = p*"».

e p € Chs: Choose an element g, € Cps(p™) such that g, (mod p) ¢
F‘; -1d. \27\76 define the subgroup G, as {(z,g,-z) | * € E[p"]}. We have
Gp| = p“r.

It is not difficult to notice that all the groups G, we defined are stable under
the action of the absolute Galois group of K’: indeed, this is clear by definition
in the case of the Borel and split Cartan subgroups, and it is true in the case
of the non-split Cartan as C,s(p"?) is abelian and for every v € Cp5(p"?) we
have y(z, gp) = (yz,vg9p) = (72, gp(yz)). We now consider the group

G=p G,CExE.

peBUC

Define

Ap = Hpnp and Ac = Hpnp.
peEB peC

By taking the quotient A of E x E by the subgroup GG, we have an isogeny
¢ : Ex E — A defined over K’ such that degp = AFAZ. There exists
Y : A — E x E such that ¥ o ¢ = [AgAc]exp, so degy = ABA% = A2
As explained in the proof of [LF16, Proposition 5.1], for every embedding
o : K" — C, there is a canonical norm || - ||, on the tangent space of E,, which
contains the period lattice Qg ,. As in [GR14, Part 7.3] and in the proof of
[LF'16, Proposition 5.1], we choose an embedding oy such that there exists a
basis (wo, Toowo) of Qg 4, for which 7,, is as in Remark 4.1.4 and

w = max min Wl
H 0”00 p wGQE,g\{O}H ||0

By Remark 4.1.4, this choice of 0p minimizes {7, } among all o, as in [GR14,
Part 7.3]. Let Q4 4, be the period lattice of A,,. We want to show that there
exists an element x € Q4 ,, such that di)(x) = (wo, Tsowo). To do this, we
prove the following lemma.

Lemma 4.1.6. For every embedding o : K' — C, if Qg , and Qa, are the
period lattices of E and A with respect to o, then d¢(Q4,,) C Q2E70 contains
an element (w1,wsz) such that (w1, w2)z = Qp4.

Proof. The proof is similar to the second part of the proof of [LF16, Theorem
5.2], however [LF16, Lemma 5.3] can no longer be applied. Let tg x tg be the
tangent space of E x E with respect to the embedding o, and let 7 : tg X tg —
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E x E be the projection. The lattice 2 := 7~ 1(G) C tg x tg defines a quotient
abelian variety 1B X tE/Q isomorphic to A.

i ApA
tEXtE%tEXtE%tEXtE

| | Y

ExFE 7 A " s Ex B

Let Q' := AgAcQ C Qp x Qf be the image of the lattice 2 under the homo-
thety AgAc. This is equal to the image of Q4 via de, i.e. Q' =d¥(Qa). We
want to show that Q' contains a basis of Qp. Fix a basis (€1, é2) of Q. Let p

2
be a prime in BUC and consider the image of €’ in (QE/p”pQE) . Multiplying

5
it by pTlp we can identify it with a subgroup of (QE/pnP/QE) = E[p™]?. By

definition of @', the image of pTlPQ/ in E[p™]? is exactly A}fnﬁc » = Gp. Iden-

tify E[p™r] with IFIQ) choosing the basis 7 (1%, p%) = (e1,e2). We now prove
that for every G, there is an element (z,y) € G, such that dete, ,(z,y) = 1.
If p e B, let (a,b) € I'ynp be an element of order p"». We can choose (c,d)
such that ad — bc = 1 (mod p"»), and hence the element ((a,b), (c,d)) € Gp,
has determinant 1.

If p € Cyp, similarly to the Borel case, given two elements (a,b) € I'; and
(c,d) € Ty of order p"™, we have ad — bc = k # 0 (mod p), because I'y
(mod p) # 'y (mod p). We can then take (a/,b') = (k~'la,k~1b) € Ty such
that a'd — /e = 1.

If p € Cps, let €], €}, be another basis of E[p"]. We have

det (xvy) = det (6/17 6/2) : (/iet/ (:L‘a y)a

€1,€2 €1,€2 €71,€s
hence it suffices to show that for a particular choice of a basis €, €5, the group
. 7 XL, a ¢b
dety; ¢ Gp contains the whole < /an> . Fix e}, e) such that g, = .
with p tb. We have

det(r. g, -a) = det | 1 VT EI) g2 oty pder [T 52).
ro bri+ axs Ty T

X
As det Cp5(p") = (Z/an> , the proof of the claim is obtained by varying x.
We showed that for every p € BUC there exists 7, € SLa (Z/pnp) such that

o (Zl> € Q//pan%- Since the projection SLa(Z) — [[,epue Sle (Z/ P"”Z>
2
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is surjective, there exists an element v € SLy(Z) such that

5 (?) € Q + AgAcQ2 C Q.

€2

Since (€1, €2) is a basis of {1, also y(e1, €2) is a basis, and it is contained in
Q' as desired. O

Using Lemma 4.1.6, composing 1 with an isomorphism of F x E, we can
assume that there exists an element x € Q4 4, such that dy(x) = (wo, To,wo)-
Setting w = (wo, Toewo, X) € QExEx A0y, We define A, as the minimal abelian
subvariety of (E x E x A),, containing w = (wo, T5,wo, X) in its tangent space.
As in the proof of [LF16, Proposition 5.1], one shows that

A = {((2),2) | 2 € Agy} C (B x E x A)gy.

Indeed, the inclusion A, C {(¢(2),%2) | z € Ay, } is clear, and the projection
from A, to E x E is a subvariety of (E x E),, containing (wo, 7s,wp) in its
period lattice. As F is an elliptic curve without complex multiplication, the
endomorphism ring of E x E is Max2(Z), therefore no strict abelian subvariety
of (E X E)y, contains (wo, To,wp) in its tangent space. This proves that the
dimension of A, is at least 2, hence the equality above. We then see that the
complex abelian variety A, can be defined over K’. When we consider A, as
being defined over K’, we will write (A ), for its base-change to C along a
given embedding o : K’ < C. The abelian variety A, falls within the context
of [GR14, Part 7.3].

As explained in [LF16, Proposition 5.1], one can repeat the proof of Gaudron
and Rémond to obtain a bound on A similar to that of [LF16, Theorem 5.2].
However, we will change some details to improve the final result.

We choose a polarisation on A, as in [GR14, Part 7.3], namely, in the
following way. Set n = ||7,,|2], let Lg be the canonical principal polarisation
on E,, and let 71,72 be the projections from (E x E),, on the two copies
of Ey,. We consider the polarisation L' = 7 LY" @ m5Lg on (E x E),, and

the isogeny f defined as the composition A, — Ag, ¥, (E x E)s,, where
the first isomorphism is given by the projection (¢(z),z) — z. We define the
polarisation L := f*L' on A,, and as in [GR14, Part 7.3] we compute

deg; A, = (deg f) deg;, E* = 2nAZ. (4.1.2)

Lemma 4.1.7. Let ﬂmax(ﬁ) be the quantity defined in [GR14, Part 6.8].
The inequality

) —_— 1 n
fimaa(ty,) < hr(E) +2log A + S log —

holds.
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Proof. Tt suffices to combine the proof of [GR14, Lemma 7.6] with the remark
at the end of the proof of [LF16, Proposition 5.1|, which gives hr(A,) <
2hr(E) + logA. O

The following definition collects the notations that will be needed in the rest
of the proof.
Definition 4.1.8. Following [GR14, Parts 6.2 and 6.3], we set ¢ = 3Y2=4,

0 = 107%2 and S, = LCOT‘ZJ, where z is as in Definition 4.1.2 and J, is as in

Definition 4.1.5. We further define V = {0 : K’ — C | S, > 1}. For every
o : K' < C choose Blo] C (Ay)s as in Definition 4.1.2. We introduce the
following quantities.

1
Ry ==2max{0, fimaz (17 )}+510g2+ Zbgma"{ ((A)L)}

+ K’i Z logdeg; Blo] + elog12;

T Ir2

ev”

By [GR14, Part 6], and in particular [GR14, Part 6.8], we have

2
slog2<€9m—1> Elog2 ZS _N1+<3+3(%\/77L+<68> m)v
T : 2 T T

JEV

where the inequality on the left is obtained by the definition of S, together
with the inequality |x| > x — 1, while the inequality on the right is that of
[GR14, Part 6.8, equation (14)] together with the estimate on Ng obtained
by the Cauchy-Schwarz inequality on the same page of [GR14]. Solving the
inequality in /m, using that 6§ = 10g2 , we obtain

3rx 8 3m
1 14+ — (N + — log 2 . 4.1.
Vm<2slog2< —i-\/ +97Tx(1+4:6+50g >> (4.1.3)

We now want to find a bound on x in terms of n. Recall that w =
(w077—00w0, X) We have

o700 = 1o, Taowo) 12/ 5y = nllwollZ 00 + 1Ta0w0lIZ 5 00-

Using Remark 4.1.4 we obtain

Loo = (0 Too)lwoll 00 = (0 + 1700 *)p(Eog, (LE)ay)?
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n

. . . +t
where the last inequality follows from the fact that the function T for

t € [n,n + 1] attains its maximum at t = n = [|74,]].
Suppose now that ao ¢ V, and hence that S,, = 0. We notice that o <
z(0) = L A\ﬁ by equation (4.1.2). By definition of S,, we have

\/degy A
1
AV2 11\2
1> b >06 n_ i — 95A>\/§95A,
202, = W, ~\2 8 8

that gives A < \(f < 62, which is better than Theorem 4.1.1 (since hx(E) >
—0.75 by Remark 1.2.9). Thus, we can assume S,, > 1, and in particular, we
can assume that og € V.

Since K is a complex field, there exists an embedding o of K’ different from
09, which is its complex conjugate, inducing the same norm |- ||z~ = || - |z,
and such that 055 = J,,. Combining the fact that 62 < 2n = and that

n—yq

00,00 € V we obtain

1 1 S 1 2 N 2 n—1/4 (4.1.4)
m T17 . M ) T . M NN ° . N
KQ 282~ [0 8~ [K:Q  2n
We now notice that for every embedding o we have
p(<Aw)U7L0) Z p(Eoy(LE)a)- (415)

Indeed, for every period W = (wy,wa,Y) € Na, o C 0% o %X Q4 we have
@117 = nll@1ll .0 + 122017 5.0 = max{[@1]17 .0, [@2017 .0}

We then have log max {1, m} < log max {1, m } If we define

Ny :=2hr(E )+4logA+log +5log2+ ZlogdegL Blo]

2 1
—1—7[}(/ Q) glogmax{l,p(Em(LE)a)} +elog 12,
(4.1.6)

by Lemma 4.1.7 we have X; < R;. We can then replace X; by X; in equation
(4.1.3), and by inequality (4.1.4) we obtain

1
(n—1/4)1 3rx 8 (& 3w
1 1+— (N — log 2 . 4.1.
n[K': Q] <2£10g2 + +97m; 1+ 436—’_60g (4.1.7)
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By Remark 1.2.9, we have hx(E) > —0.75 for every elliptic curve E. Since
A —4-1266.4log A < 2-1266.4(—0.75 + 1.38) holds for every A < 57000, we
can assume A > 57000, otherwise Theorem 4.1.1 would trivially hold. Then
we have

Ny > —1.5 +410og 57000 + 5log 2 + elog 12 > 44.

Using that z < 2(0) = —— < —1_ (Lemma 4.1.11), this gives

AV2n — AV2
- 2 - 5700
S (R4 Ty ctog2) > Y200 e,
I 4 U

Since the function % is decreasing for z > 1, in equation (4.1.7) we obtain

(n—1/4)1 _ Bmr 141000 o8 (o 3w o
n[K':Q] 2clog2 /106 +1 grz \\ 4 &)
Squaring both sides and bounding z with z(0) = \/% 1 we have

n—1/4 9In2a? 8 (- 3m
< -1.002- {24+ — [N — log 2
n[K': Q]  4e2(log2)? < * o ( L ees >>
27
~ £2(log 2)?
2.004m
< (
e2(log 2)2Av2n

-1.002 (R; + 37z + elog 2)

Ny +0.085) ,

1

where in the last inequality we bounded z with since we are assuming

57000v/2”
that A > 57000. We then obtained that
1
1Y\ 2 2004r —

A< [K': 2— — — (W . 4.1.8
< @]< 2n> Zlog2)? (Ry 4 0.085), (4.1.8)

and writing (2 — ﬁ)fé < /2, we have
A< 727[K': Q] (Ry + 0.085) . (4.1.9)

We now want to bound X;. We will first do it in general, and then specialise
to the case B = Cy, = (). We will use the following lemma.

Lemma 4.1.9. Let E be an elliptic curve defined over a number field K. We
have

1 1
(K : Q] J:KZ% p(Eor (Lp)o)? 2.29hr(E) + 6.21.
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Proof. If we call T := [Klz@] Yoo p(Eo',(}lE)o')z’ by [GR14, Proposition 3.2] we

have that either T' < %, which is better than the statement of the lemma by
Remark 1.2.9, or 7T < 3logT + 6hr(E) + 8.66. In the latter case, we can
apply [Sma98, Lemma B.1] and obtain

3 12 6
T < “log <7T hr(E) +5.52 + 462) + ~hr(E) +2.76 < 2.20h#(E) + 6.21,

where in the last inequality we used that 2hz(E) + 5.52 + 4e* > 32.2 for
hr(E) > —0.75, and that 196 < 198322 o1 5 > 399, O

We can apply Lemma 4.1.9 and use the concavity of the logarithm to obtain

2 1
g A o {1’ By (Lr)o) }

o:K'—C

1 1
K Q) 2 logmax{l’w} (4.1.10)

o:K'—C

1 1
< max {0, log ([K’Q] U:[;;C /)(-EW(LE)U)2> }

<log(2.29h£(F) +6.21) < log(hr(E) + 2.72) + 0.829.

By the definition of B[o] we have x = z(Blo]) < z(0), and so either
degy,, Blo] 1
degy_ Aw — \/degLa A’
deg; Blo] < \/deg;_A,. In particular, using equation (4.1.2) we have the
bound

Blo] = 0, which gives deg;_Blo] =1, or which gives

4
—_ logdeg; Blo] < 2logdeg, A,
[K': Q] Z@:/ (4.1.11)

<4log A+ 2logn + 2log 2.

If we use inequalities (4.1.10) and (4.1.11) to bound ®; and we replace it in
equation (4.1.9) we obtain

A < 727[K": Q](2hr(E) + log(hz(E) + 2.72) + 8log A
+ 3logn — logm + 7log2+0.914+510g12).

. 1 . .
By our choice of og, we know that i La)oa)® — {75, } is smaller than or

equal to the mean of the values 3{7,}. Using Lemma 4.1.9 we then have
2 2 1 2 1
n < 70" < ${rog} + 5 < (22905(E) +6.21)° + 4,

and so
logn < 2log(hr(FE) + 2.72) 4+ 1.662. (4.1.12)
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We then obtain
A < 1454 [K' : Q) (h;(E) + ;log(hf(E) +2.72) + 4log A + 5)
= 1454 - 2K : Q] (hf(E) + glog(h}-(E) +2.72) + 4log A + 5) ,
concluding the proof of the first part of Theorem 4.1.1.

The non-split Cartan case

When B = Cs, = () we are able to obtain a better bound. To do this, we show
that the subvarieties B[o| are equal to 0 for every embedding o.
We distinguish cases according to whether A < +/2n or A > +/2n.

Lemma 4.1.10. If A < +/2n, then Theorem 4.1.1 holds for E and A.

Proof. If A < +/2n, we can write

A < V2Ll < V2P < Vz (02 + 1) < VIS +

Remark 4.1.4 gives ${7,} = p(Ey, Ly) "2, so by Lemma 4.1.9 we have

oo} < !

D) > S{7.} < 3hx(E) + 6.5,

[

and therefore A < 5hr(FE) + 10, which is largely better than Theorem 4.1.1
(taking into account that hr(E) > —0.75 by Remark 1.2.9). O

Lemma 4.1.11. Assume A > /2n and B = Csp = 0. Given A,, considered as
an abelian variety over K' as above, for every o : K' < C we have Blo| =0,
and hence x = —

AV2n'
Proof. Since A, = A, it is sufficient to prove the statement for A and L =
1
/ : : _ 1 2 _ 1
¢*L'. First, we notice that z(0) = (552)° = e
arbitrary proper abelian subvariety B such that dim B > 0. The subgroups
of A correspond to those of E x E that contain the group

G= 1] {@g-2)|zeEpv])

pecns

. Let us now consider an

Since B is a proper subvariety of the abelian surface A, we have dim B = 1.
Hence, given the isogeny ¢ : E x E — A, the group ¢ }(B) C E x E is an
algebraic subgroup of dimension 1 containing G. In particular, there exists an
elliptic curve C' C E x E such that the algebraic group ¢~ (B) is C := (C, G),
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and C is the connected component of C that contains 0. Since ker p = G, we
have ¢(C) = ¢(C) = B, and C = [A](C) = ¢ op(C) = ¢(B). By assumption,
FE does not have CM, hence there exist two relatively prime integers a, b such
that

C={(P,Q) € ExE|aP =bQ).

Therefore, we have degplc = |kery|c| = |C N G|. We now notice that
CNG = HpECnS (CNGp): indeed, the groups G), are p-groups and hence have
pairwise coprime orders. The same holds for the subgroups CNG),. The group
CNG is generated by the groups C' N G), and for every pair of primes p, g the
groups C'N G, and C' N G, intersect trivially: this implies that C'N G is the
direct product of the groups C'N G,,. For every p we have

CNGp={(z,gp-x) | x € E[p"?] such that (a — bgy)z = 0}.

However, given

9p = @ &f we have a —bg, = ¢ —ba  —ebf .
B« —bB8  a—ba

By assumption we have p {3, hence if p t b, we have that a — bg, is invertible
(since it is an element of Cy,5(p")). If instead p | b, then p { a and so p f a—ba,
and a—bgy is again invertible. This implies that CNG, = 0, and so CNG = 0.
This shows that deg ¢|c = 1. We then have

A? = deg[A]|c = (deg ¥|p)(deg p|c) = deg |5,

and therefore deg; B = deg,.;, B = (deg®|p)deg, C > A%, We can now

estimate
N degL B > A2 1

©(B) = deg; A — 2nA2 ")
and so z(B) > z(0) = A\}% since A > +/2n. O

Remark 4.1.12. As B[o] = 0 for every o, we have p((Ay)s, Lo) = 0o

Given N; as in (4.1.6), we can use Lemma 4.1.11 and inequality (4.1.10) to
obtain

Ry < 2hz(E) + log(hz(E)+2.72) + 4logA + log ; +5log2 + elog12 4 0.829.

Combined with (4.1.12) and (4.1.9), this yields
A < 1454 - 2K - Q] (hf(E) + g log(hr(E) 4 2.72) + 2log A + 2.6) :

proving the second part of Theorem 4.1.1.
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Suppose now that K = Q. Since FE is defined over Q, we have that 7, =
Too = T for every embedding 0. We then have

2 1 o~
7[1(/ T (;}log max {1, —p(Eo—, o)) } = max{0,log I{7}}

and logn < log|r|* < log (3{r}?+1). If |7]*> < 2, we have logn = 0, if
instead |72 > 2, then ${7}? > T and so log (3{7}? + 1) < log (83{r}?) =
21og(3{7}) + log(8/7). We can combine the two cases by writing logn <
max{0, 21log(S{7})} + log(8/7). Bounding ®; with

8
2hr(E) +4log A —logm + 5log2 + elog 12 + 3 max{0,log I{7}} + log (7> ,

by equation (4.1.9) we obtain
A < 1454 - 2/C] (h;(E) +2log A + gmax{(), log(3{7})} + 1.38> :

which proves part 3 of Theorem 4.1.1.

To conclude the proof of Theorem 4.1.1, we notice that for I{7,,} > 1—;’,
we can write n > |7,,|2 — 1 > 3{7,,}?> — 1 > 21.7. We can then estimate

_1
(2-2£)2< \/%. Hence, in equation (4.1.8) we can use the estimate

1
1\ 2 2.004w
2—-— - < 633.2.
( 2n) e2(log2)? —

Repeating the rest of the proof in the same way we obtain the desired inequal-
ities.

4.2 Bounds for non-integral j-invariants

In this section, we show that in the setting of Section 4.1, if we assume that
J(E) ¢ Ok, we can obtain stronger bounds on A whenever B = (). The ap-
proach here is completely different: instead of studying the complex structure
of F¥ and the periods of auxiliary complex abelian varieties, we rely on local
arguments at primes p | p for which pg , is not surjective. Finally, we will use
these results to simplify the inequalities in the statement of Theorem 4.1.1.

Proposition 4.2.1. Let E be an elliptic curve defined over a number field K.
Let Cgp,Crs be disjoint sets of odd primes p such that Im pg, C H(p) up to
conjugacy for H = C;;, Ct, respectively. Let ny, be the largest positive integer
such that Im pg e € H(p™) up to conjugacy, and let A := Hpecspuc’ns P,
Then A divides

ged  (max{0, —ua(j(E))}).

ACOk prime
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Proof. 1f j(F) € Ok the statement is trivial. Let A be a prime of K such that
e : = —v)(j(E)) > 0 and let p" be a prime power such that p" | A. We want
to show that p™ | e. We can assume that ¢, € K: indeed, p does not divide
[K({p) : K] and so the power of p that divides the valuation of j(E) at primes
of K((,) above A is the same as that of the A-adic valuation of j(£). Consider
E to be defined over K, and let E, be the Tate curve with parameter ¢ € K;,
isomorphic to E over a quadratic extension of K. We know that vy(q) = e.
Suppose first that p € Cps: if x;n is the cyclotomic character modulo p™, there
is a quadratic character ¢ such that pg, 0 = ppyn ® 1, and we have

E,”®¢: — )
Pho (0 1> <o 1)

1 1
where k(o) is such that o (qT"> = qu"C;;SU). Indeed, as shown in case (ii) of
the proof of Proposition 3.1.2, the image of an automorphism o via x,» must be

+1, however it cannot be —1 because x, = xp» (mod p) is trivial, as (, € K.
By the definition of Cys, for every o € Gal (K/\/K/\> we know that M, :=

(pEpn @) (o) is conjugate to an element of C;f,(p™). Following the definitions
of Chapter 3, we call G := Im(pgpe ® ) and G(p") := Im(pppn ® 1P). Let

i
0 <7 < n be such that M, = <é uf),foru;‘éo (mod p). If ¢ = 0, then

M, (mod p) has non-diagonal Jordan form over F,, and hence it cannot be

an element of C;f(p). If instead 0 < i < n, we can write M, = I +p’ 0 u ,
0

0
and so there is an element in g; of rank 1 (where g; is defined in Definition
2.1.3). However, since G(p") C C;f,(p") up to conjugation, by Remark 2.1.8
the group g; is conjugate to a subgroup of Vi @ Vs defined as in Lemma
2.1.7, which contains no matrices of rank 1. Since the rank is invariant under
conjugation, we have that ¢ = n, and in particular M, = I. This implies that

1 1 1
k(o) = 0 for every o, and in particular that o <qp7> = q»". Hence q»" € K,
and so p" | e.
If instead we have p € Csp, there exists again a quadratic character i) such

that
n k 1 k
pEp QP = (Xg 1> = (0 1) (mod p),
with o (qz%"> = qz%"gfyga). In particular, every element in Im pg,» can be

written as I 4+ pA, with A of the form * ). Since C;]‘D(p) does not contain
0

elements of order p, we must have £k = 0 (mod p). If we call G a group



4.2. BOUNDS FOR NON-INTEGRAL j-INVARIANTS 59

conjugate to ITm pp, yeo such that =G(p") C Cf (p™), we must have that for
every 1 < ¢ < n, every element in g; has rank at most 1. By Remark 2.1.8,

these elements must lie in VW, with V :=TF, <; g) and W :=TF, g (1)> .

However, we must have that either g; C V or g; € W: indeed, if we had
0#z € g;NVand 0 # y € g; N W, then the matrix = + y would lie
in g;, which is impossible as = + y has rank 2. By Lemma 2.1.4, we have
g1 € ... C gy—1, hence they are all contained in the same subspace V or W.
Let i be the smallest integer for which g; # 0. If we take a non-zero element
of g;, this is the image of an element in G(p") of order p"~*. On the other
hand, as G(p) = {I}, we have

n—1 n—1
G =[] 1o = ] loel ="
t=1 t=i

In particular, this implies that G(p") is a cyclic p-group, as is H(p") :=
Im(pgpr @ ). Let

: b
T————

be a generator of H(p™), where i is as large as possible (i.e. either a or b are
coprime with p). If i > n then M, = I, and so H(p") = I: we conclude as in
the non-split case that p" | e. If i < n, we can assume that p { a: indeed, if

0

we had p | a, modulo p'™! we would have M, = I + p (mod p**1),

where b Z 0 (mod p*!). In particular, we would have a non-zero element

. 0 b
T € g; conjugate to , and so such that trz = detx = 0. However,

this is impossible because such an element cannot lie in V & W. Consider

g 1
the element ¢»” pnb/ “: in the basis ({pn,q?") this is expressed as the vector
(=b/a,1). We then have

o'(qz%" p_nb/a)<_> 1+p'a p'b\ [—b/a _ —b/a <—>q1%"C,}b/“,
0 1 1 1

Lo 1
and so a(qﬁgpnb/a) =qr" Cpnb/a. Since M, generates H(p™), this implies that
1 I
quCpnb/ “is fixed by every automorphism, and so ¢»” Cpnb/ “ ¢ K. We conclude

Lo
as in the non-split case that UA(qT”Cpnb/a) = 1% € Z, and hence p" | e. O
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Theorem 4.2.2. Let E be an elliptic curve defined over a number field K
of degree d = [K : Q], n a positive integer, and p an odd prime such that
Im pgn C C(p™) up to conjugation. Suppose that j = j(E) ¢ Ok, then

< 1.6dn h(j) 2.2dn h(y)
~ log(1.6dnh(j)) — loglog(1.6dnh(j)) ~ log(dnh(j))

Vs

p

Moreover, if p"~'(p — 1) 1 2d we have

dh(j) +1.116 dh(j)
< log(dh(j) + 1.116) — loglog(dh(j) + 1.116) ~ % Tog(dn(;))"

Proof. Let Mg be the set of all places of K. We have

V2

p

hG) =5 3 mlogmax{L i} >3 0 mloglily  (42.)
veEMg ACOk prime
vA(4)<0

where n, are the local degrees, and the inequality is obtained by taking the
sum only over the finite places. We remark that, since j ¢ Ok, the sum on the
RHS of equation (4.2.1) is non-zero. By Proposition 4.2.1 we know that for
every prime A C Ok such that vy(j) < 0, we have p” < —v,(j). Moreover, we
have log [|j[lx = —va(j) log Nk g(A) > p"log Nk g()). By Proposition 3.1.2
we know that either A | p or Ng/g(A) = £1 (mod p"). This implies that
either p divides Ng/g(A) or Ng/g(A) > p" —1 > p — 1. In both cases, by
equation (4.2.1) we have

dh(j)> > malogljllx > p"log(p — 1). (4.2.2)
ACOk prime
vA(J)<0

As p > 3, we have that dh(j) > 2. Moreover, we have 10;?551) < 1.6, hence we

can write 1.6dh(j) > p™log p. The function z"™ log x is strictly increasing, and

its inverse function is p/ W?f';x), where W (x) is the Lambert W function. This

implies that p" < Wl(i%%’ and by [HHO8, Theorem 2.1], using dh(j) >

e
2> 1&-, we have

3 1.6dn h(j)
~ log(1.6dnh(j)) — loglog(1.6dnh(j))

'

p

(4.2.3)

If we now assume that p"~1(p — 1) 1 2d and take \ such that v)(j) < 0, by
Proposition 3.1.2 we know that A { p, and so Ng/g(A) = +1 (mod p"). Using
p"~1(p — 1)  2d we notice that p™ # 3, and hence p" > 5. Similarly to above
we obtain

dn(j) > p" log(p —nzp1%@>+p1%<r—w)>pl%@>—Ln&
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where we used that w > —1.116 for z € (0, é) As before, the function

xlog(z) has inverse %, and using dh(j) + 1.116 > 2 4 1.116 > e, we
can apply again [HHO8, Theorem 2.1], obtaining the desired inequality. To
conclude the proof, it suffices to notice that the functions

1.6z and z+1.116
n
log(1.6x) — loglog(1.6x) log(z + 1.116) — loglog(x + 1.116)
are smaller than >, for ¢ = 2.2 and ¢ = 1.68 respectively, whenever x > 2
(which is always the case for dh(j), as we proved above). O

Corollary 4.2.3. Let E be an elliptic curve defined over Q, n a positive
integer, and p an odd prime such that Im pg pn C C;F (p™) up to conjugation.
Suppose that j = j(E) ¢ Z and define b(j) := h(j) — logmax{1, |j|}. We have
that either p™ =3 or

. b(j) + 0.527 15, b0)
log(2b(j) + 1.054) — log log(2b(j) + 1.054) " logb(j)

P .
Proof. The proof is analogous to that of Theorem 4.2.2. First, we note that we
can replace h(j) with b(j) in equation (4.2.1), and that b(j) > 2, as j ¢ Z. We
then note that by Corollary 3.1.3 we have £ = £1 (mod p"), but for p™ # 3
the number p™ + 1 is even and greater than 2. In particular, it cannot be
prime, and so £ > 2p™ — 1. Since p™ # 3 we have p" > 5 and p" 1(p — 1) > 2,
so as in the proof of Theorem 4.2.2 we obtain

1
b(j) > p"log(2p™ — 1) = p™log(2p") + p"log [ 1 — —
(7) = p"log(2p" — 1) = p" log(2p") +p g( 2p”> (4.2.4)

> p"log(2p™) — 0.527,

where we used that w > —1.054 for x € (0, %) We notice that since
p"™ > 5 we have b(j) > 5log9 > 10. One can verify that the function x log(2z)

xT

has inverse g5y, and since 2(b(7)+0.527) > e we can apply [HHO8, Theorem
2.1] to obtain the desired inequality. We conclude the proof by noting that

: x40.527 : 1.3z
the function Tog (P T.054) _log log P F1.050) 15 smaller than log for z > 10. O

Theorem 4.2.4. Let E be an elliptic curve over a number field K of degree
d over Q. Let Csp,Cps and A be as in Proposition 4.2.1 and suppose that
J(E) ¢ Ok. We have

d

~ log2

h(j(E)).

Moreover, if K = Q we have

A< L
~ log?2

(h(j(E)) — logmax{1, [j(E)[}) < 11;2 hyr(E) + 25.
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Proof. Set j = j(FE). As in equation (4.2.1) we have

[K:Qh(j)> Y malogllila
ACOk prime
vA(4)<0

and by Proposition 4.2.1 we have that for every A in the sum above, the in-
equality log||7]lx = —va(j)log2 > Alog2 holds, and the hypothesis j(F) ¢
Ok ensures there is at least one such prime ideal \. If K = Q, as in Corol-
lary 4.2.3, we can replace h(j) with h(j) — logmax{1, |j|} to obtain the first
inequality. By Theorem 1.2.6, for |j| < 3500 we have that

1 12
"
(J) < Tog 2

2
hr(E) + 25.

hre(E 1.429
(hx(E) + ) < Tog 2

log 2

If instead |j| > 3500, we have

1 1
h(j) —1 ] ——(12h~(F 6log1l il —1 ] 12 -0.406
logQ( (J) 0g!JD<IOg2( 7(E) + 6loglog|j| — log|j] + )
< 12 hr(E)+ 14
log2 7 ’
which is even better. O]

Theorem 4.2.5. Let E/@ be an elliptic curve without CM, let C be the set of

all primes p > 2 such that Im pg, C Cf.(p) up to conjugation, and let A be
as in Theorem 4.1.1. We have

A < 21000 (hz(E) + 40)'3%8 |

Moreover, if we define

3(a) = ;
" log(log(z + 40) + 7.6) — 0.903

for every x > —0.75, we have
A < 14400 - (hp(E) 4 40)090700F(E) (1 - (E) 4 22.5) .

Proof. By Theorem 4.2.4 we can assume that j(E) € Z, otherwise we would
have a better bound. Let 7 € H be the element in the standard fundamental
domain for the action of SLy(Z) corresponding to E, and let ¢ = €2™". By
Lemma 5.3.3, we can assume that 7 { A and at most one among 3 and 5
divides A: indeed, if 7 divided A we would have A < 504, which is better
than the statement of the theorem, while the case 15 | A never occurs. Since
it is known that there are no non-CM elliptic curves E with j(E) € Z and
Impg, C Cl(p) for p € {11,13,17} (see [ST12, Theorem 1.2], [BDM*19,
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Corollary 1.3] and [BDM*23, Theorem 1.2]), we know that |C| < 1+ |{p >
19 : p | A}|. This implies that

A A
IC| < max {loglg A, 1+]1ogqg 3 1+ logg 5}
=logig A+ 1 —1log;g3 < logig A+ 0.627.

Suppose first that |log |g|| < 30: by Theorem 1.2.6(3) we obtain that hr(F) <
0.6. Using that {7} = % and writing 2/¢l < 20627 . Alog192 1y Theorem
4.1.1(3) we have that

3 15
Al7log192 < 1454 . 20627 <0.6 +2log A + 5 log () + 138) :
T

Solving the inequality numerically we obtain that A < 2.41-10%, which satisfies
the first statement of the theorem: indeed, by Remark 1.2.9 we have hz(F) >
—0.75, and so 20000-39.251308 > 2.41.10°. We can then assume that | log|q|| >

30, and hence by Theorem 1.2.6(4) that hr(E) > 0.45. By Theorem 4.1.1(2)
we have

A < 1266.4 - 2/¢] (hf(E) + glog(h;(E) +2.72) 4+ 2log A + 2.6) . (4.2.5)

The function (z + 3 log(z + 2.72) + 2.6)/(z + 8) is bounded by a := 1.0144,
so we have

A < 1266.4c - 2/°! (h;(E) + %logA + 8) : (4.2.6)
Using again the inequality 2/€I < 20627 . Alogi92 we obtain
At1og192 < 1966.400 - 20627 (h;(E) + zlogA + 8)
< 1984 <h]—‘(E) + %logA + 8> . (4.2.7)

Since Al718192 — 2. 1984 ]og A > 0.225 A1 7192192 for A > 2.34 - 105, we have

1984 \ 1-To 2 1
A< (0225> 7 (Wp(E) + 8)TRa? < 145000 (hr(E) + 8)3% | (4.2.8)

which holds also for A < 2.34 - 10 (indeed, since hz(FE) > 0.45, we have
145000 (hr(E) + 8)'3% > 145000 - 8.45308 > 2.34 . 106), and hence for all
values of A. Using inequality (4.2.8) to bound log A in (4.2.7), we obtain

2.616

AlTlos192 < 1984 <hf(E) + log (hz(E) +8) + 31-5) - (429)
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The function x + 2818 log(z + 8) 4 31.5 is smaller than 1.1 - (z + 35) for every
x > 0.45, hence we have

A < (1984 -1.1)13% (hx(E) + 35)13%%
< 23300 (7 (E) +35)" . (42.10)

Repeating this last step once more, using equation (4.2.10) in equation (4.2.7),
we obtain
20900 - (hz(E) + 40)'-308, (4.2.11)

concluding the proof of the first part of the theorem. We now focus on the
second part. We start by assuming again that |log |g|| > 30. Using the bound
on A given in equation (4.2.11) in equation (4.2.5), we obtain

A < 1266.4-2°MN(hz(E)+2.616 log(hr(E)+40)+1.5log(hr(E)+2.72)+22.5),

where w(A) is the number of distinct prime factors of A, and applying the
weighted AM-GM inequality we obtain

A <1266.4 - 2°YN (hp(E) 4+ 4.116log(hr(E) + 26.42) + 22.5).  (4.2.12)

As we can assume that A > 26, by [Rob83, Théoreme 13] we have w(A) <

loghﬁ%’ and by equation (4.2.11) we have

o(h) < 1.308 log(hz(E) + 40) + log 20900
log(1.308log(hz(E) + 40) + log 20900) — 1.1714
1.308 log(hz(E) + 40) + log 20900
log(log(hr(E) + 40) + 7.6) — 0.903"

Suppose that hz(E) > 1.2 - 10'5. We have the bounds §(hz(FE)) < 0.352 and

4'11610g(hFSEE)+26'42) < 10719, so replacing in equation (4.2.12) and bounding

hz( .
1.308 - log 2 < 0.907, we obtain

A < 1266.5 - 209008 290 E) () 2 (E) 4 40)*20700F(E) (1 £(E) + 22.5)
< 14400 - (hr(E) + 40)*90700F(E) (4 - (E) + 22.5) .

To complete the proof, it suffices to notice that for hr(F) < 1.2-10'° we have
21000 (hz(E) 4 40)"3% < 14400 (hz(E) 4 40)*T007(E) (4 (E) + 22.5) ,

which also holds for |log |g|| < 30, since in this case we have hz(F) < 0.6 (as
shown at the start of the proof). O]

Remark 4.2.6. If we assume Claim 5.3.1, we can repeat the proof of Theorem
4.2.5 replacing logq 2 with log;; 2 and obtain the following better inequalities:

A < 11500 (b (E) + 30)77
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and
A < 6200 - (hz(E) + 30)081600=(E) (h 2 (E) 4 21.5)

where
1

o) := log (log(x + 30) + 7.94) — 1.01°
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CHAPTER

Integral points on modular
curves

In this chapter, we present some techniques to study integral points on modu-
lar curves. In particular, we will focus on the case of non-split Cartan modular
curves.

Let X be a modular curve defined over Q. As usual, we denote with X (Q)
the set of its rational points. We say that a point P € X(Q) is integral if
Jj(P) € Z, where j : X — X(1) is the standard j-map. We denote with X (Z)
the set of the integral points of X.

Studying the integral points of the modular curve X,;(N) is easier than
studying its rational points. In some cases, we are able to determine the set
X,f,(N)(Z) but not the set X,/ (N)(Q). For modular curves such as X (N),
the problem of studying the rational points can be reduced to that of studying
integral points. This is done via the formal immersion argument introduced
by Mazur [Maz78]| to study the rational points of X (V). Unfortunately, this
method does not apply to the curves X,7.(N). However, in the case of the
subgroup G(p) C C;,(p) defined in Theorem 6, Le Fourn and Lemos proved
that for every prime p > 37 we have X¢(;,)(Q) = X¢(p)(Z) (see Theorem 7).

We will introduce modular units of X, which are elements of the function
field of X with zeroes and poles only at the cusps. We can expand these

2miT
functions in their Fourier series in the parameter ¢ = ¢ » . We will use them
to give some bounds on |¢(F)| when E corresponds to a point in X (Q), which
gives in turn a bound on log |j(F)|. This is possible because the modular units

of a curve of level p are integral over the ring Z %, j} , and hence integral over

the ring Z [ﬂ when evaluated in an integral value of j. The bounds are
then obtained via two different methods: Baker’s bound for linear forms in

67
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logarithms, as presented in [BS14, Shal4], and Runge’s method for modular
curves. The last one was developed by Bilu and Parent [BP11b] to determine
the integral points on the modular curves XJ (p).

In the first part of the chapter we will focus on the integral points on X, ()
for some small values of V. In the second part, we will study the integral points
on the modular curve Xg(y,), where G (p) is the group defined in Theorem 6.
To conclude, we show that the curves X¢(,) have no non-CM rational points.

5.1 Cusps of modular curves

We follow [LFL21] to deduce from [DR73] a parametrisation of the cusps of
modular curves, with our focus on the curves X' (p").

Lemma 5.1.1. Given a positive integer N, there is a bijection between the
X
cusps of X(N) and the set My x (Z/NZ> , where

My = {(a’b)EZ/NZXZ/NZ : (N,a,b)::[}/il

which is equivariant for the action of Glg <Z/NZ> (acting by its natural left
action on My and by multiplication by the determinant on Z/NZ)' More-
over, if o € Gal <Q/@> and c is a cusp of X(N) corresponding to the pair

((b) ,d) , then o(c) corresponds to
(9 )

where x N s the cyclotomic character.

Proof. As in [LFL21, Lemma 2.1], by [DR73, 6, VI.5] we have a canonical
Galois and GLg (Z/NZ> equivariant bijection between the cusps of X (N)
and the set

Z Z Z
S::Isom</uv>< VN7V N7 X /NZ>/j:U7

where U is the set of matrices

U:z{((l) ?) :uEHom(Z/NZ,,uN)},
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and the action of Gal <Q/Q> is induced by its natural action on px and the

trivial one on Z/ N7 The action of GLa (Z/ NZ) corresponds to left matrix

multiplication.
Given a class v € S represented by

(CNaO) = (aab)v (L 1) = (Cv d)v

we associate with it the element

((£) a0) 00 (1)

where dety := ad — be. The function is well defined, because since v is an
isomorphism we have (N, a,b) = 1, and every other representative of «y yields
the same element. Moreover, it is easy to see that this function is equivariant

with respect to the actions of GLo (Z/ NZ) and of the Galois group.

We note that this function is surjective, as given ( (Z) ,ar) with (V,a,b) = 1,
by Bezout’s identity there exist ¢,d such that ad — bc = x (mod N), giving

the matrix v = (a “l € S. We now prove that it is injective. Given

X !
v, € S with the same image in My x (Z/NZ) , we have <a7) = <a7>

b, by

and r = aydy — bycy = a,dy — bycys. We can then notice that

_ 1(d —c QAry  Coy 1 u
Y v y v G
T \=by a, by dy 0 1

for some u € Z/ N7, concluding the proof. O

Corollary 5.1.2. If H is a subgroup of GLa (Z/NZ>, then there is a bijection

(Z/NZ)"

between the set of cusps of X and the set H\MN X . Moreover, if

X
det H = (Z/NZ> , this bijection induces a bijection between the set of cusps
M
of Xp and i (8L, (z/NZ)X -
Proof. The proof is analogous to that of [LFL21, Corollary 2.2]. The first

statement immediately follows from Lemma 5.1.1 and the definition of X. To

X
prove the second statement, notice that, given a class in H\MN x (Z/NZ) ,
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there is always a representative of this class of the form (v, 1), because det H =
X
(Z/ NZ) . Therefore, the map

H N SLy (Z/NZ)\MN — H\MN X (Z/NZ)

given by v — (v, 1) is well-defined and bijective. O

Corollary 5.1.3. Let H be a subgroup of GLo (Z/NZ) such that det H =
X

(Z/NZ> . Under the identification of Corollary 5.1.2, there is a one-to-one

correspondence between the Galois orbits of cusps of X and the set H\MN.

Proof. The proof is analogous to that of [LFL21, Corollary 2.3]. One can also
find it in [BBM21, Remark 2.2]. O

We now examine the case N = p”. We notice that the set My becomes

My = {0 €Ly xLipy + vt b)}/j[1 |

We notice that there is a correspondence between the set Mp» and the set

Chs (pn)/ ‘1. Indeed, consider an integer ¢ such that ¢ € Z and 2 —¢ € Z,[z]
is an irreducible polynomial. If 1/ is a root of that polynomial, modulo p"
we have

Cus) = (Zpglval) = {a+bvE € Bipnglva) « pi (b))

It is not difficult to see that there is a one-to-one correspondence Mpn —
C’ns(p")/il given by (a,b) — a + by/e. Moreover, the action of the group

Crs(p™) = { <Z bj) € GLy (Z/p”Z)} on M, by left matrix multiplication

is the same as the left multiplication on Cj,s(p") = (Z/pnz[\/a)

X

Corollary 5.1.4. The Galois group Gal (Q/@> acts transitively on the cusps

of the modular curve X,s(p™) (and hence also on the cusps of the curve
X5 (0"))-

X
Proof. Since det Cp5(p™) = (Z/an> , by Corollary 5.1.3, the Galois orbits

Chs(p™)
correspond to the elements of the set Tp{:)tl ={1}. O
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We now consider the case where N = p = 2 (mod 3) and H is the subgroup
G(p) < C(p) defined in Theorem 6. We show that, unlike the case H =
C;t.(p), the cusps of Xg(p) form two distinct Galois orbits. This fact will be
crucial in the application of the Runge method in Section 5.4, as it gives the
existence of a non-trivial modular unit defined over Q.

We have the following lemma from [LFL21, Lemma 6.3].

Lemma 5.1.5. The set of cusps of X¢(,) consists of two Galois orbits. One of
the orbits can be identified via Corollary 5.1.3 with the set Ocubes/il cM,,

where
Ocubes = { (b> € F2\ {0}

Proof. As we noticed above, the action of Cy4(p) on the set M,, corresponds

a+bﬁ€F;23}.

X
to the multiplication of elements in FpQ/il by elements in IE‘ZQ. Moreover,

the action of the element (1 0 > corresponds to the action of the Frobe-
0 -1

nius automorphism on IE‘;. We then see that the action of G(p) corresponds
to the multiplication by elements of (]F;Q)?’ and the action of the Frobenius
automorphism of F,2. It is not difficult to notice that OcubeS/il is an orbit.

Indeed, the product of two cubes is a cube and the Frobenius automorphism
of F,2 preserves the cubes. Given an element v € IF;Q \ (IF;Q)?’, we see that

IF;2 = (IF;Q)?’ L 7(F;2)3 L 72(15‘52)3, and v? is obtained from ~ by applying the

X\3 11 A2(F% )3
Frobenius automorphism. This implies that 7(Fp2) Uy (Fp2) /41 is another
orbit for the action of G(p). O

5.2 Modular units

Let 7 be an element in the upper half plane #. Define ¢* := e2™*7 and
e(k) := e2™* for every k € Q.

Definition 5.2.1. Let N be a positive integer. For all (a,b) € +Z%N[0,1)?,
with a, b not both 0, we define

Gap(T) = ¢ % e(ba—1)/2) [ (1 = a"Fe(®)(1 — "~ %e(=b)),
n=0

where By(r) = 22 — x + % is the second Bernoulli polynomial.

Consider the set

My = {(a.b) € Lz x Ling, ¢ (Noab) =1},
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where MN/il = My is the parametrising set from the previous section.
Consider a group G < GLg (Z/ NZ)’ and a subset O C My stable by the

action of G on My by left multiplication. We can identify (whenever it is not
ambiguous) the elements in the set My with elements in +Z%N[0,1)% If we
consider the modular curve X of level NV, this can be defined over a number
field K C Q(Cw)-

Theorem 5.2.2. Suppose (N,6) = 1. For every pair (a,b) in My consider
an integer m(a,b). If 12| 32, penr, m(a,b) and 2 | m(a,b) for every (a,b),
then the function
BN
v=J[ "
(azb)EMN

is modular for T'(N). Moreover, U is integral over Z[j], where j is the standard
J-function in Q(X(1)).

Proof. See [KL81, §3 Theorem 5.2] and [BP11b, Proposition 2.2]. O

Given the modular curve X (N), the set of modular units of X (/N) modulo
constants form a free abelian multiplicative group of rank C'—1, where C'is the
number of cusps of X (V). The following lemma (which is a slightly improved
version of [BBM21, Lemma 4.8]) gives a dependence relation between the
generators gq p-

Lemma 5.2.3. For every positive integer N, the set My has cardinality

1
N ] <1 - 2) :
p prime p
pIN

Proof. Suppose first that NV = p™ is a prime power. In this case, we can write
Mpn = {(a,b) : ptabt U{(a,b) :p|a,ptb} U{(a,b) :pta, p|b}.
Hence we have
[Mn| = o(0")? + 20" p(p") = p*" 2 (p* — 1)

as desired. Suppose now that N is the product of prime powers N = Hp| NP
By the Chinese remainder theorem, we know that (a,b) € My if and only if
(@,b) € My for every p | N, where T represents the projection from Z/ N7

to Z/an. Moreover, we have that |My| = [], 5 [Mp~|, and the conclusion
follows. u
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Lemma 5.2.4. For every N > 2, N # 4, set

U= H Gab-

(a,b)EMN
We have U = ®n(1), where ®n(x) is the N-th cyclotomic polynomial.

Proof. By Theorem 5.2.2 we know that every g!%V belongs to Q({n)(X (N)),

so does U'N . Since the set My is stable under the action of GLs (Z/ NZ)v

the function U'?Y is stable with respect to the Galois action over the field

Q(X (1)) (see [BBM21, Proposition 5.4]). In particular, U2V is a unit in the
function field Q(X(1)). However, X (1) has only one cusp, and hence there
are no non-constant units for X(1). In particular, U2V
of Q, and so U € Q. By the expression of the functions Jap, €valuating in
g = 0, this implies that

must be an element

2mik

U= ][] eba-1/2) - J] @—e¥)

(a,b)eMn (()k<7jl\c7)<i\f1
= JI etla-1)/2) - en1)=¢ n(1)
(avb)eMN

for some root of unity (. We now show that ¢ = 1. To do that, it suffices to
show that
Z V(a —N)=0 (mod2N?),
(a,b)eMn
with @’ = Na and &' = Nb (we recall that a,b € Z?). Consider now the
permutation of My given by (a’,b') — (a’, N — ¥'): this gives

Yo V@ -N)y= > (N-V)d-N),
(a,b)EMN (a,b)GMN

and so

Y 2@ -N)= )  N(-N)

(a,b)EMN (a,b)EMN

Similarly we have

Z a = Z N —d == Z 2a’ = |[My| - N,

(a,b)GMN (a,b)EMN (a,b)GMN

and so

N .
Z b,(a/—N):? (a/_N):_f
(a,b)eMn (a,b)eMy
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To conclude it suffices to notice that either 8 divides N, and so |[My| = 0
(mod 8), or there exists an odd prime p such that p | N, and so |[My| = 0
(mod p? — 1) and 8 | p? — 1. O

Corollary 5.2.5. Suppose (N,6) = 1. Let G < GLg (Z/NZ> and Xq the

corresponding modular curve defined over the number field K. If O C My is
stable under the action of G and m € 7Z is such that 12 | m|O| and 2 | m, then

U= [ o
(a,b)eO

belongs to K(X¢). Moreover, U and # are integral over Z[j], where A =p
if N =p" is a prime power and A = 1 otherwise.

Proof. The function U is defined over K by Theorem 5.2.2 and by [BBM21,
Proposition 5.4]. The fact that U is integral over Z[j] follows from Theorem

5.2.2, while the integrality of # is obtained applying Theorem 5.2.2 to the

AmN

product H(a,b)eo g;rfév = &5, dJ
When the level N is a prime p, one can prove the following better statement.

Theorem 5.2.6. Suppose p > 5 is a prime. Let G < GLa(FF,) be a subgroup
containing —I such that p t |G|, and let Xg be the corresponding modular
curve defined over the number field K. Let O C M, be a G-invariant subset
such that the relations

Z a’ = Z b= Z ab=0 (mod p), (5.2.1)

(a,b)eO (a,b)eO (a,b)eO

2| m and 12 | m|O| are satisfied. There exists k € Z such that the function

v=¢ I 9

(a,b)eO

belongs to K(Xq). Moreover, U and 1% are integral over Z[j].

Proof. By [BBM21, Theorem 5.5] we know that U belongs to K(X¢). The
integrality of U and % follows from Theorem 5.2.2 and Lemma 5.2.4. O

If we consider the modular curve X (), the function field Q({n)(X(N)) is a

Galois extension of Q(X (1)), with Galois group GLs (Z/ NZ)' The functions

g2V are generators of a finite index subgroup of the units of Q({n)(X (V).

The Galois group of Q(¢n)(X(N)) over Q(X (1)) acts on the modular units
of the curve X (), and the action is described (up to raising units to a suit-

able power) by the relations (g;QbN )7 = g(l(fg)a for every o € Gl (Z/ NZ)
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(see [BBM21, Proposition 5.4] for a general description). If G is a sub-
group of GLo (Z/ NZ)’ we can describe the conjugates of a modular unit

U € Q(¢n)(Xq) in the field Q((n)(X (N)) in the same way.
We now study the modular units for the groups C;f,(p") and G(p) < C;f(p).
We start by giving the following result presented in [LFL21, Proposition 6.4].

Theorem 5.2.7 (Le Fourn, Lemos). Let Ocybes be as in Lemma 5.1.5 and
define the function

Uiry=¢  [I 9

((l,b) e(9(:ubcs,

where  is a root of unity such that the coefficient of the lowest power of q in
U is 1. We have the following:

o U c @(XG(p))

e The zeroes of U are the cusps at infinity (that is, the Galois orbit of the

cusp oo corresponding to OcubeVil via Lemma 5.1.5), while its poles
are the other cusps.

e Both U and % are integral over Z[j].

Proof. Tt immediately follows from Theorem 5.2.6 with m = 6, noting that
Ocubes satisfies the relations 5.2.1, that 12 | 6|Ocypes| and 2 | 6. O

Remark 5.2.8. Le Fourn and Lemos in [LFL21, Proposition 6.4] choose m =
3. However, it seems that this choice of m shows that U is defined over
Q(¢p) (X (p)), but does not ensure that there exists a root of unity ¢ such that
¢ - U is defined over Q(Xg(p)). In any case, they use this result to obtain an
inequality which is homogeneous in m, and hence also m = 12p would give
the same results.

5.3 Small levels

The aim of this section is to study the integral points on some modular
curves associated with normalisers of non-split Cartan subgroups. While the
curves X, (N) contain infinitely many integral points for N = 1,3,4, 5, many
authors described the set of integral points on X, (N) for small values of
N > 5. For example, Kenku [Ken85] determined the integral points of X!, (7),
Chen [Che99] proved that the integral points of X, (15) are all CM, Schoof
[ST12] dealt with the case N = 11 and Baran [Bar09, Barl0] with the cases
N =9,16,20,21. Recently, Bajolet, Bilu and Matschke [BBM21] stated the
following.
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Claim 5.3.1. Let 7 < p < 100 be a prime and let P € X,[,(p)(Q). Ifj(P) € Z,
then P is a CM point.

Unfortunately, there seems to be a mistake in the article where they prove
this statement, so it might not be true. However, there is evidence that it is
very probably true. A detailed explanation of the mistake can be found in
Remark 5.3.10.

Theorem 5.3.2. Let N be a 100-smooth odd positive integer, i.e. an odd
positive integer such that for every prime p dividing N we have p < 100.
Suppose that Claim 5.5.1 is true. If P € X,[,(N)(Q) is such that j(P) € Z
and P is not CM, then either N € {1,3,5}, or

J(P)e{23.5%. 75, 215.75  33.413.61%.149%, 29.17%.19%.29%.1493
26,113 . 233 .149% . 2693}

We will prove this theorem in multiple steps.

Lemma 5.3.3. Consider the modular curves X,},(7), X,f,(9) and X,1,(3) % x (1)
Xois(5)-

1. If P e (X;(3) xx(1) X,£5(5))(Q) is such that j(P) € Z, then P is a CM

point.
2. If P € X1.(7)(Q) is such that j(P) € Z, then either P is a CM point or

J(P)e{23-5%.7°, 215.75  29.175.193.293. 1493,

5.3.1

26.113.23% . 149 . 269%} (5:3.1)
and for the corresponding elliptic curves Ep we have [GLy(Z) : Im PEp] €
{84,504}

3. If P € X;1,(9)(Q) is such that j(P) € Z, then either P is a CM point or
j(P) =33 413A- 612 - 1493 and for the corresponding elliptic curve Ep
we have [GL2(Z) : Im pg,] = 108.

Proof. The proof of part 1 can be found in [Che99, Corollary 6.5]. If P €
X (7)(Q) and j(P) € Z, by [Ken85] we know that either P is a CM point
or j(P) belongs to the list (5.3.1). Actually, Kenku’s list in [Ken85] contains
some typos: in the j-invariants column one finds 22 - 53 - 7% and 7° - 2° instead
of 23.53.7% and 215 - 7°. The correct j-invariants are computed, for example,
after equation (4.37) in [E1k99, p. 93|. By using the algorithm FindOpenImage
developed by Zywina in [Zyw22] we can compute the index of the image of
the adelic representations attached to elliptic curves with j-invariant in the
list (5.3.1). Indeed, the index of Im pg only depends on j(E), as shown in
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[Zyw15b, Corollary 2.3]. The first two j-invariants of the list give rise to
elliptic curves with [GLq (2) : Im pg] = 84, while for the last two j-invariants
we have [GLy(Z) : Im pg] = 504. For the level 9 case, we know by [Bar09,
Table 5.2] that P is either a CM point or j(P) = 33 - 413 . 613 - 1493, We
can then compute the index [GL2(Z) : Im pEp] by using again the algorithm

FindOpenImage. O

We now want to compute the integral points on the modular curve X (25).
Before doing this, we need to define some modular units for the curve X, (25)
over a suitable number field. We follow the work of Bajolet, Bilu and Matschke
[BBM21], generalising it to the case of non-split Cartan modular curves of
prime power level.

Let N be an odd prime power, say N = p"”. Consider the normaliser

of the non-split Cartan subgroup C;f,(p") < GLa (Z/an>. We know that

Z 8 Z x
det(C)(p™)) = ( /an) . The group ( /an) is cyclic of order ¢(p").

n X
Let d be a divisor of % and consider the unique subgroup H of (Z/an)

of index d. We define Gy < C;f,(p") as det ' (H). Clearly we have [C;,(p") :
Gul| =d.

The modular curves X¢g,, and X;f (p™) have the same geometrically in-
tegral model, however they are defined over different number fields. Let
K C Q(¢n)™ be the unique subfield such that [K : Q] = d. We have that X,
is defined over K and if we consider the function fields of X, and X (p")
we have

n + (7
Gal (K(XGH)/Q(XL(]?”))> >~ Gal (K/Q) o~ Z/p Z/H o~ Cns(p )/GH

The curve X, has the same cusps as the curve X! (p™), which are @

cusps defined over the field Q((»)*. However, while X! (p™) has a single
Galois orbit of cusps (over Q), the curve X¢,, has d different Galois orbits
over the field K.

X
Fix a generator & of (Z/pnz) . We can assume that, up to conjugation,

Cr(p") = { (:b Z) } Consider the set

(a b) EGH}:{(a,b)EMpn ]a2feb2€H}.

eb a

0= {(a, b) € Mpyn

2n—2(,.2
This has cardinality p%‘(lpl) and is invariant under multiplication by Gg.

By Corollary 5.2.5, if we have m € {2,6} such that 12 | m - @, then the
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function
U= [] 4% (5.3.2)
(a,b)eO

is an element of K (X¢). Moreover, both U and 2 mUp are integral over Z[j]. We

remark that by [BBM21, Proposition 5.4] the conjugates of U in the extension

K(Xay )/Q(j) are given by

=11 deh.= 11 o

(a,b)eO (a,b)eOc

for 0 € Gy = Gal (K(XGH)/Q(J-)).

We recall that a point P € X5(Q) is said to be integral if j(P) € Z. If
we have an integral point P on Xg, we can evaluate U in P and obtain
that U(P) € K is integral over Z, hence U(P) € Ok. If we define ny :=
No(epn )/K(l — (pn ), we know that there is a single ideal p C Ok dividing p, of

norm p, which is generated by 7g. As also % is integral over Z, it follows

that U(P) € p = (o). If we call n1,...,n4-1 € Ok a choice of generators of
the free part of the group of units of O (we recall that K is contained in the
totally real field Q({n)™), we have

bg_
U(P)::I:ngo-nll’l-...-ndill

for some by, ..., bg_1 € Z with by > 0. Given ¢ € Gal (K(XGH)/Q(].)) we

can consider the restriction of ¢ to K. As noticed in [BBM21, Propositions
6.4 and 6.5] we have (?U)(P) = ¢(U(P)), hence we can write

CU(P) = ¢(no)™ - (m)™ - ...« d(na—1)"".

If we choose an order on the elements of Gal (K/Q) = {do,...,Pa-1}, we

can define the d x d real matrix = (log|¢x(7:)])g<pi<g_1- This is non-
singular, since 79, 11, . - ., Ng—1 are multiplicatively inde}ae’n_dent. Indeed, if the
kernel of the matrix contains a line, there exist a d-tuple r = (rg,...,rq_1)
of integers arbitrarily close to the line such that the $r has arbitrarily small
values. However, $r represents (up to sign) an element in O \ {0,1} and
its conjugates, which cannot be all too close to 1 at the same time, giving a
contradiction. Let 2 = (ki) ;<4 be the inverse matrix of §. We have

d—1

b= ag;log|*U(P)|
i=0

forevery 0 < k <d—1.
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Remark 5.3.4. By Lemma 5.2.4 we know that H?:_OI J(U(P)) = p™", and so
it is easy to notice that by = mp™.

Definition 5.3.5. Let (a,b) € My. We define

—emib(a—1) ifa+#0

lop = Ordy(gap) = B2(a)/2 and pgyp:= ‘ ‘
_emb(a—l)(l _ e27rzb) ifa =0.

Given a subset O C My we define

Lo = Z Lo and H Pab-

(a,b)eO (a,b)e0

The fundamental domain in the upper half plane H corresponding to the
modular curve X¢ is the union of fundamental domains of the curve X (1),
and every cusp of X represents the point at infinity of one of these domains.
As P is a point on X, there exists a fundamental domain in which P is lying,
and in particular, there exists a cusp ¢ which is closer to P than all the other
cusps (the cusp in the projective closure of the fundamental domain). There
exists o € SLa(Z) such that o(P) lies in the standard fundamental domain
for SLy(Z), and so such that o(c) = co. We define the parameter g, = e*™°7
which is the g-expansion in the cusp ¢, i.e. such that g.(¢) = 0. With this
choice of ¢ we can write

1
log |U(P)| = mp" Lo, log|ae(P)| + mp™ log|pos| + Or(mp*"|O||¢.(P)[7"),
where f(x) = O1(x) means that |f(x)| <z, and hence
log |U(P)| < mp™oglog |g.(P)| + mp™log |pos| + mp™*|O|. (5.3.3)

Indeed, this follows from the definition of U together with [BBM21, Corollary
4.6].

Notation 5.3.6. Let ¢ be a cusp of X and let o € SLo(Z) be such that o(c) =

oo as above. For every k=0,...,d — 1 consider the following quantities:
d—1 d—1
Sep = —mp" Y kiloge,  Oek =mp" Y ;108 |pogiol,
i=0 i=0
mpn—2( d—1

@:

2
-1
dp ) max g ) |l il
1=

As noticed in [BBM21, Remark 7.1], by the definitions above we have d.9 =
0 for every cusp ¢, and at least one d.; is non-zero (indeed, U is non-constant,
as it is a non trivial product of multiplicatively independent functions).
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Similarly to [BBM21, Section 6.1] we can notice that the curve X has £ (p )
cusps defined over Q(¢,»)" , and that a good set of representatives in IF’I(Q)

for the cusps is {ﬁc(oo) |ce (Z/p"Z) X/il}, where o is a lift to SLa(Z) of the

a c¢b

€ SLo (Z/pnz), for some a, b such that a® —eb? = ¢~ 1.
eb ca

matrix o, = (

Z[p"Z)*

Here, each ¢ € ( /41 corresponds to a different cusp.

Proposition 5.3.7. If d is odd, we have that 0.3 € mp"Z for every c,k and
0.0 = mp". Moreover, up to changing the choice of o by one of its conjugates,
we can assume that 0.1 = ... = 0,41 = 0. If instead d is even, for every
cusp ¢ we have that (6c0,...,0c4-1) ¢ Q.

Proof. Since O is invariant under the action of G, there is an action of

_l’_

Crs(p )/G ~ Z[p" Z/H Gal (K/Q) on the set {O,0¢1,...,0¢4-1} of
the cosets of O in Myn. Here, the automorphlsms id = ¢, P1,...,Pq_1 can
be taken to be representatives of C ns(P )/G such that ¢; € Cps(p™) and
det ¢; = €', If we call Gy = Gu N Cps(p™), we can write

0= {(a,b) eM (ab b) eGH} — (1,0

and so O¢; = (1,0) - G’y = {(a,b) € Myn | a® — eb? € e'H}. If we identify
the cusp ¢ with ¢ € z/ an/il’ by the parametrisation above, we have o, =

dc b 1o for some ac, b, such that a? — eb? = ¢~!. As the group
b, 0 ¢

Chs(p™) is abelian we have

b 10
O¢io. = (1,0) - Gy e Do
b0 (1,0) o (d)c ac> (0 c)

= {(a,cb) € Myn | a® —cb? € e'c ' H} (5.3.4)
={(ca,b) € Myn | a® —cb® € e'cH}. (5.3.5)

We now want to compute the absolute value of the constants pog,s.. As
the absolute value does not change under multiplication by roots of unity, by
Definition 5.3.5 we see that

pogwd =TI N=¢ul= I NI-=¢ul= T N1—=¢nl

(0,b)eO@;0. beZ/p"™Z b2e—ci—1cH
—eb?ceicH
By definition of H, we know that —1 € H, because d | @ (or equivalently
H has even order), and so —e'"1cH = ¢'~'cH. We now treat separately the
case when d is odd and the case when d is even.
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e d is odd. In this case, either e*"!¢ is a square or not. If it is a square,
then

{(b|b* e leHY = Vei-le-{b|b* € H} = Vei~lcH.

If instead €'~ !¢ is not a square, consider h € H a generator of H. Then h
is not a square and we can write e~ 'cH = "~!chH. Repeating the same
argument we obtain {b | b* € e"lcH} = Vei~1chH. Define v := \/c if c
is a square and 7 := v/ch if ¢ is not a square. We notice that

{b|b* € 'eHY = (Veh) ™ 'yH,

and in particular, that the set {(0,b) € Oo.} is equal to the coset \/%H

and that applying ¢; corresponds to multiplication by (ah)%. If we
consider ¢ = 0, there are integers t1,...,t4—1 and an automorphism

¢ € Gal (K/Q> such that

b Vehy—1b ta_
poo = J]IL=¢nl =TT 11-="" I =lomo)l = Ino-nit-...mg,

beﬁH beH
and for every ¢ =0,...,d — 1 we have
1—14
b h) 2 v 1p
poswd =TI =Gal=T[n-¢" """
be(ch) T vH beH

= |pid(mo)| = |di(no) - di(m)™ ... - pi(na—1)"*|.

Notice that up to changing the choice of 1y by a conjugate, we can
assume that ¢ = id, and so t; = ... = t43_1 = 0. We can rewrite these
relations as

1 log | poo. |
57) tl _ log |p?¢lac| ’
ta—1 log [pog, 0.l
and so
1 log |p(90c‘ 90,0
1 -9 log |p(9¢>1ac‘ . 1 90,1
. . mpn .
ta—1 log |pog, 0.l Oc.d—1

e d is even. In this case, every element of H is a square. If £/~ !¢ is not
a square we have {b | b> € ¢"1cH} = (), and so |pog,0.] = 1. Suppose
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that 0.0,...,0.4—1 are all rationals: up to raise to a power r, we can
assume they are integers. We notice that they are not all zero: indeed,
in that case we would have ppg,,. = 1 for every ¢, but this is impossible
as Hf:_ol POGice = H(mb)eMpn pap = p. Then, given i such that " 1c is
not a square, we have

1= 1pogio ™" = 16i(10)0¢i(m)’" ... ¢i(na—1)’=+-".

The number ¢;(19)%0¢;(n1)%1 ... ¢i(ng_1)% 41 is real, and hence it
must be £1. However, this is impossible since ¢;(no),. .., ¢i(n4—1) are
multiplicatively independent. O

Lemma 5.3.8. Let P be an integral point on Xqg, c its nearest cusp and
Ge := qc(P). For k=0,...d -1 we have

1
b, = Ok log |qcr1 +0c1 + O1 (@\qJP") .

Proof. The proof is analogous to that of [BBM21, Proposition 7.2]. It follows
from equation (5.3.3) noting that the same relation holds when we substitute
U with U and O with O¢. O

Proposition 5.3.9. If P € X,[,(25)(Q) is such that j(P) € Z, then P is a
CM point.

Proof. By [Shal4] and [Cai22] we obtain the bound log |j(P)], |log |¢.(P)|| <
10990 We now follow [BBM21, Section 9] to reduce the bound via the

X
Baker—Davenport method. Take H C (Z/25Z) as previously such that

d = [C},(25) : Gg] = 5 and K C Q((25) the unique subfield such that
d = [K : Q] = 5: in this case it suffices to take m = 2 to define a modular unit
U as above, indeed |O| = % = 240 is divisible by 12. By Proposition 5.3.7
for every cusp ¢ we can change the definition of 1y so that |6y| = |pos.|, and
this implies that 6.1,...,0.4-1 = 0. Set g = 10199 and initialise Q = Q.
By Lemma 5.3.8 we have by, < By, = [0.4|Q + © for every k = 1,...,d — 1.
For every 4, j such that é.;,0.; # 0, by Lemma 5.3.8 we can write

1
b bi = Oeabs = O1 (O1deal + 16c1)ac % )

and in particular setting § := SZ—’; we have
1
b — db; = O (O(1 + |8))]acl )

We remark that after this step there is a mistake in [BBM21], as the authors
assume that 0., 0. ; are not integers, but this is false every time that d is odd,
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as shown in Proposition 5.3.7. We discus§ this in detail in Remark 5.3.10. If
b; =0, then we have |0, ;log|q.|| < ©lg.|25. Taking the logarithm we obtain

. (5.3.6)

1 1 ©
51108 el < log 10g el + 5 1og el < o |

We can then suppose that b; # 0, and therefore we can write

bz’_(;':
b

O(1 +16])|gc| =

< O(1 + |6])|gc| 5.
|b;]

We can then compute the best rational approximation r of § with denominator
bounded by B; and notice that g—; -9 ‘ > |r — 0]. We eventually obtain

(5.3.7)

1
|log |ge|| < 251og <®(+|6D> 7

| — 4

which is usually a much better bound than . Indeed, the expected value of
|r — 4| is around B;Q, which has the size of 2. We now proceed by substituting

Q with the maximum among 25 log %‘ and 25log <M>, and iterating

r—94
the process while ) keeps decreasing. This allows us‘to ‘obtain the bound
| log |gc|| < 1063.

We now test all possible j-invariants with absolute value smaller than e
Our method is much more efficient than that of [BBM21] and only takes a few
seconds. However, it is ad hoc for the modular curve X', (25). Consider the
map X, (25) — X;F.(5). An integral point on X,(25) must give an integral
point on the curve X,/;(5). The modular curve X, (5) has genus 0 and is
isomorphic to P!, and the j-map X,(5) — X (1) is given by

1100

53(t + 1)(2t 4+ 1)3(2t2 — 3t + 3)3
(t*+t—1)°

Js(t) = (5.3.8)

(see for example [Zywlba, Theorem 1.4]). This implies that there exists a
rational number ¢ such that j(P) = j5(t). The resultant between the polyno-
mials 53(¢+1)(2t+1)3(2t2 — 3¢t +3)3 and (> +¢—1)5 is 5°. If we write t = 3=,
with X, Y coprime integers, and F(X,Y) = 53(X+Y)(2X+Y)?(2X?-3XY +
3Y2)3, then

ged (F(X,Y), (X2 + XY —Y?)%) | 57710,

However, j(P) is an integer, and so (X% 4 XY —Y?)? also divides 5°Y 10, As
X,Y are coprime, we obtain that X2 + XY — Y2 = 4+5% with 0 < d < 15.
If d > 0, it is easy to notice that X and Y must be coprime with 5. Writing
X = 3(-Y £V/5Y2 £ 4-57) we see that 5Y2 £ 4 -5 is a square, and so its
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5-adic valuation must be even. This implies that d < 1. We then want to
solve the following Pell equations:

5Y2 - D? =44  5Y? - D? =420,
which replacing D = 5F reduce to
5Y2-D? =44  Y?—-5E?=+4.

So we just need to solve the equations u? — 50?2 = +4. As Q(v/5) has class
number 1, we have solutions

() ()
wms () ()

for k > 0, such that u? — 5vZ = (—1)¥ - 4. All the possible solutions in X,Y
are

X = =g R
Y = Y = uy
X2+ XY —y? = (-1 X2+ XY - Y2 = (—1)F+L 5
and hence j(P) € {(—l)kF(X, Y), (_15)5k+1F(X, Y)} As the solutions of Pell’s

equation grow exponentially (and so does F'(X,Y)), we have logarithmically
fewer cases to test. To test the curves, we first compute the set of the j-
invariants of points on X,/ (5) with j < e!1%. Then for every j in the list we
choose an elliptic curve E such that j(E) = j and we search a small prime p
of good reduction (it is sufficient to test a single curve by Lemma 5.4.27). We
compute the characteristic polynomial of the Frobenius of the curve reduced
modulo p and we check if this is the characteristic polynomial of an element
of C;f,(25) when reduced modulo 25. If it is, then we consider the next small
prime p of good reduction, otherwise we remove j from the list. The algorithm
takes a few seconds and it outputs a list of 9 CM j-invariants, which are the
only integral points of X,/,(25). O

Remark 5.3.10. We now give some more details on why there is a problem
in [BBM21]. In [BBM21, Section 9] the authors define A = W and
assume that there exists an integer r such that the number rd is close to an
integer, while 7\ is not. However, by Proposition 5.3.7 we know that A € Z[d],
and so A will be close to an integer too. To see this easily notice that,
similarly to the first part of the proof of Proposition 5.3.9, one can assume
that 61 =---=60,4_1 =0, and so A = 0.
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We are now ready to prove Theorem 5.3.2.

Proof of Theorem 5.3.2. If we write N = [[ p5*, for every p; the j map factors
through a map X, (N) — X, (p*) defined over Q for every 1 < k < ;.
This implies that a rational point P on X;,(N) with j(P) € Z maps to a
rational point on X, (p;") with the same j-invariant. Assuming Claim 5.3.1
this implies that N = 3% - 5% . 7¢. By Lemma 5.3.3(3) we have that either
§(P) = 334136131493 or P does not map to X,',(9)(Q), so we can assume
that @ < 1. Similarly, by Proposition 5.3.9 and Lemma 5.3.3(2) we can assume
that b < 1 and ¢ = 0. To conclude, it suffices to notice that by Lemma 5.3.3(1)

the exponents a and b cannot be both equal to 1. ]

5.4 Proper subgroups of C/ (p)

In this section, we give the proofs of Theorem 8 and Theorem 9. To do this,
we will study the integral points of the modular curves X¢(,), where G(p)
is defined as the unique subgroup of index 3 of C;/;(p) (see Theorem 6). By
Lemma 1.1.5, we know that for p > 5 the set of integral points of X,
coincides with the set of rational points. The main strategy involved in the
proof is the Runge method for modular curves, developed by Bilu and Parent
[BP11a]. This is the same strategy applied by Le Fourn and Lemos to prove
that there are no non-CM elliptic curves E such that Impg, = G(p) for
p > 1.4-107 (Theorem 7).

Le Fourn and Lemos’s proof of Theorem 7 is based on two fundamental steps:
first, they show that an elliptic curve satisfying the hypothesis of Theorem 7
has integral j-invariant (via the formal immersion method of Mazur). Second,
they prove an upper bound on |j(E)| by combining Runge’s method with
an effective surjectivity theorem showing that Im pg, = GL(E[p]) for all p
greater than an explicit bound depending on j(E).

The first step works in complete generality: Le Fourn and Lemos actually
prove that j(E) is integral for p ¢ {2,3,5,7,11,13,17,37} and we can show
that this is true for every p > 5, so, in order to prove Theorem 9, we can
assume j(E) € Z. Our main contribution lies in a much sharper upper bound
on |j(E)|, which we achieve through three main innovations: First, we apply
the sharp effective surjectivity theorem proved in Chapter 4 (i.e. Theorem
4.1.1). Secondly, we exploit the local properties studied in Chapter 3, such as
ruling out all primes p = —1 (mod 9) and proving that j(E) can be written
as pFed for some integers ¢ > 0 and k& > 4. When we eventually reduce
the proof of Theorem 8 to an explicit calculation, this latter relation has
the effect of dividing by three on a logarithmic scale the number of tests we
have to perform, significantly reducing the computational component of our
approach. Finally, the third and most significant innovation is our much more
detailed study of the modular units on the curve X¢(,). The main ingredients
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that lead to our improved bound on log |j(E)| are sharp bounds on character
sums, which essentially draw on Weil’s method to treat Kloosterman sums
[Weid8], an idea based on Abel’s summation to amplify certain cancellation
phenomena among roots of unity, and direct computations to fully exploit the
extent of these cancellations. All of these improvements are crucial to lowering
the bound on log|j(F)| to values that are computationally tractable, and the
result we obtain is sharp enough that the final computation takes less than
two minutes of CPU time.

The Runge method for modular curves

The aim of this section is to prove Proposition 5.4.16, which gives the absolute
upper bound log [j(E)| < 39 + log?2 for all elliptic curves E/@ which satisfy
Im pg , = G(p) for some prime number p. This should be contrasted with the
estimate log |j(E)| < 27000 given in [LFL21].

For technical reasons, in the whole section we work with the quantity | log |¢||
instead of log |j(E)|, where ¢ = €2™" and 7 is a point in the upper half plane
‘H corresponding to E(C). By Theorem 1.2.2, whenever 7 is in the standard
fundamental domain F, estimates on log|j(E)| translate into estimates on
|log |g|| and vice versa.

The improved bound is obtained in two steps. In Proposition 5.4.5, we
obtain a preliminary bound on |log |¢|| which is already sharper than [LFL21,
Proposition 6.1] (O(y/p) instead of O(,/p), with the key improvement given
by Lemma 5.4.8). This allows us to prove that p < 103000: we then use this
to re-estimate |log |¢|| and obtain the final bound |log |q|| < 39.

From now on we will always assume that p is a prime greater than 5 for
which Im pg , is conjugate to G(p). This also implies by Theorem 6 that p = 2
(mod 3) and by Lemma 1.1.5 that j(E) € Z.

By Theorem 5.2.7, we can define the function

U:= C H gs,bv

(avb)eocubes

where ( is a root of unity, such that U € Q(X¢(p)) and both U and % are
integral over Z[j]. We then obtain the following result.

Corollary 5.4.1. For every P € X¢(,)(Q) such that j(P) is an integer, U(P)
is an integer dividing p®. In particular, 0 < log|U(P)| < 6logp.

We now introduce the auxiliary quantities that we will have to bound in our
proof.

Definition 5.4.2. Set e(z) := > for every z € C. We define functions
Ri, 0o = Ray.a,(q) as follows. For all (a1, a2) € %ZQ N [0,1)2, with a1, as not
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both 0, we define

oo

Rayas = [[(1 = ¢" " re(a2)) (1 — "'~ “1e(~a2))
n=0
for a1 # 0, and
Roay = [J(1 = q"e(a2))(1 — g"e(—az)).
n=1

We further set
R= 1T RS ...

(pal yPa2 ) E(Dcubes

where we identify pai, pas € [0, p — 1] N Z with their residue classes modulo p.

Remark 5.4.3. We have Hg;:ll(l — e(az)) = p, because Hz;:ll(l‘ —e(ag)) =
l+z+a®+... +aP L.

Remark 5.4.4. Whenever p = 2 (mod 3), we have FX = F?, and soF C IF;23.

This implies that (0,az2) € Ocupes for every az € F)f, because az\/e = %2 - \/53
is a cube in 2, since it is the product of two cubes.

The last two remarks imply that when p = 2 (mod 3) we can write U =
¢-qPdaU) . 6. R hence

log |U| = Ordy(U) log |q| + 6log p + log | R|. (5.4.1)

Comparing log |¢| with p  Our next goal is to establish the following bound
on log |g| in terms of p.

2T where T €

Proposition 5.4.5. Let E/@ be an elliptic curve and set ¢ = e
H corresponds to the complex elliptic curve E(C). Suppose that |log |q|| > 30.
If p > 5 is a prime number such that p =2 (mod 3) and Im pg, is conjugate
to G(p), then

2v2 1101

The proof of this result will occupy all of this section. The argument relies
on estimating the various terms in equation (5.4.1). In particular, we need to
compute the order at infinity of U and bound the contribution of log |R|. The
latter is the hard step; we take care of the former in the next lemma.

Lemma 5.4.6. We have
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The calculation of Ordy(U) already appears in [LFL21, Proposition 6.5],
but unfortunately, due to an arithmetic error, the result is incorrect. For the
sake of completeness, we repeat the calculation below. Note that the second
half of [LFL21, Proposition 6.5], namely the statement that |py| = (p—1)3, is
also incorrect: by Remark 5.4.3 and Remark 5.2.8 we actually have |p| = p°.

Proof. By Remark 5.4.4, we know that (0,a2) € Ocupes for every az € F. On
another hand, on )’ x IF), the function (a1, az2) — ap has fibres with constant
cardinality, because Ogypes i stable under multiplication by IF;. In particular,

the cardinality of each fibre is @2_1)13/_# = %. Hence

1 p—221  /a -1
—6((p-1)-=B P=2N~ g, (%)) = . O
Ord,(U) =6 ((p ) 5B200) + = > 5 2( ))
Our next objective is to estimate log|R|.

Proposition 5.4.7. We have

8 2
log |R|| < — ST VP,
3log |q

Proof. The inequality |log|z|| < |logz| holds for every z € C* and every
choice of a branch of the logarithm. Indeed, if z = r - ¢, we have |log|z|| =
|logr| < |logr + 6 + 2kmi| = |log z|. Thus, it suffices to bound |log R|. As
(a,b) is in Ocypes if and only if (—a, —b) is, we have

R= 1T RS .,

(plll yPa2 ) €Ocubes

p—1 oo 00
= (H [Ta- qne(b/p))”) : I T[a—q""ela2)™
(

b=1n=1 palvpa2)eocubes n=0
a17#0
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We can further write

logR =6 Z log R, as

(pal :pa2) €O cubes

p—1
=6 logRyv+6 Y  logRe
b=1 i (pa1,paz2)€Ocubes
a17#0
p—1 oo
=123 Y log(1 — g"e(v/p)) + 12 > Zlog ¢"""e(ay))
b=1n=1 (pa1 pU«Q)EOcubesn 0
a17#0
p—1 co oo q © qk(n—i-al
SSE)3) D) SLEMITIUICED DD 3) SEa o}
b=1n=1k=1 (pa1,paz)€Ocupes n=0 k=1
a170

Define now c(a) := > ycp(q) €(b/p) with F(a) := {b € Fp | (a,b) € Ocupes}
for a # 0 (mod p). We extend the definition to a = 0 (mod p) by setting
c(a) = ¢(0) := %.

The sum Y 7, e(kb/p) equals either —1 or p — 1 if respectively k # 0
(mod p) or k =0 (mod p). Moreover, we also have 3 ¢y, €(kb/p) = c(ka):
indeed, b is in F(a) if and only if kb is in F'(ka), because k is an element of
F ; and therefore a cube in IF;Q. Hence we obtain

p—1l 0o s )

logR—12Z Z——lQp 12 ZL_HZZZ

n=1kZ0(p n=1k=0(p) a=1n=0 k=1
k>0
0o 00 q q p—1 oo oo q )
227 293 3 *—12222 ka).
n=1k=1 n=1k=0(p) a=1n=0k=1
k>0

We notice that the definition we have given for ¢(0) is compatible with this
chain of equalities. Indeed, whenever kK = 0 (mod p), for a fixed a; # 0 we
have 3, c pay) €(0-a2) = [F(a1)| = % = ¢(0), as we noticed at the beginning
of the proof of Lemma 5.4.6.

Lemma 5.4.8. For every s € F; we have |c(s)| < 3/P.

Proof. For a + b/ € F 2 we have

(a +bve)? = a® + 3cab® + (3a2b + eb?) /.
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To characterise the set F'(s) we write a® + 3sab® = s. Note that, since s # 0,
we always have a # 0. Writing e,(x) := e(x/p) and t = g, this gives

(s)= Y ep(x):% S (302 +eb?)

z€F(s) a,belfy,
a3+3eab’=s

1 5 g 1 s(3t + et?)
— g Z ep(a (3t + et )) = g Z €p <1—|—3€t2 s
a,teFy teF,
a3 (1+3¢et?)=s 1+3et2#£0

where the second and last equalities are due to the fact that, for ¢ € F,
the equation z* = ¢ has 3 solutions in F,2 and 1 solution in F, (since p = 2
(mod 3)). We now use the following result by Perel'muter [Per69, Theorem 1],
obtained via a generalisation of Weil’s strategy [Weid8| to bound Kloosterman
sums.

Let ¢ € F,(t) be a rational function with poles S = {t1,...,t} C F,U{cc}.
We have

D7 ep(p(t)| < (£+ deg(p) — 2)y/p.

teF,\S
In our case we have that p(t) = S(l?i;rgj ) has 2 poles other than oo, hence we
get
1 4
e(s)] < 5343 -2)yp= 5Vp,
as desired. 0

Thanks to this lemma, we now have all the tools needed to complete the
proof of Proposition 5.4.7. We notice that

p=l 0o oo k(nt2)

Zzzq ’ c(ka) = Zq]j - c(kn).

a=1n=0 k=1 nZ0(p) k=1

[\

Isolating the terms involving ¢(0) and using ¢(0) = #3=, we can rearrange the
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sums as follows:

7" N
logR—12Z ——122 Z k/p > — - c(kn)
n=1k=1 n=1k=0(p nZ0(p) k=1
k>0
oo 00 qk” fe'e) qk” [es) q*;k
n=1k=1 n=0(p) k=1 n#0(p) k=1
n>0
— ¢"" g7 p—2 — ¢
=12 27—12 o elkn) + = ZZpT;
n#0(p) k=1 nZ0(p) kZ0(p) nZ0(p) k=1
o0 qkn q% 0 an
nZ0(p) k=1 n#Z0(p) kZ0(p) nZ0(p) k=1

where a = 12 — M - 161;[ We now notice that a < 8 for all p and apply
Lemma 5.4.8 to estlmate log R:

[log R <8 > Z|CJ| It ZICJI* le(kn)| +16y/p > Z|Q|

nZ0(p) k= nZ0(p) kZ0(p) nZ0(p) k= e (Op)
oo 0 kn -
SV ISV S RIS S
n=1k=1 n20(p) k20(p) nZ0(p) k=0(p)
k>0
& g =gl 7
s W e Y o
n=1k=1 nZ0(p) k=1
B [ *lNe"s} ]q\kn_ oo 00 ‘q’ n [ sINe"s} ’q‘%
=8> > S —16VpY Y S +16vhY Y
n=1k=1 n=1k=1 n=1k=1

= (16y/p—8) Y _log(1 —[g|") — 16\/p > _ log(1 - |q|7).
n=1 n=1

To complete the proof, it suffices to notice that

o
> log(1—1g[") <0
n=1

and that

6log(lql»)  3losldl
by Lemma 1.1.1. O

> n 1672, /p 872p\/p
16y5> log(1 — Jglp) < —— VP _ _STPVP
n=1
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Let now 7p be a point in the fundamental domain of X/, that corresponds
to a point P € X¢(,)(Q) with j(P) € Z. There exists v € SLg(Z) such that
7 =~ 1(7p) is in the standard fundamental domain F of X (1); in particular,
it is in the domain corresponding to the cusp oo (i.e., 0o is the cusp closest to
7). We remark that (Uo~)(7) € Z, since by Corollary 5.4.1 we have U (P) € Z.

Up to Galois conjugation (which fixes P but changes the cusps), we can
choose an embedding X(,)(Q) < X¢(p) (C) such that either v is the identity
or v (mod p) is an element in Cys(p) N SLa(F,) that does not lie in G(p).
Indeed, this can be seen from the parametrisation of the cusps given in [LFL21,
Section 2] and the fact that the cusps of Xa(p) split into two Galois orbits,
see [LFL21, Lemma 6.3]. From now on, whenever we write v we will refer to
the second case, in which v (mod p) is an element of C,s(p) N SL2(F,) not in
G(p), unless otherwise specified.

Remark 5.4.9. By Remark 5.4.4, we have that (0,0) € Ocypes for every b € Fy,
hence every cusp in v~ 'Ogupes is parametrised by a pair (a,b) such that a # 0.
The function U o7 is a modular unit on X, (though not necessarily defined
over Q), and the element ~ acts by permutation on the set F> \ {0}. From
this, it is easy to see that we have

log |U o | = Ord,(U o v)log |q| + log | R,/

R,= ][] R

(azb)€’771 Ocubes

where

(5.4.2)

3 o

Lemma 5.4.10. We have
p’-1
6p

Ordy(U o) = —

This is proven by a calculation analogous to that of Lemma 5.4.6. The
result also appears in [LFL21], where however it is affected by the same arith-
metic error as [LFL21, Proposition 6.5]. The next proposition bounds log R,
similarly to Proposition 5.4.7; we will not directly make use of this result, but
some of the arguments in its proof will be useful later.

Proposition 5.4.11. We have

8m2p\/p
3loglq|”

|log [Ry[] < =

Proof. The proof is analogous to that of Proposition 5.4.7. We notice that for
every (a1,as) € ¥ 'Ocubes We have a; # 0, hence

oo mk
log R, = —12 Z Zq]: - cy(kn),

nZ0(p) k=1
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where cy(a) 1= ycp (o) €(b/p) and Fy(a) :={b € F, | (a,b) € ¥ Ocubes} for
a # 0 and ¢(0) = %. To adapt Lemma 5.4.8 to the case of ¢, we notice that
if y~1 acts as multiplication by x++/z on IF;2 for some z,y € F), (as explained
in [LFL21, Lemma 6.3]), then the function ¢(t) of Lemma 5.4.8 becomes

(3t + et3)z + (1 + 3et?)y

£ —
o) =8 A 3e)nt Gt T ey’

giving again |c,(s)| < 3,/p. The rest of the proof of Proposition 5.4.7 carries
through. O

We remark that, even though the bound on |log |R,|| is the same as that on
|log |R||, the order at infinity of the function U is halved in this case, that is,
| Ordy(Uo)| = 1| Ord, U|. This leads to a weaker bound on |log|g|| in terms
of p, which is what we are really interested in for the proof of Proposition
5.4.5. To obtain a sharper bound on |log |R,||, we consider a different p-th
root of q.

Remark 5.4.12. We note that in order to prove Proposition 5.4.5, it suffices
to consider 7 € H lying in the standard fundamental domain F and such
that |7| > 1. Indeed, q(7) = q(7 + n) for every n € Z, hence without loss of
generality we can consider R7 € (—3, 3], and if || < 1 then |log|q|| < 27 <

272
2RI /5 +1.65.

From Theorem 1.2.4 we know that if E' corresponds to 7 € H in the standard
fundamental domain F not lying on the lower boundary {ei‘9 | <0< %},
then ¢ € R. This is true for all the fundamental domains of the form F + n

for n € Z. We notice that, for 7 € F and ¢ > 0, we have 7 = 0 and therefore
1 1 2miT

1 1
qv € R. However, if ¢ < 0, we have &7 = 5 and ¢» = e »

However, we can consider 7/ 1= 7+ % € F+21 which gives the same value

is not real.

of ¢ and is such that e%% € R is the p-th real root of gq.

We then repeat the previous construction changing the choice of 7. Let 7p
be a point in the fundamental domain of X, that corresponds to a point
P € X¢(y)(Q) with j(P) € Z. There exists v € SLy(Z) such that 7 = y~*(7p)
is in the standard fundamental domain F if ¢ > 0, and in the fundamental
domain F + p%l if ¢ < 0. As before, up to Galois conjugation, we can take
~ to be either the identity or an element whose reduction modulo p lies in
Chs(p) NSLa(FF,) but not in G(p) — this is again because the point P is defined
over Q and therefore fixed by the Galois action, while there are two orbits of
cusps.

All the previous estimates still hold for this new choice of 7 and we can
take advantage of the new choice of the p-th root of ¢ to improve the bound

1
on log|R,|. To distinguish the two different p-th roots, we will write q(P> to
denote the root that maps the real numbers to themselves.
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Proposition 5.4.13. Let 7 = v~ !7p € H be as above and such that j(7) &
(0,1728). We have

1
log |R(7)| = —3 log R(T).

Proof. As in Proposition 5.4.11 we have

log R (1) = —12 Z Zq

nZ0(p) k=1

where ¢ (a) == ) e p (o) €(b/p) and Fy(a) :={b € Fp | (a,b) € Y Ocupes } for
a # 0 and ¢(0) = %.
As explained in [LFL21, Lemma 6.3], the action of y~! on the cusps of Xao

L
p

P)
corresponds to the multiplication by (x + y+/€) on FZQ/j:l for some z,y € IF,,.
It is then easy to see that Ocupes Ll Y Ocubes U 7 2Ocubes = ]F% \ {(0,0)},
and that (a,b) € 7 ' Ocupes if and only if (a, —b) € 7 2Ocubes. Therefore, we
obtain that c,(k) = c,2(k) and c(k) + c¢y(k) + c,2(k) = 0 for every k € F.
This implies that c¢(k) is real (this can also be seen directly from the definition
of Ocubes) and that R{cy(k)} = —1c(k) for every k # 0 (mod p).

Using that ¢ € R by Theorem 1. 2 4 and that log|z| = R{logz} for every
z € C*, we have

log |R,(7)| = R{log R, (1)} = —12 Y Zq ) - R{c, (kn)}
nZ0(p) k=1
%) ‘ %)
=6 ) — rc(kn) = 4(p +1) >y
n,kZ0(p) nZ0(p) k=0(p)
(%) gk
=6 Z : - c(kn) T Z Z
n,kZ0(p) nZ0(p) k=1

On the other hand, similarly to the proof of Proposmon 5.4.7 we have

log R(T _1222 flzzzq )

n#0(p) k= nZ0(p

By isolating the terms containing ¢(0), we obtain

log R(r _1222 —122 q )

nZ0(p) k n,kZ0(p)

=-12 Y — - c(kn) p+1 Ziqkk’
n0(p) k=1

AT
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concluding the proof. O
We are now ready to prove Proposition 5.4.5.

Proof of Proposition 5.4.5. By Remark 5.4.12 it suffices to prove the state-
ment for 7 € F 4+ n, where n € Z and F is the standard fundamental domain,
and such that 7 does not lie on the lower boundary. Suppose first that P is
close to a cusp lying in the Galois orbit corresponding to Ocypes (i-€., the case
in which v = Id). Evaluating U in 7 = 7p we obtain

Ordy(U)log|g| = —log |R()| — 6log p + log |U(7)],
and the triangle inequality yields
| Ordg(U)log |q|| < [log |R(7)|| + | — 6logp + log [U(7)]|.

By Corollary 5.4.1 we have 0 < log|U(7)| < 6logp, and hence |logU(T) —
6log(p)| < 6logp. Combining this with Proposition 5.4.7 and Lemma 5.4.6
we finally obtain

2 2
p”—1 87°p\/P
[log lgl] < 6logp + o 2V2.
3p 3|log |q]|

Suppose instead that P is close to a cusp lying in the other Galois orbit
(i.e., the case in which v # Id). Evaluating U oy in 7 = v '7p (lying in F or
in F+ % depending on the sign of ¢, as above) and proceeding in the same
way (using Lemma 5.4.10 and Proposition 5.4.13 instead of Lemma 5.4.6 and
Proposition 5.4.7 respectively), we obtain the inequality

47r2p\/]3
3[log ql|’

2

1
5 |log |q|| < 6logp +
7Y

We now set = |log |g||. So far we have obtained, respectively for v = Id and
v # 1d,

2_1 8 2
4 22 — 6zlogp — %\/ﬁ <0 (5.4.3)

2_1 4 2
b ——a” —Grlogp— %\/’3 <0. (5.4.4)
p

The first inequality implies the second, so (independently of whether v = Id
or not) we get that x satisfies (5.4.4), and therefore

18plogp 182p2(logp)2 = 8m2p2,/p

< + + .
p*—1 \/ (p* = 1)? p?—1
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Using that Va2 + b% < a + b we obtain

~ 36plogp N 2V2p ¢p

Since the function f(t) is smaller than 30 for ¢ € [2,100] we can assume that
p > 100, and then we obtain

227 101 - .
v < 36;;)10gp N V27 Yp - 36 - 101 - log 101 N 2v2- 101 5
pe—1 Vp?—1 100 - 102 10v/102

2v/2 7101
< L Yp+1.65,
~ 10V/102 vp

which concludes the proof. ]

Remark 5.4.14. We notice that in the proof of Proposition 5.4.5 we showed
that if £ is a non-CM elliptic curve and 5 < p < 100 is a prime such that
Im pg,, is conjugate to G(p), then |loglg|| < 30. In particular, this implies
that every time that we assume |log|q|| > 30 we are implicitly assuming that
p > 100.

Corollary 5.4.15. Let E/@ be an elliptic curve without complex multiplica-
tion and set ¢ = €>™7, where T € H corresponds to the complex elliptic curve
E(C). Let p > 5 be a prime number such that Im pg , is conjugate to G(p).

If |log |q|| > 30, then p < 103000.

Proof. By Theorem 6 we can assume that p = 2 (mod 3). Writing log(3{7}) =
+|log |q||, by Theorem 4.1.1(3) we have

3
A < 2533 <h]:(E) +2log A + yym log |log |q|| + 1.38> .

We recall that by Theorem 7 we have that j(E) € Z, indeed we can assume
that p > 37, as smaller primes satisfy the condition p < 103000. We can then
apply Theorem 1.2.6(3) to bound hx(FE) in the inequality above with

1 1 1 2

—15 108 lq| — 5 log[log|q|| — 5 log2

12  3loglq|’

obtaining a linear bound on p in terms of |log|q||. On the other hand, by
Proposition 5.4.5 we have

Ilog |q|| < m
10102

and we obtain an explicit inequality in p, which can be numerically solved. [J

- /P + 1.65,
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The upper bound on p given by Corollary 5.4.15 is sharper than the cor-
responding bound in Theorem 7, but it is still not good enough to test all
the remaining primes by the direct computation we describe in Section 5.4.
For this reason, in the next section we improve on Proposition 5.4.5. The
intermediate result we just obtained will be an important ingredient in this
improvement.

Abel summation and a sharper bound on log|q|

Proposition 5.4.5 improves the bound on log R given in [LFL21] by considering
cancellation among roots of unity. In particular, the argument in [LFL21]
used the trivial estimate |c(k)| < %, which we replaced by |c(k)| < %

using Lemma 5.4.8. In this section, we show that by rearranging the sums in
log R using partial summation, we obtain an expression for log R which gives
even more cancellations. This leads to a further improvement of the bound
of Proposition 5.4.7 and ultimately to the following result, which supersedes

Proposition 5.4.5.

Proposition 5.4.16. Let E/Q be an elliptic curve without complex multipli-
cation and set q = €>™7, where T € H corresponds to the complex elliptic
curve E(C). If p > 5 is a prime number such that Im pg, is conjugate to

G(p), then |log|q|| < 39.

To prove this result, we can and do assume that |log |¢q|| > 30. By Remark
5.4.14 this implies that p > 100. By Corollary 5.4.15 and Theorem 3.1.4
we can also assume that p is less than 103000 and that it satisfies p = 2,5
(mod 9). We keep the notation from the previous section. Similarly to the
proof of Proposition 5.4.13 we have

kn
_ qr 8(p+1) ¢
log R = —12 Z - ~c(k:n)—|—T Z?
n,kZ0(p) nZ0(p) k=1
Writing m = kn we have
_ g 8(p+1) "
logR=—-12 )_ ZT'C(TH)—FT 27 (5.4.5)

mZ0(p) klm

Using Lemma 1.1.1, we bound the second term as follows:

8(p+1) o~ q p+1 Iql’m 8(p+ 1)7?
>y Syl < Gplloglg 49

nZ0(p) k=1 n=1k=1
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This quantity is bounded uniformly in p. We now focus on the first sum in
equation (5.4.5), which we denote by S. By partial summation, we have

% m clm
s=-12 Y Z%-c(m):—m DL Z(k)

s+

=12 (¢ — ¢ 7 )D(s),
s=1

where (m)
c(m
D(s)= > > - (5.4.8)
m<s klm
mZ0(p)
The idea of using this rewriting of S is that, when p is large, the factor
s s+1 s 1 1 logg
gr —q» = qr(l — gr) becomes small, because |[¢gr — 1| = |e - 1] =~
[ log ||

Provided that D(s) does not grow too quickly, the factor of p in
the denominator leads to a much better upper bound on S, hence on log R,
than that provided by Proposition 5.4.7. We now give two different estimates
for |D(s)|, one for s < p and one for s > p, in Lemmas 5.4.17 and 5.4.21
respectively.

Consider all the primes p smaller than a fixed bound M. For s < p we have

D) =3 3,

m<s k|m
and we can write |D(s)| < C\/py/s for some C' = C(M).

Lemma 5.4.17. Let M = 103000 and C = 4.25. We have |D(s)| < C\/p\/s
for all s < p < M with p prime, p=2,5 (mod 9).

Proof. We get a suitable value of C' by explicitly computing the values of
D(s) for all primes p = 2,5 (mod 9) up to M and for s = 1,...,p — 1.
More precisely, in order to quickly compute D(s) we obtain the values of
the coefficients c¢(m) using Rader’s FFT algorithm [Rad68] applied to the
characteristic function of the set F'(m). Indeed, every c¢(m) is defined as the
(non-normalised) Fourier transform of the characteristic function 1z, of the
set F'(m). Computing the fast Fourier transform is the most expensive step of

the algorithm, taking time O(plogp). Since there are O (log%) primes up to

M (this remains true also restricting to the congruence classes 2,5 mod 9), the
asymptotic complexity of the algorithm is O(M?). For M = 1.03-10°, the run
time of our implementation [FL23a] is of a few hours on modest hardware. [

Remark 5.4.18. It is important to notice that the value of D(s) depends on the
choice of € (see equation (0.1)). All the calculations in this section, including
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in particular that of Lemma 5.4.17, are performed by taking as € the image
in [F,, of the least positive integer which is a quadratic non-residue modulo p.

Remark 5.4.19. For the computationally accessible values of M, one can check
that the optimal C(M) grows very slowly: for example, C(10%) ~ 3.789,
C(10°) ~ 4.246 and C(10°) =~ 5.169.

Remark 5.4.20. The choice of the form of the bound in Lemma 5.4.17 is
supported by the following heuristics. We assume that the coefficients c(m)
are pseudo-random values in the interval [—%\/f), %\/]3] Since o_1(m) =
2 kim # = O(loglog m), the quantity D(s) is the sum of s random values in the

interval [—a\/ﬁlog log s, ay/plog log s] for some constant a, so we expect it to
be O(/ps(loglog s)?). By taking small values of p (for example, p < 103000)
and s < p, we can essentially treat (loglogs)? as a constant.

In the regime s > p, it will be enough to use the following easier upper
bound on D(s):

Lemma 5.4.21. Let p be a prime and let s > p be an integer. We have

|D(s)| < %s\/ﬁ.

Proof. 1t suffices to note that by Lemma 5.4.8 we have

We now combine these results to prove the following.
Proposition 5.4.22. Let E,p,q be as in Proposition 5.4.5 and let R be as in

Definition 5.4.2. Let D(s) be as in equation (5.4.8) and let C' be the minimum
constant such that |D(s)| < C\/ps for s < p. If x := [log|q|| > 30, then

[log |R|| <

6C 4(p+1)m
3 3 3px

Proof. Since 2737 = |log |¢q|| > 30, we know that 37 > 1, and hence we may
also assume that 7 is in the standard fundamental domain F for the action
of SLa(Z), since every fundamental domain containing such a 7 is obtained as
F 4+ n for n € Z, but integer translations do not change the value of q. We
start by estimating the sum S defined in equation (5.4.7), dividing it into two
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parts. Using Lemmas 5.4.17 and 5.4.21 we obtain

[o.¢]
1 s
S| <12[1—g7| > lg|7|D(s)|

s=1

. . N (5.4.9)
1 s 1 s
<120VPIL—qr| Y lad7vs + gr’VBIl—ar] Y lalvs.
s=1 S=p

We now use the following elementary fact: if f : R>g — R is a differentiable
function with a single local maximum in zg € R>q, then

S < [ fado+ fao)

n=1

s 1 s
Since —(|q! f) lg|7 /s <log lq|? + %), the function |¢|?+/s is increasing

< — = P
for s 2log|q\1/p 2| log |q]|
have the following estimate:

and decreasing for larger values of s. We then

p—1 . %) . o . ) 5
Slalivs < Yo lalivs < [ lalvads + ol
s=1 s=1 1

2| log |||
0 |loglgll 198
</ r \fds—i-e*% __P
0 2|log |q]|

VB f( fuogmu).
 loglql|? 2 pvme

Using Proposition 5.4.5, and using the fact that by Remark 5.4.14 we can
assume p > 100, we have

|1oqu|| 2¢/27 - 101 1.65 2\/577 V101 +1.65
D 10\/10 p4 104102 101

< 0.3,

and so

Zlcﬂ e« PP ﬁ-1.15.

[logq||> 2

To estimate the sum of the terms with s > p, we use the following fact. If
€ (0,1), then

o0
Z:ﬂs—x—szzxi it = gP P + v .
= dr1l—x l—z (1—2)2
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Putting everything together, equation (5.4.9) yields

1
vy D q|?
81 < 6CoypI1-gF| VP 1154 2] 1~ qp|<1 L )

|log gl —lglr (1 —lql?)?

Applying Lemmas 1.1.2 and 1.1.3 we obtain

1 v/
|S‘§6Cp\/ﬁ(|0g|q|\+7r>ﬂp_1'l5

3
p | log |ql|2

1
8 1 T P q|r
+37r2|q\/13<1—\q!?+lwp>( T+ 4 T )
P/ \1—lql»  (1—lql?)?
which we rewrite as

|S|§W-1.15<1+ T )

|log |q||2 | log |4
1

1
8 q?» w ql»
1—|ql» P 1—1q|”

Using Lemma 1.1.3 again we have

1 1
gl _ lq|? 1 2 _ %
;o E » % [oglall ™ Tlog [al]
L=lgl»  (L—lal)(1+1gl2)  1]glz [oglall [logla

and using the assumption |log|g|| > 30 we obtain

6C 8 2
1< SR s Slalyi (14 ) ()
|log |q||2 3 | log [q]| | log |q]|
< M -1.28 + §7T2\q]p\/ﬁ- 1.25.
| log [ql|2 3

Bounding the sums in equation (5.4.5) and recalling equation (5.4.6), we have
obtained

6Cp 1 p+ 1)7?
|log |R|| < f 128+—7r2\q|pf+7( 3 ) ;
2 pr
which concludes the proof (recalling that = = |log|q]|). O

Corollary 5.4.23. Let E,p,q be as in Corollary 5.4.15 and let R be as in
Definition 5.4.2. If |log |q|| > 30, then

llog |R|| < 58 —L2— +0.45

|log |q[=
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Proof. By Proposition 3.2.14 we have p* | j(E), and Theorem 1.2.2 implies
first 30 < x < log(|j(E)| + 970.8), so |j(E)| > 3500, and then [j(E)| < %
Therefore, we have p*|q| < [j(E)| - |q| < 2. By Proposition 5.4.22 we obtain
6 p\f 20m?  4(p+ 1)7?

.1.28 + +
x2 3p%\/p 3px

[log |R|| <

The result follows by using C' < 4.25 (Lemma 5.4.17, which we can use thanks
to Corollary 5.4.15), z > 30 and p > 100 (which we can assume by Remark
5.4.14). O]

We now notice that all the arguments we applied to log R are also valid
for log R,. We can then give an analogue of Corollary 5.4.23 for log R,. As
before, we have

where

Sy y(m)
k
m<s klm
m#Z0(p)
is an analogue of D(s) in this context.
Lemma 5.4.24. For every prime p < 103000 with p = 2,5 (mod 9), the
following hold:

1. for s < p, we have |D4(s)| < C,./ps with C, = 2.81.

2. for s > p, we have |D(s)| < 2 f
Proof. The proof is analogous to those of Lemmas 5.4.17 and 5.4.21. O
Reasoning as in the proof of Proposition 5.4.22 we obtain the following.

Proposition 5.4.25. Let E,p, q be as in Proposition 5.4.5 and let R, be as in
equation (5.4.2). Let C,, be the minimum constant such that |D.(s)| < Cy./ps
for s <p. If z := |log|q|| > 30, then

wpf 2(p + m*

log | R, || <
[log |2, o

1284-?71'6 VP + ————
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Since we know that it suffices to consider primes up to 103000 (Corollary
5.4.15), we can use the bound on the value of C, provided by Lemma 5.4.24
to obtain the following numerical estimate.

Corollary 5.4.26. Let E,p,q be as in Corollary 5.4.15 and let R, be as in
equation (5.4.2). If |log|q|| > 30, then
p

llog | R, || < 38.26 - .
| log |q||2

+0.23

We can finally prove the main result of this section.

Proof of Proposition 5.4.16. Suppose |log|q|| > 30. As in the previous sec-
tion, from the two possible equations

log |U| = Ordy(U)log |q| 4+ 6logp + log | R|
log |U o y| = Ordy(U o v)log|q| + log | R, |

we obtain the inequalities

P -1

3p
2

|log |q|| < 6logp + |log | Rl

1
o |log|q|| < 6logp + |log|R||.

Comparing Corollary 5.4.23 with Corollary 5.4.26 we notice that it suffices to
consider the second inequality. Writing = = |log |q|| we have

p*—1

z < 6logp + 38.26% +0.23.

VT

By Remark 5.4.14 we can assume that p > 100, hence
v/ — 24/ — 230 <0,

which implies x < 39. O

Conclusion of the proof of Theorems 8 and 9

We recall the statement of Theorem 9 (Theorem 8 follows): there exists no
pair (E,p), where E is an elliptic curve over Q without CM and p > 5 is a
prime for which the image of the representation pg, is the group G(p) (up
to conjugacy). Suppose by contradiction that such a pair exists. We consider
the base change of F to C (along the unique embedding Q < C). There is
a unique 7 in the standard fundamental domain F of the upper half plane H
that corresponds to E(C); we set ¢ = ¢*™7. In this setting, in the previous
sections we have proved the following properties:
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e j(E) is an integer: follows from Lemma 1.1.5;

e p=2,5 (mod 9): follows from Theorem 3.1.4;

e p* | j(E): follows from Proposition 3.2.14;

o |j(E)| <2-¢e%: follows from Proposition 5.4.16 and Theorem 1.2.2;

e p < 20400: we know that p* < |j(E)| < 2-¢%*, hence p < v/2- et <
20400;

e j(E)=p?-cford € {4,5} and c € Z: by Lemma 3.1.7, we know that
j(E) = p-c3, and by Proposition 3.2.14 we also know that d > 4. We can
assume that d € {4, 5,6}, since higher exponents can be reduced modulo
3 by reabsorbing the factors of p in ¢3. Moreover, by Lemma 3.2.15 the
case d = 6 does not occur, hence we can assume that d € {4,5}.

To complete the proof of Theorem 8 and Theorem 9, we check directly, for
all primes p < 20400, whether there exists any pair (F,p) as above. To be
able to test a finite number of curves, we also need the following well-known
lemma.

Lemma 5.4.27. If E and E' are two non-CM elliptic curves over Q with
J(E) = j(E'), p > 2 is a prime, and H C GL(E[p]) is a subgroup that
contains —1d, then Im pg , C H if and only if Im pgr , € H.

Proof. Since either £/ = FE or E’ is a quadratic twist of F, the statement
follows from [Sut16, Corollary 5.25]. O

We now proceed as follows (see [FL23a]):

1. For every odd prime p = 2,5 (mod 9) with 5 < p < 20400, every d €
{4,5} and every integer ¢ # 0 in the interval [—\3/5 eBp=5 2. e1B3pT5 |,
we take an integral model £ of a curve E/Q with j-invariant j(E) =

pt- 3.

2. We loop over primes /¢ distinct from p, in increasing order. For each such
prime £:

a) We check if £ has good reduction at ¢. If it does, we continue with
(b); otherwise, we move on to the next prime /.

b) We compute ay = £+ 1 —|E(Fy)| by counting the Fy-rational points
of £ modulo /.
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c¢) We check whether the roots of the polynomial t* —a,t+¢ € F[t] are

2
cubes in IF;Q (note that \ € IF';Q is a cube if and only if A5 = 1).
If they are cubes, we continue with the next prime ¢. If they are
not, we mark j(E) = p?-¢3 as ruled out and continue with the next
candidate (p,d, c).

The algorithm terminates, in the sense that every candidate j-invariant is
marked as ruled out: the loop in step 2 is always broken by finding some
prime ¢ (in fact, £ < 200 in all cases) for which the roots of t> — ast + £ are
not cubes in F;2. We claim that this proves Theorem 8. Indeed, suppose by
contradiction that there exists a pair (F1,p) such that E; is a non-CM elliptic
curve over Q and p is a prime for which Im pg, ,, is conjugate to G(p). Then,
by the discussion above we know that j(E1) is of the form p? - ¢3 for some
p, d, ¢ satisfying the conditions in step 1 (note that j = 0 gives a CM elliptic
curve), so the curve E we construct in this step is a quadratic twist of E;. By
Lemma 5.4.27, the image of pg , is conjugate to a subgroup of G(p) (note that
—1Id € G(p)), and by fixing a basis, we can assume that it is in fact contained
in G(p).

On the other hand, let ¢ be a prime for which the roots of t2 — ayt + ¢ are
not cubes in IF;Q (the output of the algorithm shows that such a prime exists),

and let F, € Gal (Q/Q> be a Frobenius corresponding to £. The element

pEp(Fr) has characteristic polynomial ¢ — ast +£. Since pg ,(Fy) is in G(p), it
satisfies at least one of the following: ay = 0 (if pg ,(F}) lies in the normaliser
C;f.(p), but not in the Cartan Cy4(p) itself), or pp,(Fp) is the cube of some
element g, in GLa(IF,) (if it lies in the subgroup of cubes of Cys(p)). In both
cases, the eigenvalues of pg ,(Fy) are cubes in IF;Q: if ay = 0, this follows from

the fact that the roots of the characteristic polynomial are +v/—¢, and —/ is
a cube in F) since p = 2 (mod 3); if ay # 0, it follows from the fact that the
eigenvalues of pgp,(Fy) are the cubes of the eigenvalues of g,. However, the
choice of ¢ shows that the eigenvalues of pg ,(Fy) are not cubes in IFZQ: the
contradiction shows that the pair (E1,p) cannot exist, which concludes the
proof of Theorem 8.

To conclude the proof of Theorem 9 it suffices to notice that for p = 5 there
are many curves E for which Impg 5 is conjugate to G(5), as suggested by
[Zyw15a, Theorem 1.4 (ii)] (for example the curve y? = 2® — 950z — 11480,
with LMFDB label 70400.bgl).

Remark 5.4.28. Our algorithm [FL23a] terminates in around 2 minutes. Since
the running time is clearly exponential in the bound on log |j(E)|, it would
have been impossible to carry out this calculation without a sharp absolute
bound on log |q|, such as that given by Proposition 5.4.16. To showcase the
sharpness of our bound, we point out that even just knowing log |j(E)| < 50
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would have led to a perfectly tractable computation: our algorithms test all
J with log|j| < 50 in about an hour and a half. On the other hand, it is clear
that the bound log|j(FE)| < 162 which follows from Proposition 5.4.5 and
Corollary 5.4.15 would have been too loose to carry out the final calculation
as described in this section. Indeed, knowing log |j(E)| < 39 we have to test
645552 pairs (j-invariant, prime); with only log |j(E)| < 50 the number rises
to &~ 2.8 - 107, and with log|j(E)| < 162 to ~ 4.6 - 10?3,



CHAPTER

p-adic and adelic Galois
representations

Given an elliptic curve E/ without complex multiplication and a prime num-
ber p, the main aim of this chapter is to study the image of the p-adic Galois
representations pg po attached to E, as well as the adelic representation pg.
In particular, we will focus on the case where pg , has image contained in the
normaliser of a non-split Cartan subgroup. This is the only case not covered
by Theorem 12 (apart from the curve 49.196.9.1). We will show that, thanks
to the classification given in Chapter 2, if n is the smallest integer for which
Imppgpeo 2 I+ p"Msya(Z,), then the image of pg,n is exactly Cf (p™) in
almost all cases. This allows us to obtain the precise value of the p-adic index
(GL2(Zp) : Im pg peo| depending on n. Using Theorem 4.2.5 we are then able
to give a bound on the product of the p-adic indices in terms of the stable
Faltings height of the curve E.

We also give a bound on the index of the adelic representation pg. To do
this, we study the entanglement of division fields at primes p for which the
image of pg, is contained in the normaliser of a non-split Cartan subgroup.
This allows us to give a bound on the adelic index in terms of the product of
the p-adic indices. The main ingredient to obtain a good bound is the study
of the ramification index of p in Q(E[p"]). Indeed, when the image of pg pn
is contained in the normaliser of a non-split Cartan subgroup, p is ‘almost
totally’ ramified in Q(E[p]). On the other hand, by Theorem 3.1.1 we know
that the ramification index of p in Q(E[N]) for p f N is low. This shows
that the intersection Q(E|[p]) NQ(E[N]) is small. The ramification arguments
rely on the work of Lozano-Robledo [LR16] and Smith [Smi23]. All these
properties are proved in Section 6.3.

107
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The entanglement properties of Section 6.3 are combined in Lemma 6.4.10,
which together with the effective surjectivity Theorem 4.2.5, gives a bound on
the index [GLg(z) : Im pg] in terms of the Faltings height hr(E). We then
conclude this chapter providing another bound on the adelic index in terms
of the conductor of E.

6.1 Images of p-adic Galois representations

Fix an elliptic curve E/Q and an odd prime p, and write G := Im pg ,~ and
S := G N SLy(Z,). The aim of this section is to show that G is often an
N-Cartan lift (as defined in Chapter 2), and that in this case many of the
propositions of Chapter 2 apply. We start by proving the following.

Proposition 6.1.1. Let E/@ be an elliptic curve without CM and let p be an

odd prime such that G(p) C Cf,(p). Then the group G is a non-split N-Cartan
lift.

Proof. Since detopg e~ is the p-adic cyclotomic character, it follows that
det(G) = Z,;. By [Ser81, Lemme 17] we know that G(p) ¢ Cns(p). By
the open image theorem ([Ser72, Section 4.4, Théoreme 3]) we know that G
is open in GLa(Z,), and hence it is closed. Finally, we need to show that
G(p) N Cps(p) contains an element which is not a multiple of the identity.
It is easy to notice that every element in C;f (p) \ Cpns(p) has order dividing
2(p — 1), and the same holds for scalar matrices. Suppose by contradiction
that G(p) N Cys(p) consists of multiples of the identity. In particular, every
element of G(p) has order dividing 2(p — 1). Suppose now that p > 11. By
Corollary 3.1.3 we know that E has potentially good reduction at p. If we
consider the subgroup I < Impg, obtained as the image of a pro-p inertia

subgroup of Gal (Q/Q), by Theorem 3.1.1, Theorem 3.2.9 and Lemma 3.2.8

we know that there exists e € {1,2,3,4,6} such that either I contains an
element of order ”2771, or the image of I in PGL2(F,) contains an element of
order %. In the former case, we get a contradiction, because 7’2% 12(p—1)
for p > 11. In the latter case, since the square of any element of C,,(p)\ Cps(p)
is a scalar matrix, we have that ;%1 | 2. However, this can happen only for
p = 13, which does not occur by [BDM™19, Corollary 1.3]. To conclude, it
suffices to notice that for p € {3,5,7,11} the statement follows from [Zyw15a,
Theorems 1.2, 1.4, 1.5, 1.6]. O

For G = Im pg p~ consider the Lie algebras g; as in Definition 2.1.3.

Lemma 6.1.2. Let E/@ be an elliptic curve and p an odd prime such that
G(p) C C(p). We have dimg,, > 2 for every n > 1.
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Lemma 6.1.2 is the same as [Ejd22, Proposition 3.2], however, our version
also holds for p € {3,5,7,13}. For every prime p > 7 and p # 13, this is a
consequence of the fact that if G(p) C C;f,(p), then E has potentially good
supersingular reduction at p (Corollary 3.2.13). To treat the remaining primes,
we first prove the following lemma.

Lemma 6.1.3. Let E/Q be an elliptic curve and p an odd prime such that

E has potentially good ordinary reduction at p. If p > 5, we have G(p?) €
CH(p?). If p =3, we have G(27) € C;},(27); moreover, if E has good ordinary
reduction at 3 we have G(9) € C,(9).

Proof. Let Q)" be the maximal unramified extension of Q) and let K be
the minimal extension of Q)" over which E acquires good reduction. By
Theorem 3.1.1 we know that e := [K : Q)] € {1,2,3,4,6,12}. Let Ix <

Gal <K/K> be the inertia subgroup. By Lemma 3.2.7 we know that I acts

on E[p"] as (Xp " *>, where X, is the cyclotomic character modulo p".
0 1

Suppose first that p > 3. If we consider n = 2, since (e,p) = 1 we notice

Xe
that p+1 € Im x,2 = (Z/p2Z> . In particular, there exists an element g

p+1 k

1
(g—1)(g —p—1) = 0. Suppose by contradiction that g € C,(p?). It is easy
to check that ¢ = I (mod p), and so also k =0 (mod p). In particular, if we
write k = ph we have

1 k 1 h
P+ =I+p =1+ pA.
0 1 0 0

By Proposition 6.1.1 we know that G is an N-Cartan lift, and by Remark
2.1.8 A must be conjugate to an element of Vi @ V5 described in Lemma 2.1.7.
However, A has rank 1, which is impossible as elements of V7 @ V5 only have
rank O or 2. Suppose now that p = 3: then either E has good reduction
at 3, so we have e = 1 and we can repeat the same proof as for p > 3,
or F has bad reduction at 3. In the latter case, since vz(e) < 1, we notice
that 32 + 1 € Im o7, and hence there is an element g € pe27(IKk) conjugate

3P+1 k n _
to 0 L) Suppose that g € C,5;(27). We see as before that £k = 0

(mod 3) and if £ # 0 (mod 9) we would have a non-zero element of the form

in pg 2 (Ix) conjugate to ( ) that satisfies the polynomial equation
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(0 u) in g1, which is impossible. We then conclude as before that we have
0 0
. 1 hY. . S .
an element conjugate to inside V; & V5, which is impossible. 0
0 0

Proof of Lemma 6.1.2. By Corollary 2.1.11 we know that V; C g1, and hence
dimg; > 0. Suppose by contradiction that dimg; = 1, and so that g; = V.
By Proposition 1.3.2 we know that there exists a lift afp/) < G of G(p) isomor-
phic to it via the projection such that G = C/JEp/)Gl, and up to conjugation of G

—~

in GL2(Z,) we can assume that G(p) < C;i,. Since g1 = Vi, modulo p* we ob-
tain that G(p?) = G(p) - {(1 + pa)I},ep, < Cifs(p?) and [C,(p?) : G(p*)] = p.
If p = 3, the curve E corresponds to a rational point on [LMF24, Modular
Curve 9.81.1.a.1], with equation 23 —62%y+32224+-6xyz — 6222 —y3 —6y22+23 =
0 in P2. However, this equation has no solutions modulo 27, and hence such
a curve E does not exist. If instead p > 3, by Corollary 3.1.3, we know that
the curve E has potentially good reduction modulo p. If FE has potentially
ordinary reduction at p, we can apply Lemma 6.1.3 to get a contradiction. If
FE has potentially supersingular reduction at p, we can use Proposition 3.2.9
to show that E does not have a canonical subgroup of order p, and so by

[Smi23, Theorem 1.1] we have that if R € E[p?] \ E[p], then p? | [Q(R) : Q] |
Q(E[p?)) : Q). We know that [g1] = [Q(E[?]) : Q(E[p])] = [AHPPE and
since p 1 [Q(E[p]) : Q] we obtain that p? | |g1]. The conclusion follows from

Lemma 2.1.4. ]

Remark 6.1.4. In the proof above, the statement about ramification in division
fields that allows us to show that p? | [Q(R) : Q] is due to Lozano-Robledo
[LR16, Theorem 1.2(2)]. However, as pointed out in [Smi23], his proof is
incorrect. A correct version is provided in [Smi23, Theorem 1.1], which is the
same we used in the proof.

Theorem 6.1.5. Let E/@ be an elliptic curve without CM and set G :=

Im pp peo. Let p be an odd prime such that Im pg, C C (p) up to conjugation
and let n > 1 be the smallest integer such that Im pp peo D I + p"Moyo(Zp).
One of the following holds:

o G(p") = C;t(p") up to conjugation.

() = Cri(p) x {f +p (_“b ff) } ,

with the semidirect product defined by the conjugation action.

e n=2and


https://beta.lmfdb.org/ModularCurve/Q/9.81.1.a.1/
https://beta.lmfdb.org/ModularCurve/Q/9.81.1.a.1/
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e p=15 and G corresponds to the group with RSZB label 5.30.0.2.

= 3 and £G corresponds to one of the groups with RSZB labels
.0.1,3.12.0.1,9.18.0.1, 9.18.0.2, 9.36.0.1, 9.36.0.2,

*p
3.
9.36.0.3.

6
3
Proof. We show that G satisfies the hypotheses of Theorem 2.1.14. First, we
know by Proposition 6.1.1 that GG is a non-split N-Cartan lift. By Lemma
6.1.2 we also know that dimg; > 1. Moreover, by [LT22, Theorem 3.16] we
know that for p > 3 we have G O (1 + pZ,)I.

Suppose first that p > 5. By Theorem 9 we know that G(p) = C,f(p),
and hence the image of G(p) N Crs(p) = Crs(p) in PGL2(F,) contains an
element of order greater than 2. We can then apply Theorem 2.1.14. As
G D I+p™Msx2(Zy), we have either G(p™) C C;¥.(p™) with [CF,(p") : G(p™)] =
[C(p) : G(p)] =1, or n =2 and G(p") = G(p) x (V1®V3), and the conclusion
follows.

If p = 5, then by Theorem 9 we have [Cf,(p) : G(p)] € {1,3}. If G(p) =
C;h.(p), we can repeat the argument above. If instead [C),(p) : G(p)] =
3, the argument above does not work anymore, because every element of
G(p) N Cps(p) has order 2 in PGLy(F),). Using [RSZB22, Theorem 1.6] we see
that either G corresponds to a modular curve with infinitely many rational
points, or G(25) C C,[,(25), or G has RSZB label 25.50.2.1 or 25.75.2.1.
In the last case, we see that G(5) € {Cg,(5),C/(5)}, and so we don’t have
[C;F.(p) : G(p)] = 3. In the first case we can check in [SZ17, Table 2] that the
only possible case is the group with RSZB label 5.30.0.2: indeed, this is the
unique group with G(5) contained in C;f,(5) and index of the form 30 - 5. If
G(25) C C;f,(25), then G must be contained in the group with RSZB label
25.750.46.1, which is, in turn, contained in the group with RSZB label
25.50.2.1. However, this last group has been ruled out in [BDM*23, Section
5.3]. Indeed, the modular curve associated with it has 2 rational points: one is
a CM point, and the other corresponds to an elliptic curve with G(5) = C,f,(5),
as we can check in [RSZB22, Table 1].

If p = 3, by [Zyw1b5a, Theorem 1.2] we can consider the three following cases:
G(3) = C,f5(3), or G(3) = Cg,(3), or G(3) is contained in Cgp(3). In the first
case, we have that E[3] is an irreducible Galois module, and then by [LT22,
Proposition 3.12] we have again that G D (1 + 3Zs3)I. Moreover, the image
of C;f,(3) in PGLy(F3) contains an element of order 4, hence we can apply
Theorem 2.1.14 and conclude as for p > 5. If G(3) = C{,(3), we can apply
[RSZB22, Theorem 1.6] to show that either G(9) C C;,(9) or G appears
in [SZ17, Table 1]. If G(9) C C;,(9), then G(9) is contained in the group
corresponding to the modular curve with RSZB label 9.54.2.2, which has no
non-cuspidal non-CM points by [RSZB22, Section 8.2]. If instead G appears
in [SZ17, Table 1], we can notice that since G(3) = C{,(3) the index of G
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must be of the form 6 - 3%, and the only such groups in the table are those
corresponding to the modular curves with RSZB labels 3.6.0.1, 9.18.0.1,
9.18.0.2. Suppose now that G(3) C Cg,(3). In particular, this implies
that G(3) is contained in a Borel subgroup, so £G must correspond to a
modular curve in the finite list given in [RSZB22, Corollary 1.1]. However,
the only curves in the list for which £G(3) C C,,(3) are those with RSZB
labels 3.12.0.1, 9.36.0.1,9.36.0.2, 9.36.0.3. O]

6.2 p-adic indices

In this section, we provide some bounds on the indices of the images of the
p-adic Galois representations attached to E. In particular, we will mainly
focus on the case where Im pg , is contained in the normaliser of a non-split
Cartan subgroup.

Proposition 6.2.1. Let E/@ be an elliptic curve without complex multiplica-

tion and let p be an odd prime such that Im pg, C C¥.(p) up to conjugation,
with equality holding in the case p = 3. Let n > 1 be the largest integer for
which Im pg n C C(p™). We have

2

. {pQT*p,p:;gp ,30} forn=1
{% -p2"*1} forn >1,

where [GLa(Zy) : Im pg peo] = 30 for p=5.

(GL2(Zy) : Im pg peo]

Proof. Suppose first that Im pg, = C,f,(p). This implies that we are in one
of the first two cases of Theorem 6.1.5, and so if n is the smallest integer
such that Im pgpee O I + p"Moy2(Z,), then either Impg,,n = C(p"), or
n = 2 and Im pg 2 is a group of order 2(p? —1)p3. In particular, we have that

(GL2(Zy) : Im pp peo] € {% cpPnl p3;p2} If instead Im pg, C Cf.(p), by
Theorem 6.1.5 we know that p” =5 and [GLa(Z,) : Im pg pe] = 30. O

Corollary 6.2.2. Let E/@ be an elliptic curve without complex multiplication

and let p be an odd prime such that Im pp,, C Cf.(p) up to conjugation, with
equality holding in the case p = 3. Let n > 1 be the largest integer for which
Im pgm C C(p™). We have
1
[GLZ(ZP) tIm pp pee ] < pT p
P
Proof. If [GLa(Zy) : Im pg peo| # 30 the statement easily follows from Propo-
sition 6.2.1. If instead [GL2(Zp) : Im pp pe] = 30, then p™ = 5 and 30 <
5=l.53 =50 O
5 .
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We now give two propositions to bound the p-adic index in some cases in
which Im pg ;, is not contained in the normaliser of a non-split Cartan. These
cases will be the only ones that can occur whenever there exists a large prime
p for which Im pg, C C/f,(p).

Proposition 6.2.3. Let E/@ be an elliptic curve without complex multipli-
cation that does not admit any rational 2-isogeny. Then either [GLa(Z2) :
Im pp 90| divides 32, or j(E) is one among

3 - 182499203 7 - 1723187806080
B 1716 T 7916

and [GLy(Z) : Im pp] = 128.

Proof. By [RZB15, Theorem 1.1], [RZB15, Corollary 1.3], and [RZB15, Re-
mark 1.5] we know that either j(E) is one among the two numbers in the
statement, or the index [GL2(Z2) : Im pp 2] divides 96. In the first case,
we can compute the index of the adelic representation using the algorithm
FindOpenImage.m developed in [Zyw22]. Indeed, by [Zyw15b, Corollary 2.3]
we know that the index only depends on j-invariant. We now focus on the
second case. Since I/ admits a rational 2-isogeny if and only if Im pg 2 is con-
tained in a Borel subgroup, we notice that E admits a rational 2-isogeny if
and only if the index [GL2(Z2) : Im pg 2] is divisible by 3. The conclusion
follows. O

Proposition 6.2.4. Let E/Q be an elliptic curve without complex multiplica-
tion.

(4 [f ImpE73 = GLQ(F3); then [GLQ(Z3) :Im pE73oo] < 27,‘
e IfIm pE 5 is conjugate to the exceptional subgroup 554, then
[GL2(Zs) : Im pp 5] = [GL2(F5) : Im pp 5] = 5.

Proof. By [RSZB22, Theorem 1.6] we know that either Im pg o7 C C;(27)
or Im pg 3o corresponds to a group in [SZ17, Table 1]. As Imppg 3 is equal
to GLa(F3), the index [GL2(Z3) : Imppg 3| must be a power of 3. How-
ever, the largest power of 3 among the indices of [SZ17, Table 1] is 27, hence
[GLQ(Zg) : ImpE73oo] < 27. If ImpEv5 = 554 we have [GLQ(F5) : ImpE,5] =
5. Similarly to Lemma 2.1.7 one can easily check that the only non-trivial
F5[554]-submodules of gly(F5) are Fs5 - Id and sly(F5). However, if we set
G :=Impgs~, by Lemma 2.1.10 we know that I - Id is contained in gq, and
so we have g1 € {F5 -1d,gly(F5)}. If g1 = F5 - Id, then E corresponds to a
rational point on the modular curve with RSZB label 25.625.36.1, which
has no rational points by [RSZB22, Section 8.6]. To conclude, we notice that
if g1 = gly(F5), by Lemma 2.1.12 we have that [GLa(Zs) : G| = 5. O
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6.3 Entanglement

Let E be an elliptic curve defined over a number field K and let p be a
prime for which Im pg ,n C Cf,(p™) for some n. In this section, we study the
entanglement between the p™-torsion and the rest of the torsion. The key tool
of our method is the ramification of primes of potentially good supersingular
reduction in division fields. In particular, we will notice that p has high
ramification index in K (E[p"]): this relies on the work of Lozano-Robledo
[LR16] and Smith [Smi23] on the valuation of the p™-torsion points of the
formal group associated with . On the other hand, every other prime q # p
has very small ramification index in K(E[p"]): this follows from a variant
of the Néron—Ogg—Shafarevich criterion introduced in Theorem 3.1.1. This
suggests that the intersection of two division fields K (E[p"]) N K (E[¢™]) such
that Im pg pn C C/f,(p") and Im pg gm C C;f,(¢™) should be very small.

Theorem 6.3.1. Let E be an elliptic curve defined over a number field K and
let p be a prime. Let p C K be a prime above p such that E has potentially
good supersingular reduction at p, and let e := e(p|p) be its ramification index.
Suppose that p > 6e — 1 and that there exists an integer n > 1 such that
Im ppg;m C C(p™) up to conjugation. Let F be the compositum

F= ] K(E[™).
q prime

q#p

There exists n € {1,2,3} such that if E has good reduction at p we haven =1,
and for every extension K C K' C K unramified at p, setting F' = FK' we
have that

! n / ! 7 - : 2 (p? - 1
[K'(E]p"]) : F'NK'(E[p"])] is a multiple of gfd(?ng)pz — )1), and
Pt — 1)

K'(E[p"
Gal( (Elp D/F’ A K/(E[pn])> has an element of order scd(2ne, p? — 1)'

Moreover,

P Hp+1)

K'(E[p"
Gal( (Elp ])/F’(Cpoo) A K’(E[p”])) has an element of order scd(ne.pr1)’

Proof. Let K, be the completion of K at p. Consider the maximal unramified
extension K" of Ky. We clearly have K 'K, C Ky Let L/K;zr be the
minimal extension over which E acquires good reduction. As p > 6e — 1 > 5,
by [Kra90, Proposition 1] we have d := [L : K;"] € {1,2,3,4,6}. By the

Néron—Ogg—Shafarevich criterion, for every prime ¢ # p, as L(E [qoo])/L is
unramified, we have L(E[¢*°]) = L, and so F'L = L. By Proposition 3.2.9,



6.3. ENTANGLEMENT 115

we know that E does not have a canonical subgroup, so by Lemma 3.2.8 we

know that Gal (L (B [pn])/L> contains an element of order %. This

proves the first part of the theorem, as Gal (L (E [pn])/L> embeds into

o (PEW ) 6K B gy
We now prove that L(E[p"]) N L({p~) is equal to L({y). First we notice that
L(¢yn) € L(E[p"]). Since L(Gpee )/L(Cpn) is a procyclic extension, every proper
subextension must contain L((yn+1). It then suffices to show that (i1 ¢

L(E[p"]). However, this is true as Gal (L(gp” 1)/L> contains elements of
order p”, since L/@nr is a tamely ramified extension, while Gal (L (B [pn])/L)
P

is a subgroup of C;f,(p"), and hence does not contain elements of order p™.

Since L(CP)/L is totally ramified, we have [L((,) : L] = %. Asp >
6e — 1 > de — 1, we necessarily have p { de, and so [L((pn) @ L((p)] = p™ 71,
because L(¢pn )/L(Cp) is totally wildly ramified. This implies that [L((pn) :

-1 n—1
1) = ey

L(E[p"], Gp<)

/
L(Ep") L)
>/

(92 —1)p2(n—1)
e | LG
—_1)pn—1 d
praTe (o)
L FE (G
a| PR K77 (Gpe)
nr
KP

We then obtain that the degree of L(E [pn])/L(Cpn) is a multiple of

ng<d67p — 1)
ng(d€7p2 - 1)

Moreover, since F’ C L, we have that

[K'(E[p"]) : F'(Gee) N K'(E[p"))] = [F'(E[p"], Gpoe) + F'(Gpoe)]

S(p+1)p
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is a multiple of

[L(E[P"]; Gpee) = L(Gpee)] = [L(E[P"]) : L(Cpee) NL(E[P"])] = [L(E[P"]) : L(Cpn)]-

In particular, we showed that the degree [K'(E[p™]) : F'({p ) NK'(E[p"])] is a
% -(p+1)p"~1. To conclude, it suffices to show that there

exists n € {1,2,3} such that D := %ﬂ is a divisor of ged(ne,p + 1).

Suppose first that de is odd: then (de,p? — 1) = (de,p — 1)(de,p + 1), and so
D = (de,p + 1). Moreover, d is odd and therefore d € {1,3}. We can then
take 7 = d. Suppose now that de is even: then we can write

multiple of

de p2—1>_ (%.p—1)(de,p+1) ifp=1 (mod 4)

(de,p2—1):2<,
2 2 (de,p—l)(%,p+1) ifp=3 (mod 4).

If p =3 (mod 4), we have D = (%,p—i— 1)7 and then we conclude, as for
d € {1,2,3,4,6} we have that % divides either 2e or 3e. If instead p = 1
(mod 4), we treat separately the cases in which e is odd or e is even. If e
is odd, then we must have d € {2,4,6}, and so va(de) < va(p — 1). This
($p-1) _ 1
(de,p—1) — 2
(% -e,p+ 1). We can then take n = g. If e is even, then either d is odd, and
de
so D= ((25:11)) -(de,p+1) divides (de,p+ 1), with de € {e,3e} and n = d, or
d is even. In the latter case, we have that va(de) > 2 > 1 =v9(p+ 1), and so
(de,p+1) = (%,p + 1). This implies that D divides (de,p+1) = (g ce,p+1)

and we can take n = g. To conclude, it suffices to show that when E has good

reduction at p we have n = 1. To do that, we notice that in all the cases above
7 is a divisor of d, and since E has good reduction the degree d must be 1. [

implies that

and in particular D = 1(de,p + 1), which divides

Corollary 6.3.2. Let E/@ be a non-CM elliptic curve and let p > 7 and

n > 1 be integers such that p is prime and Im pg ,n C Cf,(p™). Let F be the
compositum
F= ] QE[g™).
q prime

q#Dp

There exists n € {1,2,3} such that
2n p2n—2
12

n n—1

+p

[F(E[p"]) : F] is a proper multiple of

[FQ*™(E[p"]) : FQ*] s a multiple of P

Moreover, if E has good reduction at p we have n = 1.
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Proof. We notice that we can assume that F has potentially good supersin-
gular reduction modulo p. Indeed, by Corollary 3.2.13 the prime p is always
supersingular for p > 7 and # 13. However, by [BDM*19, Corollary 1.3] we
know that for p = 13 the image of pg, is not contained in C;f,(p). Consider
the set R:={r>1 : p{r} and define the extension K = Q({¢ }rer). Asp
is unramified in K, by Theorem 6.3.1 we know that there exists n € {1,2,3}
such that

[FQ*™(E[p"]) : FQ]

[FK (G, E[p"]) : FE(Cpee)]
= [K(E[p"]) : FK(G) N K(E[p"])]

is a multiple of pn%pn_l. The fact that [F(E[p"]) : F] is a proper multiple of
p2n_p2n72

15 immediately follows from Theorem 6.3.1. O

Lemma 6.3.3. Let E be an elliptic curve over a field K and let p be a prime.
Let B be a set of primes such that for every g € B the prime p does not divide
q(¢®> —1). Define m := [, q (possibly a supernatural number) and consider
the compositum K(E[m™]) := [[ .5 K(E[¢*]). We have

K(E[m™], Elp]) N K(E[p™]) = K(E[p]).
Proof. Set F := K(E[m*]). We notice that for every ¢ € B we have
ptK(Elg]) : K] | # GLa(Fg) = q(g — 1)*(q +1).

As F is the composite of K(F[¢*]) for ¢ € B and K(E[qoo])/K(E[Q]) is a
pro-q extension, this implies that I’ does not contain any finite subextension
with degree multiple of p. In particular, the same holds for F(Ep] )/K( E[p))-

On the other hand, K (E[p*]) is a pro-p extension of K (E[p]), and so the field
F(E[p]) N K(E[p*]) must be equal to K(E[p]). O

Corollary 6.3.4. Let E/@ be a non-CM elliptic curve and let p > 7 be a
prime such that Impg, = C; (p). Let B be a set of primes such that for
every ¢ € B the prime p does not divide q(q¢*> — 1). Define m = quBq
(possibly a supernatural number), and consider the compositum Q(E[m™>]) :=
quB Q(E[¢*]). We have

[@*"(E[m™]) N Q™ (E[p™]) : Q*"] < 6.
Moreover, if E has good reduction at p we have

[Q* (E[m™]) NQ™(E[p™]) : Q"] < 2.
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Proof. By Lemma 6.3.3 we know that
Q™ (E[m™]) N Q*(EPp™]) € Q*°"(E[m™], E[p]) N Q™ (E[p™]) = Q™ (Ep)).
In particular, we can rewrite

Q™ (E[m™]) N Q™ (E[p™]) = Q" (E[m™]) N Q*"(E[p]),
and so it suffices to compute

[@(Ep) : 0]
[QP(E[p]) : Q*P(E[m>]) N Q**(E[p])]
B [Q**(Ep]) : Q**]
[@P(B[m], E[p]) : Q2P(E[m>])]
However, by Corollary 6.3.2 we know that [Q**(E[m®>], E[p]) : Q*P(E[m>])]
is at least 1%1 (and greater than or equal to p+1 in the case of good reduction),
and

[Qab(E[moo]) ﬂ@ab(E[p]) : Qab] _

[0 (20 : @] = [Q(ER) : ©(ELR]) N0 < [Q(ER) : Q6]

_OER) Q) -

[Q(G) : Q]

Lemma 6.3.5. Let E/@ be an elliptic curve without CM. Let P be a set of
primes containing 2,3,5 and all primes p for which pg, is not surjective.
Let m be the product of all the primes in P and write Z,, := HpeP 2y and

PEme = HpeP pEpe. Call S = pg (Gal (@/Qab)) < SLy(Zp) and Sp its
image under the projection on SLo(Z,,). We have

(GLy(Z) : Tm py] = [SLa(Z) : S| = [SLa(Zun) : Sp] = [GLa(Zn) : T pig eee].

Proof. The first and the third equalities follow from surjectivity of detopg
onto Z*. To prove the second inequality, it suffices to notice that we can view .S
as a closed subgroup of [ [, S, C [[,SL2(Z,) = SLy(Z), and by [Ser98, IV §3.4
Lemma 5] we know that S contains the subgroup [],¢p SL2(Zp), concluding
the proof. O

Lemma 6.3.6. Let E be an elliptic curve defined over a field K. Let m,n
be coprime squarefree supernatural numbers. Set G := Im pg and define G,
Grn, Gmn to be its projections on GLa(Zy,), GLa(Zy,), GLa(Zpy) respectively.
We have

(G X Gy, 2 G = [K(E[m™]) N K(ENR>)]) : K].
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Proof. Set F := K(E[m*>]) N K(E[n>]). If we write
G = Gal (KEM™) 7} and - Gy = Gal (KERTD) 40,

we know that G,,, = Gal <K (E[(mn) / K) is isomorphic to the subgroup

of Gy, x Gy, described as {(0,7) € Gy, X Gy, : o|p = 7|r}. We conclude the
proof noting that [Gy, X Gy, : Giy] = [F 1 K]. O

Corollary 6.3.7. Let K be a number field and let E/K be an elliptic curve
without CM. Let m,n be coprime squarefree supernatural numbers. Set G :=
Impg and S := pp(Gal(K/KQ*)), and define Gy, Gn, Gmn, Sm, Sns Smn
to be their projections on GLao(Zy,), GLo(Zy), GLo(Zmn), SLa(Zy,), SLa(Zy,),
SLo(Zyn) respectively. The index [GLa(Zmyn) : Gmn) is equal to

(GL2(Zm) : Gl - [GLa(Zn) : Gl - [K(E[m™]) N K(E[n™]) : K]
and the index [SLo(Zmn) : Smn] s equal to
[SL2(Zm) : Sm] - [SL2(Zn) : Sl - [KQ™ (E[m™]) N KQ*(E[n™]) : KQ™].
Proof. The first statement follows from Lemma 6.3.6 noting that

[GLo(Zyn) : Goon] = [GLa(Zonn) : G X Gin] + [Gin X G = G
= [GLa(Zun) : Gon] - [GLa(Z) : Gl - [Grn X G = G-

The second statement is proved in the same way replacing K with KQ*. O

6.4 Bound on the adelic index

The aim of this section is to combine the results from the previous chapters to
obtain a bound on the index of the image of the adelic Galois representation of
an elliptic curve E/@ without CM. In particular, we will combine the classifi-
cation of p-adic images (Theorem 6.1.5) and the effective surjectivity theorem
(Theorem 4.2.5) to obtain a bound on the contribution given by those primes
for which Impg ), is contained in the normaliser of a non-split Cartan. We
will then give a bound for the index at the other non-surjective primes and
a bound for the entanglement phenomenon among all primes. To do this, we
will use some results about the degree of entanglement fields given in Section
6.3. The following theorem is the main result of this section.

Theorem 6.4.1. Let E/Q be an elliptic curve without CM. We have

[GLy(Z) : Im pg] < 9.5 - 10 (hr(E) + 40)**2.
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Moreover, if we define

b(z) = :
“)" 7 log(log(z + 40) + 7.6) — 0.903

for every x > —0.75, we have
[GL2(Z) : Im pg] < 3.4-10% - (hp(E) + 22.5)3+4158:3(hr(E))

3+o(

~ 1
In particular, we have [GL2(Z) : Impg| < hr(E) logloghf(E)> as hr(E)

tends to oco.

Remark 6.4.2. If we compare this result with Theorem 17 we see that the
constant and the exponent are much better. In particular, exp(1.9 - 1019) is
replaced with 9.5 - 102, while the exponent 12395 is replaced with 4.42.

Before proving Theorem 6.4.1, we will give many intermediate lemmas and
propositions, that allow us to organise the proof in different steps. We will
treat separately the cases where the elliptic curve E satisfies the uniformity
conjecture or not, and we will distinguish cases according to whether j(E) is
an integer or not.

Lemma 6.4.3. Let E/@ be an elliptic curve without CM and let p be a prime
number such that Im pg ,, is contained in an exceptional subgroup, i.e. a proper
subgroup of GLa(Fy) which is not contained in a Borel subgroup or in the
normaliser of a Cartan subgroup. There are two possible cases:

e p=5 and [GLy(Fs) : Im pp 5] = 5;
e p =13, the j-invariant j(F) is one among

24.5.134. 173 212.53.11.134

313 » 313 )
218.33.13%.1273.1393 . 1573 - 2832 . 929
513 . 6113 ’

(6.4.1)

and [GLy(Z) : Im pg] = 182.

Proof. By [Ser81, §8.4, Lemme 18] we know that p < 13. Using [Zywl1b5a,
Theorems 1.1, 1.2, 1.4, 1.5, 1.6, 1.8] and [Zyw15a, Remark 1.9], we note that
there are just two possible groups: one for p = 5 with index 5 and one for
p = 13 with index 91 (respectively 5S4 and 13S4). However, by [BDM'23,
Theorem 1.1] we know that in the case p = 13 the j-invariant must belong to
the list (6.4.1). We can then apply the algorithm FindOpenImage developed
in [Zyw22] to compute the index of Im pg, which is 182. Indeed, by [Zyw15b,
Corollary 2.3] the index only depends on the j-invariant. O
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We collect together the facts we know about the possible images of pg ;, in
the following proposition.

Proposition 6.4.4. Let E/@ be an elliptic curve without CM. If j(E) is one
of the j-invariants of the following list

B 1721013 17 - 3733

3 2 3
—11-1313, —112, 5 T —7-11
24.5.134. 173 212.53.11.134
3 3
—7-137% 2083, 213 R G , (6.4.2)
218.33.13%.1273.1393 - 1573 - 2833 - 929
513 . 6113 ’

then [GLy(Z) : Im pp] < 2736. Suppose now that j(E) is not in the list above.
e IfImppg,), is contained in a Borel subgroup, then p € {2,3,5,7,13}.

e IfImpg ), is contained in the normaliser of a split Cartan subgroup, then
p<T.

e IfImpg, is contained in the normaliser of a non-split Cartan subgroup
and p > 5, then either Im pg, = C;¥,(p) and p € {5,7,11} U {N > 19},
or [C(p) : Impp,| =3 and p = 5.

e If Impg, is contained in an exceptional subgroup but is not contained
in one of the groups in the cases above, then p = 5 and [GLa(Zs) :
Im pg 500] = 5.

Proof. To prove that the j-invariants in the list have [GLg(z) : Impp] <
2736, it suffices to notice that by [Zyw15b, Corollary 2.3] the index only
depends on the j-invariant, and then we can compute it using the algorithm
FindOpenImage developed in [Zyw22]. If j(FE) is not in the list, the statement
follows combining Theorem 3, Theorem 4, Theorem 9, [BDM 119, Corollary
1.3], [BDM*23, Theorem 1.2], and Lemma 6.4.3. O

Another result we will use is the following theorem by Lemos ([Lem19a,
Theorem 1.1] and [Lem19b, Theorem 1.4]).

Theorem 6.4.5 (Lemos). Let E/@ be an elliptic curve without CM. Suppose
that there exists a prime q for which Im pg 4 s contained either in a Borel sub-
group or in the normaliser of a split Cartan subgroup: then pg, is surjective
for every p > 37.

Lemos’s arguments actually show the following stronger statement.
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Theorem 6.4.6. Let E/@ be an elliptic curve without CM and let p > 13
be a prime such that Im pg, C CJf.(p). For every prime q # p, the image of
PE,q 15 contained neither in a Borel subgroup nor in the normaliser of a split
Cartan subgroup.

Proof. By Theorem 3, we know that if F admits a rational g-isogeny then ¢
belongs to the set {2,3,5,7,11,13,17,37}. However, by [Lem19a, Proposition
2.1] we know that either j(E) € Z or ¢ € {11,17,37}. If E admits a rational
isogeny of degree ¢ € {11,17,37}, by Theorem 3 we know that j(FE) is one
among

172.101%  17-3733
2 T 217

—11-1313, —11%, — ,—7-137%.20833, —7-113.

One can check on the LMFDB [LMF24] that in these cases Im pg, is not
contained in Cf, (p) for p > 13. If instead Im pg 4 is contained in the normaliser
of a split Cartan subgroup, then by [Lem19b, Proposition 1.5] we know that
j(E) € Z. From now on, we can therefore assume that j(E) € Z. Following
the proof of [Lem19b, Theorem 1.4] we have that if Impg, € CF(q) then
j(E) € {-5000,—1728}, for which Impg, is not contained in C;(p) for
p > 13. If j(E) € Z and the image of pg, is contained in a Borel subgroup,
then following the proof of [Lem19a, Theorem 1.1] we have that j(E) belongs
to the list in [Lem19a, p. 142], and one can check again on the LMFDB that
none of those curves admits a prime p > 13 for which Im pg, C C;f,(p). O

Combining Proposition 6.4.4 and Theorem 6.4.6 we obtain the following.

Proposition 6.4.7. Let E/@ be an elliptic curve without CM. Suppose that
J(E) does not belong to the list (6.4.2). One of the following holds.

(A) There exists p > 13 such that Im pg, = C/f,(p), and for every ¢ # 5 for
which pp 4 is not surjective we have Im pp 4 C CF.(q).

(B) For every p > 13 the representation pg p is surjective.

Proof. Suppose first that there exists p > 13 such that Impg, C C;,(p).
By Theorem 9 we know that Impp, = C/,(p). Using Theorem 6.4.6 we
see that if ¢ is a prime for which pg 4 is not surjective and its image is not
contained in C;f,(¢q), then it must be contained in an exceptional subgroup.
By Proposition 6.4.4 this implies that ¢ = 5. If instead there are no primes
p > 13 for which Impg, C C;,(p), by Proposition 6.4.4 we see that pg,
is surjective for every p > 13. By [Ser98, IV-23, Lemma 3] we have that
pipe (Gal (Q/Q™)) = SLy(Z,), and by surjectivity of the determinant this
implies that Im pg po = GLa(Z)). O
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Definition 6.4.8. Let E/@ be an elliptic curve without CM. For every integer

n > 1set Z, = len Zyp and pgpe = len pEpe : Gal (Q/Q> — GLo(Zy).

For any coprime integers m,n > 1, using Corollary 6.3.7 and the surjectivity
of det opp define

Ind(m) := [GL2(Zy,) : Im pg mee| = [SLa(Zy,) : Im pg mee N SLa(Zy,)],

But(m,n) o= s = (@B ™) NQUER]) : O

= [Q™(B[m™]) nQ**(E[n™]) : Q*"].

We are now ready to prove Theorem 6.4.1. We will split the proof in multiple
step and cases, to make it clearer.

Proposition 6.4.9. Let E be an elliptic curve without CM and suppose that
J(E) does not belong to the list (6.4.2). Consider the two cases (A) and (B)
of Proposition 6.4.7. In the respective cases we have

(A) Let Cyns be the set of the primes p > 7 such that Impg, C C/l (p), and
let B be the number of primes in Cns at which E has bad reduction. We
have

[GLy(Z) : Tm ppg] < A7 - 2117767 . nd(30) - J] Ind(p),
PECns

where

if7¢C,

if 7€ C and E has good reduction at 7,
if 7€ C and E has bad reduction at 7.

A7 =

wloo OO —

(B) Let {2,3,5} C L C {2,3,5,7,11,13} be the set of primes containing
2,3,5 and every p for which pg, is not surjective. Let my be the product
of primes q < p that belong to L. We have

[GLy(Z) : Tm pp] < [ ] Ent(my, p) Ind(p).
peEL

Proof. Case (B) follows from the definition of Ent(m,,p) and Ind(p), we then
focus on case (A). By Theorem 6.4.6 we know that for every prime p, if
the representation pg, is not surjective, its image is contained either in the
normaliser of a non-split Cartan or in an exceptional subgroup. If Im pg , is
contained in an exceptional subgroup, we know by Lemma 6.4.3 that either
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p = 5 and Im pg 5 has index 5 or the index of Im pg is 182, and hence satisfies
the inequality in the statement of the lemma. We will then assume that for
every prime p for which pg, is not surjective, either Im pg , € Cf,(p) or p =5
and [GLa(Zs) : Im pgs~] = 5. Define the set P := {2,3,5} UC and consider
m:= Hpepp. Lemma 6.3.5 yields

GLy(Z) : Im pE} - [SLQ(Z) : 5} — Ind(m). (6.4.3)

Define C,,s :=C\ {3, 5}, let p be the largest prime in C,s and set B := P\ {p}.
If p > 7, by Corollary 6.3.7 and Corollary 6.3.4 we have
Ind(m) = Ent(m/p, p) - Ind(m/p) - Ind(p) < 6 - Ind(m/p) - Ind(p). (6.4.4)
Similarly, if we further assume that E has good reduction at p, we have
Ind(m) < 2-Ind(m/p) - Ind(p).

If instead p = 7, we have that % = 30, and so we can apply Lemma 6.3.3. In
particular, we obtain

Ent(m/p, p) = [Q(E[(m/p)*]) NQ™(E[p™]) : Q*"]
= [Q™(E[(m/p)*]) N Q*(E[p]) : Q"]
< [Q™(Blp]) : Q] < [CL(7)] = 16,

and so
Ind(m) < 16 - Ind(30) - Ind(7).

We can now iterate this argument on % in place of m, so that we obtain
Ind(m) < A - 2117067 . md(30) - J] Ind(p)
PECns
as desired. O

Lemma 6.4.10. Let E/@ be an elliptic curve without CM. Define C as the
set of all odd primes p for which Im pg, C C.(p). Let 8 be the number of

primes p > 5 in C for which E has bad reduction at p. For everyp € C, call ny
the largest integer n for which Im pg yn C CyF (p™), and define A := Hpec pe,
Suppose that C contains a prime greater than 13 (Case (A) of Proposition
6.4.7). We have

[GLy(Z) : Im pg] < 2488320 - A7 - 37 - A3,
where
if 7¢C,
if 7€ C and E has good reduction at 7,
if 7€ C and E has bad reduction at 7.

Ay =

wloo 00 —
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Proof. Set Cps = C \ {3,5}. As we are in case (A) of Proposition 6.4.9, we
have

[GLy(Z) : Im pp] < A7 - 2%+17F .67 . Ind(30) - J] Ind(p).
pECns

We notice that
Ind(30) = Ind(5) - Ind(6) - Ent(6, 5).

Call Sy, the projection of Im ppNSLa (Z) in SLa(Zy,). We know that Im pg 5 is
SLy(F5), or it is conjugate to either a subgroup of C(5), or to the exceptional
subgroup 554. If Im pp s = SLa(F5) we know by [Ser98, IV §3.4 Lemma 3]
that S5 = SLa(Z5). We can apply Goursat’s lemma to show that the image of
Ss0 in the product %2 X SLf\gs) corresponds to the graph of an isomorphism

ff—z &~ SLZT(EZ”, where Ng and N5 are the kernels of the projections on S5 and Sg

respectively. However, the group Sg is solvable, while following the description
of Occ(GL2(Zp)) in [Ser98, IV-25] we see that SLy(Zs) contains PSLy(F5) in
its composition series. This implies that N5 must surject onto PSLy(F5). In
particular, by [Ser98, IV §3.4 Lemmas 2 and 3] this implies that N5 = SLa(Zs),
and so

Ind(30) = Ind(6) - Ind(5) = Ind(6).
In the non-split Cartan case, we can apply Lemma 6.3.3 and obtain
Ent(6,5) = [Q*(E[6>]) N Q**(E[5>]) : Q*"]

= [Q**(E[6>]) N Q*(E[5]) : Q*"]
< [@*(E[5]) : Q%] < |Gl (5)] = 12.

In the exceptional case, in the same way as for the Cartan we have Ent(6,5) <
24. Define As as 12 if Impg 5 C CF.(5), as As := 24 if Im pg 5 = 554, and as
1 otherwise. Combining all cases we have

[GLa(Z) : Tm ppg] < AsA7 - 2917867 . Ind(6) [ Ind(p).
peC\{3}

We now notice that both Sy and S3 are solvable, and that So has just one copy
of Z/3Z in its composition series, while S5 has 3 copies of % in its composition
series. The quotients % = ]‘ff—; will then have order less than or equal to 24.
In particular, we have Ent(6) < 24, and so Ind(6) < 24 - Ind(2) - Ind(3). If we

set P :=CU{2,3,5} we obtain
[GLy(Z) : Im ppg] < 247577 - 21178 . 67 T][GL2(2Zp) : Tm ppg poe]. (6.4.5)
pEP

By Theorem 6.4.6 we know that Im pg 3 is contained neither in a Borel sub-
group nor in the normaliser of a split Cartan subgroup. In particular, by
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[Zyw15a, Theorem 1.2] we know that it must be either equal to the normaliser
of a non-split Cartan or to GLg(F3). By Proposition 6.2.4 we know that if
3 ¢ C, then Ind(3) < 27. On the other hand, if 3 € C then by Corollary 6.2.2
we have Ind(3) < 3%%3~1. In all cases, we can write Ind(3) < 3max{3,3ns—1} <
27 - 3373 Similarly, if pE5 is not surjective and 5 ¢ C, we can apply Proposi-
tion 6.2.4 to obtain that Ind(5) = 5, and so A5 Ind(5) = 120. If instead 5 € C,
by Corollary 6.2.2 we have Ind(5) < 2 - 53", and A5 Ind(5) < 2! - 5375, Since
if pg 5 is surjective we have Ind(5) = 1, in all cases we can write AsInd(5) <
120-537. By Proposition 6.2.3, we know that either [GLy(Z) : Im pg] = 128 or
Ind(2) < 32. We can exclude the first case, as it is better than the inequality
in the statement of the lemma. For all the other p € P, we know that p € C,
and by Corollary 6.2.2 we have Ind(p) < ﬁ%. Replacing all these bounds in
equation (6.4.5) we obtain

pSnp

[GLa(Z) : Tm ppg] < 243227120 - Aq - 2075 . 68 . g3na . 53ns T
PECns
— 2488320 - A7 - 37 - A3 O

Lemma 6.4.11. Let E/@ be an elliptic curve without CM. Define C as the

set of all odd primes p for which Im pg, C C/.(p). For every p € C, call n,
the largest integer n for which Im pg pn C C’,}LS( ™), and define A := Hpec pe,
Suppose that j(E) does not belong to the list (6.4.2) and that pg ) is surjective
for every prime p > 13 (Case (B) of Proposition 6.4.7). We have

[GLy(Z) : Im pgg] < 4.3-10'2 - A2,

Proof. By Theorem 3, we know that if p is an odd prime for which E has a
rational p-isogeny, then p € {3,5,7,13}. Define the set P = {2,3,5} U {p |
pE.p is not surjective} C {2,3,5,7,11, 13}, and set as before m := Hpepp and

S := pg (Gal (Q/Q?")). By Lemma 6.3.5 we have [GLQ(z) : Im pg] = Ind(m).
Define the set By, := {q € P : ¢ < p} and write my, :=[[ cp ¢ (Wheremy =1).
By Proposition 6.4.7 we have

Ind(m) = [ ] Ind(p) - Ent(m,, p). (6.4.6)
peEP

If p > 5 we can apply Lemma 6.3.3 and obtain
Ky = Q(E[p™)) N Q™ (E[mX)) = Q(E[p]) N Q™ (E[m;X]).
Moreover, similarly to the proof of Lemma 6.3.3, since the Galois group

b
Gal (@ (Elmy® D/Qab) does not contain any finite group of order divisi-

ble by p in its composition series, the field K, must be a subextension of
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ab
Q™(Elp ])/Qab of degree coprime with p. In particular, if P, is a p-Sylow of
S,, we have that [K), : Q**] < [S, : P,], and so

Ind(p) - Ent(my, p) = [SLa(Z,) : Sy - [Kp : Q] < [SLa(Z,) : Py].  (6.4.7)

We now proceed by providing a bound on the indices of the groups P, prime
by prime, assuming that pg ,~ is not surjective. To optimise the bound, we
will bound the degree [K3 : Q*"] together with the index [SLa(Zs2) : Sa], even
if they correspond to different primes.

e p=13. We can apply Proposition 6.4.4 to show that Im pg 13 is con-
tained in a Borel subgroup. By Theorem 11 we have that the 13-Sylow
of GLy(Z3) is contained in Im pg 130, and so by Lemma 2.1.10 and
Lemma 2.1.4 we have that Pj3 is the 13-Sylow of SL2(Z13). We then
obtain [SLQ(ZlS) : Plg] <12 14.

e p=11. By Proposition 6.4.4, Impg 11 is equal to the normaliser of
a non-split Cartan subgroup. In particular, by Proposition 6.2.1 and
Corollary 6.3.4 we have [SLy(Z11) : S11] - [K11 : Q] < 5-112"1 .6 =
30 - 112m11,

e p=7. By [RSZB22, Theorem 1.6] we see that there are three possible
cases: the index [SLa(Z7) : S7] has 7T-adic valuation at most 1 (as we can
check in the online supplement of [SZ17]), the image of pg 7 is contained
in C/f.(7), or E corresponds to one of the two exceptional points in
[RSZB22, Table 1]. In the last case, we can compute that [GLy(Z) :
Impg| = 224. In the Cartan case, using Proposition 6.2.1 we have
[SLo(Z7) : P;) < (7% — 1) - 7. If instead the 7-adic valuation of the
index is at most 1, we obtain [SLa(Z7) : Py} < (7?2 — 1) - 7. In all cases,
we have [SLo(Z7) : P7] < 7-48 - 7%,

e p=>5. Similarly to the case p = 7, by [RSZB22, Theorem 1.6] we
have three cases: [SLo(Zs) : Ss] has 5-adic valuation at most 1, or
Im pgos C CF,(25), or E corresponds to one of two exceptional points
with [GLy(Z) : Im pg] € {200,300}. In the Cartan case we have ns > 2,
so by Proposition 6.2.1 we have [SLa(Zs) : Ps] < (52 —1)-52%~1 Asin
the first case we have [SLa(Zs) : P5] < 24 -5, we obtain that in all cases
[SLo(Zs) : Ps] < 5-24- 5215,

e p = 3. Again, by [RSZB22, Theorem 1.6] we have that either [SLa(Z3) :
Ss] < 27, or Impg oy C C;F,(27). By Theorem 6.1.5 and Proposition
6.2.1, in both cases we have [SLy(Z3) : S3] < 27 - 3273,

e p=2. Since my = 1 by definition, we have [K, : Q*’] = 1. As shown
in the proof of Proposition 6.4.10, we know that [K3 : Q*] = Ent(3,2)
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divides 24. We recall that the index [SLa(Zg) : Ss] is divisible by 3 if
and only if E admits a rational 2-isogeny (i.e. if Im pg o is contained in a

Borel sub i ion @(B[2)) i -

group). Equivalently, the extension //yab 1S a pro-2
extension if and only if £ admits a rational 2-isogeny. If E has a rational
2-isogeny, [K3 : Q2] divides 8, and by [RZB15, Corollary 1.3] the index
[SL2(Z2) : S2] must divide 96. If instead E has no rational 2-isogenies,
by Proposition 6.2.3 we can assume that the index [SLa(Z2) : Sa] divides
32. In both cases, we have [SLa(Z2) : Sa]-[K3 : Q2] [K; : Q2P] < 96-8 =
3224 = 768.

Writing A = HpeP p"?, combining the bounds above with equations (6.4.6)
and (6.4.7), we obtain

[SLo(Zy,) : Sp] < 168-30-336-120-27-768 - A2 < 4.3-10'2- A%, (6.4.8)
concluding the proof. O

Proposition 6.4.12. Let E/Q be an elliptic curve without CM. If there exists
a prime q > 13 such that Im pp 4 C C;(q), then Theorem 6.4.1 holds.

We now give the final part of the proof of Theorem 6.4.1, treating separately
cases (A) and (B) of Proposition 6.4.7.

Proof of Theorem 6.4.1. We notice that if j(E) belongs to the list (6.4.2),
by Proposition 6.4.4 we have [GL2(Z) : Im pg] < 2736, hence we can assume
that j(F) is not in the list.

Suppose first that case (A) of Proposition 6.4.7 holds. Let C be the set of all
odd primes p such that Im pg, C C/,(p) and let C,s = C \ {3,5}. For every
p € C, define n, as the largest integer n for which Im pg » C CF (p™), and let
A= Hpec p"?. By Lemma 6.4.10 we know that

[GLy(Z) : Im pg] < 2488320 - AL, - 3/Cns| . A3, (6.4.9)

where we can assume that A% :=1if 7 ¢ C and AL := § otherwise: indeed,
we have A7 - 3% < max{1 - S‘C"S|,§ - 3lCnsl 8. 3|C"3|_1}, so we can set A7 =
min{Av, %} As in the proof of Theorem 4.2.5, we treat separately the cases
in which j(E) € Z and j(E) ¢ Z.

Suppose first that j(E) ¢ Z. We can write 2488320 - AL < 6635520. By
Proposition 6.4.4 we know that Cps C {7,11} U {p € Cps | p > 19}, and so, as
in the proof of Theorem 4.2.5 we have

A A A
Cns| < max {10g19 A, 1+ logg r 1 +logyg 11 2 + logyg 77}

S loglg A + 1-— loglg 7 < loglg A + 0.525.
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Applying Theorem 4.2.4 we obtain

[GLy(Z) : Im pp) < 6635520 - 319819 A+0:525 L A3 6635520 - 30-525 . A3+log193
12
log 2
< 1.78 - 10" - (hz(E) + 1.5)338. (6.4.10)

3+logg 3
< 6635520 - 3%-7%° . ( )  (hp(E) + 1.5)3Ho8103

We can now write |Cns| < |C| = w(A), which is the function counting the
distinct prime divisors of A. We can assume that A > 26, otherwise we would
get a stronger statement, hence by [Rob83, Théoréme 13| and Theorem 4.2.5
we have

) log A ) 1.308 log(hr(E) + 40) + log 21000
loglog A —1.1714 ~ log(1.308log(hr(E) + 40) + log21000) — 1.1714
< (1.308log(hz(E) + 40) + log 21000) (hr(E)).

Using this bound in equation (6.4.9) and applying again Theorem 4.2.4 we
obtain

[GLg(z) - Im pE] < 6635520.310g21000-5(h;(E))(h]__(E)+40)1.308v10g3-§(h;(E))'A3
<9. 109(h]:(E) + 40)1.308~10g3~6(hf(E)) A3
12 \°
<9-10° <log2> (hr(E) + 40)143700F(E)) (4 - (E) + 1.5)3

< 5108 (hp(E) + 40)M4370MF(E) (1) 2 (E) 4 1.5)3,

where we used that 3108210000(h7(E)) < 1340 for hz(E) > —0.75 (which can
be assumed by Remark 1.2.9). This inequality is better than the statement of
the theorem.

Suppose now that j(F) € Z. By Lemma 5.3.3(2) we know that either j(E)
belongs to the list (5.3.1) and [GLy(Z) : Impg] < 504, or 7 ¢ Cpns. In the
former case, the theorem trivially holds, hence we can assume that 7 ¢ Cs.
By [ST12] we also have that 11 ¢ C,s. Using again Proposition 6.4.4, we
obtain that [Cps| < log;gA and A% = 1, hence applying Theorem 4.2.5 to
equation (6.4.9) we have

[GLQ(Z) - Im pp| < 2488320 - 3198104 L A3 < 9488320 - A3F1og103
< 2488320 - (21000)318193 . (h 2 (E) + 40)1-308-(3+1og193)
<9.5-10% . (hr(E) + 40)+42.

Assume now that hz(E) > 4 -10'°. We have

2488320 - 3108 21000:3(hx(E)) 1 13. 108,
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As before, we can apply Theorem 4.2.5 in equation (6.4.9) to obtain

[GLQ(Z) - Tm PE] < 2488320 - 310g21000-6(h;(E))(h}_(E) + 40)1,308-10g3-5(hf(E))A3
< 1.13-10%-14400% (hp (E)+40) 158007 (E) () 2 (£) +-22.5)3
< 3.38 - 100 (b (E) + 40)*1580M7(E)) (1 - (E) 4 22.5)3.

To conclude, it suffices to notice that for hx(E) > 10*® we have

40 \ 41586(h7(E))
( x + 40 ) <1410

T +225
and for h]:(E) < 101 we have
9.5- 102 (hr(E) + 40)**? < 3.4 - 102 (hr(E) 4 22.5)3+41580(bhr(E)

Assume now that we are in case (B) of Proposition 6.4.7. By Lemma 6.4.11
and Theorem 4.2.5 we have
[GLy(Z) : Im pg] < 4.3-10'2 - 21000% - (hz(E) + 40)>616
<1.9-10% - (hx(E) + 40)*016,

which is better than the first statement of the theorem for hx(E) > —0.75.
Similarly, we have
[GLy(Z) : Im pgg] < 4.3-10'2 - A2

< 4.3-10'2 - 144002 (hr (E)+40) 814007 (E) () 2 (£) +22.5)?

<9-10% . (hp(E) 4 40)81400F(E) () - (E) + 22.5)2,

which is again better than the second statement of the theorem for hr(FE) >
—0.75. O

A bound in terms of the conductor

We conclude this chapter by giving another bound on the index of the adelic
representation pg. This new bound is given in terms of the conductor and
not in terms of the height as before. In particular, we prove an effective and
improved version of [Zyw11, Theorem 1.1(ii)].

Theorem 6.4.13. Let E/@ be an elliptic curve without CM. Let N be the

product of the primes of bad reduction of E and let w(N) be the number of
prime factors of N. We have

[GL(Z) : Im p] < 2488320 (51N(1 +loglog N)a) .
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To prove this result, we improve Proposition 3.3 of the article of Zywina
[Zyw11] applying the sharpened version of a lemma of Kraus [Kra95| obtained
in Chapter 1. The proof is very similar to that of Zywina, however, we have
to slightly modify his argument to make it work for the prime p = 3.

Let p be an odd prime such that Im pg, C C/,(p) and consider the quadratic
character ¢, defined as

ep : Gal <Q/@> ey Cl(p) — ns(P) >~ {+1}.

We can identify €, with a Dirichlet character of the absolute Galois group of
Q. If p > 3, Serre showed that the character ¢, is unramified at all primes
¢ that do not divide N (see [Ser72, Section 5.8, (c2)]). If instead p = 3,
by the Néron-Ogg-Shafarevich criterion €, is unramified at all primes ¢ such
that ¢ 4 3N. We will show that, for our purpose, we can assume that 3 is
unramified at 3 whenever 31 N.

Lemma 6.4.14. Let p be an odd prime and let ¢, be defined as above. The
character €, is unramified at all primes £ { pN. Moreover, we have the follow-
mg.

e If p> 3 and pt N, the character €, is unramified at p.
e If3{N and Impgg C C;},(9), the character €3 is unramified at 3.

Proof. We follow the proof of Serre for p > 3 and we show that in our case
the argument also works for p = 3. The fact that ¢, is unramified at £ { pN
follows from the Néron—Ogg—Shafarevich criterion. Since p { N, the curve
E has good reduction at p. By [Ser72, Section 1.11, Propositions 11 and
12] we know that the image I := pg,(I,) of the inertia subgroup I, at p is

either a group of the form (; 0 or a group of order p? — 1, depending on
1

whether the curve E has ordinary or supersingular reduction respectively. In
the latter case, the group I is contained in C)4(p), because every element in
CH(p) \ Crs(p) has order dividing 2(p — 1) and p?> — 1 > 2(p — 1) (see also
[Ser72, Section 2.2, Proposition 14]). If instead E has ordinary reduction at
p, for p > 3 there exists an element in I with eigenvalues A1, Ay € I}, such that
A1 # +)Xo. However, every element in C;f,(p) has eigenvalues conjugate over
[F,2 up to sign, and hence this case never occurs (see also again [Ser72, Section
2.2, Proposition 14]). On the other hand, if p = 3 and Im pg g C C,7,(9), by
Lemma 6.1.3 the curve E cannot have ordinary reduction at 3. O

If £1 N, we can consider the reduction E of E modulo £. As usual, we define
the number a;(E) :={+ 1 — |E(F,)|.
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Lemma 6.4.15. Let E be a non-CM elliptic curve defined over Q and let
p" # 3 be an odd prime power such that Im pgpn C C (p"). Let N be the
product of the primes for which E has bad reduction and let €, be defined as
above. If {1 N is a prime for which e,(¢) = —1, then a;(E) =0 (mod p").

Proof. By Lemma 6.4.14, for every ¢ { N we have that ¢, and pg,~ are
unramified. The condition £,(¢) = —1 means that pg »(Frob,) € C/(p") \
Crs(p™), and hence it is an element with trace equal to 0. This implies that
a¢(E) = tr(pg pn (Frobs)) = 0 (mod p"). O

Lemma 6.4.16. Let E be a non-CM elliptic curve defined over Q and let N
be the product of the primes for which E has bad reduction. If there exists an
odd prime p such that Im pg, C C(p), then N > 5.

Proof. As there are no elliptic curves defined over Q with good reduction at all
primes, it suffices to show that N ¢ {2,3,5}. If N = 2, as proved in [Ogg66],
we must have that j(E) € {123,203,663,27,25.73}, and since E does not have
CM we have j(E) € {27,2°-73}. We can use the algorithm FindOpenImage .m
from [Zyw22] to show that in these cases there are no primes p > 2 such that
Impgr, C Cf.(p). Indeed, by Lemma 5.4.27 this property only depends on
the j-invariant of E. If N = 3, we can use the classification of elliptic curves
with conductor of the form 2¢ - 3° given by Coghlan [Cog67], and republished
in [BK06, Table 4], which shows that there are no non-CM elliptic curves with
conductor a power of 3. If N = 5, by modularity theorem [BCDTO01] we know
that E corresponds to a non-trivial cusp form for one of the modular groups
I'g(5) and T'g(25). However, the vector spaces S2(I'g(5)) and S2(I'g(25)) are
trivial, and hence there are no elliptic curves with N = 5. O

Proposition 6.4.17. Let E be a non-CM elliptic curve defined over Q. Let
N be the product of the primes for which E has bad reduction and let € be a
quadratic Dirichlet character with conductor dividing N -lem(N,2). If N > 2,
there exists a prime £t N with

¢ < 312- N%(1 +loglog N)
such that €(¢) = —1 and ay(E) # 0.

Proof. Set Fy := E and consider the elliptic curve Fy obtained by twisting F
by the character . Let £ be a prime that does not divide N. By definition,
Es5 has good reduction at ¢ and ay(E2) = £(¢)a¢(E7). In particular, we notice
that a¢(E2) # ae(E7) if and only if a/(E) # 0 and ¢(¢) = —1. Hence, it
suffices to prove that there exists a small prime ¢ such that ag(E2) # a¢(Eh).
First, we notice that there exists a prime ¢ { N such that a,(E) # 0 and
e(¢) = —1, otherwise E' would have complex multiplication by the quadratic
field that corresponds to . Let N; be the conductor of E; and define N/ :=
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N; Hq| N q%@ | where d;(q) = 0, 1 or 2 if F; has additive, multiplicative or
good reduction respectively, at ¢q. If M is the least common multiple of Nj

and N}, by [Del85b, Section 5 C] there exists a prime £ < Iy m (1 + %)

such that a¢(E1) # a¢(E2). This last property is implied by the modularity of
E, and E3, which follows by [BCDTO01]. We see that M divides the number

26.33. N2, In particular, since N > 2, we can apply Lemma 1.1.4 to obtain

1
€§25-32-N2H<1+q> < 312- N%(1 4 loglog N). O
qalN

Remark 6.4.18. Notice that by the proof of Proposition 6.4.17 we can actually
deduce that if IV is a prime greater than 3, then

/< N(N + 1).
- 6
Indeed, this follows from the fact that M actually divides N2.

Proposition 6.4.19. Let E be a non-CM elliptic curve over Q. Let N be the
product of the primes for which E has bad reduction. Let w(N) be the number
of prime divisors of N. Let M be the minimum positive integer such that if
pEpn (Gg) C C(p™) for an odd prime power p™ # 3, then p™ divides M. We
have

w(N)
M < (35.33 - N(1+loglog N)%) for every N, and

IN(N +1)

M <
- 3

for N prime.

cp . N2
Moreover, if j(E) ¢ Z we have M < = — 1.

Proof. By Lemma 6.4.16 we notice that we can assume that N > 5. Set Ny :=
N if N is odd, and Ny := 2N if N is even. Let V; be the group of quadratic

X
characters of (Z/ NOZ> . We may view Vj as a vector space of dimension

w(N) over Fa. We define a sequence of primes /1, ..., l,(y) relatively prime
to N such that ay,(F) # 0 for every i and for every non-trivial character
e € Vj there exists an i for which £(¢;) = —1. We proceed by induction on i.
Choose a non-trivial character «; € V;. By Proposition 6.4.17 there exists a
prime ¢; N smaller than 312 - N?(1 + loglog N) such that a;(¢;) = —1 and
ag,(E) # 0. Let V11 be the subspace of V; consisting of characters ¢ such
that €(¢;) = 1. The space V;y; has dimension at most w(N) — i over Fy. In
particular, V,,(xy41 = 1, and so the sequence of primes /1, ..., {,y) has the
desired property. Define the integer M’ := H:,:ulv) lag,(E)|. If p" # 3 is a prime
power such that Im pg ,n C C/f (p™), there exists ¢ such that £,(¢;) = —1, and
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hence by Lemma 6.4.15 we have p™ | |ay,(E)|, that implies p" | M’, and in
particular M < M’. By the Hasse’s bound, for every ¢; we have

lag,(E)| < 21/0; < 35.33- N\/1 + loglog N,

w(N)
and hence M’ < <35.33 - N(1+ loglog N)%) Notice that by Remark
6.4.18, if N = ¢ is prime we have the stronger inequality M’ = |a,(E)| <
20(0+1)

=5
Suppose now that j(E) ¢ Z. By Proposition 3.1.2 we know that if £ is a prime
of potentially multiplicative reduction, for every odd prime power p™ such that

Im pg n C Cl(p") we have p" | £2 — 1. We then notice that M | ¢2 — 1. If

N is composite, we have £ < %, and hence M < NTQ — 1. If N =/ is prime,

we have M < 4/ M < % — 1, where the last inequality holds because by
Lemma 6.4.16 we can assume that ¢ > 5. O

We now divide the proof of Theorem 6.4.13 in two cases, according to
whether we are in case (A) or (B) of Proposition 6.4.7.

Proof of Theorem 6.4.13. Define the set C := {p > 3 | Impg, C C;}.(p)}. For
every p € C, let n, be the largest integer n such that Im pg ,» C C;(p™), and
define A := [[ o p"*. Set

B:=|{peC : p>5and E has bad reduction at p}| < min{w(A),w(N)}.

We notice that j(£) does not belong to the list (6.4.2), otherwise by Propo-
sition 6.4.4 we would have [GL2(Z) : Im pg] < 2736, which is better than the
statement of the theorem. Suppose first that we are in case (A) of Proposition

6.4.7, i.e. that C contains a prime p > 13. By Lemma 6.4.10 we have
[GL2(Z) : Im pg] < 2488320 - A7 - 37 - A3,

where A7 € {1, %,8}. If j(F) € Z, we can assume that 7 ¢ C: indeed, using
Lemma 5.3.3(1) we have that either [GL2(Z) : Im pg] < 504, which is better
than the statement of the theorem, or 7 ¢ C. In particular, we may assume
that Ay = 1. Moreover, in the proof of Lemma 6.4.10 we used the bound
[GL2(Z3) : Im ppg 3] < gmax{33nz—1} < 97. 3373 hence we can assume that
ng # 1. We can then apply Proposition 6.4.19 and obtain

~ 3w(N)
[GL(Z) : Im p] < 2488320 - 39V . (35.33 - N(1 +loglog N)%)

3w(N)
— 2488320 (35.333/5 . N(1 + loglog N)%)

< 2488320 (51N(1 +loglog N)2> .
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If j(E) ¢ Z then we can bound A; < 8 and using Proposition 6.4.19 we obtain

[GLy(Z) : Im pg] < 8 - 2488320 <]i - 1) (6.4.11)

1\ 3w(N)
< 2488320 (51N(1 + loglog N)E)

for w(N) > 1, and
3
- ON(N +1)\ 2
[GLy(Z) : Im pg] < 8 - 2488320 <(3+)> i (6.4.12)

1 SW(N)
< 2488320 (51N(1 +loglog N) 2>

for w(N) = 1.

Suppose now that we are in case (B) of Proposition 6.4.7, i.e. that for every
prime p > 13 the representation pg ), is surjective. By Lemma 6.4.11 we have
[GLQ(Z) : Impg] < 4.3-10'2 . A2, Moreover, we notice that in the proof
of Lemma 6.4.11, in the case ‘p = 3’, we used the bound [SLa(Z3) : S3] <
gmax{3.2ns—1} < 97.32 and hence we can assume that ng # 1. We treat
again separately the cases j(E) € Z and j(F) ¢ Z. If j(E) is not an integer,
we can apply Proposition 6.4.19 to obtain

~ N2 2
[CGLa(Z) : Tm pg] < 4.3 1012 . A% < 4.3-10". (4 - 1) for every N, and

~ 2
[CGLa(Z) : Tm pg] < 4.3 - 1012 §N (N+1) for N prime.

One can verify that the first inequality is always better than the statement
of the theorem for w(N) > 1, while for w(N) = 1 we can use the second
inequality, which is better than the statement of the theorem for N > 5 (which
we can assume by Lemma 6.4.16). If instead j(F) is an integer, by [BDM*19,
Corollary 1.3] and [ST12] we can assume that 11,13 ¢ C. In particular, if we
look at the case ‘p = 11" in the proof of Lemma 6.4.11, we deduce that pg 11
must be surjective (otherwise its image would be contained in a Borel and we
would have [GLQ(Z) : Im pg] < 2736), and hence we can save a factor 30 in
equation (6.4.8). We then obtain

4.3 -10'2 A% < 4.3 -10'2

w(N)
30 30 )2 ;

(GLy(Z) : Tm pg] < (51N(1 +loglog N)3

for every N, and

[GLy(Z) : Tm pp] <

4.3-10'2 [2N(N +1
30 3

) w(N)
> for N prime.
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The first inequality is always better than the statement for w(N) > 1, and the
second is better as well for w(/N) = 1. Indeed, in both cases we have N > 5

by Lemma 6.4.16. ]
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