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I first met Claude at the seminar on contact and symplectic geometry or-
ganised from 1982 on by Daniel Bennequin at the École normale supérieure. It
was much oriented towards the beautiful conjectures V.I. Arnold had stated in
the mid-sixties, inspired by Poincaré’s “last geometric theorem.” What made
the seminar seminal1 is that its beginning coincided with the first break-
through in that direction: at the end of 1982, Charles Conley and Eduard
Zehnder proved [20] the conjecture on fixed points of Hamiltonian transfor-
mations of the standard symplectic 2n-torus stated in [2, Appendix 9].2

It so happened that, the summer before, I had thought about this conjec-
ture, seen how to deduce it from another statement about exact Lagrangian
isotopies of the zero section in T ∗Tn and proved a symplectic isotopy ex-
tension lemma [6] implying that such an isotopy extends to a compactly
supported Hamiltonian isotopy of the ambient space. Almost immediately
after reading the preprint of [20], I adapted the Conley-Zehnder proof to get
[6] the more general statement, of which I had just learned that a slightly
less precise form had also been conjectured by Arnold [1, 3, Appendice 33].

The two weeks spent on the proof of this Arnold conjecture brought
me more recognition than the two years of very hard work on my 1980 thèse
d’État [9, 10, 14]: soon after the Bourbaki seminar [6], I lectured on the

1Besides its audience, that comprised Michèle Audin, Abbas Bahri, Alain Chenciner, Nicole
Desolneux-Moulis, Ivar Ekeland, Albert Fathi, Michel Herman, Misha Gromov, François

Laudenbach, Jean-Claude Sikorav—plus the author and, soon, Claude Viterbo. . .
2Their simple, functional-analytic proof did not make our seminar unanimously happy:

not only had the topologists been dreaming of something more geometric, but Conley and
Zehnder had proved the conjecture without knowing that it existed: when telling John

Mather about their recent work, they had mentioned tori as a side remark, and Mather
had informed them that they had solved a famous problem.
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Arnold conjectures in Marseille-Luminy and published with Edi Zehnder an
expanded version [17] of these lectures. Having felt ill at ease when teaching
the fact (established by Amann and Zehnder) that the non C2 infinite di-
mensional action functional, once reduced to finite dimensions, is as smooth
as the Hamiltonian of the isotopy, I found it urgent to design a purely finite
dimensional proof of “my” Arnold conjecture; this again took me two weeks
[7, 8] and brought me much more recognition.

François Laudenbach liked this new proof; he had an extremely bright
(and nice) student of his, Jean-Claude Sikorav, work on its generalisations
and consequences. Jean-Claude first proved with François [26] what had been
the true aim of [7, 8], namely, the extension of my result from the cotangent
bundle of the torus to that of an arbitrary closed manifold.3 He then no-
ticed that formula (7) in [7] means that my discretised action is a generating
phase for the deformed Lagrangian submanifold, and extended this to arbi-
trary closed manifolds [35]. In [36], he generalised the result to Lagrangian
immersions and gave an easy proof of the Arnold conjecture on fixed points
in situations including surfaces, first obtained more painfully in [34].

At about the same time, the 25 years old Claude, who had been the
student of Laudenbach and Ekeland, solved [38] a big problem: the Weinstein
conjecture in R2n. Oddly enough, he did not use Jean Claude’s generating
phases, with which he would soon do wonders [39].

The last of my favourite Arnold conjectures had been proved [24] via
holomorphic disks, and Floer theory4 had taken off [23], leaving me with my
fear of flying. My belief that some room was left for earthlier methods5 now
rested mostly on Claude’s shoulders. He did not disappoint me.

1. Subharmonic bifurcations in real or complex dimension one

We first recall the simplest case of the most basic fact.

1.1. The period doubling bifurcation

Let h : (u, x) 7→ hu(x) be a Ck local map (R2, 0) → (R, 0), k ≥ 2, such that
the derivative h′0(0) = ∂xh(0, 0) equals −1.

The fixed point 0 of h0 is robust, meaning that every hu with u small
enough has a fixed point ϕ(u) nearby, depending Ck on the parameter u:

Proposition 1.1. The fixed points of the unfolding h̃ : (u, x) 7→
(
u, hu(x)

)
form near 0 the graph of a Ck function ϕ : (R, 0)→ (R, 0).

Proof. This follows from the implicit function theorem applied to the Ck

equation F (u, x) := x−h(u, x) = 0, as F (0, 0) = 0 and ∂xF (0, 0) = 2 6= 0. �

Of course 0 is a 2-periodic point of h0, i.e., a fixed point of h2
0 := h0 ◦ h0.

3A little sooner, Helmut Hofer had done this [25] in an infinite dimensional framework.
Whatever its proof, I thought the result would be more central than it turned out to be.
4Whose idea owes as much to Charlie Conley as to Edi Zehnder, see the foreword of [11].
5A similar belief is at the origin of the present article.
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Proposition 1.2. Assume that α(u) := hu
′(ϕ(u)

)
satisfies α′(0) 6= 0.Then,

near 0, the 2-periodic points of h̃ (solutions of h2
u(x) = x) form the union

of two curves intersecting transversally at 0: of course graphϕ, and a Ck−1

curve W of which h̃|W is an involution, implying that T0W is the x-axis.

Proof. Conjugating h̃ by the local diffeomorphism (u, x) 7→
(
u, x−ϕ(u)

)
, we

may assume ϕ = 0—the new hu
′(0) is the old hu

′(ϕ(u)
)
.

By Taylor’s formula, hu(x) = xgu(x) near 0, where gu(x) =
∫ 1

0
hu
′(tx) dt,

hence gu(0) = α(u) and therefore g0(0) = −1; the map g : (u, x) 7→ gu(x)
is Ck−1 and the equation h2

u(x) = x writes xgu(x)gu
(
hu(x)

)
= x, which

means x = 0 (the fixed points) or G(u, x) := gu(x)gu
(
hu(x)

)
− 1 = 0. As

G(0, 0) = 0 and ∂uG(0, 0) = d
du

∣∣
u=0

gu(0)2 = −2α′(0) 6= 0, there exist open

neighbourhoods U, V of 0 in R such that the zeros of G|U×V form the “graph”
W = {u = ψ(x)} of a Ck−1 implicit function ψ : V → U .

The map h̃ is by definition an involution of its set of 2-periodic points, of
whichW\{0} is an open subset, which becomes h̃-invariant ifW is replaced by

W∩h̃(W ) (this means restricting conveniently the open subset V ). Invariance

writes ψ(x) = ψ
(
hψ(x)(x)

)
, hence ψ′(0) = lim

x→0

ψ
(
hψ(x)(x)

)
− ψ(x)

hψ(x)(x)− x
= 0 since

the only fixed point of h̃ lying in W is 0; thus, T0W is the x-axis. �

Examples. The curve W can have various positions with respect to T0W :

• If hu(x) = α(u)x, where α : (R, 0) → (R,−1) is a Ck function with
±α′(0) > 0, then W is the x-axis; the fixed point 0 of hu is attracting
for±u < 0, repulsing for±u > 0, and this cannot be called a bifurcation.
• If hu(x) = −(1 + u− x2)x, then the fixed point 0 of hu is attracting for
u < 0, repulsing for u > 0, and W is the parabola u = x2; for u > 0, the
attracting 2-periodic orbit {−

√
u,
√
u}, born for u = 0, takes the place

of 0 as an attractor of hu, a genuine bifurcation.
• If hu(x) = −(1 + u + x2)x then, for u < 0, the repulsing 2-periodic

orbit {−
√
−u,
√
−u} gradually “throttles” the attracting fixed point 0,

so that for u ≥ 0 no attractor of hu persists near 0, a true catastrophe.

The generic situations look like the last two examples (Figure 1).

Figure 1. Bifurcation and catastrophe.
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1.2. Subharmonic bifurcations, holomorphic case

Proposition 1.3. Let h : (u, z) 7→ hu(z) be a local map (C2, 0) → (C, 0),

holomorphic and such that h′0(0) = ∂zh(0, 0) is a qth root of unity ρ = e2πi pq ,
0 < p < q. Then:

i) The fixed points of the unfolding h̃ : (u, z) 7→
(
u, hu(z)

)
form near 0 the

graph of a holomorphic function ϕ : (C, 0)→ (C, 0).
ii) Assume that α(u) := hu

′(ϕ(u)
)

satisfies α′(0) 6= 0. Then, near 0, the q-

periodic points of h̃ (solutions (u, z) of the equation hqu(z) = z) form the
union of two holomorphic curves intersecting transversally at 0: the fixed
point set graphϕ and a curve W on which h̃ induces a Z/qZ-action.

iii) When ρ is a primitive qth root of unity, the curve W and the z-plane
are tangent to order q − 1 at 0.

Proof. i) As h′0(0) = ρ 6= 1, just apply the holomorphic implicit function
theorem to the equation z − h(u, z) = 0.

ii) As in the proof of Proposition 1.2, one can assume ϕ = 0, hence
hu(z) = z g(u, z) with g holomorphic this time and g(u, 0) = α(u). The
equation hqu(z) = z writes zgu(z)gu

(
hu(z)

)
· · · gu

(
hq−1
u (z)

)
= z, which means

either z = 0 (the fixed points) or

G(u, z) := gu(z)gu
(
hu(z)

)
· · · gu

(
hq−1
u (z)

)
− 1 = 0.

As G(u, 0) = α(u)q − 1 and α(0) = ρ, one has ∂uG(0) = qρq−1α′(0) 6= 0 and
G(0) = 0, hence there exist open neighbourhoods U, V of 0 in C such that the
zeros of G|U×V form the “graph” W = {u = ψ(z)} of a holomorphic implicit
function ψ : V → U .

The map h̃ induces by definition an action of Z/qZ on its set of q-

periodic points, of which W \{0} is an open subset, that becomes h̃-invariant

if W is replaced by W ∩ h̃−1(W ) ∩ · · · ∩ h̃1−q(W ) (as before, this means
restricting conveniently the open subset V ). Invariance writes

ψ(z) = ψ
(
h
(
ψ(z), z

))
. (1.1)

iii) Still assuming ϕ = 0, if we derivate (1.1), we get

ψ′(z) = ψ′
(
h
(
ψ(z), z

))(
∂1h
(
ψ(z), z

)
ψ′(z) + hψ(z)

′(z)
)
.

For z = 0, as the identity h(u, 0) = 0 implies that ∂1h(u, 0) = 0, this reads

ψ′(0) = ψ′(0)h′0(0), that is, (ρ− 1)ψ′(0) = 0, hence ψ′(0) = 0,

which proves our result if q = 2. Otherwise assuming inductively that ψ
vanishes to order k−1 at 0 for some k ∈ {2, . . . , q−1} and derivating k times
(1.1) at 0, the Faà di Bruno formula and the identity ∂1h(u, 0) = 0 yield

ψ(k)(0) = ψ(k)(0)h′0(0)k, that is, (ρk − 1)ψ(k)(0) = 0,

hence ψ(k)(0) = 0 as ρ is a primitive qth root of unity. �
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Examples. If hu(z) = α(u)z, where α : (C, 0) → (C, ρ) is a holomorphic
function such that α′(0) 6= 0, then W is the z-plane.

If hu(z) = (ρ+ u− zq)z, then W is the curve u = zq.

1.3. Opening Pandora’s box

Under the hypotheses of Proposition 1.3 ii)-iii), α is a holomorphic local
diffeomorphism (C, 0) → (C, ρ). Viewing it as a local parameter change and
performing the variable changes in the proof of Proposition 1.3, the following
hypotheses are verified with u0 = ρ:

Hypotheses. Given u0 ∈ S1, set ũ0 := (u0, 0) ∈ C2 and let h : (u, z) 7→ hu(z)
be a holomorphic local map (C2, ũ0) → (C, 0) such that hu(0) = 0 and
hu
′(0) = u. Proposition 1.3 now reads as follows:

Proposition 1.4. If u0 = e2πi pq , 0 < p < q, gcd(p, q) = 1, then the q-periodic

points of h̃ near ũ0 form the union of {z = 0} and the h̃-invariant “graph”
Wp/q = {u = ψp/q(z)} of a holomorphic ψp/q : (C, 0) → (C, u0) such that

ψp/q
(j)(0) = 0 for 1 ≤ j < q. The function ψ := ψp/q verifies (1.1), and h̃

generates a Z/qZ-action on Wp/q, namely(
m,
(
ψ(z), z

))
7−→ h̃m

(
ψ(z), z

)
=
(
ψ(z), hψ(z)

m(z)
)
,

induced by the Z/qZ-action (m, z) 7→ hψp/q(z)
m(z) on Domψp/q. �

When u0 is not a root of unity, the following result can apply to f = hu0
:

Theorem 1.5 (Brjuno [5], Yoccoz [40]). If u0 = e2πiω with ω ∈ [0, 1] \Q, the
following two conditions are equivalent:

i) ω is a Brjuno number, meaning that the convergents pn
qn

of its continued

fraction expansion verify
∑ log qn+1

qn
<∞.

ii) Every holomorphic germ f : (C, 0) → (C, 0) such that f ′(0) = u0 is
holomorphically linearisable. �

Notes. The implication i)⇒ii) is Brjuno’s. In 1942, Siegel [32] had proved

ii) under the stronger condition sup log qn+1

log qn
<∞. This already defines a full

measure set of numbers u0 ∈ S1, but Theorem 1.5 provides the optimal set.
Back to families, in the trivial case hu(z) = uz, every hu is linear(isable).

However, in general, hu0
is linearisable if u0 = e2πiω with ω Brjuno.

In that case, linearisability means that there exists a holomorphic local
coordinate (conjugacy) Zω : (C, 0) → (C, 0) such that Zω ◦ hu0

= u0Zω; as
the rotation z 7→ u0z preserves each circle Sr = {|z| = r}, every closed curve
Cr = Z−1

ω (Sr) with r > 0 small enough is hu0 -invariant and, of course, Zω|Cr

conjugates hu0
|Cr

to the rotation z 7→ e2πiωz restricted to Sr.

Question 1.6. Is this the limit of what happens near u = e2πipn/qn? Do the
holomorphic functions ψpn/qn tend to the constant ψω = u0 = e2πiω in some
uniform neighbourhood of 0 and, for z ∈ C close to 0, do the periodic orbits{(
ψpn/qn(z), hψpn/qn(z)

k(z)
)

: 0 ≤ k < qn

}
of h̃ tend to the closed h̃-invariant

curve {u0} × Cr such that z ∈ Cr?
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More precisely, does the (holomorphic) standard linearisation6

Zpn/qn(z) =
1

qn

qn−1∑
k=0

e−2πikpn/qnhψpn/qn (z)
k(z)

of the Z/qnZ-action (m, z) 7→ hψpn/qn (z)
m(z) tend to Zω when n→∞?

Notes. If hu(z) = uz, the answer is trivially positive even when ω is not
Brjuno. The question is whether this holds for arbitrary families h.

My hope would be to deduce the Siegel-Brjuno theorem from the uni-
form convergence of ψpn/qn and maybe Zpn/qn in a uniform neighbourhood
of 0, at least for some well-chosen family h. One might get invariant fractals
at the limit when ω is irrational but not Brjuno, as in [19] − the Pérez-Marco
hedgehogs [28], independent of any arithmetic conditions, might be obtained
in this fashion.

2. Subharmonic bifurcations, Arnold tongues and KAM circles

Here, smooth means real analytic or C∞.

2.1. Subharmonic bifurcations in real dimension two

Let h : (u, z) 7→ hu(z) be a smooth local map (R2 × R2, 0) → (R2, 0) such
that the eigenvalues of the derivative Dh0(0) = ∂zh(0, 0) are primitive qth

roots of unity ρ = e2πi pq , ρ̄ = e−2πi pq , 1 ≤ p < q, q ≥ 3.

Proposition 2.1. i) The fixed points of the unfolding h̃ : (u, z) 7→
(
u, hu(z)

)
form near 0 the graph of a smooth function ϕ : (R2, 0)→ (R2, 0).

ii) There is a smooth local function α : (R2, 0) → (C, ρ) such that the

eigenvalues of Dhu
(
ϕ(u)

)
are α(u), α(u).

iii) If Dα(0) : R2 → C is bijective then, near 0, the q-periodic points of h̃
form the union of two surfaces intersecting transversally at 0: of course
graphϕ, plus a Cq−3 surface W on which h̃|W induces a Z/qZ-action.

Proof. i) follows from the implicit mapping theorem applied to the smooth
equation F (u, z) := z − h(u, z) = 0, as ∂zF (0, 0) : R2 → R2 is invertible.

ii) follows from the formula for the eigenvalues of a real 2 × 2 matrix
with no real eigenvalue.

iii) We may assume ϕ = 0, and the new Dhu(0) is the old Dhu
(
ϕ(u)

)
.

Lemma 2.2. a) An R-linear change of variables J(u) : R2 → C, depending
smoothly on u, yields h : (R2 × C, 0)→ (C, 0) and Dhu(0)z = α(u)z.

b) Modulo a change of variables, polynomial of degree q− 1 with respect to
z, z̄, whose coefficients are smooth functions of u, the Taylor polynomial
Qu of hu to order q − 1 at 0 for small u is of the form

Qu(z) = z
(
α(u) +

[ q−1
2 ]∑

k=1

bk(u)|z|2k
)

+ β(u)z̄q−1.

6The other holomorphic local linearisations Z satisfy Z ◦ Z−1
pn/qn

(z) = za(zqn ), a(0) 6= 0.
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Proof of the lemma. a) The isomorphism J(u) ∈ L(R2,C) is an eigenvector
of Dhu(0)T : λ 7→ λ ◦ Dhu(0) associated to the eigenvalue α(u). Under the
condition, e.g., J(u)(1, 0) = 1, it is unique and depends smoothly on u.

b) By normal form theory or direct computation, one can assume that
Qu(z)−α(u)z is a C-linear combination (depending smoothly on u) of mono-

mials zj z̄k with 1 < j + k ≤ q− 1 and uj0ū
k
0 = u0, that is, e2πi(j−k−1)p/q = 1,

which writes (j − k− 1)p = `q with ` ∈ Z. As gcd(p, q) = 1, one has ` = mp,
m ∈ Z, hence j − k − 1 = mq and either m = 0, hence zj z̄k = z|z|2k, or
m = −1 and j = 0, yielding zj z̄k = z̄q−1. �

By Taylor’s formula,

hu(z) = Qu(z) +

q∑
j=0

zj z̄q−j
∫ 1

0

(1− t)q−1

(q − 1)!

(
q
j

)
∂jz∂

q−j
z̄ hu(tz)dt

= z
(
a(u, z) + b(u, z)

z̄q−1

z

)
where a, b are smooth, a(u, 0) = α(u) and b(u, 0) = β(u). It follows that
hu(z) = zgu(z) with g : (u, z) 7→ gu(z) only Cq−3 in general and gu(0) = α(u).

• For q > 3, the same arguments as in the proof of Proposition 1.3 yield
a Cq−3 implicit function ψ : (C, 0) → (R2, 0) whose graph W has the
required properties near the origin—in particular, (1.1) holds.

• If q = 3, then hu(z) = Au(z)z near 0, where Au(z) =
∫ 1

0
Dhu(tz) dt

(hence Au(0)z = α(u)z), and one can similarly apply the implicit map
theorem along r = 0 after dividing by r the equation h3

u(reiθ) = reiθ.7

The details are left to the reader. �

Example. If hu(z) = (ρ + u)z − z̄q−1, u, z ∈ C, then W is the surface
u = z̄q−1/z, which is Cq−3 but not Cq−2. Thus, our bound for the differ-
entiability of W is sharp. No such problem arised in the holomorphic case.

2.2. Arnold tongues

Under the hypotheses of Proposition 2.1 iii), α is a smooth local diffeomor-
phism (R2, 0)→ (C, ρ). Viewing it as a local parameter change, the following
hypotheses are verified with u0 = ρ, modulo the variable changes in the proof
of Proposition 2.1:

Hypotheses. For u0 ∈ S1, setting ũ0 := (u0, 0) ∈ C2, let h : (u, z) 7→ hu(z) be
a smooth local map (C2, ũ0)→ (C, 0) such that hu(0) = 0 and Dhu(0)z = uz.
Proposition 2.1 now reads as follows:

Proposition 2.3. If u0 = e2πi pq , 0 < p < q, gcd(p, q) = 1, then, near ũ0,

the q-periodic points of h̃ form the union of {z = 0} and the h̃-invariant
“graph” Wp/q = {u = ψp/q(z)} of a Cq−3 function ψp/q : (C, 0) → (C, u0).

The function ψ := ψp/q verifies (1.1), and h̃|Wp/q
generates a Z/qZ-action

on Wp/q as in Proposition 1.4. �

7The “blown-up” surface W̆ = graph ψ̆ in polar coordinates is smooth, see section 3.
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The functions ψ = ψp/q of Proposition 1.4, being holomorphic, are either
constant or open. Thus the invariant manifold Wp/q, projected into parameter

space, is either {e2πip/q} or (in general) an open neighbourhood of e2πip/q.
The non-holomorphic case is altogether different:

Proposition 2.4. If u0 is a primitive qth root of unity e2πip/q, 0 < p < q,
q > 4, then:

i) Up to a smooth local change of variables
(
C2, ũ0

)
→
(
C2, ũ0

)
, of the

form (u, z) 7→ (u, Zu(z)) with Zu (real) polynomial of degree q − 2, one

has the following: near ũ0, the unfolding h̃ is tangent to order q − 2
along C× {0} to a smooth unfolding P̃ (u, z) = (u, Pu(z)) of the form

Pu(z) = z
(
u−

[ q−3
2 ]∑

k=1

bk(u)|z|2k
)
.

ii) For b1(u0) 6= 0, the principal part of ψp/q(z) is u0 + b1(u0)|z|2. Thus,

for <
(
ū0b1(u0)

)
6= 0, the set Imψp/q of those u near u0 for which hu

has a q-periodic orbit lies on one side of S1.
iii) The function ψp/q is tangent to order q − 3 at ũ0 to a normal form

ψ̂p/q(z) = u0 +

[ q−3
2 ]∑

k=1

ak|z|2k =: χp/q(|z|), ak ∈ C, a1 = b1(u0).

Thus, when the first Birkhoff invariant b1(u0) is non-zero, restrict-
ing Domψp/q if necessary, the set Imψp/q is contained near u0 in an

“Arnold tongue”
⋃

0≤t≤ε

{
u ∈ C : |u− χp/q(t)| ≤ δεtq−3

}
along the curve

χp/q([0, ε]), with ε > 0 small and lim
ε→0

δε = 0.

Proof. i) follows from Lemma 2.2 b).

ii)-iii) As ψp/q(z) = ψp/q

(
h
(
ψp/q(z), z

))
by (1.1), the Taylor polynomial

ψ̂p/q(z) = u0 +
∑

1≤j+`≤q−3

cj`z
j z̄` =: u0 + ĉ(z)

satisfies ψ̂p/q(z) = ψ̂p/q
(
Pψ̂p/q(z)(z)

)
up to terms of degree greater than q−3.

Denoting the Taylor expansion of bk(u0 + v) at v = 0 by

b̂k(v) =
∑
m≥0

bkmnv
mv̄n,

this means that, up to terms of degree greater than q − 3,

ĉ(z) = ĉ

z(u0 + ĉ(z)−
[ q−3

2 ]∑
k=1

b̂k
(
ĉ(z)

)
|z|2k

) .
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ii) It follows that c10 = u0c10 = 0, c01 = ū0c01 = 0, c20 = u2
0c20 = 0,

c02 = ū2
0c02 = 0; thus, the first cj` that can be nonzero is c11 =: a1, and

it is equal to b100 = b̂1(0) = b1(u0).;

iii) Inductively, one can see that ĉ(z) = ĉ(u0z), hence ĉ(z) =

[ q−3
2 ]∑

k=1

ak|z|2k.

The reader can fill in the details as an exercise. �

Example. If hu(z) = z
(
u −

[ q−3
2 ]∑

k=1

ak|z|2k
)

then ψp/q = ψ̂p/q; thus, near u0,

Imψp/q is the curve χp/q([0, ε]).

2.3. Opening Pandora’s box wider

Question 2.5. For diophantine ω with convergents pn/qn, if b1(u0) 6= 0, one
can wonder as in the holomorphic case whether one has the following:

• The smooth functions ψpn/qn tend to some ψω : (C, 0) → (C, u0) in a

uniform neighbourhood of 0; thus, the h̃-invariant surfaces Wpn/qn tend

to the h̃-invariant surface Wω = {u = ψω(z)}.
• For small z, the periodic orbits

{(
ψpn/qn(z), hψpn/qn (z)

k(z)
)

: 0 ≤ k < qn

}
of h̃ tend to a closed h̃-invariant curve {ψω(z)}×Cωz such that z ∈ Cωz
and that the rotation number of hψ(z)|Cωz

is ω.
• The standard linearisation of the Z/qnZ-action (m, z) 7→ hψpn/qn (z)

m(z)
tends to a local transformation Zω linearising the local diffeomorphism
z 7→ hψω(z)(z). Hence, the T-action (θ, z) 7→ Z−1

ω

(
e2πiθZω(z)

)
leaves ψω

invariant,8 implying that Imψω is a curve (with boundary), limit of the
narrower and narrower Arnold tongues Imψpn/qn .

Example (KAM invariant curves). Assume that h possesses the following
properties near some u0 = e2πiω0 with ω0 ∈ R \Q:

i) If |u| = 1, the transformation hu preserves the area.
ii) hu = |u|hu/|u|, hence hu multiplies the area by |u|2.
iii) One has b1(u0) 6= 0.

By ii), no hu with |u| 6= 1 can have a closed invariant curve near 0. Thus,
if the answer to Question 2.5 is positive, then every ψω has modulus one,
hence b1(u0) = iλu0, λ ∈ R—which already follows from i). Figure 2 shows
what happens for (u, z) = (e2πiω, z) ∈ S1×C close to ũ0, in local coordinates
(ω, z). The ω-axis is in red and the “paraboloids” are the surfaces Wω with ω
Diophantine, which do lie in S1 × C as |ψω(z)| = 1. These surfaces intersect
the slice u = u0 at the hu0 -invariant closed curves (“KAM circles”) Cωz
with ψω(z) = u0, which occupy most of the room near z = 0, with maybe
complicated dynamics in between.

8Conjugating everything by Zω , one can assume hψω(z)(z) = e2πiωz, hence (1.1) reads

ψω(z) = ψω(e2πiωz), which yields ψω(z) = ψω(e2πikωz) for every integer k and therefore
ψω(z) = ψω(e2πiθz) for all θ ∈ T by density.
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Figure 2.

Note. The limit surfaces Wω and the linearisations Zω in Question 2.5 might
be obtained as in [18] (where, however, the typical situation is b1(e2πiω) /∈ iR,
yielding normally hyperbolic invariant circles). Figure 2, which I like a lot,
most probably follows from standard KAM theory [22].

3. Higher dimensions

3.1. Statement of the hypotheses

Hypotheses. Given u0 ∈ Cd, d > 1, whose components are nonzero and all
different, set ũ0 := (u0, 0) ∈ Cd × Cd and let h : (Cd × Cd, ũ0) → (Cd, 0) be
a smooth local map (u, x) 7→ hu(x) such that

hu(0) = 0 and Dhu(0) = diag u : z 7→
(
u1z1, . . . , udzd

)
.

The case where h is holomorphic will be referred to as the holomorphic case.

Note. A general situation reduces to these hypotheses. Let h : (u, x) 7→ hu(x)
be a smooth local map (R2d×R2d, 0)→ (R2d, 0) such that the eigenvalues of

Dh0(0) are simple and not real. Near 0, the fixed points of h̃ form the graph
x = ϕ(u) of a smooth implicit function, which we may assume to be 0.

There is [15, 12] a smooth local map J of R2d into the space of R-linear
isomorphisms R2d → Cd, defined near 0, such that each J(u)Dhu(0)J(u)−1

is a diagonal automorphism diagα(u) : z 7→
(
α1(u)z1, . . . , αd(u)zd

)
of Cd

(thus, the eigenvalues αj(u), αj(u) of Dhu(0), 1 ≤ j ≤ d, depend smoothly
on u). Via the identification (u, x) 7→

(
u, J(u)x

)
, we can view h as a local

map (R2d × Cd, 0)→ (Cd, 0) such that Dhu(0) = diagα(u).

Setting α(u) :=
(
α1(u), . . . , αd(u)

)
and assuming Dα(0) : R2d → Cd

invertible, the smooth local map α : (R2d, 0)→ Cd is a local diffeomorphism.
If we view it as an identification, then u0 := α(0) satisfies our hypotheses.
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3.2. Periodic orbits

Proposition 3.1. Assume that u0 = ρ = (ρ1, . . . , ρd), where ρj = e2πipj/q,
0 < pj < q. Let π :

(
R+×S2d−1, {0}×S2d−1

)
→ (Cd, 0) be the oriented blowup

π(r, y) := ry (“polar coordinates”). Then, setting ŭ0 := (u0, 0) ∈ Cd × R+

and denoting by S̊2d−1 the complement of the coordinate hyperplanes in S2d−1:

i) Near ũ0, the map h lifts to a smooth local map h̆ : (u, r, y) 7→ h̆u(r, y) of(
Cd × R+ × S2d−1, {ŭ0} × S2d−1

)
into

(
R+ × S2d−1, {0} × S2d−1

)
such

that π ◦ h̆u = hu ◦ π and h̆(ŭ0, y) =
(
0, (diag u0)y

)
for all y ∈ S2d−1.

ii) The q-periodic points of the unfolding
˜̆
h : (u, r, y) 7→

(
u, h̆u(r, y)

)
contain

{ŭ0} × S2d−1 and the
˜̆
h-invariant “graph” W̆ = {u = ψ̆(r, y)} of a

smooth local map ψ̆ = ψ̆p/q :
(
R+ × S̊2d−1, {0} × S̊2d−1

)
→ (Cn, u0).

iii) Hence, the non-fixed q-periodic points of h̃ contain the h̃-invariant “graph”

W = {u = ψ(z)} of a smooth ψ = ψp/q : π(Dom ψ̆) \ {0} → Cn \ {u0}.
iv) In the holomorphic case, W is holomorphic.

Proof. i) The relation π◦h̆u(r, y) = hu◦π(r, y) writes h̆u(r, y) = (Ru, Yu)(r, y)
with Ru(r, y) = |hu(ry)| and Yu(r, y) = hu(ry)/|hu(ry)| for r > 0; now, by

Taylor’s formula, hu(ry) = rAu(ry)y, where Au(ry) :=
∫ 1

0
Dhu(try) dt, hence

Yu(r, y) = Au(ry)y/|Au(ry)y| wherever Au(ry)y 6= 0, including r = 0 near
u = u0 since Au(0) = diag u.

ii) One has that hqu(ry) = ry if and only if rGu(r, y) = 0, where
Gu(r, y) = G(u, r, y) = Au

(
hq−1
u (ry)

)
· · ·Au(ry)y − y, hence in particular

G(u, 0, y) = (diag u)qy − y. Forgetting the fixed points r = 0, the equation
hqu(ry) = ry readsG(u, r, y) = 0. Now, all y ∈ S2d−1 verifyG(u0, 0, y) = 0 and
∂uG(u0, 0, y) = q diag(ρ̄1y1, . . . , ρ̄dyd), invertible if and only if y1 · · · yd 6= 0,

i.e., y ∈ S̊2d−1. Hence, there exist open neighbourhoods U of u0 in Cd and V̆
of {0}× S̊2d−1 in R+× S̊2d−1 such that the zeros of G|U×V̆ form the “graph”

of a smooth implicit map ψ̆ : V̆ → U ; as before, this graph W̆ becomes
˜̆
h-invariant if it is replaced by W̆ ∩ ˜̆

h−1(W̆ ) ∩ · · · ∩ ˜̆
h1−q(W̆ ).

iii) Recall that π is a diffeomorphism off the “exceptional divisor” π−1(0).
iv) We can therefore “read” the equation Gu(r, y) = 0 via this diffeo-

morphism, that is, write it gu(z) := hqu(z)− z = 0 for z 6= 0; as the unfolding

(u, r, y) 7→
(
u,Gu(r, y)

)
is a local diffeomorphism at every point of W̆ , so

is (u, r, y) 7→
(
u, rGu(r, y)

)
, hence the unfolding g̃ : (u, z) 7→

(
u, gu(z)

)
is a

diffeomorphism at every point of W ; the map g̃ being holomorphic, its local
inverses are, implying that W is holomorphic. �

Note. A nicer way to prove iv) is to use the complex blowup πC : (D, z) 7→ z,
z ∈ D, D ⊂ Cd complex line through 0;9 the implicit function theorem yields

a holomorphic ψ̆C “upstairs”, defined on an open subset of the complement
of the closure of {(D, z) : z 6= 0, z1 · · · zd = 0} and equal to u0 on π−1

C (0).

9In the standard jth local chart of CPd−1, this blowup reads
(
zj , (wk)k 6=j

)
7→ z with

zk = zjwk for k 6= j; the “forbidden” closed subset is the union of the hyperplanes wk = 0.
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Example. If hu(z) = diag
(
u+χ(zq11 , . . . , z

qd
d )
)
z, where qj is the denominator

of pj/q in irreducible form and χ : (Cd, 0) → (Cd, 0) is holomorphic, then
ψ(z) = ρ − χ(zq11 , . . . , z

qd
d ), which has contact of order at least min qk with

the constant ρ at 0.

Proposition 3.2. The automorphism diag ρ lifts via π to the diffeomorphism
˘diag ρ : (r, y) 7→

(
r, (diag ρ)y

)
.

i) Restricting W̆ if required, there is a smooth diffeomorphism Z̆ = Z̆p/q of

W̆ onto an open ˘diag ρ-invariant subset Ω̆ ⊃ {0}× S̊2d−1 of R+× S̊2d−1,

conjugating
˜̆
h|W̆ to ( ˘diag ρ)|Ω̆, with Z̆(ŭ0, y) = (0, y) for all y ∈ S̊2d−1.

ii) The map Z̆ induces a smooth diffeomorphism Z = Zp/q of W onto

the open diag ρ-invariant “trefoil” Ω := π(Ω̆) \ {0}, conjugating h̃|W to
diag ρ|Ω and tending to 0 when the variable in W tends to ũ0.

iii) If h is holomorphic, so is Z.

Proof. i) The conjugacy Z̆p/q is as in Question 1.6, but in polar coordinates:

Z̆p/q
(
ψ̆(r, y), (r, y)

)
=
(
r |C(r, y)|, C(r, y)

|C(r, y)|

)
,

where C(r, y) =
1

q

q−1∑
k=0

(diag ρ)−kAψ̆(r,y)

(
hk−1

ψ̆(r,y)
(ry)

)
· · ·Aψ̆(r,y)(ry)y.

For all y ∈ S̊2d−1, one has that C(0, y) = y, hence Z̆(ŭ0, y) = (0, y) and

DZ̆p/q(0, y) =

(
1 0
∗ idy⊥

)
: R× y⊥ → R× y⊥

is invertible. It follows that Z̆p/q is a smooth local diffeomorphism, whose

domain can be made
˜̆
h-invariant as usual. It is not difficult to check that it

is a conjugacy, see equation (3.1) hereafter.
ii) is obvious; by definition, the conjugacy Zp/q is as in Question 1.6:

Zp/q
(
ψp/q(z), z

)
=

1

q

q−1∑
k=0

(diag ρ)−khψp/q(z)
k(z). (3.1)

iii) follows at once. �

Note. The diagonal action e : (t, z) 7→ e2πi diag tz of Td on Cd preserves
diag ρ and lifts to the action ĕ : (t, r, y) 7→ (r, e2πi diag ty) =: ĕt(r, y) of Td on

R+ × S2d−1, which preserves ˘diag ρ. The open subset Ω̆ becomes ĕ-invariant

(and still ˘diag ρ-invariant) if it is replaced by
⋂
t∈Td ĕt(Ω̆), which contains

{0} × S̊2d−1 and is open because Td is compact.

Hence, denoting again by W̆ the inverse image of this new Ω̆ by Z̆, the

map
˜̆
h|W̆ is invariant under the Td-action Z̆∗ĕ :

(
t, Z̆−1(r, y)

)
7→ Z̆−1ĕ(t, r, y);

in particular, it preserves each orbit, which orbits constitute a foliation of W̆
by d-tori Z̆−1

(
{r} × (x1S1 × · · · × xdS1)

)
with xj > 0 and x2

1 + · · ·+ x2
d = 1.
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In general, these tori of course do not lie each in a slice u = constant

like the orbits of
˜̆
h|W̆ . The foliation, like the new W̆ , depends on the choice

of Z̆, which is far from unique since the set of ˘diag ρ-invariant smooth diffeo-
morphism germs

(
R+ × S2d−1, {0} × S2d−1

)
→
(
R+ × S2d−1, {0} × S2d−1

)
is

infinite dimensional.10

However, when p/q tends to some diophantine ω ∈ [0, 1]d, the orbits of
˜̆
h|W̆p/q

should “become denser and denser in such invariant tori”:

3.3. Passing to the limit in the holomorphic case?

In the holomorphic case, if u0 = (e2πiω1 , . . . , e2πiωd), ω = (ω1, . . . , ωd) ∈ Td,
the following result may apply to hu0

:

Theorem 3.3. Assume ω diophantine in the sense that, for some large τ ,

inf
1≤j≤d

inf
|k|≥2

|k|τ
∣∣e2πikω − e2πiωj

∣∣ > 0,

where k ∈ Nd, |k| = k1 + · · · + kd and kω = k1ω1 + · · · + kdωd. Then,
every holomorphic germ f : (Cd, 0) → (Cd, 0) such that Df(0) = diag u0 is
holomorphically linearisable: there exists a holomorphic local diffeomorphism
Zω : (Cd, 0)→ (Cd, 0) such that Zω ◦ hu0

= (diag u0)Zω.11 �

As the rotation z 7→ (diag u0)z = (e2πiωjzj)1≤j≤d preserves each d-torus
Tr = {|z1| = r1, . . . , |zd| = rd}, every embedded torus Tωr = Z−1

ω (Tr) with
rj > 0 small enough is hu0

-invariant and, of course, Zω|Tωr
conjugates hu0

|Tωr

to the rotation z 7→ (diag u0)z restricted to Tr.

Question 3.4. Applied to f = hu0 , is this the limit of what happens near
u = (e2πipj/q)1≤j≤d when p/q ∈ Qd tends to ω?12 Do the maps ψp/q tend

to ψω = u0 in some uniform neighbourhood of 0? For z ∈ Cd close to 0,

does the periodic orbit
{(
ψp/q(z), hψp/q(z)

k(z)
)

: 0 ≤ k < q
}

of h̃ tend to the

closed h̃-invariant torus {u0} × Tωr such that z ∈ Tωr? More precisely, does

the holomorphic linearisation (3.1) of h̃|Wp/q
tend to Zω when n→∞?

Note. This is not as simple as Question 1.6: indeed, unless I am mistaken,
the maps ψp/q are not a priori defined in a neighbourhood of 0, so that part
of the question is whether Domψp/q tends to such a neighbourhood. On the
other hand, it follows from normal form theory that, as in the case d = 1,
the map ψ = ψp/q has more and more contact with u0 at 0 when p/q → ω.13

10Indeed, the set of diag ρ-invariant smooth diffeomorphism germs (Cd, 0) → (Cd, 0) is
infinite dimensional, as any smooth germ η : (Cd, 0)→ (Cd, 0) yields the diag ρ-invariant

germ 1
q

∑q
1(diag ρ)−k ◦ η ◦ (diag ρ)k.

11One can assume DZω(0) = Id. Pöschel [30] attributes Theorem 3.3 to Siegel, who cer-
tainly proved its analogue for vector fields [33]. The same applies to its improvement by

Brjuno. This “Siegel-Brjuno” theorem for maps and much more is proved in [31, 29, 30, 37].
12For example, pj/q = pjn/qn can be the nth convergent of ωj .
13If one prefers, ψ̆C has more and more contact with u0 at points of π−1

C (0).
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3.4. Passing to the limit in the smooth case?

If u0 = (e2πiω1 , . . . , e2πiωd), where ω = (ω1, . . . , ωd) ∈ Td is non-resonant,
meaning that ω1, . . . , ωd ∈ T are independent over Z, then, by normal form
theory, one has the following: for each positive integer N , up to smooth local
conjugacy (u, z) 7→

(
u, Zu(z)

)
, every hu with u− u0 small enough is tangent

to order 2N + 1 at 0 to a polynomial map

Pu(z) = diag
(
u+

N∑
`=1

b`(u)
(
|z1|2, . . . , |zd|2

))
z

with b`(u) : Rd → Rd homogeneous of degree `, depending smoothly on u. As
for d = 1, it follows that when p/q tends to ω the map ψp/q of Proposition 3.1

is tangent to higher and higher order at 0 to a polynomial normal form14

ψ̂p/q(z) = χp/q
(
|z1|2, . . . , |zd|2

)
, χp/q(0) = ρ, Dχp/q(0) = b1(ρ).

Thus, if b1(u0) (and therefore b1(ρ) for small p
q − ω) is invertible then, re-

stricting ψp/q, the set Imψp/q lies near ρ in a thinner and thinner “Arnold

tongue” along the smooth d-fold with corner χp/q([0, ε)
d) for small ε > 0.

Question 3.5. Assume ω diophantine in the sense that, for some large τ ,

inf
m6=0
|m|τ

∣∣e2πimω − 1
∣∣ > 0,

where m ∈ Zd, |m| = m1 + · · ·+md and mω = m1ω1 + · · ·+mdωd. If b1(u0) is
invertible, one can wonder as in the holomorphic and one-dimensional cases
whether one has the following when p/q tends to ω:

• The ψ̆p/q’s tend to a map ψ̆ω of
(
R+× S̊2d−1, {0}× S̊2d−1

)
into (Cn, u0)

in a uniform neighbourhood of {0}×S̊2d−1; thus, the
˜̆
h-invariant surfaces

W̆p/q tend to the
˜̆
h-invariant 2d-fold W̆ω = {u = ψ̆ω(r, y)}.

• For each (r, y), the periodic orbits
{(
ψ̆p/q(r, y), h̆k

ψ̆p/q(r,y)
(r, y)

)}
0≤k<q

of
˜̆
h tend to a

˜̆
h-invariant embedded d-torus {ψ̆ω(r, y)}×Tωry such that

(r, y) ∈ Tωry.

• The “linearisation” Z̆p/q of Proposition 3.2 i) tends to a local transfor-

mation Z̆ω “linearising” the local diffeomorphism (r, y) 7→ h̆ψ̆ω(r,y)(r, y).

Hence, the Td-action
(
θ, Z̆−1

ω (r, y)
)
7→ Z̆−1

ω

(
r, e2πi diag θy

)
leaves ψ̆ω in-

variant, implying that Im ψ̆ω is a d-fold (with corner), limit of the nar-

rower and narrower subsets Im ψ̆p/q.

Example (KAM invariant tori). Assume that h possesses the following prop-
erties near some u0 = e2πiω0 with ω0 non-resonant:

i) If |u1| = · · · = |ud| = 1, the transformation hu preserves the standard
symplectic form σ = 1

2i (dz̄1 ∧ dz1 + · · ·+ dz̄d ∧ dzd).

14If one prefers, ψ̆ has more and more contact with ψ̂p/q ◦ π at points of π−1(0).
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ii) One has that hu = h(u1/|u1|,...,ud/|ud|) ◦diag(|u1|, . . . , |ud|) and therefore

h∗uσ = 1
2i (|u1|2dz̄1 ∧ dz1 + · · ·+ |ud|2dz̄d ∧ dzd).

iii) The linear map b1(u0) is an isomorphism.

Then, if the answer to question 3.5 is positive, it follows from ii) that every
ψω takes its values in {|u1| = · · · = |ud| = 1}, yielding a 3d-dimensional
analogue of Figure 2, see [22, 27].15

4. Comments and references

My interest in this part of the program sketched in [12] awoke when I heard
Abed Bounemoura talk about [4].

The dimension of both parameter and phase space, minimal here, can
be much higher16. Proposition 1.3 has been known (at least) to me for thirty
years, as well as the “blown-up” version of Proposition 2.1.17 I have no refer-
ence for the higher dimensional results in subsection 3.4. The excision of the
coordinate hyperplanes in Propositions 3.1-3.2 corresponds to the closure of
manifolds of periodic orbits of lower period, which might tend to (manifolds
of) lower dimensional KAM tori à la Eliasson [21, 22].

It is known that “good” periodic orbits accumulate on KAM tori. My
naive hope is to do it the other way round and get the mysterious objects as
limits of obvious ones, which would clarify a very intricate situation.

One of the sources of this article is an awfully biased reading of the two
papers [18, 19] by Alain Chenciner, to whom my debt cannot be overesti-
mated, though he certainly does not share my viewpoint that conservative
systems are essentially meant to deny the existence of death (and birth. . . ).

Last but not least, I thank Jacques Féjoz and Laurent Stolovitch for
very useful discussions and comments.
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[36] ——————: Problèmes d’intersections et de points fixes en géométrie hamil-
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