Boundedness of the p-primary torsion of the Brauer group of an abelian variety

Marco D'Addezio

IMJ-PRG, Sorbonne Université, Paris

7th February 2022

Brauer group

Let X be a scheme,

$$
\operatorname{Br}(X):=H_{e ̂ t}^{2}\left(X, \mathbb{G}_{m, X}\right)=H_{\mathrm{fppf}}^{2}\left(X, \mathbb{G}_{m, X}\right)
$$

If X is a regular $\operatorname{Br}(X)$ is a torsion group.

Let ℓ be a prime number,

$$
\begin{gathered}
1 \rightarrow \mu_{\ell^{n}, X} \rightarrow \mathbb{G}_{m, X} \xrightarrow{\cdot \ell^{n}} \mathbb{G}_{m, X} \rightarrow 1 . \\
0 \rightarrow \operatorname{Pic}(X) / \ell^{n} \xrightarrow{c_{1}} H_{\mathrm{fppf}}^{2}\left(X, \mu_{\ell^{n}, X}\right) \rightarrow \operatorname{Br}(X)\left[\ell^{n}\right] \rightarrow 0 .
\end{gathered}
$$

Tate conjecture

k finitely generated field $\operatorname{char}(k)=p \geqslant 0$ (e.g. $\left.\mathbb{Q}, \mathbb{F}_{p}, \mathbb{F}_{p}(t), \ldots\right)$.
k_{a} / k algebraic closure, Γ_{k} absolute Galois group, X / k smooth proper variety, $\ell \neq p$.

Conjecture (Tate '66)
The cycle class map

$$
\mathrm{NS}\left(X_{k_{\mathrm{a}}}\right)_{\mathbb{Q}_{\ell}}^{\Gamma_{k}} \xrightarrow{c_{1}} H_{\hat{\mathrm{et}}}^{2}\left(X_{k_{\mathrm{a}}}, \mathbb{Q}_{\ell}(1)\right)^{\Gamma_{k}}
$$

is an isomorphism.

Tate conjecture for abelian varieties

Theorem (Tate, Zarhin, Faltings)
If A is an abelian variety

$$
\mathrm{NS}\left(A_{k_{\mathrm{a}}}\right)_{\mathbb{Z}_{\ell}}^{\Gamma_{k}} \xrightarrow{c_{1}} H_{\text {êt }}^{2}\left(A_{k_{\mathrm{a}}}, \mathbb{Z}_{\ell}(1)\right)^{\Gamma_{k}}
$$

is an isomorphism.

Corollary

The group

$$
\operatorname{Br}\left(A_{k_{a}}\right)\left[\ell^{\infty}\right]^{\Gamma_{k}}
$$

is finite for every $\ell \neq p$.

Tate conjecture for abelian varieties

Proof of corollary

$$
\begin{aligned}
& \operatorname{Br}\left(A_{k_{\Omega}}\right)\left[\ell^{\infty}\right] \simeq\left(\mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}\right)^{\oplus\left(b_{2}-\rho\right)} \\
& \mathrm{T}_{\ell}\left(\operatorname{Br}\left(A_{k_{\mathrm{a}}}\right)\right):={\underset{\sim}{n}}_{\lim _{n}} \operatorname{Br}\left(A_{k_{\mathrm{a}}}\right)\left[\ell^{n}\right] \\
& 0 \rightarrow \operatorname{NS}\left(A_{k_{\mathrm{a}}}{ }_{\mathbb{Q}_{\ell}}^{\Gamma_{k}} \xrightarrow{c_{1}} H_{e \mathrm{et}}^{2}\left(A_{k_{\mathrm{a}}}, \mathbb{Q}_{\ell}(1)\right)^{\Gamma_{k}} \rightarrow \mathrm{~T}_{\ell}\left(\operatorname{Br}\left(A_{k_{\mathrm{a}}}\right)\right)^{\Gamma_{k}\left[\frac{1}{\ell}\right]} \rightarrow 0\right.
\end{aligned}
$$

is exact.
c_{1} surjective $\Rightarrow T_{\ell}\left(\operatorname{Br}\left(A_{k_{g}}\right)\right)^{\Gamma_{k}}=0 \Rightarrow$ no infinitely ℓ-divisible classes in $\operatorname{Br}\left(A_{k_{a}}\right)\left[\ell^{\infty}\right]^{\Gamma_{k}} \Rightarrow \operatorname{Br}\left(A_{k_{\mathrm{a}}}\right)\left[\ell^{\infty}\right]^{\Gamma_{k}}$ is finite.

Transcendental Brauer group

Definition

The transcendental Brauer group of X is

$$
\operatorname{Br}\left(X_{k_{\mathrm{a}}}\right)^{k}:=\operatorname{im}\left(\operatorname{Br}(X) \rightarrow \operatorname{Br}\left(X_{k_{\mathrm{a}}}\right)\right) \subseteq \operatorname{Br}\left(X_{k_{\mathrm{a}}}\right)^{\Gamma_{k}} .
$$

Remark

By the previous corollary, for every $\ell \neq p, \operatorname{Br}\left(A_{k_{a}}\right)^{k}\left[\ell^{\infty}\right]$ is finite.

What does it happen when $\ell=p>0$?

Theorem
There exist abelian varieties such that

$$
\mathrm{NS}\left(A_{k_{a}}\right)_{\mathbb{Q}_{p}}^{\Gamma_{k}} \xrightarrow{c_{1}} H_{\mathrm{fppf}}^{2}\left(A_{k_{a}}, \mathbb{Q}_{p}(1)\right)^{\Gamma_{k}}
$$

is not surjective and $\mathrm{T}_{p}\left(\operatorname{Br}\left(A_{k_{a}}\right)\right)^{\Gamma_{k}} \neq 0$.

We suppose

$$
A=B \times B
$$

with B an abelian variety.

Leray spectral sequence

We consider $E_{2}^{i, j}:=H_{\text {fppf }}^{i}\left(B_{k_{\boldsymbol{a}}}, R^{j} \pi_{2 *} \mu_{\rho^{n}}\right) \Rightarrow H_{\text {fppf }}^{i+j}\left(A_{k^{a}}, \mu_{p^{n}}\right)$

$$
\begin{gathered}
R^{1} \pi_{2 *} \mu_{\rho^{n}}=\operatorname{Pic}_{B_{k_{a}} / k_{a}}\left[p^{n}\right]=B_{k_{a}}^{\bigvee}\left[p^{n}\right] \\
E_{2}^{1,1}=H^{1}\left(B_{k_{a}}, B_{k_{a}}^{\vee}\left[p^{n}\right]\right) \xrightarrow{h} \operatorname{Hom}\left(B_{k_{a}}\left[p^{n}\right], B_{k_{a}}^{\bigvee}\left[p^{n}\right]\right)
\end{gathered}
$$

Construction of h

$$
B_{k_{\mathrm{a}}}\left[p^{\eta}\right]=\operatorname{Hom}\left(B_{k_{\mathrm{a}}}^{\vee}\left[p^{n}\right], \mathbb{G}_{m, k_{\mathrm{a}}}\right)
$$

$\forall[T] \in H^{1}\left(B_{k_{a}}, B_{k_{a}}^{\vee}\left[p^{n}\right]\right)$ and S / k_{a} scheme,

$$
\begin{aligned}
h([T])(S): \operatorname{Hom}\left(B_{k_{\mathrm{a}}}^{\vee}\left[p^{n}\right],\right. & \left.\mathbb{G}_{m, k_{a}}\right)(S) \\
\tau \quad & \rightarrow B_{k_{\mathrm{a}}}^{\vee}\left[p^{n}\right](S) \\
\tau \quad & \mapsto \tau_{*}\left(T_{S}\right) \in H^{1}\left(B_{S}, \mathbb{G}_{m, B_{S}}\right)\left[p^{n}\right]
\end{aligned}
$$

Leray spectral sequence

$R^{2} \pi_{2 *} \mu_{p^{n}}$ is represented by a linear algebraic group G / k_{a}.

$$
\begin{gathered}
E_{2}^{0,2}=H_{\mathrm{fppf}}^{0}\left(B_{k_{\mathrm{a}}}, R^{2} \pi_{2 *} \mu_{p^{n}}\right)=\operatorname{Mor}\left(B_{k_{\mathrm{a}}}, G\right)=\operatorname{Mor}\left(0_{B_{k_{\mathrm{a}}}}, G\right)= \\
=H_{\mathrm{fppf}}^{2}\left(B_{k_{\mathrm{a}}}, \mu_{p^{n}}\right) \\
\rightsquigarrow H_{\mathrm{fppf}}^{2}\left(A_{k_{\mathrm{a}}}, \mu_{p^{n}}\right)=H_{\mathrm{fppf}}^{2}\left(B_{k_{a}}, \mu_{p^{n}}\right)^{\oplus 2} \oplus \operatorname{Hom}\left(B_{k_{\mathrm{a}}}\left[p^{n}\right], B_{k_{\mathrm{a}}}^{\vee}\left[p^{n}\right]\right)
\end{gathered}
$$

On the other hand,

$$
\mathrm{NS}\left(A_{k_{a}}\right) / p^{n}=\left(\mathrm{NS}\left(B_{k_{a}}\right) / p^{n}\right)^{\oplus 2} \oplus \operatorname{Hom}\left(B_{k_{a}}, B_{k_{a}}^{\vee}\right) / p^{n} .
$$

\rightsquigarrow Enough to prove that $\operatorname{Hom}\left(B_{k_{a}}, B_{k_{a}}^{\vee}\right)_{\mathbb{Q}_{p}}^{\Gamma_{k}} \rightarrow \operatorname{Hom}\left(B_{k_{a}}\left[p^{\infty}\right], B_{k_{a}}^{\vee}\left[p^{\infty}\right]\right)\left[\frac{1}{p}\right]^{\Gamma_{k}}$ is not surjective in general.

Counterexample

If B is an elliptic curve with transcendental j-invariant.

$$
\operatorname{Hom}\left(B_{k_{a}}, B_{k_{a}}^{\vee}\right)_{\mathbb{Q}_{p}}^{\Gamma_{k}}=\mathbb{Q}_{p}
$$

$\operatorname{Hom}\left(B_{k_{a}}\left[p^{\infty}\right], B_{k_{a}}^{\vee}\left[p^{\infty}\right]\right)\left[\frac{1}{p}\right]^{\Gamma_{k}}=\operatorname{Hom}\left(B_{k_{i}}\left[p^{\infty}\right], B_{k_{i}}^{\vee}\left[p^{\infty}\right]\right)\left[\frac{1}{p}\right]=\mathbb{Q}_{p}{ }^{\oplus 2}$
where $k_{i} \subseteq k_{a}$ is the purely inseparable closure.

Conclusion

There is an additional obstruction w.r.t. the purely inseparable extension $k \subseteq k_{i}$.

A flat Tate conjecture

$$
H_{\mathrm{fppf}}^{2}\left(A_{k_{a}}, \mu_{p^{n}}\right)^{k}:=\operatorname{im}\left(H_{\mathrm{fppf}}^{2}\left(A, \mu_{p^{n}}\right) \rightarrow H_{\mathrm{fppf}}^{2}\left(A_{k_{a}}, \mu_{p^{n}}\right)\right) .
$$

Theorem
The cycle class map

$$
\mathrm{NS}(A)_{\mathbb{Z}_{p}} \xrightarrow{c_{1}} \underset{{\underset{\mathrm{C}}{1}}^{\lim }}{H_{\mathrm{fppf}}^{2}}\left(A_{k_{a}}, \mu_{p^{n}}\right)^{k}
$$

is an isomorphism and $\operatorname{Br}\left(A_{k_{a}}\right)^{k}\left[p^{\infty}\right]$ has finite exponent.

Theorem (de Jong '98)
The morphism

$$
\operatorname{Hom}\left(A, A^{\vee}\right)_{\mathbb{Z}_{p}} \rightarrow \operatorname{Hom}\left(A\left[p^{\infty}\right], A^{\vee}\left[p^{\infty}\right]\right)
$$

is an isomorphism.

$$
\begin{aligned}
\mathrm{NS}(A) & \hookrightarrow \operatorname{Hom}^{\mathrm{sym}}\left(A, A^{\vee}\right) \\
\quad[\mathcal{L}] & \mapsto \varphi_{\mathcal{L}}
\end{aligned}
$$

$\varphi_{\mathcal{L}}$ is such that

$$
\left(\mathrm{id} \times \varphi_{\mathcal{L}}\right)^{*} \mathcal{P}_{A}=\Lambda(\mathcal{L})
$$

where \mathcal{P}_{A} is the Poincaré bundle and $\Lambda(\mathcal{L})$ is the Mumford bundle.

Constructing a morphism

$$
h: H^{2}\left(A, \mathbb{Z}_{p}(1)\right) \xrightarrow{m^{*}-\pi_{1}^{*}-\pi_{2}^{*}} F^{1} H^{2}\left(A \times A, \mathbb{Z}_{p}(1)\right) \rightarrow \operatorname{Hom}\left(A\left[p^{\infty}\right], A^{\vee}\left[p^{\infty}\right]\right)
$$

$$
\begin{aligned}
& \operatorname{Pic}(A)^{\wedge} \xrightarrow{c_{1}} H^{2}\left(A, \mathbb{Z}_{p}(1)\right) \\
& \downarrow \text { ! } \\
& \operatorname{Hom}^{\text {sym }}\left(A, A^{\vee}\right)_{\mathbb{Z}_{p}} \xrightarrow{\sim} \operatorname{Hom}^{\text {sym }}\left(A\left[p^{\infty}\right], A^{\vee}\left[p^{\infty}\right]\right) .
\end{aligned}
$$

Consequence

Definition

$$
\begin{gathered}
H_{\text {fppf }}^{2}\left(A_{k_{\mathrm{a}}}, \mathbb{Z}_{p}(1)\right)^{k}:=\operatorname{im}\left(H_{\mathrm{fppf}}^{2}\left(A, \mathbb{Z}_{p}(1)\right) \rightarrow H_{\mathrm{fppf}}^{2}\left(A_{k_{\mathrm{a}}}, \mathbb{Z}_{p}(1)\right)\right) \\
\mathrm{T}_{p}\left(\operatorname{Br}\left(A_{k_{\mathrm{a}}}\right)\right)^{k}:=\operatorname{im}\left(\mathrm{T}_{p}(\operatorname{Br}(A)) \rightarrow \mathrm{T}_{p}\left(\operatorname{Br}\left(A_{k_{\mathrm{a}}}\right)\right) .\right.
\end{gathered}
$$

Proposition

The cycle class map

$$
\mathrm{NS}(A)_{\mathbb{Z}_{p}} \xrightarrow{c_{1}} H^{2}\left(A_{k_{\mathrm{a}}}, \mathbb{Z}_{p}(1)\right)^{k}
$$

is surjective and $\mathrm{T}_{p}\left(\operatorname{Br}\left(A_{k_{g}}\right)\right)^{k}=0$.

Achtung!

$$
\mathrm{T}_{p}\left(\operatorname{Br}\left(A_{k_{\boldsymbol{g}}}\right)\right)^{k}=\mathrm{T}_{p}\left(\operatorname{Br}\left(A_{k_{\mathfrak{a}}}\right)^{k}\right) ?
$$

Consequence

Achtung!

$$
\mathrm{T}_{p}\left(\operatorname{Br}\left(A_{k_{\mathrm{a}}}\right)\right)^{k}=\mathrm{T}_{p}\left(\operatorname{Br}\left(A_{k_{a}}\right)^{k}\right) ?
$$

$-\operatorname{Br}(A)\left[p^{n}\right] \rightarrow \operatorname{Br}\left(A_{k_{a}}\right)^{k}\left[p^{n}\right]$?

- If yes, is the surjectivity preserved by $\lim _{\leftrightarrows_{n}}$?

$$
\begin{gathered}
K_{A}:=\operatorname{ker}\left(\operatorname{Br}(A) \rightarrow \operatorname{Br}\left(A_{k_{a}}\right)\right) \\
0 \rightarrow \operatorname{Br}(k) \rightarrow K_{A} \rightarrow H_{\mathrm{fppf}}^{1}\left(k, \operatorname{Pic}_{A / k}\right) \rightarrow 0
\end{gathered}
$$

Solution

Theorem (Gabber, Katz)
There exists a smooth projective connected curve C with $C(k) \neq \emptyset$ endowed with $C \rightarrow A$ such that $B:=\operatorname{Jac}(C) \rightarrow A$.
$B \sim A \times A^{\prime} \rightsquigarrow$ it is enough to prove the result for B.

F is finite because

$$
F=\operatorname{ker}\left(H_{\mathrm{fppf}}^{1}\left(k, \operatorname{Pic}_{B / k}\right) \rightarrow H_{\mathrm{fppf}}^{1}\left(k, \operatorname{Pic}_{C / k}\right)\right)
$$

is a subgroup of $H_{\mathrm{fppf}}^{1}\left(k, \operatorname{Pic}_{B / k} / \mathrm{Pic}_{B / k}^{0}\right)$. Thus $J \subseteq \operatorname{Br}(B)$ provides a splitting of $\operatorname{Br}(B) \rightarrow \operatorname{Br}\left(B_{k_{a}}\right)^{k}$ up to multiplication by m for a fixed $m \geqslant 0$.

Specialisation Néron-Severi group

Theorem (André, Ambrosi, Christensen)
Let K be an algebraically closed field $\neq \overline{\mathbb{F}}_{p}, X$ a finite type K-scheme, and $y \rightarrow X$ a smooth and proper morphism. For every geometric point $\bar{\eta}$ of X there is an $x \in X(K)$ such that $\mathrm{rk}_{\mathbb{Z}}\left(\mathrm{NS}\left(y_{\bar{\eta}}\right)\right)=\mathrm{rk}_{\mathbb{Z}}\left(\mathrm{NS}\left(y_{x}\right)\right)$.

Counterexample

If $\mathcal{A}=\mathcal{E} \times \mathcal{E} \rightarrow X$ where $\mathcal{E} \rightarrow X$ is a non-isotrivial elliptic scheme over $X / \overline{\mathbb{F}}_{p}$, then

$$
2+2=\operatorname{rk}_{\mathbb{Z}}\left(\mathrm{NS}\left(\mathcal{A}_{x}\right)\right)>\operatorname{rk}_{\mathbb{Z}}\left(\mathrm{NS}\left(\mathcal{A}_{\bar{\eta}}\right)\right)=2+1
$$

Specialisation Néron-Severi group

Theorem

Let X be a connected normal scheme of finite type over \mathbb{F}_{p} with generic point $\eta=\operatorname{Spec}(k)$ and let $f: \mathcal{A} \rightarrow X$ be an abelian scheme over X with constant slopes. For every closed point $x=\operatorname{Spec}(\kappa)$ of X we have

$$
\mathrm{rk}_{\mathbb{Z}}\left(\mathrm{NS}\left(\mathcal{A}_{\bar{x}}\right)^{\Gamma_{k}}\right)-\mathrm{rk}_{\mathbb{Z}}\left(\mathrm{NS}\left(\mathcal{A}_{\bar{\eta}}\right)^{\Gamma_{k}}\right) \geqslant \operatorname{rk}_{\mathbb{Z}_{p}}\left(\mathrm{~T}_{p}\left(\operatorname{Br}\left(\mathcal{A}_{\bar{\eta}}\right)\right)^{\Gamma_{k}}\right) .
$$

References

- M. D., Boundedness of the p-primary torsion of the Brauer group of an abelian variety, arXiv:2201.07526 (2022).
- A. J. de Jong, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), 301-333.
- G. Faltings, G. Wustholz, Rational Points, Aspects of Mathematics, Friedr. Vieweg \& Sohn, 1984.
- J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.
- J. Tate, Conjectures on algebraic cycles in ℓ-adic cohomology, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 71-83.
- Y. G. Zarhin, Endomorphisms of abelian varieties and points of finite order in characteristic p, Mat. Zametki 21 (1977), 737-744.

