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Abstract. We introduce a new family of ringed sites, called edged crystalline sites. These are all

variants of the crystalline site and they are parametrised by certain functions τ : Z>0 → Z≥0∪{∞},
called edge-types. When τ is linear, the τ -edged crystalline sites exhibit connections to rigid cohomol-

ogy and overconvergent F -isocrystals. Exponential edge-types instead give rise to the conjectured

family of log-decay crystalline cohomology theories, parametrised by positive real numbers. In

this case, the F -isocrystals are the log-decay F -isocrystals, which were previously constructed over

smooth curves by Kramer-Miller.
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1. Introduction

The aim of this article is to construct a new family of Grothendieck sites, the edged crystalline sites.
These sites are parameterized by non-zero superadditive maps of sets τ : Z>0 → Z≥0 ∪ {∞}, called
edged-types. We establish that if τ is linear, the cohomology of these sites recovers rigid cohomology
of smooth varieties. In addition, for general τ , we prove an affine de Rham comparison, adapting
the proof from [BdJ11] to our setting.

1.1. Crystalline and rigid cohomology. The realm of p-adic cohomology theories is vast, with
two prominent players being rigid cohomology and crystalline cohomology. Rigid cohomology, con-
structed by Berthelot using rigid geometry, possesses desirable properties such as Poincaré duality,
the Lefschetz trace formula, and the theory of weights. However, establishing finiteness results for
its cohomology groups remains challenging. Notably, the coherence of relative rigid cohomology for
smooth and proper morphisms, known as Berthelot’s conjecture, remains an open problem [Laz16].

Conversely, crystalline cohomology, pioneered by Grothendieck and chiefly developed by Berthelot
and Ogus, is not well behaved for non-proper or singular varieties. Nonetheless, the finiteness
statements in the smooth and proper setting are facilitated by a comparison with algebraic de
Rham cohomology. The crystalline analogue of Berthelot’s conjecture has been resolved [Mor19,
Appendix], [DTZ23], where the finiteness is established through the coherence of higher direct
images of coherent sheaves under proper morphisms.

Given the strengths and weaknesses of rigid and crystalline cohomology, the motivation behind
edged crystalline cohomology is to amalgamate the desirable aspects of both. Another work in the
same direction has been done by Langer, [Lan23].

An interesting aspect of edged crystalline cohomology is also its interaction with log-crystalline
cohomology. This might be used to reinterpret Kedlaya’s semi-stable reduction theorem on the
relation between overconvergent F -isocrystals and log-F -isocrystals.
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1.2. Marked algebraic geometry. To define edged crystalline cohomology, we introduce the
notion of marked schemes, a generalization of modulus pairs introduced in [KMSY21]. The theory
of marked schemes provides a natural framework for studying regular functions on algebraic varieties
with poles bounded at a designated marking. The τ -edged crystalline site consists of marked PD-
thickenings that have poles of a certain type at the marking, as dictated by τ .

1.3. Log-decay crystalline cohomology. Wan proved in [Wan96] that the L-function of log-
decay F -isocrystals with parameter r ∈ R>0 (i.e., the growth of p-adic valuations of the coefficients

is 1
r logp) over An

Fps
is p-adic meromorphic in the open disk of radius p1/r. On the other hand,

Emerton and Kisin proved in [EK01] that the L-function of unit-root F -isocrystals (corresponding
to the limit case r → ∞) is p-adic meromorphic on the closed disk of radius 1. They employed
Katz’s cohomological formula, formulated with étale cohomology. Wan expected that there should
be a variant of Katz’s cohomological formula in his context which explains his result. In particular,
he expected some log-decay crystalline cohomology theories with suitable Lefschetz trace formulas.
Our θr-edged crystalline cohomology provides a candidate for such a theory and could be used to
reinterpret and extend his result.

Acknowledgments. I would like to thank Hélène Esnault, Kiran Kedlaya, Shane Kelly, Matthew
Morrow, Kay Rülling, Peter Scholze, and Daqing Wan for enlightening discussions on the topic.

The author was funded by the Max-Planck Institute for Mathematics, the Deutsche Forschungsge-
meinschaft (project ID: 461915680), and the Marie Sk lodowska-Curie Actions (project ID: 101068237).
He was also hosted by the Institut de Mathématiques de Jussieu-Paris Rive Gauche and the Institut
de recherche mathématique avancée in Strasbourg.

2. Marked algebraic geometry

The first goal of this article is to construct categories of marked rings and marked schemes, which
are generalisations of the category of modulus pairs introduced in [KMSY21]. We also define some
topologies on the category of marked schemes, as the Zariski topology, v-Zariski topology, and the
v-étale topology.

2.1. Marked rings.

Definition 2.1.1. A simply marked ring is a pair (A; IA) with A a ring1 and IA an ideal of A.
A morphism of simply marked rings (A; IA) → (B; IB) is a morphism of rings A → B such that
IB ⊆ IAB. We denote by Ringsim the (big) category of simply marked rings.

Example 2.1.2. If (A; (f)) and (B; (g)) are simply marked rings with principal ideals, a ring
morphism φ : A → B is¨ a morphism of simply marked rings if and only if φ(f)|g. In this case, φ
extends naturally to a morphism Af → Bg which sends A. 1f ⊆ Af to B.1g ⊆ Bg.

Definition 2.1.3. There is a natural faithful functor v : Ringsim → Ring obtained by forgetting

the ideal. This functor admits both a left adjoint u1 : Ring→ Ringsim, which sends a ring A to the

simply marked ring (A; (1)), and a right adjoint u0 : Ring → Ringsim, which sends A to (A; (0)).
Both u1 and u0 are fully faithful. If not said differently, u1 will be the embedding we use to compare

1In this article the rings are all unital and commutative.
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rings and simply marked rings. We will also say that an object in the essential image of u1 is a
trivially marked ring.

Lemma 2.1.4. The category of simply marked rings does not admit equalisers.

Proof. We consider A := Z[x, y], B := A[z]/(x − y)z, and we write f : B → B for the morphism
of A-algebras which sends z 7→ 0. The subring A ⊆ B is the equaliser of idB, f : B → B in Ring.
Therefore, if idB, α : (B; (xz)) → (B; (0)) had an equaliser it would be of the form (A; IA) with
A ⊆ B and (xz) ⊆ IAB. Since both (A; (x)) and (A; (y)) equalise idB, f : (B; (xz)) → (B; (0)), we
would also have that IA ⊆ (x) ∩ (y) = (xy). This would imply that xz ∈ xyB, which is not true as
one can check after inverting z. □

Lemma 2.1.5. The category of simply marked rings does not admit coproducts.

Proof. Suppose that (A; IA) was the coproduct of (Z[x]; (x)) and (Z[y]; (y)) in Ringsim. Since v
commutes with coproducts, then A = Z[x, y]. In addition, IA ⊆ (xy) since (A; IA) admits morphisms
from (Z[x]; (x)) and (Z[y]; (y)). On the other hand, there should be a morphism (A; IA)→ (Z[t]; (t))
corresponding to the morphisms (Z[x]; (x))→ (Z[t]; (t)) and (Z[y]; (y))→ (Z[t]; (t)) which send x 7→
t and y 7→ t respectively. This would imply that (t) ⊆ IAZ[t] ⊆ (t2), which is a contradiction. □

The previous lemmas show that Ringsim in general does not admit neither finite limits nor finite
colimits. In order to make geometric operations, we want to enlarge the category to allow finite
colimits.

Definition 2.1.6. Let A be a ring and let ΣA = {IA,ℓ}ℓ∈L be a finite set of ideals of A. The

marking of A associated to ΣA is the presheaf over Ringsim which sends R ∈ Ringsim to the subset⋂
ℓ∈L

Hom((A; IA,ℓ), R) ⊆ Hom(A,R).

A marked ring is the datum of a ring A and a marking hA associated to some finite set of ideals of
A. A morphism (A;hA) → (B;hB) of marked rings is a morphism A → B of rings such that the

induced morphism hB → hA sends hB(R) to hA(R) for every R ∈ Ringsim. We denote by Ring the
category of marked rings.

Notation 2.1.7. If (A;hA) is a marked ring associated to the set of ideals {IA,ℓ}ℓ∈L, we will
also denote it by (A; IA,ℓ)ℓ∈L. Nonetheless, note that hA does not determine uniquely the family
{IA,ℓ}ℓ∈L, so that (A; IA,ℓ)ℓ∈L is only one of many possible presentations of (A;hA).

Lemma 2.1.8. If A = (A; IA,ℓ)ℓ∈L is a marked ring and for some ℓ1 ̸= ℓ2 ∈ L we have IA,ℓ1 ⊆ IA,ℓ2,
then (A; IA,ℓ)ℓ∈L = (A; IA,ℓ)ℓ∈L\{ℓ2}. In particular, if A is a valuation ring, then A is simply marked.

Proof. This follows from the fact that for every marked ring R ∈ Ringsim, we have that

Hom((A; IA,ℓ1), R) ⊆ Hom((A; IA,ℓ2), R).

□

Definition 2.1.9. Let (A;hA) be a marked ring and let A → B be a ring homomorphism. There
is a canonical marking hB on B defined as the fibre product
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hB hB

hB hA.

We say that hB is the marking on B induced by hA. Concretely, if (A;hA) = (A; IA,ℓ)ℓ∈L, then
(B;hB) = (B; IA,ℓB)ℓ∈L.

Definition 2.1.10. We say that a marked ring A is principal if it can be written in the form
(A; IA,ℓ)ℓ∈L with each IA,ℓ principal. For simplicity, if {fℓ}ℓ∈L are generators of {IA,ℓ}ℓ∈L we will
also write (A; fℓ)ℓ∈L. If A = (A; fℓ)ℓ∈L is a principal marked ring, we say that an element f ∈ A is
a slicing element of A if √

(f) =

√∏
ℓ∈L

(fℓ).

Lemma 2.1.11. The category Ring has finite colimits and finite products and their formation
commutes with the forgetful functor v : Ring→ Ring. The initial object is (Z; 1) and the final object
is (0; 0).

Proof. If (A; IA) is a simply marked (C; 1)-algebra and (B; 1) is trivially marked C-algebra, then
the fibre coproduct (A; IA) ⊗(C;1) (B; 1) is equal to (A ⊗C B; IA ⊗ B). Indeed, for every simply
marked ring we have

Hom((A⊗C B; IA ⊗B), R) = Hom((A; IA), R)×Hom(C,R) Hom(B,R)

since for (φ1, φ2) ∈ Hom(A,R)×Hom(C,R)Hom(B,R) we have (φ1⊗φ2)(IA⊗B)R = φ1(IA)R. From
this, we deduce that if (A; IA,ℓ)ℓ∈L and (B; IB,m)m∈M are marked rings over Spec(C; IA,n)n∈N , the
fibre coproduct is the marked ring

(A⊗C B; IA,ℓ, IB,m)ℓ∈L,m∈M .

Moreover, if we have a double arrow f, g : (A; IA,ℓ)ℓ∈L → (B; IB,m)m∈M , we can take the ring then
the underlying ring of the coequaliser C is the coequaliser of the underlying rings and its marking
is induced by the one of (B; IB,m)m∈M by taking the extensions of the ideals IB,m. The product∏n

i=1Ai is the ring
∏n

i=1Ai endowed with the marking of Ai on Ai. □

Remark 2.1.12. Note that by 2.1.11, the category Ring is the finite cocompletion of the category

Ringsim. Note also that in this case the finite cocompletion is obtained by adding only fibred
coproducts.

Remark 2.1.13. There is also a nice ∞-category of marked animated rings. One first starts with
the ∞-category C = AnRingsim of simply marked animated rings. The objects of the homotopy
category hC are defined to be surjections (at the level of π0) of animated rings (A ↠ A0) and the
morphisms (A ↠ A0) → (B ↠ B0) are homotopy classes of morphisms of animated rings A → B
such that B → B ⊗L

A A0 factors through B0 (up to homotopy). This category is endowed with a
natural functor v : hC → hAnRing which sends (A ↠ A0) to A. Then C is defined as the fibre
product AnRing ×hAnRing hC as ∞-categories.
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2.2. Marked schemes.

Definition 2.2.1. A premarked scheme is a pair X = (X;hX), where X is a scheme and

hX : Ringsim,op → Set

is a subfunctor of the composition hX ◦ v. We say that X is the underlying scheme of X. A
morphism of premarked schemes X → Y is a morphism of schemes X → Y such that hX → hY
sends hX(R) to hY (R) for every R ∈ Ringsim. We denote by Sch∼ the (big) category of premarked
schemes.

Definition 2.2.2. The category of premarked schemes is naturally fibred over Sch via the faithful
functor v : Sch∼ → Sch which sends (X;hX) 7→ X. If (X;hX) is a premarked scheme and T → X
is a morphism of schemes, we write hX |T for hX ×hX

hT and we say that a morphism of premarked
schemes is strict if it is isomorphic to a morphism of the form (T ;hX |T )→ (X;hX).

Definition 2.2.3. There is a canonical fully faithful functor Ringop → Sch∼ which sends A =
(A, hA) to Spec(A) := (Spec(A);hA). We say that a premarked scheme isomorphic to Spec(A) for
some marked ring A is an affine marked scheme. A marked scheme is a premarked scheme (X;hX)
such that for some Zariski covering {Ui → X}i∈I all the restrictions (Ui;hX |Ui) are affine marked
schemes. We denote by Sch ⊆ Sch∼ the full (big) subcategory of marked schemes. A pair (X; IX)
where X is a scheme and IX is a quasi-coherent sheaf of ideals of X defines naturally a marked
scheme. We say that a marked scheme of this form is a simply marked scheme. A principal marked
affine scheme is the spectrum of a principal marked ring.

Remark 2.2.4. The notion of modulus pair in [KM21] coincides with the one of a simply marked
scheme (X; IX) with IX invertible.

We have functors u0, u1 : Sch→ Sch sending X to (X; 0) and (X;OX) respectively.

Lemma 2.2.5. The composition hX ◦ u1 is represented by an open subscheme j : X◦ ↪→ X.

Proof. This can be checked Zariski-locally on X. When X = Spec(A; IA,ℓ)ℓ∈L, we have that X◦ =
Spec(A) \ ∪ℓ∈LV (IA,ℓ). □

Remark 2.2.6. Note that if (X;hX) is a marked scheme, one can recover hX from hX by taking
the composition hX ◦ u0. Therefore, the functor hX is enough to determine the marked scheme.

Remark 2.2.7. If LogSch is the category of log-schemes, there is a faithful functor w : Sch →
LogSch which sends a marked scheme X to (X, j∗O∗

X◦ ∩ OX).

Example 2.2.8. We want to briefly mention here other examples of premarked schemes such that
hX ◦ u1 is represented by an open subscheme. Consider X = Spec(A) with A = Z[x, y] and set

hX(R; IR) := {φ : A→ R | IR ⊆ (φ(x)) ∨ IR ⊆ (φ(y))} .
In this case, the composition hX ◦ u1 is represented by A2

Z \ {0}. On the other hand, it is easy to
check this is not a marked scheme. Another example is the limit X = lim←−n

Spec(Z[x];xn) in Sch∼,

where hX ◦ u1 is represented by A1
Z \ {0}.

Definition 2.2.9. We say that Y → X is an open (resp. closed) immersion if Y → X is an open
(resp. closed) immersion.
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Lemma 2.2.10. The category Sch has finite limits and arbitrary coproducts and their formation
commutes with the forgetful functor v : Sch → Sch. The final object is Spec(Z; 1) and the initial
object is ∅ := Spec(0; 0).

Proof. This follows from the local computation done in Lemma 2.1.11. □

2.3. Cartier schemes.

Definition 2.3.1. A locally principal marked scheme is a marked scheme which admits a Zariski
covering of principal marked affine schemes. A locally principal marked scheme is said to be a
Cartier scheme if the marking is locally a finite set of Cartier divisors. We denote by SchCar the
category of Cartier schemes. We also say that a marked ring is a locally principal marked ring (resp.
a Cartier ring) if its spectrum is a locally principal marked scheme (resp. a Cartier scheme).

2.3.2. The natural fully faithful functor SchCar ↪→ Sch admits a right adjoint X 7→ Bl(X). Locally
this functor sends Spec(A; IA,ℓ)ℓ∈L to the blowing up of Spec(A) with respect to each IA,ℓ. If X is
locally principal, then Bl(X) is a closed marked subscheme of X which corresponds to the scheme-
theoretic closure ofX◦ ⊆ X. Locally, the closed subscheme Bl(X) ⊆ X has the following description.
Suppose that X = Spec(A) with A principal and let f be a slicing element of A. The underlying
scheme of Bl(X) is then the marked affine scheme Spec(B) where B := A/(0 : f∞). Alternatively,
B is the image of im(A→ Af ).

2.4. Generalities on marked schemes.

Lemma 2.4.1. Let (A;hA) be a marked ring and let (B; IB) be a simply marked ring. A morphism
A→ B of rings induces a morphism of marked rings if and only if for every maximal ideal m ◁ B,
the induced morphisms (A;hA)→ (Bm, IBBm) are morphisms of marked rings. In particular, hA is

determined by the value on the marked rings R ∈ Ringsim with R a local ring.

Proof. It is enough to prove that for every ideal J ◁ B and b ∈ B we have that b ∈ J if and only if
b
1 ∈ JBm for every maximal ideal m ◁ B. By replacing B with B/J we may assume J = (0). Then
the result is well-known. □

Definition 2.4.2. Let A be a marked ring and write A◦ for Γ(Spec(A),O◦). We say that an element
in the kernel of A → A◦ is a torsion element of A and we denote by Tors(A) the set of torsion

elements of A. We denote by Ã the quotient A/Tors(A) ⊆ A◦ endowed with the marking induced

by the one of A. We say that A is torsion-free if A = Ã. Note that a morphism A→ B of marked
rings, induces a unique morphism Ã→ B̃ of marked rings.

Definition 2.4.3. For every n ≥ 1, we denote by An the marked scheme

Spec(Z[t1, . . . , tn]; t1, . . . , tn).

For a marked ring A, there is a natural identification of An(A) with a certain subset of An(A) = An.

Lemma 2.4.4. For a marked ring A and an element f ∈ A1(A) ⊆ A, there exists a unique g ∈ A◦

such that fg = 1 in A◦. Therefore, if A is torsion-free, A1(A) ⊆ A ∩ (A◦)∗.

Proof. A morphism of marked rings φ : (Z[t]; t) → A which sends t 7→ f induces a morphism
φ̃ : Z[t]t → A◦. We can then take g := φ̃(1t ). □
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Definition 2.4.5. Let A be a marked ring. A principal simplification of A is a principal simply
marked ring B such that A = B ×(B;0) (A; 0).

Construction 2.4.6. Let A = (A; IA,ℓ)ℓ∈L be a marked ring and for every ℓ ∈ L, let {fℓ,m}m∈Mℓ

be a set of generators of Iℓ. We associate to this datum the A-algebra

B :=
A[x, yℓ,m]ℓ∈L,m∈Mℓ

(x−
∑

m∈Mℓ
fℓ,myℓ,m)ℓ∈L

.

We write B for (B;x).

Lemma 2.4.7. The marked ring B of Construction 2.4.6 is a principal simplification of A.

Proof. Let C = (C; IC,m)m∈M be a marked ring and let φ : C → A be a morphism of rings. Write
φB : C → B for the morphism of rings obtained by composing φ with the natural morphism A→ B.
Suppose that φB : C → B is a morphism of marked rings. We have to prove that the same is true
for φ : C → A. Let R be a ring and let ψ : A → R be a morphism of rings. We want to show
that for every m ∈M , we have that IC,mR ⊇

⋂
ℓ∈L IA,ℓR. For an element g ∈

⋂
ℓ∈L IA,ℓR, there

exists a multiset {hℓ,m}ℓ∈L,m∈M with hℓ,m ∈ R, such that g =
∑

m∈M ψ(fℓ,m)hℓ,m for every ℓ ∈ L.
Therefore, there exists a morphism ψg : B → R extending ψ : A→ R and such that ψg(x) = g. The
morphism ψg upgrades to a morphism B → (R; g) of marked rings. Since φB : C → B is a morphism
of marked rings, we deduce that g ∈ IC,mR for every m. By the arbitrariness of g ∈

⋂
ℓ∈L IA,ℓR, we

deduce the desired result. □

Notation 2.4.8. When (A; Σ) is a torsion-free principal marked ring with Σ = {f1, . . . , fn}, we
write A[ x

f1
, . . . , x

fn
] or A[ xΣ ] for the principal simplification of Construction 2.4.6 with respect to the

set {f1, . . . , fn}.

Definition 2.4.9. An open ⋆-immersion Y → X of marked schemes is a morphism such that
Y ◦ → X◦ is an open immersion.

Lemma 2.4.10. Let φ : A→ B be a morphism of principal marked rings. The induced morphism
Spec(B) → Spec(A) is an open ⋆-immersion if and only if there exist f1, . . . , fn ∈ A such that
φ(f1), . . . , φ(fn) generate the unit ideal in B◦ and such that φ : A◦

fi
→ B◦

φ(fi)
is an isomorphism for

every i.

2.5. Strong completion of marked rings.

Definition 2.5.1. If A is a principal marked ring with slicing element f and J is an ideal of A,
then the strong J-completion of A is the ring

A⋏
J := lim←−

e

A/(Je : f∞)

endowed with the marking induced by the natural morphism A → A⋏
J . If A = A⋏

J , we say that A
is strongly J-complete. If J is not specified we assume that J = (p).

Remark 2.5.2. Note that for every e > 0 we have that A/(Je : f∞) ↠ A/(J : f∞) is a thickening.

Lemma 2.5.3. The ring A⋏
J is the closure of Ã ⊆ Af with respect to the J-adic topology.
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3. Topologies on marked schemes

3.1. Zariski topology.

Definition 3.1.1. A Zariski covering of X is a family {U i → X}i∈I of strict open immersions such
that {Ui → X}i∈I is a Zariski covering.

For the moment, I have put the rest of Chapter §3 as an appendix as it can be skipped at a first
reading.

4. Edged crystalline site

4.1. Principal edged localisation.

Definition 4.1.1. An edge-type is a map of sets τ : Z>0 → Z≥0 ∪ {∞} which is not constantly 0
and such that for every e1, e2 ∈ Z>0 we have that

τ(e1 + e2) ≥ τ(e1) + τ(e2).

For an edge-type τ and a positive integer n, we denote by τn : : Z>0 → Z≥0 ∪ {∞} the n-th scaling
of τ , defined by τn(e) = nτ(e).

Definition 4.1.2. Let A be a ring, Σ = {f1, . . . , fn} a finite subset of A with f =
∏n

i=1 fi, and τ
an edge-type. The (crystalline) principal τ -localisation of A with respect to Σ is the A-subalgebra

Aτ
Σ ⊆ Af generated by A and all the fractions pe

f
u1
1 ···fun

n
with e ≥ 1 and τ(e) ≥

∑n
i=1 ui. We denote

by Aτ
Σ the marked ring (Aτ

Σ; Σ). For an A-module M , the principal τ -localisation of M with respect
to Σ, denoted by M τ

Σ, is the Aτ
Σ-submodule of Mf generated by M .

Lemma 4.1.3. The A-module Aτ
Σ is generated by 1 and the fractions pe

f
u1
1 ···fun

n
with e ≥ 1 and

τ(e) ≥
∑n

i=1 ui

Proof. This follows from the fact that

pe1

f
u1,1
1 ···f

un,1
n
· pe2

f
u1,2
1 ···f

un,2
n

= pe1+e2

f
u1,1+u1,2
1 ···f

un,1+un,2
n

and τ(e1 + e2) ≥ τ(e1) + τ(e2) ≥
∑n

i=1(ui,1 + ui,2). □

Example 4.1.4. The edge-type λ : Z>0 → Z≥0 ∪ {∞} defined by λ(e) = e corresponds to the
overconvergent theory. In this case we have that

Z[t]λn
t = Z

[
t,
p

tn

]
.

The edge-type κ∞(e) ≡ ∞ gives

Z[t]κ∞
t = lim−→

e

Z
[
t,
p

te

]
.

Construction 4.1.5. Let f : Z>0 → R be a map of sets. We define τ f : Z>0 → Z≥0 ∪ {∞}
inductively by

τ f (e) := max{ sup
f(u)≤e

{u}, max
1≤i≤e−1

{τ(i) + τ(e− i)}}.

We say that τ f is the edge-type associated to the decay function f .
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Definition 4.1.6. Let fr : Z>0 → R be the decay function fr(u) :=
logp(u)

r , where r is a positive

real number. We denote by θr the edge-type τ fr . This type corresponds to the r-log-decay theory,
[K-M16], [K-M21], [K-M22].

Example 4.1.7. When h = 1 we have that θ1(e) = pe and

Z[t]
θ1n
t = lim−→

e

Z
[
t,
p

tnp
, . . . ,

pe

tnpe

]
.

Remark 4.1.8. Despite the name, a principal τ -localisation of A is not a localisation of A in the
classical sense. The A-algebra Aτ

f is not even flat as it happens already for the basic example

A = Z[t] and τ = λ1. In this case, Fp[t]⊗Z[t] Z[t]λ1
t has some non-trivial t-torsion.

Remark 4.1.9. For every edge-type τ there exists a morphism Z[t]τt → Z[t]
τp
t which sends t to tp.

Thus lim−→n
Z[t]τnt admits a lift of the Frobenius endomorphism of Fp[t].

Lemma 4.1.10. For an edge-type τ , a ring A, and a finite subset Σ = {f1, . . . , fn} ⊆ A, we have
that

Aτ
Σ = Ã[ xΣ ]τx ∩Af ⊆ Af [x, x−1]

where f =
∏n

i=1 fi and Ã = A/(0 : f∞).

Proof. This follows from the identity

pe

fu1
1 · . . . · f

un
n

=
pe

xu1+···+un
· x

u1

fu1
· . . . · x

un

fun

for every e ≥ 1 and τ(e) ≥
∑n

i=1 ui. □

Lemma 4.1.11. Let A be a ring, Σ = {f1, . . . , fn} ⊆ A a finite subset and τ an edge-type. For an
A-module M , the principal τ -localisation M τ

Σ is canonically isomorphic to

(M ⊗A[t1,...,tn] A[t1, . . . , tn]τt1,...,tn)/f∞-torsion,

where t1, . . . , tn act on M via the multiplication by f1, . . . , fn and f :=
∏n

i=1 fi.

Proof. The natural morphism M ⊗A[t1,...,tn]A[t1, . . . , tn]τt1,...,tn →Mf corresponds to the localisation
with respect to f . This implies that the kernel is the f∞-torsion of the source. The result then
follows from the definition of principal τ -localisation. □

Lemma 4.1.12. If M is an A module, then for i ≥ 1 we have that TorAi (M,Aτ
Σ) is of f∞-torsion.

Proof. We know that TorAi (M,Af ) vanishes for i ≥ 1, so that it is enough to prove that TorAi+1(M,Af/A
τ
Σ)

is of f∞-torsion. This follows from the fact that Af/A
τ
Σ itself is of f∞-torsion. □

Lemma 4.1.13. The principal τ -localisation of A-modules commutes with localisation.

Proof. By definition it is enough to prove the statement for A itself and the localisation with respect
to g ∈ A. In this case both (Aτ

Σ)g and (Ag)τΣ are Ag-subalgebras of Afg generated by the fractions
pe

fu
i

satisfying the conditions given by τ . □
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4.2. Edged schemes. If A = (A; Σ) is a principal marked ring, the principal τ -localisation Aτ
Σ

might depend a priori on the choice of Σ. We want to prove here that this is not the case, thanks
to the following more intrinsic description.

Lemma 4.2.1. Let A be a ring, Σ = {f1, . . . , fn} be a finite subset of A, and f :=
∏n

i=1 fi. Write

Λτ (A) for the A-subalgebra of Af generated by the fractions pe

g
u1
1 ·...·gumm

with e,m ≥ 1, (g1, . . . , gm) ∈
Am(A; Σ), and τ(e) ≥

∑m
i=1 ui. We have that Λτ (A) = Aτ

Σ.

Proof. We first note that we may assume (A; Σ) torsion-free. The inclusion Aτ
Σ ⊆ Λτ (A) follows by

definition since (f1, . . . , fn) is an element of An(A; Σ). For the other containment let us first assume
that n = 1. In this case, for every (g1, . . . , gm) ∈ Am(A; f) there exist h1, . . . , hm ∈ A such that
f = gihi for every 1 ≤ i ≤ m. Therefore,

pe

g
u1
1 ·...·gumm

= pe

fu1+···+um · h
u1
1 · . . . · h

un
n

in Af for every e, u1, . . . , um ≥ 0. This shows that Λτ (A) ⊆ Aτ
f .

When n > 1, we want to deduce the result from the case n = 1 by considering the principal marked
ring (A[ x

f1
, . . . , x

fn
]τx;x). By the previous step, we know that

Λτ (A) ⊆ Λτ (A[ x
f1
, . . . , x

fn
]) = A[ x

f1
, . . . , x

fn
]τx.

On the other hand, by Lemma 4.1.10, we have that Aτ
Σ = A[ x

f1
, . . . , x

fn
]τx ∩ Af ⊆ Af [x, x−1]. This

shows that Λτ (A) ⊆ Aτ
Σ, as we wanted. □

Definition 4.2.2. For every n ≥ 1, let An,τ be the marked scheme

Spec(Z[t1, . . . , tn]τt1,...,tn ; t1, . . . , tn).

We say that a Cartier local ring A is a τ -edged local ring if the natural maps An,τ (A)→ An(A) are
bijections for every n ≥ 1. We say that a Cartier scheme X is τ -edged if all the marked local rings
OX,x are τ -edged for every point x ∈ X. We write Schτ for the full subcategory of Sch with objects
τ -edged schemes. Similarly, we say that a marked ring A is τ -edged if Spec(A) is a τ -edged scheme.

Lemma 4.2.3. For a marked ring, a multiplicative subset S ⊆ A, and n ≥ 1, we have that
An(S−1A) = lim−→s∈S An(As).

Proof. It is enough to treat the case when n = 1. We first suppose in addition that A = (A; f).
For this case, we note that a morphism φ : (Z[t]; t) → (S−1A; f) corresponds to the choice of a
divisor of f in S−1A. In other words, it corresponds to the choice of an element g

s ∈ S
−1A such

that there exist h ∈ A and t, u ∈ S satisfying (gh − fst)u = 0. Thus φ restricts to a morphism
(Z[t]; t) → (Astu; f), as we wanted. For the general case, we choose a principal simplification B of
A. The result then follows from the previous part thanks to the fact that

S−1B ×(S−1B;0) (S−1A; 0) = lim−→
s∈S

(Bs ×(Bs;0) (As; 0)).

□

Lemma 4.2.4. A Cartier scheme X is τ -edged if and only if for every n ≥ 1 and for a basis of
Zariski opens U ⊆ X we have that An,τ (U)→ An(U) is a bijection.
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Lemma 4.2.5. Let X be a locally principal marked scheme and τ an edge-type. There is a (unique)
sheaf Oτ

X over (X)Zar such that Oτ
X(Spec(A; Σ)) = Aτ

Σ for every Spec(A; Σ) ∈ (X)Zar.

Proof. By Lemma 4.2.1, the assignment (A; Σ) 7→ Aτ
Σ does not depend on the choice of the pre-

sentation of the principal marked ring. By standard arguments it is then enough to check that for
every {g1, . . . , gn} ⊆ A generating the unit ideal we have that Aτ

Σ is the equaliser of∏
i

(Agi)
τ
Σ ⇒

∏
i,j

(Agigj )
τ
Σ.

This follows from Lemma 4.1.13 and Zariski descent. □

Definition 4.2.6. Let X be a locally principal marked scheme and for an edge-type τ , let Oτ
X be

the sheaf of Lemma 4.2.5. We denote by Λτ (X) → X the marked scheme obtained by taking the
relative spectrum of Oτ

X . We say that Λτ (X)→ X is the τ -localisation of X.

Lemma 4.2.7. The τ -localisation of a locally principal marked scheme is τ -edged.

Lemma 4.2.8. Write Schlp for the category of locally principal marked schemes. For every τ , the
τ -localisation functor is a right adjoint of the inclusion functor Schτ → Schlp.

Proof. It is enough to prove that for A and B torsion-free principal marked rings with B τ -edged,
the natural map α : Hom(Aτ , B) → Hom(A,B) is a bijection. For the injectivity, note that both
Hom(Aτ , B) and Hom(A,B) are subsets of Hom(A◦, B◦). For the surjectivity we note that the
τ -localisation functor induces a map

Hom(A,B)→ Hom(Aτ , Bτ ) = Hom(Aτ , B),

which is the right inverse of α. □

4.3. More on edged localisation.

Definition 4.3.1. There is a natural descending filtration of ideals on Aτ
Σ defined by

Filep(A
τ
Σ) := (pe : f∞).

We call it the refined p-adic filtration. The natural Aτ
Σ-module structure on the graded pieces

grep(A
τ
Σ) := Filep(A

τ
Σ)/File+1

p (Aτ
Σ) induces an A-module structure where A is the ring gr0p(A

τ
Σ) =

Aτ
Σ/(p : f∞) = A/p.

Example 4.3.2. When A = Z[t] and Σ = {t}, we have that A = Fp[t] and for e ≥ 1, the module
gre(Aτ

Σ) is the Fp[t]-module 1
tτ(e)

Fp[t].

Lemma 4.3.3. We have that

Aτ
f/Filep(A

τ
f ) = (A/pe)τf .

Proof. The morphism Aτ
f → (A/pe)τf corresponds to

(A⊗Z[t] Z[t]τt )/f∞-torsion→ (A/pe ⊗Z[t] Z[t]τt )/f∞-torsion,

where Z[t] → A sends t to f . From this description it is clear that the morphism is surjective and
the kernel is Filep(A

τ
f ).

□
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Lemma 4.3.4. If R is a local ring with maximal ideal (p), then (R[[t]]τt )⋏p (see Definition 2.5.1) is
a local ring with maximal ideal m := (p : t∞) + (t).

Proof. We have that (R[[t]]τt )⋏p /m = R[[t]]/(p, t) = R/p, which is a field. It remains to prove that
all the elements not in m are invertible. This can be checked on each quotient R[[t]]τt /Filep(R[[t]]τt ).

For this we note that R[[t]]τt /Filep(R[[t]]τt ) ↠ R[[t]]τt /Fil1p(R[[t]]τt ) = R/p[[t]] is a thickening so the
result follows from the fact that R/p[[t]] is a local ring with maximal ideal (t). □

4.4. Edged crystalline site.

Definition 4.4.1. A (locally principal) marked PD-scheme is a PD-scheme (U, T, γ) endowed with
the choice of a locally principal2 marking on U . We denote it by (U, T, γ). A marked PD-thickening
is a marked PD-scheme (U, T, γ) such that U ↪→ T is a thickening. We denote by CRIS the category
of marked PD-thickenings. If (S0, S, γ) is a PD-thickening, we denote by CRISS the category of
(U, T, δ) ∈ CRIS endowed with a morphism (U, T, δ)→ (S0, S, γ). For a marked scheme X over S0
we denote by CRIS(X/S) the category of (U, T, δ) ∈ CRISS endowed with a morphism of marked
S0-schemes U → X and by Cris(X/S) ⊆ CRIS(X/S) the full subcategory of those (U, T, δ) such
that U → X is a strict open immersion.

Hypothesis 4.4.2. In what follows we assume that (S0, S, γ) is a PD-ring with S a Z(p)-scheme

and γn(p) = pn

n! .

Definition 4.4.3. A family of morphisms of marked PD-thickenings {(U i, Ti, γi) → (U, T, γ)}i∈I
is a Zariski covering if the following conditions are satisfied.

(1) U i = U ×T Ti for every i.
(2) {Ti → T}i∈I is a Zariski covering.

We endow CRISS with the Zariski topology. We write Ocris for the sheaf over CRISS given by
(U, T, γ) 7→ Γ(T,O). This is represented by (A1

S0
,A1

S , γ) ∈ CRISS . We also write Ocris ⊆ Ocris for

the subsheaf of sets over CRISS represented by (A1
S0
,A1

S , γ) ∈ CRISS . When X is an S0-scheme,
the sheaves Ocris and Ocris naturally define sheaves OX/S and OX/S over CRIS(X/S).

Construction 4.4.4. Given a marked PD-thickening (U, T, γ) we denote by T ◦ ⊆ T the open
subscheme which corresponds topologically to the open subscheme U◦ ⊆ U . The assignment
(U, T, γ) 7→ Γ(T ◦,O) defines a quasi-coherent sheaf of Ocris-algebras on CRISS that we denote
by O◦

cris. For an edge-type τ , we denote by Oτ,1
cris ⊆ O◦

cris the subsheaf of Ocris-algebras generated
Zariski-locally by the fractions

pe

e! · gu1
1 · . . . · g

um
m

with e,m ≥ 1, τ(e) ≥
∑m

i=1 ui, and g1, . . . , gm local sections of Ocris.

Definition 4.4.5. A marked PD-thickening (U, T, γ) over S is a τ -edged PD-thickening over S if the
restriction of Oτ,1

cris to TZar coincides with Ocris. We denote by CRISτ
S ↪→ CRISS the full subcategory

of τ -edged PD-thickenings and by Oτ
cris the restriction of Ocris to CRISτ

S . If X is a marked scheme
over S0 we also denote by CRISτ (X/S) ⊆ CRIS(X/S) and Crisτ (X/S) ⊆ Cris(X/S) the full
subcategories of τ -edged PD-thickenings and by Oτ

X/S the restriction of OX/S to CRISτ (X/S).

2In order to simplify the discussion we will work here with locally principal markings.
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Proposition 4.4.6. The inclusion functor CRISτ
S ↪→ CRISS admits a right adjoint Λτ : CRISS →

CRISτ
S.

Proof. Given a marked PD-thickening (U, T, γ), we denote by Λτ,1(T )→ T the T -scheme obtained
by taking the relative spectrum of Oτ,1

cris over TZar. There is a natural PD-structure on Λτ,1(I), the
pullback of I to Λτ,1(T ), and a natural marking on Λτ,1(U) := V (Λτ,1(I)). This assignment defines
an endofunctor Λτ,1 : CRISS → CRISS . We write Λτ,n for the composition Λτ,1 ◦ · · · ◦ Λτ,1, where
Λτ,1 is repeated n-times. We then define Λτ (U, T, γ) := lim←−n≥1

Λτ,n(U, T, γ). One can check that

Λτ (U, T, γ) is τ -edged. □

Lemma 4.4.7. The category CRISτ
S has all finite coproducts and non-empty finite limits.

4.5. Edged crystals and quasi-crystals.

Definition 4.5.1. A τ -edged crystal over X/S is a crystal of quasi-coherent Oτ
X/S-modules over

CRISτ (X/S). We write Crτ (X/S) the category they form. We also say that a locally quasi-coherent
sheaf of Oτ

X/S-modules F is a τ -edged quasi-crystal if for every morphism f : (U, T, δ)→ (U ′, T ′, δ′)

with T → T ′ a closed immersion, the comparison morphism cf : f∗F|T ′ → F|T is surjective.

4.5.2. Let k be a perfect field, W its ring of Witt vectors, and K the fraction field of W . For a
separated scheme X of finite type over k and an edge-type τ , the τ -edged crystalline complex of X
is the complex

RΓτ -cris(X/W ) := lim−→
X⊆Y

RΓ(Crisτ (Y /W ),Oτ
Y /W )

with Y proper Cartier. The category of coherent τ -edged isocrystals overX, denoted by Isocτ (X/K),
is the 2-colimit of the isogeny category of crystals in coherent Oτ

Y /W -modules over Crisτ (Y /W ) for

different embeddings X ⊆ Y with Y proper Cartier.

4.6. Edged localisation of marked PD-rings.

Definition 4.6.1. A PD-ring is a ring A endowed with an ideal I and a PD-structure γ on I. We
denote such a datum by (A,A/I, γ). We denote by PD-Ring the category they form. A marked
PD-ring is a PD-ring (A,A/I, γ) endowed with a locally principal marking hA/I on A/I. We write
(A,A/I, γ) do indicate such a datum and we denote by PD-Ring the category they form.

The functor Λτ of Proposition 4.4.6 naturally defines an endofunctor

Λτ : PD-Ring∧
p
→ PD-Ring∧

p
,

where PD-Ring∧
p
⊆ PD-Ring is the full subcategory of p-adically complete PD-rings. We say that

a p-complete marked PD-ring is a τ -edged PD-ring if Λτ (A,A/I, γ) = (A,A/I, γ).

Definition 4.6.2. Let (A,A/I, γ) be a PD-ring. For every f, g ∈ A which differ by an element in
I and s ≥ e ≥ 0, we define

Ψe,s(f, g) :=

ps∑
i=1

ps!

pe(ps − i)!
fp

s−iγi(g − f) ∈ A

us(f, g) := 1 + ps

fps Ψs,s(f, g) ∈ Af .
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Lemma 4.6.3. For every s ≥ e ≥ 0, the following identities hold.

(1) peΨe,s(f, g) = (gp
s − fps),

(2) fp
s
us(f, g) = gp

s
,

(3) us(f, g) = 1 + pe

fps Ψe,s(f, g),

(4) u1(f, g)p
s

= us(f, g).

Proof. The first identity can be checked for Ψe,s(x, x+ y) in Z[x]{y} and then deduced for every A
by sending x 7→ f and y 7→ g − f . The other three identities follow from the first one. □

Definition 4.6.4. For an edge-type τ we write eτ for minτ(e)̸=0{e} and qτ for peτ . We say that τ
is p-small if qτ |τ(e) for every e ≥ 1. Note that τqτ is p-small for every edge-type τ .

Lemma 4.6.5. Let (A,A/I, γ) be a p-complete PD-ring. If f, g ∈ A are elements with the same
reduction modulo I, then (Af )∧p = (Ag)∧p and (Aτ

fqτ )⋏p = (Aτ
gqτ )⋏p .

Proof. We note that we may further assume that pnA = 0 for some n ≥ 1. Then, by Lemma 4.6.3,
we have that gp

n − fpn = pnΨa,a(f, g) = 0, so that Af = Ag. For the other part, we note that by
definition qτ

fqτ is an element of Aτ
fqτ , so that ueτ (fv, gv) is a unit of Aτ

fqτ for every v ≥ 0. Thanks

to Lemma 4.6.3.(2), for every e ≥ 0, we have that

pe

gqτv
ueτ (fv, gv) =

pe

f qτv

in Af . Since ueτ (fv, gv) is invertible in Aτ
fqτ , if pe

fqτ v ∈ Aτ
f then pe

gqτ v ∈ Aτ
fqτ as well. This shows

that Aτ
gqτ ⊆ Aτ

fqτ . By symmetry we deduce that Aτ
fqτ = Aτ

gqτ , as we wanted.
□

Lemma 4.6.6. Let (A,A/I, γ) be a p-complete PD-ring. If f, g ∈ A are elements such that their
reductions in A/I generate the same ideal, then (Aτ

fqτ )⋏p = (Aτ
gqτ )⋏p .

Proof. We may assume that there exists n ≥ 1 such that pnA = 0. By the assumption, there
are u, v ∈ A such that [gqτ ] = [uf qτ ] and [f qτ ] = [vgqτ ] in A/I. On the one hand, there are
canonical morphisms Aτ

fqτ → Aτ
ufqτ → Aτ

uvfqτ . On the other hand, by Lemma 4.6.5, we have that
Aτ

ufqτ = Aτ
gqτ and Aτ

uvfqτ = Aτ
fqτ . This yields the desired result. □

Corollary 4.6.7. Let (A,A/I, γ) be a p-complete marked PD-ring with A/I = (A/I; f) and let

g ∈ A be an element which generates (f) modulo I. Write Iτe for ker((A/pe)τg → A/(I, pe)). If τ is
p-small, then

Λτ (A) = lim←−
e

DIτe ((A/pe)τg).

5. Main results

5.1. First cohomological results.

Lemma 5.1.1. If F is a locally quasi-coherent sheaf of Oτ
X/S-modules over Crisτ (X/S), then for

every (U, T, δ) ∈ Crisτ (X/S) with U affine we have that

H i((U, T, δ),F) = 0

for i > 0.
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Proof. This is an analogue of [Stacks, Lemma 07JJ]. □

Hypothesis 5.1.2. From now on, suppose that (S0, S, γ) = (Spec(A/I),Spec(A), γ) with A a Z(p)-
algebra and let X be a p-nilpotent τ -edged scheme over S0 of the form Spec(C; f). We further
assume τ p-small.

Definition 5.1.3. We write Crisτ (C/A) for the category of p-nilpotent τ -edged PD-rings (B,C, δ)
over A. Note that Crisτ (C/A) admits a natural embedding into Cris(C/A).

Lemma 5.1.4. If we denote by Cτ the category Crisτ (C/A) endowed with the chaotic topology, then
for every locally quasi-coherent sheaf of OX/S-modules F over Crisτ (X/S), we have

RΓ(Cτ ,F|Cτ ) = RΓ(Crisτ (X/S),F).

Proof. This follows from Lemma 5.1.1 as in [Stacks, Lemma 07JK]. □

5.2. A weakly initial object.

Definition 5.2.1. We define Crisτ,⋏(C/A) to be the category of p-complete τ -edged PD-rings
(B,C, δ) over A.

Construction 5.2.2. Choose a polynomial A-algebra P which admits a surjection P ↠ C and
choose a lift g ∈ P of f ∈ C. Since C is p-nilpotent, for e ≫ 0 the quotient P ↠ C factors
through Pe := P/pe. We define Je := ker(Pe → C), De := DJe(Pe), and D := lim←−e

(De). We also

write Dτ
e := (De)

τ
g and Dτ := lim←−e

Dτ
e . The ring D (resp. Dτ ) has a natural PD-structure on

J := ker(D → C) (resp. Jτ := ker(Dτ → C)) that we denote by δD (resp. δDτ ).

Lemma 5.2.3. The marked p-complete PD-ring (Dτ , C, δDτ ) is a weakly initial object of Crisτ,⋏(C/A).

Proof. We first note that, thanks to Corollary 4.6.7 and the fact that C is τ -edged, the PD-ring
(Dτ , C, δDτ ) is the τ -localisation of (D,C, δD). In particular, (Dτ , C, δDτ ) is in Crisτ,⋏(C/A). To
prove that it is in addition a weakly final let (B,C, δB) be another object in Crisτ,⋏(C/A). We
choose a morphism P → B lifting P → C. This morphism sends g to some gB ∈ B lifting f and for
e ≫ 0 it induces a morphism Pe → B/(pe : g∞

B ). Since B/(pe : g∞
B ), C, δB is a p-nilpotent τ -edged

PD-ring, we also get natural morphisms Dτ
e → B/(pe : g∞

B ) for e≫ 0. Since B = lim←−e
B/(pe : g∞

B ),
we get a morphism Dτ → B compatible with the extra structures. This shows the desired result. □

Construction 5.2.4. We denote by (D(•)τe , C, δDτ ) the Čech nerve of (Dτ
e , C, δDτ ) ↠ (C,C, 0) in

Crisτ (C/A) and we write D(•)τ := lim←−e
D(•)τe . We also write T (•)τe for Spec(D(•)τe). For n ≥ 0 and

e ≥ 1, let E(n)e be the tensor product of (n+ 1)-copies of Dτ
e over A. Write αi,n for 0 ≤ i ≤ n for

the inclusion of Dτ
e in E(n)e corresponding to the i-th factor of E(n)e. For e ≫ 1, the ring E(n)e

has a natural PD-structure on the ideals αi,n(Jτ
e )E(n)e, where Jτ

e is the image of Jτ in Dτ
e and

there is a natural quotient E(n)e ↠ C. We denote by K(n)e its kernel.

Lemma 5.2.5. For every n ≥ 0 and e≫ 1, we have

D(n)τe = DK(n)e(E(n)e)/(p
e : α0,n(g)∞).

In addition, for every αi,n : Dτ
e → D(n)τe , the algebra D(n)τe is isomorphic to a PD-polynomial ring

Dτ
e{xi} with PD-ideal Jτ

eD(n)τe +Dτ
e{xi}+.



EDGED CRYSTALLINE COHOMOLOGY 17

Lemma 5.2.6. The cosimplicial module Ω1
E(•)e/A is homotopic to 0.

Proof. The module Ω1
E(n)e/A

decomposes as the direct sum⊕
αi,n : Dτ

e→E(n)e

Ω1
Dτ

e /A
⊗Dτ

e ,αi,n E(n)e.

We deduce that Ω1
E(n)e/A

is homotopic to 0 thanks to the computation in [Bha12, Lem. 2.5]. □

Lemma 5.2.7. For every cosimplicial module M(•)e over D(•)τe and every i > 0, the cosimplicial
module M(•)e ⊗D(•)τe Ωi

D(•)τe/A
is homotopic to zero.

Proof. Use Lemma 5.2.6 and Lemma 5.2.5. □

5.3. Affine de Rham comparison.

Construction 5.3.1. Let F be a τ -edged quasi-crystal. We denote by Me(•) the cosimplical
module

F((X,T (•)τe , δD(•)τe ))

and by M(•) the limit lim←−e
Me(•). We also write M for M(0) and for every i, n ≥ 0 we denote by

(M ⊗Dτ Ωi
D(n)τ/A)⋏ the projective limit lim←−e

(Me ⊗Dτ
e

Ωi
D(n)τe/A

). If F is a τ -edged crystal the two

projections pri : T (1)τe → T (0)τe with i = 1, 2 induce isomorphisms

pr∗1(Me)
∼−→Me(1)

∼−→ pr∗2(Me),

which define a flat topologically quasi-nilpotent connection

M → (M ⊗Dτ Ω1
Dτ/A)⋏.

In turn, this gives a de Rham complex (M ⊗Dτ Ω•
Dτ/A)⋏.

Proposition 5.3.2. If F is a τ -edged quasi-crystal, the complexM(•) computes RΓ(Crisτ (X/S),F).

Proof. The result follows from Lemma 5.1.4 and Lemma 5.2.3 as in [Stacks, Prop. 07JN]. □

Lemma 5.3.3. If F is a τ -edged quasi-crystal, then

Hj(Crisτ (X/S),F ⊗Oτ
X/S

Ωi
X/S) = 0

for all i > 0 and j ≥ 0.

Proof. [Stacks, Lem. 07LF]. □

Theorem 5.3.4. For every τ -edged crystal F there exists a quasi-isomorphism

RΓτ -cris(X/S,F)
∼−→ (M⊗Dτ Ω•

Dτ/A)⋏.

Proof. The proof is as in [Stacks, Prop. 07LG]. We consider the double complex K•,• defined by

Ka,b := (M ⊗Dτ Ωa
D(b)τ/A)⋏.

By Lemma 5.2.7, the columns Ka,• are acyclic when a > 0 and K0,• is quasi-isomorphic to
RΓ(Cris(X/S),F) thanks to Proposition 5.3.2. Combining Lemma 5.2.5 and [Stacks, Lem. 07LD]
we deduce that for every b ≥ 0 and every morphism αi,b : Dτ → D(b)τ the morphisms αi,b,∗ :

(M ⊗Dτ Ω•
Dτ/A)⋏ → (M ⊗D(b)τ Ω•

D(b)τ/A)⋏ = K•,b are quasi-isomorphisms. Note that even in this

case, for a fixed b, the morphisms αi,b,∗ induce the same morphism on cohomology. □
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5.4. Comparison with rigid cohomology. The algebra An := (Z[t]λn
t )⋏p is by definition the

projective limit

lim←−
e

Z[t, ptn ]

(
p
tn )e

⊆ lim←−
e

Z/pe[t, t−1] = Zp⟨t, t−1⟩.

Lemma 5.4.1. If p is odd, the ideal p
tnAnp admits a (unique) PD-structure.

We denote by Zp⟨t, t−1⟩− the Zp-submodule of Zp⟨t, t−1⟩ of series of the form
∑∞

i=1 ait
−i with

ai ∈ Zp and by A−
n the intersection An ∩ Zp⟨t, t−1⟩−.

Lemma 5.4.2. Every element of A−
n can be written uniquely in the form

∞∑
i=1

bi(t)
( p
tn

)i
where each bi(t) ∈ Zp[t] is a polynomial of degree at most n− 1.

Proof. This follows from the analogous result modulo ( p
tn )e for every e. □

Write Bn for An[1p ] and Cn for the subalgebra of Zp⟨t, t−1⟩[1p ] of series
∑∞

j=−∞ ajt
j such that for j

small enough vp(aj) ≥ ⌈− j
n⌉ (or in other words the series which converge for p−1/n < |t| ≤ 1).

Lemma 5.4.3. The algebra Cn coincides with the subset of f ∈ Zp⟨t, t−1⟩[1p ] which can be written

as a sum f = f+ + f− with f+ ∈ Zp⟨t⟩[ 1
pt ] and f− ∈ A

−
n .

Proof. It is enough to prove the result for those f =
∑∞

j=−∞ ajt
j ∈ Cn with aj = 0 for j ≥ 0. Write

ek for ⌈ kn⌉ and suppose that vp(a−k) ≥ ek for m≫ 0 and k > mn, then

f =

mn∑
k=1

a−kt
−k +

∞∑
k=mn+1

peka′−kt
−k

where a′−k = ak
pek ∈ Zp. Since

∞∑
k=mn+1

peka′−kt
−k =

∞∑
i=m+1

in∑
k=(i−1)n+1

pia′−kt
in−kt−in =

∞∑
i=m+1

bi(t)
( p
tn

)i
with

bi(t) :=

in∑
k=(i−1)n+1

a′−kt
in−k ∈ Zp[t]

of degree at most n− 1, we conclude by Lemma 5.4.2. □

Lemma 5.4.4. Bn = Cn

Lemma 5.4.5. There exists a natural isomorphism

lim−→
i

Bi
∼−→ Qp⟨t⟩(†0),

where Qp⟨t⟩(†0) ⊆ Qp⟨t, t−1⟩ is the subring of series which are overconvergent at 0.
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Appendix A. The v-Zariski and v-étale topologies

A.1. Valuations on marked rings.

Definition A.1.1. A multiplicative valuation on a ring A is a map |.|v : A→ Γ∪{0}, where (Γ,×)
is a totally ordered abelian group such that

(1) |0|v = 0 and |1|v = 1.
(2) |xy|v = |x|v|y|v for every x, y ∈ A.
(3) |x+ y|v ≤ max{|x|v, |y|v} for every x, y ∈ A.

The kernel of |.|v, denoted by pv, is the preimage of 0. If |.|v is a valuation of A we write Kv for the
fraction field of A/pv and by Rv the valuation subring of Kv of elements x ∈ Kv such that |x|v ≤ 1.
We say that two valuations |.|v, |.|w are equivalent, if pv = pw and Rv = Rw. If A has a marking
hA, then it induces a simple marking on every ring Rv.

Definition A.1.2. We write by Spv(A) the set of equivalence classes of valuations of A and if
φ : B → A is a ring homomorphism, we denote by Spa(A,B) the subset of Spv(A) of those valuations
|.|v such that |φ(B)|v ≤ 1. This construction naturally globalise to a morphism φ : X → Y of
schemes, and we write Spa(X,Y ) for the set of valuations bounded over Y . If X is a marked
scheme, then we define Spa(X) := Spa(X◦, X). We also write Spa(A) for Spa(Spec(A)).

A.2. The v-Zariski topology.

Definition A.2.1. A v-Zariski covering of X is the datum of a set of morphisms of marked schemes
{φi : Y i → X}i∈I such that the following conditions are satisfied.

(1) {φ◦
i : Y ◦

i → X◦}i∈I is a Zariski covering
(2) For every open immersion U → X with U principal affine, there exists a finite set J ,

a map i : J → I, and open immersions V j → Y i(j) with V j principal affine such that⋃
i φj(V j(R)) = U(R) for every Cartier valuation ring R.

Note that Condition (2) is the variant of the following condition.

(2’)
⋃

i φi(Y i(R)) = X(R) for every Cartier valuation ring R.

The difference, is an additional finiteness assumption that is simply the analogue of the finiteness
assumption for fpqc coverings. Note that Condition (2) is strictly stronger than Condition (2’) as
explained by the following example.

Example A.2.2. Let R be a DVR with uniformiser π, fraction field K, and residue field k. Consider
the ring A :=

∏∞
n=0R and write π(n) ∈ A for the element which is π on the n-th entry and 1

otherwise, π ∈ A for the image of π ∈ R via the diagonal embedding R → A, Si ⊆ A for the
multiplicative subset of A generated by π(i), π(i+1), · · · , and Bi := S−1

i A. Write X := Spec(A;π)
and Y i := Spec(Bi;π). Since Aπ = (Bi)π for every i ≥ 0, we have that the morphisms Y ◦

i → X◦

are all isomorphisms, so that (1) is satisfied. Note also that this implies that Y i(K) = X(K) for
every i ≥ 0, where K := (K; 1). We want to show now that the family satisfies (2’) as well but does
not satisfy (2).

We have that both A and Bi have Krull dimension 1 and the minimal prime ideals of A are in
bijection with the set of ultrafilters of N. If p is a minimal prime ideal of A associated to a non-
principal ultrafilter, then A/p → Bi/pBi is an isomorphism because A/(ej)j≥0 = Bi/(ej)j≥0. On
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the other hand, if pj is the kernel of the j-th projection, then A/pj → Bi/pjBi is an isomorphism
for j < i and the embedding R ↪→ K for j ≥ i. Thanks to this observations, we deduce that if
R := (R;π), then

⋃
0≤i Y i(R) = X(R), but for each M ≥ 0, we have that

⋃
0≤i≤M Y i(R) ⊊ X(R).

Remark A.2.3. For Noetherian schemes the v-Zariski topology can be compared with the MZar
topology in [KM21].

Lemma A.2.4. If {φi : Y i → X}i∈I is a finite family of morphisms of principal marked schemes
such that Condition (1) and (2’) are satisfied, then it is a v-Zariski covering.

Definition A.2.5. A big v-Zariski site, denoted by (Sch)vZar, is any site defined as in [Stacks, Def.
020S]. We also denote by (Sch/S)vZar the localisation of (Sch)vZar with respect to an S ∈ Sch and
by (S)vZar the small v-Zariski site of S.

Lemma A.2.6. Every Zariski covering {U i → X}i∈I is a v-Zariski covering.

Proof. We may assume that X is affine, so that there exists a subcovering {U j → X}i∈J with J ⊆ I
finite. After this reduction the result follows from the fact that if R is a Cartier valuation ring,
every R-point of X defines an R-point of Uj for some J . □

Lemma A.2.7. Every principal affine marked scheme admits a v-Zariski covering of principal
affine simply marked scheme.

Proof. Let A = (A; fℓ)ℓ∈L be a principal marked ring with L = {1, . . . , n}. We consider the subring

B1 ⊆ Afn (resp. B2 ⊆ Afn) generated by the image of A and fn−1

fn
(resp. fn

fn−1
) endowed with

the marking {fℓ}ℓ∈(L\{n}) (resp. {fℓ}ℓ∈(L\{n−1})). We have that {Spec(Bi) → Spec(A)}i∈{1,2} is a
v-Zariski covering of Spec(A). The result then follows by induction on n. □

Lemma A.2.8. If (A; IA) is a simply marked ring and IA is generated by a set {fℓ}ℓ∈L ⊆ IA, then
{Spec(A; fℓ)→ Spec(A; IA)}ℓ∈L is a v-Zariski covering.

Proof. To prove that {Spec(A; fℓ)
◦ → Spec(A; IA)◦}ℓ∈L is a Zariski covering it is enough to note

that, by the assumption, for every prime ideal p which does not contain IA there exists an fi which
is not in p. By Lemma A.2.7, it is enough to prove the result after base change to φ : (A; IA) →
(B; g). Thus we have to show that {Spec(B;φ(fℓ), g) → Spec(B; g)}ℓ∈L is a v-Zariski covering.
For this purpose, we note that there exists a finite subset L′ ⊆ L such g ∈ (φ(fℓ))ℓ∈L′ . Since
for every valuation |.|v ∈ Spa(B; g), there exists ℓ ∈ L′ such that |g|v ≤ |fℓ|v, we deduce that
{Spec(B;φ(fℓ), g)→ Spec(B; g)}ℓ∈L′ satisfies Condition (2). This concludes the proof. □

Lemma A.2.9. Every marked scheme admits a v-Zariski covering of principal affine simply marked
schemes.

Proof. Thanks to Lemma A.2.6 we are reduced to the case of affine marked schemes. Since every
affine marked scheme Spec(A; IA,1, . . . , IA,n) is the fibre product

Spec(A; IA,1)×Spec(A) · · · ×Spec(A) Spec(A; IA,n),

it is enough to work with affine simply marked schemes. The result then follows from Lemma
A.2.8. □
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Lemma A.2.10. Let S be a marked scheme with size(S) = κ. For every v-Zariski covering {U i →
S}i∈I there exists a refinement {T j → S}j∈J with size(Tj) ≤ κ and |J | ≤ κ.

Definition A.2.11. A big v-Zariski site, denoted by (Sch)vZar, is any site defined as in [Stacks,
Def. 020S] using v-Zariski coverings. We also denote by (Sch/S)vZar the localisation of (Sch)vZar
with respect to a marked scheme S ∈ Sch and by (S)vZar the subcategory of ⋆-open immersions
T → S.

A.3. Quasi-compactness.

Definition A.3.1. We say that a marked scheme is v-quasi-compact if every v-Zariski covering
admits a finite subcovering. We also say that a marked scheme X is retrocompact if X◦ → X is
quasi-compact.

Lemma A.3.2. A marked scheme X is retrocompact if and only if for every x ∈ |X|, there exists
an affine open neighbourhood Spec(A; IA,ℓ)ℓ∈L ⊆ X and a finitely generated ideal J of A such that√∏

ℓ

IA,ℓ =
√
J.

Lemma A.3.3. A marked scheme is v-quasi-compact if and only if it admits a finite v-Zariski cov-
ering of v-refined principal marked schemes. In particular, affine marked schemes Spec(A; IA,ℓ)ℓ∈L
with each IA,ℓ finitely generated are v-quasi-compact.

Definition A.3.4. A morphism of schemes Y → X is v-quasi-compact if the preimage of a v-
quasi-compact open is v-quasi-compact. We also say that a morphism Y → X is v-separated if the
diagonal Y → Y ×X Y is v-quasi-compact. We denote by Schvqcqs the category of v-quasi-compact
v-quasi-separated marked schemes.

A.4. Structural sheaf and Serre vanishing. While the presheaf O◦ of (Sch/S)vZar which sends
X 7→ O(X◦) is clearly a sheaf, the presheaf O which sends X 7→ O(X) is not a sheaf. This can be
seen, for example, noticing that ∅ covers every marked scheme of the form (X; 0). We denote by
O+ the sheafification of O with respect to the v-Zariski topology. To understand O+ it is useful to
consider the presheaf Õ := im(O → O◦). Since O(X) → O◦(X) is injective for Cartier schemes,

Lemma A.4.5 implies that the v-Zariski sheafification of O and Õ are the same. In addition, Õ is
separated since O◦ is a sheaf.

Definition A.4.1. The v-refinement of A is the marked ring A+ with A+ the integral closure of
A→ A◦ and the marking is induced by the marking of A.

Definition A.4.2. We say that a morphism of marked scheme Y → X satisfies the existence part
of the marked valuative criterion, if for every Cartier valuation ring R with fraction field K and
every solid diagram

Spec(K) Y

Spec(R) X,

the dotted arrow exists.
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Lemma A.4.3. If A+ is the v-refinement of A, then the square

A+
∏

v∈Spa(A)Rv

Af
∏

v∈Spa(A)Kv

is cartesian.

Proof. Write D for the fibre product of Af and B :=
∏

v∈Spa(A)Rv over C :=
∏

v∈Spa(A)Kv. Since

valuation rings are integrally closed, there is a natural morphism A+ → D. In addition, since
B → C is injective, we deduce that D ⊆ Af . It remains to prove that A→ D is integral. Note that
we may assume that f is a nonzerodivisor by replacing A by A/(0 : f∞).

We follow the proof of Tag 01WM and Tag 01KE of [Stacks]. For an element g ∈ D we write
J ⊆ A[t] for the kernel of the morphism A[t] → Dg which sends t to g−1. We have that g is
integral over A if and only if 1 ∈ J + (t). In turn, to check the last condition it is enough to
prove that φ : Spec(Dg)→ Spec(A[t]/J) is surjective. Note that φ is an isomorphism outside V (f)
so that every prime p ⊆ A[t]/J which does not contain f is in the set-theoretic image of φ. In
particular, since f is a nonzerodivisor in A[t]/J , every minimal prime of A[t]/J is in the image. It
remains to show that if p ⊆ q are prime ideals in A[t]/J with f ̸∈ p and p is in the image of φ,
then the same is true for q. Arguing as in Tag 01KE of [Stacks], this follows from the fact that
Spec(Dg; f)→ Spec(A[t]/J ; f) satisfies the existence part of the marked valuative criterion. □

Lemma A.4.4. Spec(A+)→ Spec(A) is a v-Zariski covering.

Proof. The natural map Spa(A+) → Spa(A) is a bijection and the valuation ring associated to a
multiplicative valuation v ∈ Spa(A+) is canonically isomorphic to the one associated to the image
in Spa(A). □

Lemma A.4.5. Every marked scheme admits a v-Zariski covering of principal v-refined affine
simply marked schemes.

Proof. By Lemma A.2.9 every marked scheme admits a v-Zariski covering of principal affine marked
schemes. By Lemma A.4.4 every principal affine marked scheme admits a v-refined v-Zariski cover-
ing. This concludes the proof. □

Definition A.4.6. Let X = Spec(A) be an affine marked scheme. We say that {Spec(Bi) →
Spec(A)}1≤i≤n is a standard v-Zariski covering if all the Bi are principal v-refined marked rings.

Lemma A.4.7. Let {Spec(Bi)→ Spec(A)}1≤i≤n be a v-Zariski covering of affine principal marked
schemes. The sequence

0→ A+ →
∏
i

(Bi)
+ →

∏
i,j

(Bi ⊗A Bj)
+

is exact.

Lemma A.4.8. If X = Spec(A) is a principal v-refined affine marked scheme, then O+(X) = A.
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Proof. By the previous discussion, to compute O+ it is enough to sheafify Õ. Since Õ is separated,
we deduce that

O+(X) = lim−→
U
Ȟ0(U , Õ)

where the colimit runs over the v-Zariski coverings of X. Since X is v-quasi-compact, by Lemma
A.4.5 it is enough to prove that for every v-refined covering {Spec(Bi) → Spec(A)}1≤i≤n, the
sequence

0→ A→
∏
i

Õ(Spec(Bi))→
∏
i,j

Õ(Spec(Bi ⊗A Bj))

is exact. For every i choose a slicing element gi of Bi. Since each gi is a nonzerodivisor, we have

that Õ(Spec(Bi)) = Bi for every i. In addition, we have by definition that Õ(Spec(Bi ⊗A Bj)) ⊆
(Bi⊗ABj)gi⊗gj , so that Õ(Spec(Bi⊗ABj)) ⊆ (Bi⊗ABj)

+. Combining this with Lemma A.4.7 we
deduce the desired result. □

Lemma A.4.9. If f : Y → X be a separated morphism of marked schemes such that Y ◦ → X◦ is
an isomorphism, then for every n ≥ 1, the diagonal closed immersion Y ↪→ Y ×X · · · ×X Y into the
n-fold fibre product over X is a v-Zariski covering. In addition, if Y → X is a v-Zariski covering
and F is a v-Zariski sheaf on X, then RΓvZar(X,F) = RΓvZar(Y , f

∗F).

Corollary A.4.10. If Y → X and {U i → Y }i∈I are v-Zariski covering of vqcqs marked schemes
and Y → X is separated, then the v-refined hypercovering associated to {U i → Y }i∈I is canonically
isomorphic to the one of {U i → X}i∈I .

Theorem A.4.11. Let X be an affine principal marked scheme such that X is smooth over a field
k. The cohomology groups H i

vZar(X,O+) vanish for i > 0.

Proof. First note that if Y → X is a modification, U = {U i → Y }i∈I is a covering of Y , and
UX = {U i → X}i∈I is the induced covering of X, then by Lemma A.4.9 we have that Ȟ•(U ,O+) =
Ȟ•(UX ,O+). Therefore, looking Zariski locally on X and after taking macaulayfication, it is enough
to show that for every projective modification Y → X with Y Cohen–Macaulay and every Zariski
covering U = {U ℓ → Y }ℓ∈L and every class in Ȟ•

vZar(U ,O+), there exists a Zariski refinement
V = {V m → Y }m∈M which kills the class. This follows from Kovacs’ vanishing. □

A.5. Functions with bounded poles.

Definition A.5.1. Let (R; IR) be a marked valuation ring. We write R◦
n for the subgroup of R◦

of elements q ∈ R◦ such that qInR ⊆ R. For a marked ring A we write A◦
n for the subgroup of A◦

of elements such that for every v ∈ Spa(A) the image in R◦
v is contained in (Rv)◦n. The assignment

A 7→ A◦
n globalises to a v-Zariski sheaf O◦

n over SchvZar.

A.6. Comparison with the Zariski cohomology. If S is any marked scheme, we have a functor

v : (Sch/S)vZar → (Sch/S)Zar

which forgets the marking. This functor admits as a right adjoint the functor

u1/S : (Sch/S)Zar → (Sch/S)vZar

which sends X → S to S ×v1(S) u1(X)→ S. The counit of the adjunction is an isomorphism.
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Lemma A.6.1. The functor v is cocontinuous and u1/S is continuous.

Proof. If {Ui → v(X)} is a covering in (Sch/S)Zar, then {u1,X(Ui)→ X} is a covering in (Sch/S)vZar
by Lemma A.2.6. We deduce that v is cocontinuous. □

We write
α : Sh((Sch/S)vZar)→ Sh((Sch/S)Zar)

for the map of topoi induced by v (viewed as a cocontinuous functor). We have that α∗(F)(X) =
F(u1/S(X)) and α−1(G)(X) = G(X) for every X → S. Moreover, the counit α−1α∗ → id is given
by

α−1(α∗F)(X) = α∗F(X) = F(u1/S(X))→ F(X)

and the unit id→ α∗α
−1 is the identity. By [Stacks, Lem. 09YX], α−1 admits also a left adjoint α!

such that α!hX = hX .

Lemma A.6.2. If X is a retrocompact marked scheme, then α∗O+

X is a quasi-coherent sheaf of

OX-modules.

Definition A.6.3. If X is a retrocompact marked scheme we denote by X+ the marked scheme
with underlying scheme X+ := SpecX(α∗OX) and marking induced by the one of X via the natural
morphism X+ → X. We say that X is v-refined if X+ → X is an isomorphism.

Lemma A.6.4. If X is retrocompact we have that Sh((X+)vZar) = Sh(XvZar).

Lemma A.6.5. For a retrocompact marked scheme X we have that the natural square

(Xred)+ X+

Xred X.

is cartesian.

A.7. Stalks. If R is a Cartier valuation ring, for every x ∈ X(R) one associates the functor
px : XvZar → Set which sends U → X to the set of R-points over x. This defines a point of
the site XvZar (cf. [Stacks, Tag 00Y5]).

Definition A.7.1. If F is a sheaf of XvZar, the stalk of F at x, denoted by Fx, is the inverse limit

lim−→
T→U→X

F(U),

where T := Spec(R) and the composition T → U → X is x.

The following lemma is related to [KM21, Prop. 4.25].

Lemma A.7.2. The family of points of XvZar associated to trivially marked local rings and Cartier
valuation rings is a conservative family.

Definition A.7.3. We say that a morphism of marked schemes f : Y → X is a modification if
f : Y → X is proper and finitely presented and f : Y ◦ → X◦ is an isomorphism.

Proposition A.7.4. Let f : Y → X be a strict modification. The v-Zariski higher direct image
Rf∗O+

Y is quasi-isomorphic to O+

X .

Proof. Stein’s factorisation [Stacks, Thm. 03H2] to show f∗O+

Y = O+

X . □
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A.8. The v-étale topology.

Definition A.8.1. Let X be a principal affine marked scheme. A standard v-étale covering of X is
the datum of a finite set of morphisms of principal affine marked schemes {Y i → X}i∈I such that
the following conditions are satisfied.

(1) {Y ◦
i → X◦}i∈I is an étale covering.

(2) For every Cartier valuation ring R and every T ∈ X(R) there exists a strict extension
R ⊆ R′, an i ∈ I, and T ′ ∈ Y i(R

′) lifting T .

The v-étale topology is the topology generated by the v-Zariski topology and the standard v-étale
coverings.

Let k is a field of positive characteristic p, let A ⊆ B be the strict extension of marked rings
(k[x];x) ⊆ (k[x, y]/(yp − xp−1y − xp−1);x). Consider the induced morphism f : Y → X where
X := Spec(A) and Y := Spec(B). Note that f is a v-étale covering.

Lemma A.8.2. The sheaf O+ does not satisfy v-Zariski cohomological descent with respect to f .

Proof. Let G be the Galois group of f seen as a constant group over k and let Y • be the Čech nerve
of Y → X. We have that Γ(Y •,O+) ≃ HomG(Z[G•+1], B) where Z[G•+1] is the simplicial group
associated to the bar resolution of G and B is endowed with the natural G-action. This implies that

the spectral sequence Ei,j
2 := H i(G,Hj

vZar(Y ,O+)) converges to H i+j
vZar(Y •,O+), where the action

of G on Hj
vZar(Y ,O+) is the one induced by the action on Y . We have that H0

vZar(Y ,O+) = B

and H i
vZar(Y ,O+) = 0 for i > 0, so that H i

vZar(Y •,O+) = H i(G,B). Since G = Z/p as abstract
groups, if σ ∈ G is the automorphism which sends y 7→ y+ x and Tr : B → B is the endomorphism
1 + σ + · · · + σp−1, then H2i+1

vZar (Y •,O+) = BTr=0/(σ − 1)B. The unit 1 ∈ B has trivial trace,
but it is not in the image of σ − 1, as one can check after reducing modulo x. We deduce that
H2i+1

vZar (Y •,O+) ̸= 0 for every i ≥ 0. □

Similarly one can prove the following result.

Proposition A.8.3. Let R be a rank 1 valuation ring with fraction field K and let Rsep be the
integral closure of R in a separable closure of K. For every nonzero f ∈ R, we have that

H•
vét(Spec(R; f),O+) = H•(K,Rsep)

where H•(K,Rsep) is Galois cohomology.
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