
J. reine angew. Math. 807 (2024), 31–53 Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2023-0079 © De Gruyter 2024

Counting integral points of
bounded height on varieties with

large fundamental group
By Yohan Brunebarbe at Talence and Marco Maculan at Paris

Abstract. The main result of this paper states the subpolynomial growth of the number
of integral points with bounded height of a variety over a number field whose fundamental
group is large. This generalizes a recent paper of Ellenberg, Lawrence and Venkatesh and
replies to two questions asked therein.

1. Introduction

In order to state our theorem and cast it in a general framework, let us review some
background material.

1.1. Statement. Let K be a number field with ring of integers OK , X a projective
variety over K, L an ample line bundle on X , and h an (absolute logarithmic) height function
relative to L; see Section 4.1. For an open subset U of X , a subring R of K containing OK ,
a projective flat OK-scheme X with generic fiber X , and a real number c, set

�.X; L; U; h;RI c/ WD logC #¹x 2 U.R/ W h.x/ 6 cº;

where U is the complement of the Zariski closure of X X U in X, and logC t D log max¹1; tº
for a real number t . When RDK, the number �.X;L;U;h;RI c/ only depends on the generic
fiber, so we will write X instead of X. When U D X , the redundant specification of the open
subset will be discarded. Two height functions relative to L differ by a bounded term, thus the
corresponding counting functions do as well.

The precise value of the function c 7! �.X; L; U; h;KI c/ is not much of interest and
here we will focus on its slope

gr:ratK.X;L;U / WD lim sup
c!1

�.X; L; U; h;KI c/

c
;
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henceforth called the (linear) growth rate of rational points. Of course, as the notation suggests,
the real number gr:ratK.X;L;U / does not depend on the choice of the model X nor on that
of the height function h. Similarly, for a finite set S of places of K including the Archimedean
ones, the real number

lim sup
c!1

�.X; L; U; h;OK;S I c/

c

measures the presence of the S -integral points on U . Again this does not depend on X and h,
but a priori does depend on the set S . Taking the supremum ranging over all such finite sets of
places S allows to get rid of such a dependence and gives rise to an invariant

gr:intK.X;L;U /

called the (linear) growth rate of integral points of U with respect to X and L. When U D X ,
rational and integral points coincide, thus their growth rate do. As above, in such a case the
redundant repetition of X is discarded from notation.

When U is geometrically integral and normal, we say that U has large geometric étale
fundamental group if NU has large algebraic fundamental group in the sense of Kollár, where NU
is the base-change of U to an algebraic closure of K; see Section 2. For the sake of brevity
we sometimes omit the adjective ‘geometric’. Time has come to state the main result of the
present note:

Main theorem. Let K be a number field, X a projective variety over K, L an ample
line bundle over X , and U an open subset of X which is geometrically integral, normal, and
has large geometric étale fundamental group. Then

gr:intK.X;L;U / D 0:

In other terms, upon fixing a projective flat model X ofX and a height function h relative
to L, for each " > 0 and each finite subset of places S of K there is CS;" > 0 such that

�.X; L; U; h;OK;S I c/ 6 "c C CS;" for all c 2 R.

This statement thus generalizes the main theorem of [17]. It also replies positively to the ques-
tions raised in [17] whether the main theorem therein would hold for varieties with large étale
fundamental group and mixed Shimura varieties; see Section 1.3.

1.2. Heuristics. To put our result in perspective, recall that the asymptotic behaviour
of the function c 7! �.X; L; U; h;KI c/ for c !1 ought to reflect the usual “trichotomy”
of algebraic varieties into the Fano, the Calabi–Yau, and the general type classes (and their
logarithmic variants).1) Discussing this we omit the involved height function, as its choice will
not influence the result:

� When X is smooth Fano and L is the anti-canonical bundle !_X , Manin conjectured
(assuming the Zariski density of X.K/) the existence of an open subset U of X for
which

�.X; !_X ; U;KI c/ D ŒK W Q�c C .� � 1/ log c CO.1/;

1) The word “trichotomy” here is improper – rather, according to the Minimal Model Program, any integral
variety should be obtained as iterated fibration with generic fibre belonging to one of the preceding three classes.



Brunebarbe and Maculan, Counting integral points on varieties with large fundamental group 33

where � is the Picard rank of X .2) Note that the factor ŒK W Q� appears because of the
normalization of height adopted in this paper. As an instance of the conjecture, earlier
Schanuel [35] proved

�.PNK ;O.1/;KI c/ D ŒK W Q�.N C 1/c CO.1/:

� Rather vaguely,3) logarithmic growth is expected for Calabi–Yau varieties (or rather some
suitable non-empty open subset, as K3 surfaces contain rational curves). For example,
let A be an abelian variety and r WD dimQA.K/˝Z Q its Mordell-Weil rank. Then, for
any ample line bundle L on A,

�.A;L;KI c/ D r
2

log c CO.1/I

see [27, Theorem B.6.3].

� As soon as one enters the general type realm, the Lang–Vojta conjecture in the projective
case predicts the existence of a non-empty open subset for which there are only finitely
many K 0-rational points for any finite extension K 0 of K – in other words, the counting
function of rational points for such an open subset is eventually constant. This is the
case for curves and subvarieties of abelian varieties by celebrated theorems of Faltings
[18–20]. Reformulating the Lang–Vojta conjecture in the non-compact case in terms of
counting functions is less eloquent. Nonetheless, recall the finiteness of S -integral points
for affine curves – a theorem of Siegel [38] – and for (fine) moduli spaces of curves and
of abelian varieties – the Shafarevič conjecture, proved by Faltings in [18, 19].

The class of varieties with large étale fundamental group lies somewhere in between the
Calabi–Yau and general type classes, as smooth Fano varieties are simply connected. More pre-
cisely, Kollár conjectures that a smooth projective variety with large étale fundamental group
admits a finite étale cover which is a smooth family of abelian varieties over a projective variety
of general type [28, Conjecture 1.10]; see [12, Theorem 6.5] for a partial result in this direction
and [10, Theorem 3.16]. In view of this, logarithmic growth is expected for smooth projective
varieties with large étale fundamental group.

Linear growth rates furnish invariants way rougher than the asymptotic behaviour. To
stress this, note that the following holds:

� gr:ratK.P
N
K ;O.1// D .N C 1/ŒK W Q� for an integer N > 1,

� gr:ratK.A;L/ D 0 for an abelian variety A over K and an ample line bundle L on A,

� gr:intK.X;L;U / D 0 for a smooth projective curve X over K, an ample line bundle L
on X and an open subset U of X , provided that U is not isomorphic to the projective or
the affine line over K.

In particular, linear growth rates in general cannot distinguish Calabi–Yau varieties from
those of general type. Needless to say, zero linear growth rate is a much weaker condition than
logarithmic growth or no growth at all.

2) As of nowadays, Manin’s conjecture is known not to hold in such a form [3] and alternative hypothetical
statements have been suggested. This does not affect the main theme of our paper, and the interested reader may
consult for example [32].

3) To the extent of our knowledge there is no precise conjecture on the behaviour of the growth of rational
points for Calabi–Yau varieties.
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1.3. Examples. The main theorem can be applied in the following situations:

(1) Smooth curves (not isomorphic to the affine or projective line), abelian varieties and their
moduli spaces have large étale fundamental group. However, as just recalled, results way
more precise than the main theorem are known in these cases.

(2) Fine moduli spaces of Calabi–Yau varieties and complete intersections (save a finite list
of exceptions in low degree) have large étale fundamental group, thus the main theorem
applies. These moduli spaces carry a geometric variation of pure Hodge structures, thus
[17] applies as well.

(3) Pure or mixed Shimura varieties (associated with a torsion-free congruence subgroup)
have large étale fundamental group. When they are not pure, they are the prototypical
examples in which the results in [17] cannot be applied, whereas the main theorem here
can – this replies to a question raised in [17]. Even in the pure case the main theorem
here has a wider range of application than the one in [17]. Indeed, pure Shimura varieties
of exceptional type (associated with a torsion-free congruence subgroup) carry a canon-
ical variation of pure Hodge structures whose underlying local system is large. It is not
known whether this variation is of geometric origin [23]. Since these varieties are hyper-
bolic, the Lang–Vojta conjecture implies that they should only have finitely many integral
points. To our knowledge, although much weaker than what expected, our result is the
first pointing in this direction.

1.4. Strategy. The main theorem is the combination of two results of independent
interest. The first one is of arithmetic nature:

Theorem A. Let X be an integral projective variety of dimension n over a number
field K, and L an ample line bundle over X . Assume there is a subvariety Z of X and an
integer d > 1 such that any positive-dimensional integral subvariety Y of X not contained
in Z satisfies deg.Y; LjY / > d dimY . Then

gr:ratK.X;L;X XZ/ 6
n.nC 3/

2d
ŒK W Q�:

Its proof builds on uniform bounds on the number of hypersurfaces needed to cover
the rational points of a subvariety of the projective space. These bounds were initiated by
Heath-Brown [26] via the determinant method [7], and pursued by many authors including
Broberg [8], Salberger [34], and Chen [13, 14]. The crucial remark here is that these bounds
become stronger as the degree increases. The hypothesis that all subvarieties have large degree
allows to work by induction and bound the number of points.

Theorem A will not be applied directly to variety itself, but rather to a well-chosen cover:

Theorem B. LetX be a normal integral projective variety over an algebraically closed
field of characteristic 0, L an ample line bundle over X , and U a non-empty open subset
of X whose étale fundamental group is large. Then, given an integer d > 1, there is a finite
surjective map � WX 0 ! X with X 0 normal integral such that � is étale over U and, for each
positive-dimensional integral subvariety Y 0 of X 0 meeting ��1.U /,

deg.Y 0; ��LjY 0/ > d:
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See Section 3.1.1 for a reminder on the degree of a line bundle. The construction of the
cover in the statement appears in previous work of the first-named author [9] and relies on
boundedness of families of normal cycles in Kollár’s terminology (see Section 3.2).

The strategy of applying uniform bounds to well-chosen unramified covers stems back
to [17]. Roughly, Theorems A and B play the role respectively of Lemmas 4.2 and 4.1 therein,
although here the arithmetic and geometric ingredients are completely disjoint thus leading
to a simpler proof. Let us point out some other differences: first, contrarily to [17], the con-
struction of the cover in Theorem B involves no period mapping; second, we apply directly
the bound on the number of points on the whole cover, rather than bounding the number of
hypersurfaces covering integral points in the fiber of the period mapping.

Organization of the paper. Introduction left aside, the paper has four sections, respec-
tively dealing with large fundamental groups, the proof of Theorem A, Theorem B and the
Main theorem.

Conventions. A variety over a field k is a separated finite type k-scheme. A subvariety
is always understood to be closed.

2. Large fundamental groups

Let X be a normal integral variety over an algebraically closed field k of characteristic 0.

2.1. Definition. The variety X has large étale fundamental group if, for any positive-
dimensional integral subvariety Y � X with normalization zY ! Y , we have

# Im.�ét
1 .
zY /! �ét

1 .X// D1;

where we abusively drop the choice of a base-point for étale fundamental groups. Over the
complex numbers this is what Kollár calls having large algebraic fundamental group [28, 29];
see also [11].

Remark 2.1. Thanks to [28, Proposition 2.9.1], the étale fundamental group of X is
large if and only if, for any non-constant morphism f WY ! X with Y integral normal, the
image of the induced map �ét

1 .Y /! �ét
1 .X/ is infinite. Furthermore, it is sufficient (thus

equivalent) to test the latter condition only on smooth connected curves Y .

2.2. Basic properties. The following are direct consequences of the definition and the
above remark:

(1) The class of (integral, normal) algebraic varieties with large étale fundamental group is
closed under products.

(2) Given a quasi-finite morphism f WX 0 ! X between integral normal algebraic varieties,
if X has a large étale fundamental group, then X 0 has a large étale fundamental group
too. The converse holds as soon as f is finite étale.

(3) Let f WX 0 ! X be a morphism between integral normal algebraic varieties with con-
nected normal fibers and satisfying the following property: the sequence

1! �ét
1 .f

�1.x//! �ét
1 .X

0/! �ét
1 .X/! 1
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is short exact for all x 2 X.k/. If X and all the fibers (at closed points) of f have large
étale fundamental group, then so does X 0. This is the case for isotrivial fibrations whose
base and fiber have large étale fundamental group.

(4) Let k0 be an algebraically closed field extension of k. If the étale fundamental group of the
variety X 0 deduced from X by extending scalars to k0 is large, then so is the one of X .
Applying the specialization map of étale fundamental groups to an exhaustive family
of normal cycles (see Section 3.2) lets one to show that the converse holds when X is
proper. In the non-compact case we ignore whether having large étale fundamental group
is a property compatible with extension of scalars.

(5) All smooth connected curves, except the affine and the projective line, have large étale
fundamental group.

Remark 2.2. Taking products of a suitable number of copies of an elliptic and of a curve
of genus > 2 yields examples of smooth projective (connected) varieties X with large étale
fundamental group and any possible Kodaira dimension between 0 and dimX .

2.3. Comparison with the topological fundamental group. Over the complex num-
bers, the property of having large étale fundamental group can be read off the usual topological
fundamental group. For, upon fixing a point x 2 X.C/, the natural group homomorphism

iX W�
top
1 .X.C/; x/! �ét

1 .X; x/

identifies the étale fundamental group with the profinite completion of the topological one.
Let yX be the topological cover of X.C/ corresponding to Ker iX � �

top
1 .X.C/; x/.

Proposition 2.3 ([28, Proposition 2.12.3]). Suppose X proper. Then the étale funda-
mental group of X is large if and only if the complex analytic space yX does not contain
positive-dimensional compact complex analytic subspaces.

The latter condition is satisfied, for instance, if the complex space yX is holomorphically
separable, that is, given two distinct points x; y, there is a global holomorphic function f
such that f .x/ ¤ f .y/. Examples of holomorphically separable spaces are open subsets of Cn

(or, more generally, open subsets of Stein spaces). The properness assumption is missing in
the statement of [28, Proposition 2.12.3], although crucially invoked in the proof. In the non-
compact case the statement is false as one can see by considering a positive-dimensional simply
connected affine variety, e.g., the affine space.

Remark 2.4. In view of the above characterization, it is useful to be able to deter-
mine yX . One idle (but useful) case is when yX is itself a universal cover of X.C/, which boils
to down to saying that iX is injective (this is not always the case as pointed out by Toledo [40]).
Recall that a group � is said to be:

� linear if it admits a faithful representation �W� ! GL.V /, where V is a finite-dimen-
sional vector space over some field,

� residually finite if the natural map � ! y� , where y� is its profinite completion, is injec-
tive.
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A classical result of Malcev [30] states that a finitely generated linear group is residually
finite. Gathering the above considerations, if the topological fundamental group � top

1 .X.C/; x/
is linear, then yX is a universal cover of X.C/.

Example 2.5. The above remark can be applied to say that the étale fundamental group
of X is large when X is

� an abelian variety, for it is the quotient of Cn by a lattice,

� a quotient of a bounded symmetric domain in Cn by a torsion-free co-compact lattice of
its biholomorphism group.

It follows that semi-abelian varieties, being a fibration over an abelian variety by a torus,
have large étale fundamental group.

2.4. The role of local systems. Still under the assumption k D C, a local system L

on X.C/ with coefficients in some field is large if, given a non-constant morphism f WY ! X

with Y a normal irreducible complex variety, the local system f �L has infinite monodromy.
The étale fundamental group of a complex variety carrying a large local system is large. Local
systems underlying variations of Hodge structures are the prominent example of large local
systems. More precisely:

Proposition 2.6. Let L be an integral local system on X.C/ underlying an admissible
graded-polarizable variation of mixed Hodge structures. Then:

(1) The monodromy of L is finite if and only if the associated period mapping on the univer-
sal cover of X.C/ is constant.

(2) If the associated period mapping on the universal cover of X.C/ has discrete fibers then
the local system L is large.

Proof. (1) First of all we reduce to the case where X is smooth by considering the
smooth locus U � X . Indeed, the constancy of a holomorphic mapping can be tested on a non-
empty open subset; the finiteness of the monodromy of L can be checked on U because the
natural map � top

1 .U.C//! �
top
1 .X.C// is surjective by normality of X .

Now, if the monodromy of L is finite, then up to replacing X by a finite étale cover we
may assume that the monodromy of L is trivial. In this case, the local system L is a constant
sheaf on X.C/. The theorem of the fixed part (see [22], [16], [36] in the pure case, and [39] in
the mixed case) states that there is a unique mixed Hodge structure on �.X.C/;L/ such that
the adjunction morphism

�W�.X.C/;L/˝ ZX.C/ ! L

is a morphism of variations of mixed Hodge structures. If L is constant, then � is necessarily
an isomorphism and the associated period mapping is constant.

Conversely, suppose that the associated period mapping is constant of value p. The period
mapping on the universal cover is equivariant with respect to the action of � top

1 .X.C//, thus
the monodromy of L fixes p. On the other hand L is supposed to be integral, hence the action
of the monodromy on the period domain is proper [1, Corollary 3.8].

(2) Follows from (1).
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In fact, using that fibers of the period mapping are algebraic [2] one can see that L is
large if and only if the period mapping on the universal cover has discrete fibers.

Example 2.7. Mixed Shimura varieties associated with a torsion-free congruence sub-
group carry a large local system coming from their interpretation as period spaces for (graded
polarized) integral mixed Hodge structures. In the exceptional case this local system is not
known to be of geometric origin; see [23].

Example 2.8. A full range of (fine) moduli spaces of polarized varieties (e.g., those
of smooth projective curves, Calabi–Yau varieties, most complete intersections) admit a large
local system – namely, the one whose fiber at a point is the middle cohomology of the corre-
sponding variety. Indeed, such a local a system is large when the “infinitesimal Torelli theorem”
is satisfied, whence the above list; see [4].

3. Geometry

3.1. Degree of the singular locus.

3.1.1. Degree. For a proper variety X over a field k together with an ample line
bundle L, let

deg.X;L/ WD .dimX/Š lim
i!1

dimk �.X;L˝i /
idimX :

The theory of Hilbert polynomials shows that such a limit exists and is a positive rational
number. When X is integral, the asymptotic version of Riemann–Roch states

deg.X;L/ D Ln;

where n D dimX and Ln is the top self-intersection of L. In particular, deg.X;L/ is a positive
integer.

Lemma 3.1. Let � WY ! X be a finite morphism between proper varieties over k andL
an ample line bundle over X . If there exists a scheme-theoretically dense open subset U of X
such that ��1.U /! U is an isomorphism, then

deg.Y; ��L/ D deg.X;L/:

Proof. The natural map 'WOX ! ��OY is injective because the open subset U is
scheme-theoretically dense. The support of the coherent OX -module F D Coker' is contained
in the closed subset X X U , thus in particular of dimension < dimX . For i > 1 big enough,
the cohomology group H1.X;L˝i / vanishes, yielding a short exact sequence

0! �.X;L˝i /! �.Y; ��L˝i /! �.X; F ˝ L˝i /! 0:

Since the support of F has dimension < dimX ,

lim
i!1

dim�.X; F ˝ L˝i /

idimX D 0:

The dimensions of X and Y being the same, the result follows.
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Lemma 3.2. Let X be an equidimensional proper variety over k, L an ample line
bundle. Then

deg.X;L/ >
X
X 0

deg.X 0; LX 0/;

the sum ranging on the irreducible components of X endowed with the reduced structure.
Moreover, equality holds if X is reduced.

Proof. One may assume thatX is reduced because, for i > 0 big enough, the restriction
map �.X;L˝i /! �.Xred; L

˝i / is surjective. In this case let X1; : : : ; Xn be the irreducible
components of X . Lemma 3.1, applied to the finite morphism X1 t � � � tXn ! X , gives the
desired result.

3.1.2. Degree in families. Let f WX ! S be a proper morphism between algebraic
varieties over a field k and L a relatively ample line bundle on X . Consider:

� the function ıX=S;LWS ! N,

s 7! max¹deg.Z;LjZ/ W Z irreducible component of Xsº;

where Z is endowed with its reduced structure, and

� the function �X=S WS ! N associating to s 2 S the number of irreducible components
of XNs where Ns is a geometric point over s.

Lemma 3.3. Let f WX ! S be a proper morphism between varieties over k and L rel-
atively ample line bundle on X . Then the functions ıX=S;L; �X=S WS ! N are bounded above.

Proof. The statement only depends on the reduced structure of S . Moreover, by treat-
ing separately each irreducible component, the scheme S may be supposed to be integral. By
Noetherian induction, it suffices to show the statement on a non-empty open subset of S . Let �
be the generic point of S and X�;1; : : : ; X�;r the irreducible components of X�. Let Xi be
the closure of X�;i in X for i D 1; : : : ; r . According to [41, Lemma 054Y], there is an open
subset S 0 of S such that

f �1.S 0/ � X1 [ � � � [Xr :

Up to treating each of the Xi separately and up to replacing S by S 0, one may assume X to be
integral. Upon shrinking S , the morphism f may be assumed to be flat [41, Proposition 052B].
By flatness the fibers of f are then pure of dimension d WD dimX � dimS [41, Lemma 02JS].
The relative ampleness of L implies the existence of i0 > 1 such that, for q > 1 and i > i0, the
higher direct image Rqf�L˝i vanishes. For integers i; q > 0 the function

s 7! dim�.s/ Hq.Xs; L˝i /

is then upper semi-continuous on S by [25, Theorem III.12.8]. Thus, up to replacingL byL˝i0

and S by a non-empty open subset, one may assume, for i > 1, q > 1 and s 2 S ,

Hq.Xs; L˝i / D 0:

The Hilbert polynomial of LjXs does not depend on s, because f is flat [21, Theorem 5.10].
Combined with the vanishing of higher cohomology, this implies that s 7! dim�.s/ �.Xs; L˝i /

https://stacks.math.columbia.edu/tag/054Y
https://stacks.math.columbia.edu/tag/052B
https://stacks.math.columbia.edu/tag/02JS
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is constant for all i 2 N. As a consequence, so is the function

s 7! deg.Xs; LjXs / D dŠ lim
i!1

dim�.s/ �.Xs; L˝i /
id

:

For s 2 S , the inequality

deg.Xs; LjXs / >
X
Z

deg.Z;LjZ/;

where the sum ranges on the irreducible components ofXs endowed with the reduced structure,
shows that the function ıX=S;L is bounded above. On the other hand, the degree is invariant
under extension of scalars, thus

deg.Xs; LjXs / >
X
NZ

deg. NZ;L
j NZ/;

where the sum ranges on the irreducible components ofXNs endowed with the reduced structure,
where Ns is a geometric point over s. Since deg. NZ;L

j NZ/ is a positive integer, the right-hand side
of the above inequality is bounded below by �X=S .s/. This shows that the function �X=S is
bounded above.

Proposition 3.4. For integers N;D > 1, there is an integer RD D RD.N / such that,
for a field k, a subvariety X of PN

k
of degree 6 D, the following statements hold:

(1) the number of irreducible components of X is 6 RD ,

(2) any irreducible component Z of its singular locus X sing (endowed with the reduced
structure) has degree deg.Z;OPN .1// 6 RD ,

(3) for an algebraic closure Nk of k, the number of irreducible components of X sing
Nk

is 6 RD .

Proof. According to [5, Exp. XIII, Corollaire 6.11 (ii)], it suffices to prove the statement
when the subvarieties in question have a fixed Hilbert polynomial P 2 QŒz�. For, consider the
Hilbert scheme

S D HilbP
PNZ ;O.1/

of the closed subschemes of PNZ with Hilbert polynomial P with respect to O.1/. LetX � PNS
be the universal family. The morphism � WX ! S induced by the second projection is proper
and flat. Let n be its relative dimension. For (1), apply Lemma 3.3 to the morphism � WX ! S

and the relatively ample line bundle L WD OPNS
.1/jX . For (2) and (3), let X sing be the closed

subset in X where the coherent OX -module �X=S has rank > nC 1. One concludes by apply-
ing Lemma 3.3 to the morphism � WX sing ! S and the line bundle L WD OPNS

.1/jX sing .

3.2. Families of normal cycles. Let k be a field of characteristic 0 and X a geometri-
cally integral normal variety over k.

3.2.1. Definition. Following Kollár [28], a normal cycle onX is a morphismf WZ!X

which is finite and birational onto its image, where Z is a geometrically integral normal vari-
ety. A family of normal cycles on X is the datum of morphisms � WZ! S and f WZ! X
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of k-schemes, where

� S is reduced and a countable disjoint union of varieties over k,
� the morphism � is separated, of finite type, flat and with geometrically integral normal

fibers,
� for s 2 S , the map fsWZs ! X�.s/ is a normal cycle, where �.s/ is the residue field at s.

3.2.2. Exhaustive families. A family of normal cycles .� WZ! S; f WZ! X/ on X
is exhaustive (weakly complete in Kollár’s terminology) if, given a field extension k0 of k and
a normal cycle gWZ ! Xk0 , there is a unique s 2 S.k0/ such that g D fs . Given an exhaustive
family of normal cycles .� WZ! S; f WZ! X/ on X and an open immersion j WU ! X , the
couple

.� WZ �X U ! �.Z �X U/; f WZ �X U ! U/

is an exhaustive family of normal cycles on U . The arguments in [28, Proposition 2.4] allow to
show the following facts:

Proposition 3.5. If X is projective, then there exists an exhaustive family of normal
cycles .� WZ! S; f WZ! X/ on X such that, for any ample line bundle L on X and any
integer d > 1, the set

SL;d WD ¹s 2 S W deg.Zs; f �s L/ 6 dº

is a finite union of connected components of S (thus of finite type).

Proposition 3.6. Suppose k D C and X projective. Let .� WZ! S; f WZ! X/ be an
exhaustive family of normal cycles on X . Then there is a surjective immersion �WS 0 ! S of
finite type such that, for any connected component T of S , the induced map

.Z0 �S 0 T
0/.C/! T 0.C/

is a topological fiber bundle, where T 0 D ��1.T / and Z0 D Z �S S
0.

The crucial property of exhaustive families needed later is the following boundedness:

Proposition 3.7. Suppose k is an algebraically closed subfield of C. Let L be an ample
line bundle over X , U a non-empty open subset of X and d > 1 an integer. Then, up to
conjugation, there are only finitely many subgroups of �ét

1 .U / of the form

Im.�ét
1 .f

�1.U //! �ét
1 .U //

with f WZ ! X a normal cycle such that deg.Z; f �L/ 6 d .

Proof. Since the geometric étale fundamental group is insensible to extension of scalars,
and since there are more normal cycles on XC than on X , there is no loss of generality in
assuming k D C. Let .� WZ! S; f WZ! X/ be an exhaustive family of normal cycles satis-
fying the property in the statement of Proposition 3.5. According to Proposition 3.6, one may
suppose that, for each connected component T of S , the induced map ��1.T /.C/! T .C/ is
a topological fiber bundle. Let SU be the image of ZU WD f

�1.U / in S via � . Then

.� WZU ! SU ; f WZU ! U/
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is an exhaustive family of normal cycles on U ; moreover, for each connected component T
of SU , the induced map ��1.T /.C/! T .C/ is again a topological fiber bundle. It follows
that, for t; t 0 2 T .C/, the images of � top

1 .ZU;t .C// and � top
1 .ZU;t 0.C// in � top

1 .U.C// are con-
jugated subgroups. Passing to profinite completions, the corresponding affirmation holds for
étale fundamental groups. Let CL;d be the set of conjugacy classes of subgroups of �ét

1 .U /

obtained as the image of �ét
1 .g
�1.U //! �ét

1 .U / with gWZ ! X a normal cycle such that

deg.Z; g�L/ 6 d:

With the notation of Proposition 3.5, the argument above shows the inequality

#CL;d 6 #.connectected components of SL;d /

and the right-hand side is <1 by the cited result.

3.3. Proof of Theorem B. Let us begin with two easy facts:

Lemma 3.8. Let � WX 0 ! X be a finite surjective morphism between integral normal
varieties over k which is Galois of group G and étale over an open subset U of X . Let Y 0 be
an integral subvariety of X 0 meeting ��1.U / and Y WD �.Y 0/. Then the map �jY 0 WY 0 ! Y

has degree
# Im.�ét

1 .�
�1.U \ Y //! G/;

where �W zY ! Y is the normalization.

Proof. Since the degree is computed on the generic point, there is no harm in replacing
the varieties X and X 0 respectively by U and ��1.U /. In this case the morphism � is finite
étale thus so is the induced morphism zY �X X 0 ! zY . By [24, Exp. I, Théorème 9.5 (i)] it
follows that the fibered product zY �X X 0 is normal. The connected components of zY �X X 0

are therefore integral [41, Lemma 033M] and the normalization zY 0 of Y 0 is one of them. The
usual dictionary between connected covers and subgroups of the fundamental group implies
that the degree of the induced map z� W zY 0 ! zY is # Im.�ét

1 .
zY /! G/. The normalization being

a birational map, the degree of � WY 0 ! Y coincides with that of z� , whence the statement.

Lemma 3.9. Let � be a residually finite group and F a finite subset of � . Then there is
a finite-index normal subgroup N of � such that the map F ! �=N is injective.

Proof. Consider the finite subset F 0 WD ¹
ı�1 W 
; ı 2 F º X ¹eº, where e 2 � is the
neutral element. Saying that � is residually finite amounts to the fact that, for each 
 2 � X ¹eº,
there is a finite-index normal subgroup N
 to which 
 does not belong. Then the finite-index
normal subgroup N WD

T

2F 0 N
 does the job.

We are now in position to proceed with the proof.

Proof of Theorem B. To begin, recall the setup: let X be a normal irreducible projective
variety over an algebraically closed field k of characteristic 0, L an ample line bundle, U an
non-empty open subset of X such that the étale fundamental group of U is large, and d > 1 an
integer. By Lefschetz’s principle, the varietiesX , U and the line bundleL can be defined over a

https://stacks.math.columbia.edu/tag/033M
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subfield of k finitely generated over Q. Since having large étale fundamental group is a property
that passes to algebraically closed subfields, there is no loss of generality in assuming that k is
a subfield of C. Then, according to Proposition 3.7, there are finitely many subgroups

H1; : : : ;Hr � �
ét
1 .U /

such that, given a normal cycle f WZ ! X such that deg.Z; f �L/ 6 d , the image of the group
homomorphism �ét

1 .f
�1.U //! �ét

1 .U / is conjugated to some of the subgroupsHi . Needless
to say, by definition of large étale fundamental group, each of the subgroups Hi is infinite.
By design, the étale fundamental group is profinite (in particular, residually finite), thus each
finite subset injects into some finite quotient: Lemma 3.9 implies that there exists a normal
finite-index subgroup N of �ét

1 .U / such that, for each i D 1; : : : ; r ,

# Im.Hi ! G WD �ét
1 .U /=N / > d:

Let U 0 ! U be the finite étale cover of U associated with the subgroup N . As argued in the
proof of Lemma 3.8, the normality of U implies that of U 0, thus the variety U 0, a priori just
connected, is integral. Let � WX 0 ! X be the normalization of X in U 0. By construction, the
varietyX 0 is integral normal, and the morphism � is Galois of groupG and étale overU . To see
that such a cover fulfills the requirements, let Y 0 be a positive-dimensional integral subvariety
of X 0 meeting ��1.U / and set Y WD �.Y 0/. The projection formula reads

deg.Y 0; ��LjY 0/ D deg.�jY 0/ deg.Y; LjY /;

where deg.�jY 0/ is the degree of the map Y 0 ! Y induced by � . Of course, if deg.Y; LjY / > d ,
then deg.Y 0; ��LjY 0/ > d . Suppose instead deg.Y; LjY / 6 d and let �W zY ! Y be the normal-
ization. By the projection formula (or Lemma 3.1),

deg. zY ; ��L
j zY
/ D deg.Y; LjY / 6 d:

According to Lemma 3.8, the map �jY 0 has degree # Im.�ét
1 .�
�1.U \ Y //! G/. On the other

hand, by construction, the image of �ét
1 .�
�1.U \ Y //! �ét

1 .U / is conjugated to some of the
subgroups Hi , thus

# Im.�ét
1 .�
�1.U \ Y //! G/ D # Im.Hi ! G/ > d:

By ampleness of L, the degree deg.Y; LjY / is a positive integer, thus the projection formula
implies deg.Y 0; ��LjY 0/ > d as desired.

4. Arithmetic

Let K be a number field and OK its ring of integers.

4.1. Growth rates.

4.1.1. Hermitian line bundles. A Hermitian line bundle NL on a proper flat scheme X

over OK is the datum of a line bundle L on X and, for every embedding � WK ! C, of a contin-
uous metric k � k� on the holomorphic line bundle LjX� .C/. The collection of metrics ¹k � k�º
is supposed to be compatible with complex conjugation: for � WK ! C the following diagram
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is commutative:

V .L� /.C/ RC

V .L N� /.C/ RC.

k�k�

z 7!Nz

k�k N�

Here V .L� / and V .L N� / are the total space of the line bundles L� and L N� , and metrics
on a line bundle are seen as functions on the total space of the line bundle in question. For
a morphism of OK-schemes f WY ! X, where the OK-scheme Y is also proper and flat, the
pull-back f � NL is defined in the evident way.

4.1.2. Degree. The (Arakelov) degree of a Hermitian line bundle NL on Spec OK is

deg NL D log #.L=sOK/ �
X

� WK!C

log ksk� ;

where s is a non-zero element of the OK-module L; the quantity above does not depend on its
choice because of the product formula.

4.1.3. Extension of scalars. Let K 0 be a finite extension of K and

� WSpec OK0 ! Spec OK

the morphism induced by OK ,! OK0 . Given a Hermitian line bundle NL over OK , the Hermit-
ian line bundle �� NL over OK0 has degree

(4.1) deg�� NL D ŒK 0 W K� deg NL:

4.1.4. Height. Let NL be a Hermitian line bundle on a proper and flat OK-scheme X.
By the valuative criterion of properness, a K-rational point P of X extends to an OK-valued
point P of X. The height of the point P with respect to the Hermitian line bundle NL is

h NL.P / D
deg P � NL

ŒK W Q�
:

Replacing the number field K by a finite extension permits to define the height for any point
of X with values in an algebraic closure NK of K (equation (4.1) implies that the height is
well-defined). A routine variation of the proof of [27, Theorem B.3.2 (d)] yields:

Proposition 4.1. Let X and X0 be proper and flat OK-schemes endowed respectively
with Hermitian line bundles NL and NL0. Suppose that there exists an isomorphism f WXK!X0K
between the generic fibers of X and X0, and an isomorphism LjXK Š f

�L0
jX0K

of line bundles
over XK . Then

sup
P2X. NK/

jh NL.P / � hL0.f .P //j < C1:

A line bundle L on a proper and flat OK-scheme is generically ample if its restriction
to the generic fiber XK is ample. In this framework the Northcott property can be stated as
follows (see for instance [27, Theorem B.2.3]).
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Proposition 4.2. Let X be a proper and flat OK-scheme together with a Hermitian line
bundle NL on X. If L is generically ample, then, for any real number c,

#¹P 2 X.K/ W h NL.P / 6 cº < C1:

4.1.5. Counting function. Let X be a proper, flat OK-scheme, NL a generically ample
Hermitian line bundle on X and U an open subset of X. For a subring R of K containing OK
and a real number c, Proposition 4.2 permits to define

�.X; NL;U; R; c/ WD logC #¹P 2 U.R/ W h NL.P / 6 cº;

where logC z WD log max¹1; zº for z 2 R. The growth rate of R-points of U is

growth.X; NL;U; R/ WD lim sup
c!C1

�.X; NL;U; R; c/

c
:

Clearly, such a function is non-decreasing in the variable R (with respect to inclusion).

4.1.6. Growth rates. LetX be a properK-scheme,L an ample line bundle onX andU
an open subset of X . Choose a proper and flat OK-scheme X, a Hermitian line bundle NL
on X and an open subset U of X whose generic fibers are respectively X , L and U . By
Proposition 4.1, the real numbers

gr:ratK.X;L;U / D growth.X; NL;U; K/;

gr:intK.X;L;U / D sup
S

growth.X; NL;U;OK;S /;

where the supremum ranges on the finite set of places S of K containing the Archimedean
ones, do not depend on the chosen X, NL and U. They are called the growth rate respectively
of rational and integral points of U (with respect to X and L). Clearly,

gr:intK.X;L;U / 6 gr:ratK.X;L;U /:

Remark 4.3. Some considerations:

(1) The growth rate of rational and integral points differ in general when U is not proper. For
instance, take X D P1K , L D O.1/ and U D P1K X ¹0; 1;1º. Then

gr:ratK.X;L;U / D gr:ratK.X;L;X/ D 2ŒK W Q�;

gr:intK.X;L;U / D 0;

because of the theorem on the S -unit equation (see for instance [6, Chapter 5]).

(2) Let K 0 be a finite extension of K, X 0 and U 0 the K 0-schemes deduced respectively
from X and U by extending scalars toK 0, and L0 the line bundle on X 0 deduced from L.
Then

gr:ratK.X;L;U / 6 gr:ratK0.X
0; L0; U 0/;

and similarly for the growth rate of integral points. However, as the example above shows,
in general the real numbers gr:ratK0.X

0; L0; U 0/ tend to1 as soon as the degree of K 0

does.
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(3) For an integer n > 1,

gr:ratK.X;L;U / D n gr:ratK.X;L
˝n; U /

and similarly for the growth rate of integral points. In particular, these growth rates really
depend on the line bundle L and not only on its restriction to U .

4.2. Proof of Theorem A.

4.2.1. Statement. Let N > 1 be an integer. For a locally closed subvariety U of PNK
and a real number c, with the notation of Section 4.1.5, let

�K.U; c/ WD �.X; NL;X XZ; K; c/;

where X resp. Z is the Zariski closure of U resp. XK X U in PN
OK

and NL is the Hermitian
line bundle on PN

OK
obtained by endowing the line bundle OPN .1/ on PN

OK
with metrics, for

an embedding � WK ! C,

ksk� .x/ D
js.x/j�

maxiD0;:::;N jxi j�
;

where s is a local section of O.1/ and x0; : : : ; xN are the homogeneous coordinates of a point x
in PN .C/. The height function associated with the Hermitian line bundle NL is, for aK-rational
point x of PNK ,

h.x/ WD h NL.x/ D
X
v2V0K

log max
iD0;:::;N

jxi jv C
X

� WK!C

log max
iD0;:::;N

jxi j� ;

where V0K is the set of finite places ofK. In the formula above, for a p-adic place v, the absolute
value j � jv is normalized as jpjv D p�ŒKvWQp� where Kv is the v-adic completion of K.

Theorem 4.4. Let Z be a subvariety of PNK , " > 0 a real number and n > 0, D > 1

integers. Then there is a real number Cn;D D Cn;D.N;K;Z; "/ with the following property:
for an integral n-dimensional subvariety X of PNK of degree 6 D such that each positive-
dimensional integral closed subvariety in X not contained in Z has degree > d dimZ for some
integer d > 1, and a real number c > ŒK W Q�", the following inequality holds:

�K.X XZ; c/ 6 cŒK W Q�.1C "/
n.nC 3/

2d
C Cn;D:

Note that, for n D 0, the above inequality reads �K.X XZ; c/ 6 Cn;D . Before going
into the proof of the preceding statement, let us see how it permits to prove Theorem A.

Proof of Theorem A. First of all, and rather crucially, notice that the hypotheses and the
conclusions are insensitive to taking powers of L. Therefore, up to replacing L with a multiple
big enough, one may assume that L is very ample. Via the embedding X ! P .�.X;L/_/
Theorem 4.4 can be applied to give

gr:ratK.X;L;X XZ/ 6 ŒK W Q�
n.nC 3/

2d
;

as desired.
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4.2.2. Proofs. The statement will be deduced by induction from the following:

Theorem 4.5 ([14, Theorem A]). Let " > 0 be a real number and D > 0 an integer.
Then there are positive integersAD D AD.N;K; "/ andBD D BD.N;K; "/with the following
property: for an integral subvariety X of PNK of degree D0 6 D and dimension n > 1, and
a real number c > ŒK W Q�", the set

¹x 2 X reg.K/ W h.x/ 6 cº

can be covered by no more than

AD exp
�
nC 1

D01=n
.1C "/ŒK W Q�c

�
hypersurfaces in PNK of degree 6 BD not containing X .

Proof of Theorem 4.4. The proof goes by induction on n. For n D 0, there is nothing to
do. Suppose n > 1 and the result true in dimension < n. Let AD and BD be as in the statement
of Theorem 4.5, and RD as in that of Proposition 3.4. Let X be an integral n-dimensional sub-
variety of PNK of degreeD0 6 D with the property that all positive-dimensional integral closed
subvarieties Y of X not contained in Z have degree > d dimY . Quite trivially, such a property
is inherited by integral subvarieties X 0 of X not contained in Z: any positive-dimensional inte-
gral closed subvariety Y of X 0 not contained in Z has degree > d dimY . Now, by Theorem 4.5,
there exist r hypersurfaces H1; : : : ;Hr of PNK of degree 6 BD with

(4.2) r 6 AD exp
�
nC 1

D1=n
.1C "/ŒK W Q�c

�
not containing X such that the set ¹x 2 X reg.K/ W h.x/ 6 cº is contained in the union of the
hypersurfaces H1; : : : ;Hr . For i D 1; : : : ; r , the hyperplane section Xi WD Hi \X of X is
pure of dimension n � 1 and has degree 6 DBD . Each irreducible component X 0i of Xi has
degree deg.X 0i ;O.1// 6 DBD by Lemma 3.2. Therefore, it is possible to apply the induction
hypothesis to such an X 0i and obtain

�K.X
0
i XZ; c/ 6 cŒK W Q�.1C "/

.n � 1/.nC 2/

2d
C Cn�1;DBD ;

because d 6 DBD . Since the hyperplane sectionXi has at mostRDBD irreducible components
by Proposition 3.4,

�K.Xi XZ; c/ 6 cŒK W Q�.1C "/
.n � 1/.nC 2/

2d
C Cn�1;DBD C logRDBD :

Taking into account (4.2), and recalling D0 > dn, the preceding inequality yields

(4.3) �K.X
reg
XZ; c/ 6 cŒK W Q�.1C "/

n.nC 3/

2d
C C 0n;D;

whereC 0n;D WD Cn�1;DBD C logRDBD C logAD and the following identity has been noticed:

.nC 1/C
.n � 1/.nC 2/

2
D .nC 1/C

n�1X
iD1

.i C 1/ D

nX
iD1

.i C 1/ D
n.nC 3/

2
:

Let Y1; : : : ; Ys be the irreducible components of the singular locus X sing of X . According to
Proposition 3.4, the subvariety Yi has degree 6 RD and s 6 RD . The induction hypothesis,
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applied to an irreducible component Yi not contained in Z, gives

�K.Yi XZ; c/ 6 cŒK W Q�.1C "/
.n � 1/.nC 2/

2d
C zCn�1;RD ;

where zCn�1;RD WDmax¹C0;RD ; : : : ; Cn�1;RDº, as Yi has degree 6 RD and dimension 6 n�1.
In particular,

(4.4) �K.X
sing
XZ; c/ 6 cŒK W Q�.1C "/

.n � 1/.nC 2/

2d
C C 00n;D;

where C 00n;D WD zCn�1;RD C logRD . Combining inequalities (4.3) and (4.4) yields the bound
in the statement with Cn;D WD log.exp.C 0n;D/C exp.C 00n;D//.

4.3. Growth rates on covers. The last ingredient for the proof of the main theorem
is a version of the Chevalley–Weil theorem for growth rates of integral points (Proposition
4.12). Its proof is a variation of the classical one (see [37, 4.2] or Theorem 2.3 in Corvaja’s
contribution to [15]).

4.3.1. Reminder on twists. Let S be a Noetherian scheme and G a finite étale group
scheme over S . A principalG-bundle is a finite étale S -schemeP endowed with an action ofG
such that the morphism G �S P ! P �S P , .g; p/ 7! .gp; p/ is an isomorphism. The set of
isomorphism classes of principal G-bundles over S is denoted H1.S;G/ or simply H1.A;G/
if the scheme S D SpecA is affine.

Proposition 4.6. Let K be a number field, † a finite set of places of K containing the
Archimedean ones. Then

#H1.OK;†; G/ < C1:

Proof. It suffices to show that there are only finitely many G-principal bundles up to
isomorphism of OK;S -schemes. Indeed, let P be a finite OK;S -scheme and NK an algebraic
closure of K. Then there are only finitely many actions of G. NK/ on P. NK/ because both sets
are finite. Now a principal G-bundle P over OK;† is finite étale as an OK;†-scheme. Thus
its generic fiber PK is the spectrum of a K-algebra A whose dimension as a K-vector space
is the rank of G and is the product of (finitely many) finite extensions of K, all of which are
unramified outside †. The Hermite-Minkowski bound implies that, for any integer D > 1,
there are only finitely many isomorphism classes of finite extensions of K of degree 6 D

unramified outside † (see [37, 4.1]). The statement follows.

Definition 4.7. Let X be an S -scheme with an action of G and P a principal G-bundle
over S . The twist of X by P , if it exists, is the categorical quotient of X �S P by the diagonal
action g.x; p/ D .gx; gp/ of G.

Clearly, isomorphic principal G-bundles give rise to isomorphic twists. With an abuse
of notation, for t 2 H1.S;G/, let Xt denote the twist of X by a principal G-bundle in the
isomorphism class t . For a scheme X over P , the datum of an equivariant action of G is
equivalent to a descent datum. Therefore, the theory of faithfully flat (étale actually) descent
shows the following existence result.
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Proposition 4.8 ([31, Proposition 4.4.9]). Let X be an affine S -scheme endowed with
an action of G and P a principal G-bundle over S . Then the twist of X by P exists.

Remark 4.9. The construction of twists is functorial. Namely, let X , Y be S -schemes
endowed with an action ofG, andP a principalG-bundle overS for which the twists ofX andY
by P exist. Then a G-equivariant morphism f WX ! Y induces a morphism fP WXP ! YP
between twists.

4.3.2. Lifting points. A useful construction consists in twisting schemes to lift points.
Let X be an S -scheme and � WY ! X a principal G-bundle over X . For an S -valued point x
of X , the scheme-theoretic fiber of � at x,

P WD Y �X S;

is a principal G-bundle over S . The twist of Y by P exists as an X -scheme: indeed, it is
identified with the twist of Y by the G-principal bundle P �S X ; the latter exists because �
is a finite morphism (in particular affine) according to the finiteness of G. The G-invariant
morphism � WY ! X induces a morphism �P WYP ! X .

Lemma 4.10. There is an S -valued point y of YP such that �P .y/ D x.

Proof. The scheme-theoretic fiber YP �X P of �P at x is isomorphic to the twist PP
of P by itself. The diagonal embedding �WP ! P �S P is G-equivariant and, taking its
quotient by G, defines the wanted S -valued point yWS ! PP .

4.3.3. Galois covers on non-algebraically closed fields. Let f WY ! X a finite and
surjective morphism between geometrically integral algebraic varieties over a field k of char-
acteristic 0. If k is algebraically closed, the morphism f is Galois if, for each geometric point Nx
ofX , the group Aut.f / acts transitively on the geometric fiber Y Nx . In general, the morphism f

is said to be geometrically Galois if, for an algebraic closure Nk of k, the morphism Nf W NY ! NX

obtained by extending scalars to Nk is Galois. In such a situation Gal. Nk=k/ acts on Aut. Nf /
compatibly with its action on NY . Therefore Aut. Nf / descends to a finite (étale) k-group scheme
Aut.f /, called the geometric Galois group, acting on Y and such that f WY ! X is the quotient
map of Y by Aut.f /.

Example 4.11. For an integer n > 1, the morphism f WGm ! Gm, z 7! zn is geomet-
rically Galois; it is Galois if and only if the base field k contains all of the n-th roots of 1. The
geometric Galois group Aut.f / is the finite group k-scheme �n D Spec kŒt �=.tn � 1/.

4.3.4. Statement. Let f WY ! X be a finite and surjective morphism between geomet-
rically integral algebraic varieties over K. Suppose f is geometrically Galois with geometric
Galois group Aut.f /. The group Aut.f / acts by definition on Y . For any t 2 H1.K;Aut.f //,
let Yt be the twist of Y and ft WYt ! X the twist of the Aut.f /-invariant morphism f .

Proposition 4.12. With the notation above, let U an open subset of X over which f is
étale and L an ample line bundle on X . Then

gr:intK.X;L;U / 6 sup
t2H1.K;Aut.f //

gr:intK.Yt ; f
�
t L; f

�1
t .U //:
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Proof. Let G WD Aut.f /. Up to taking a power of L – an operation that does not affect
the statement – the variety X can be realized as the generic fiber of a scheme X projective
and flat over OK on which the line bundle L extends to an ample line bundle L. Let Y be the
normalization of X in Y and denote again by f WY ! X the induced morphism. Pick con-
tinuous metrics ¹k � kL;�º� WK!C on L so that NL D .L; k � kL;� / is a metrized line bundle.
Let Z WD X X U , Z its Zariski closure in X, U WD X XZ and V D f �1.U/. Let S be
a finite set of places of K containing the Archimedean ones. Up to enlarging S , one may
assume that the finite group K-scheme G spreads out to a finite étale OK;S -group scheme G

acting on Y and such that f WY ! X is the categorical quotient of Y by G . Moreover, one
may suppose that the morphism V �OK OK;S ! U �OK OK;S induced by f is étale. For
an isomorphism class of G -principal bundles t 2 H1.OK;S ;G /, let YS;t be the twist of YS
by t and let fS;t WYS;t ! X �OK Spec OK;S be the induced morphism. Consider the relative
normalization ft WYt ! X of X in YS;t (see [41, Definition 035H]) and set Vt WD f

�1
t .U/.

Claim 4.13. With the notation above,

(4.5) growth.X; NL;U;OK;S / 6 max
t2H1.OK;S ;G /

growth.Yt ; f �t NL;Vt ;OK;S /:

Proof of the Claim. According to Proposition 4.6, the set H1.OK;S ;G / is finite. There-
fore, the OK-scheme

zY WD
G

t2H1.OK;S ;G /

Yt

is proper. Let zf W zY ! X the morphism induced by the twists of f . Given an OK;S -point x
of U, there is an OK;S -point zx of zU mapping to x. Indeed, the scheme-theoretic fiber

P WD Y �X Spec OK;S

of f at x is a principal G-bundle over OK;S . Letting t denote the isomorphism class of P ,
Lemma 4.10 states that there is an OK;S -point y of Vt such that ft .y/ D x. By definition,

h
f �t
NL
.y/ D h NL.x/:

In particular,

growth.X; NL;U;OK;S / 6 growth.zY; zf � NL; zf �1.U/;OK;S /;

whence the claim.

One concludes by bounding the right-hand side of (4.5) by

sup
t2H1.K;G/

gr:intK.Yt ; f
�
t L; Vt /;

where Vt D f �1t .U /, so that the right-hand side of the so-obtained inequality

growth.X; NL;U;OK;S / 6 sup
t2H1.K;G/

gr:intK.Yt ; f
�
t L; Vt /;

is independent of S . As S is arbitrary, taking the supremum over all finite sets of places of K
(containing the Archimedean ones) finishes the proof.

https://stacks.math.columbia.edu/tag/035H
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5. Proof of the main theorem

5.1. Setup. Let NK be an algebraic closure of K. For a variety V over K, let NV denote
the variety over NK obtained by extending scalars. We will need the following descent argument:

Lemma 5.1. Let X be a normal geometrically integral variety and let f WX 0 ! NX be
a finite surjective morphism which is Galois. IfX.K/ ¤ ;, then there exists a geometric Galois
finite surjective morphism gWX 00 ! X of varieties over K with X 00 geometrically integral
and normal such that g is étale over U and the morphism NgW NX 00 ! NX factors through the
morphism f WX 0 ! NX .

Proof. Argue as in the proof of the implication (iii)) (iv) in [33, Lemma 3.5.57].
First of all, the morphism X 0 ! NX may be assumed to be Galois, for it suffices to replace
the function field NK.X 0/ of X 0 by its Galois closure F over the function field NK. NX/ of NX ,
and X 0 by its normalization in F . Let us show that X 0 comes by extension of scalars from
some cover X 00 ! X defined over K with X 00 geometrically integral and normal. For, pick
a K-rational point of U (which exists by assumption) and a NK-point x0 in f �1.x/. Let G be
the stabilizer of x0 in the Galois group Gal. NK.X 0/=K.X//. The sought-for X 00 is obtained as
the normalization of X in the finite extension NK.X 0/G of K.X/. See [33] for details.

Let us move to the proof of the main theorem and borrow notation from its statement.
There is no loss of generality in assuming X geometrically integral and normal, as U is so.
Also, one may assume that U has a K-rational point, for the main theorem is trivial otherwise.
Let " > 0 be a real number and pick an integer d > 1 such that

n.nC 3/

2d
ŒK W Q� 6 ";

where n D dimX .

5.2. Geometric input. Note that Theorem B gives a morphism f WX 0 ! NX of varieties
over NK which is finite surjective Galois and étale over NU withX 0 integral and with the property
that, for a positive-dimensional integral subvariety Y 0 of X 0 not contained in Z0 WD f �1. NZ/,

deg.Y 0; f �LjY 0/ > dn:

Let gWX 00 ! X as in Lemma 5.1. Then a positive-dimensional integral subvariety Y 00 of X 00

not contained in g�1.Z/ satisfies

deg.Y 00; g�LjY 00/ > dn > d dimY 00 :

Note that Y 00 is not necessarily geometrically irreducible, but no irreducible component of NY 00

is contained in g�1. NZ/.

5.3. Arithmetic input. Let G D Aut.g/ be the geometric Galois group of the cover g.
For an isomorphism class t of principalG-bundles overK, letX 00t be the twist of the varietyX 00

by t and gt WX 00t ! X that of the morphism g. According to Proposition 4.12,

gr:intK.X;L;U / 6 sup
t2H1.K;G/

gr:intK.X
00
t ; g
�
t L; g

�1
t .U //:
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For an irreducible subvariety Y 00 of X 00t not contained in g�1t .Z/,

deg.Y 00; g�t LjY 00/ > d dimY 00 ;

because, after extending scalars to NK, the cover gt is isomorphic to g. Theorem A can therefore
be applied to the integral projective variety X 00t , the subvariety g�1t .Z/, and the ample line
bundle g�t L, to give

gr:ratK.X
00
t ; g
�
t L; g

�1
t .U // 6

n.nC 3/

2d
ŒK W Q� 6 ":

Combining these two inequalities yields gr:intK.X;L;U / 6 ", as the growth rate of integral
points is lesser than that of rational points. As " > 0 is arbitrary, this concludes the proof.

Acknowledgement. We warmly thank Pascal Autissier, Ariyan Javanpeykar and the
anonymous referee for their useful comments.
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