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Conventions

An algebraic variety, or simply a variety, over a field k is a separated k-scheme of
finite type. A subvariety is always assumed to be closed, unless stated otherwise. To
facilitate identifying my contributions, statement environments are reserved to results
that I obtained (mostly in collaboration). The works presented here are cited as [1],
while other references are of the form [And92].
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CHAPTER 1

Scarcity of integral points

One of the mathematical successes of the 20th century was realizing that the arith-
metic properties of an algebraic variety were governed by its geometric ones. An out-
standing example of the resulting motto ‘geometry controls arithmetic’ is the Mordell
conjecture proved by Faltings: a smooth projective curve of genus > 2 over a number field
K admits only finitely many K-rational points. Its higher-dimensional generalization, the
Lang-Vojta conjecture which is unattainable as of now, predicts the Zariski non-density
of K-rational points for smooth projective varieties of general type (an assumption of
hyperbolic nature). In this chapter I present a result obtained with Y. Brunebarbe [1]
inspired by an earlier paper by Ellenberg, Lawrence and Venkatesh [ELV23]: a variety
with a large fundamental group (also a hyperbolicity-related notion) has few integral
points.

1. Counting integral points

1.1. Height functions. In a nutshell arithmetic geometry is the study of algebraic
varieties X over a non-algebraically closed field K. The questions and the methods highly
depend on the properties of the field K: for instance if K is finite, then the set X(K)
of the K-rational points of X is also finite and its counting led to the Weil Conjectures
proved by Deligne [Del74]. Here I will focus on the case when K is a number field. The
set X(K) is in general infinite in this case and one cannot count its points on the nose.
To bypass this difficulty one picks a (logarithmic) height function

h : X(K) �! R

on X. Such a height function h has the property that for each c 2 R the set

{x 2 X(K) : h(x) 6 c}

is finite, so it makes sense to count its elements. As opposed to counting rational points
on finite fields, one should not hope for beautiful formulas: the precise value of the
function

R 3 c 7�! NK(X, h; c) := |{x 2 X(K) : h(x) 6 c}|
is not of much interest. Instead the asymptotic of c 7! NK(X, h; c) for c ! 1 is a fine
invariant of X.

Example. Suppose K = Q and X = Pn for some n > 1. Then any rational point x
of Pn can be written as

x = [x0 : · · · : xn] with x0, . . . , xn 2 Z coprime
1
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Figure 1. Plot of the functions c 7! log NQ(P1, h; c) in blue and c 7! 2c
in red.

where coprime means that the ideal generated by x0, . . . , xn is Z. The tuple (x0, . . . , xn)
is essentially unique, as the only other possible choice would have been taking its opposite.
In particular

h(x) = logmax{|x0|, . . . , |xn|}
is well-defined and gives rise to the so-called canonical Weil height on Pn. A small
computation then gives

log NK(X, h; c) ⇠ (n+ 1)c+O(1).

The same formula holds for arbitrary number fields by a theorem of Schanuel [Sch79].
Truth to be told, the right-hand side needs to be multiplied by a factor [K : Q] due to the
convention for heights adopted here. Indeed, when K is arbitrary, in this text I consider

h(x) =
1

[K: Q]

X

v2VK

logmax{|x0|v, . . . , |xn|v}

where VK is set of places of K.1

Suppose X projective and let L be an ample line bundle on X. Let n > 1 be an integer
such that L⌦n is very ample. The choice of a basis of the K-vector space H0(X,L⌦n)
yields a closed embedding i : X ,! Pd�1 where d = h0(X,L⌦n). The function

hL(x) =
1
nh(i(x))

on X(K) is called ‘the’ height function relative to L where h is the canonical Weil height
on Pd�1 considered in the preceding example. Quotes are mandatory as other choices of n
and of the basis may perturb hL. However such a perturbation is bounded on X(K), so
the asymptotic behaviour of the function c 7! NK(X, hL; c) is not affected: ultimately it

1For a prime p and a p-adic place v the absolute value | · |v is normalized so that |p|v = p�[Kv :Qp]

where Kv is the v-adic completion of K. In order to have the product formula this forces for a complex
place v to set | · |v to be the square of the usual absolute value—hence technically not an absolute value
anymore.
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depends only on K, X and L. Because of this when talking about asymptotic behaviours
I will abusively write N(X,L; c) instead of N(X, hL; c) and discard the choice of a height
function.

Example. For any abelian variety A over K and any ample line bundle L on A,
log NK(X,L; c) ⇠ r

2 log c+O(1)

where r = dimQA(K)⌦Z Q is the Mordell-Weil rank [HS00, theorem B.6.3]; see fig. 2.
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Figure 2. The elliptic curve E : y2 = x3 + 5x has Mordell-Weil rank 1
over Q. In the picture the function c 7! log NQ(E, h; c) is plotted in blue
(where h is the Weil height on P2) and c 7! 1

2 log c is plotted in red.

Example. Suppose X is a smooth projective curve of genus g > 2. Then Faltings
proved that the set X(K) is finite. In other words, the function c 7! NK(X,L; c) is
eventually constant for each ample line bundle L on X.

1.2. Heuristics. The three examples above are expected to be the only three pos-
sible behaviours. Indeed the asymptotic behaviour of c 7! NK(X,L; c) for c ! 1 is
conjecturally expected to reflect the usual ‘trichotomy’ of projective varieties into the
Fano, Calabi-Yau and general type classes.2 The birational nature of the above classes
forces to refine the counting: the blow-up X at the origin of an abelian g-fold over K
satisfies

log NK(X,L; c) ⇠ [K : Q]
gc

d
+ o(c)

where L is an ample line bundle on X and the restriction of L to the exceptional divisor
is isomorphic to O(d). It is therefore natural to introduce the counting for an open
subset U ⇢ X,

NK(X,L,U, h; c) := |{x 2 U(K) : h(x) 6 c}|
2The word ‘trichotomy’ here is improper: according to the Minimal Model Program, any integral

variety should be obtained as iterated fibration with generic fibre belonging to one of the preceding three
classes.
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where L is an ample line bundle on X and h a height function relative to L. As above
the asymptotic of c 7! NK(X,L,U, h; c) does not depend on the choice of h so it will be
discarded it from the notation. Suppose that X is a non-singular projective variety with
canonical bundle !X.

Fano. When X is Fano, that is, the anti-canonical bundle !_
X is ample the counting

function is expected to have a linear growth. More precisely, assuming the Zariski-density
of X(K), Manin conjectured that there is a non-empty open subset U ⇢ X for which

log NK(X,!
_
X,U; c) = [K : Q]c+ (⇢� 1) log c+O(1),

where ⇢ is the Picard rank of X. The anti-canonical bundle of X = Pn is !_
X = O(n+ 1)

hence we recover Schanuel’s formula because h!_
X
= (n+1)hO(1) up to a bounded function.

In this form Manin’s conjecture is known to be false, as pointed out first by Batyrev and
Tschinkel [BT96] by considering bundles of cubic surfaces. This will not affect our
discussion here, and the reader interested in the modern version of Manin’s conjecture
may consult [Pey03].

Calabi-Yau. When X is a Calabi-Yau variety, that is, the canonical bundle !X is
trivial, there is no precise conjecture to the extent of my knowledge. Vaguely enough,
logarithmic growth is expected for the function c 7! log NK(X,L,U; c) for a suitable open
subset U ⇢ X, of course assuming Zariski-density of X(K). This is the case for abelian
varieties as mentioned above. The necessity of restricting to a proper open subset is
already seen in the aforementioned case of the blow-up of an abelian variety, or in the
case of K3 surfaces where rational curves would destroy the logarithmic growth.

General type. The variety X is said to be of general type if the canonical line bun-
dle !X is big, for instance if it is ample. The realm of varieties of general type is governed
by the Lang-Vojta conjecture, a higher-dimensional generalization of the Mordell conjec-
ture. It predicts that there is a non-empty open subset U ⇢ X for which the set U(K0)
is finite for each finite extension K0 of K. The Lang-Vojta conjecture has been proved
by Faltings for subvarieties of general type of abelian varieties, but it is otherwise wide
open. In terms of counting functions, the Lang-Vojta conjecture can be rephrased by
saying that the counting function is eventually constant.

1.3. Integral points. The discussion above admits an ‘open’ variant, that is, for
varieties that are not projective. To guess the correct modifications to perform, it is
useful to bare in mind the following example:

Example. Let ⌃ be a finite subset of places of K containing all the infinite ones
and OK,⌃ is the ring of ⌃-integers. The theorem on the equation of ⌃-units states that
the set

{x 2 O⇥
K,⌃ : 1� x 2 O⇥

K,⌃}
is finite. The above set can be identified with the set of ⌃-integral points of P1r{0, 1,1},
that is points with values in OK,⌃. This classical diophantine statement can be rephrased
by saying that P1 r {0, 1,1} has finitely many integral points, as opposed as having
infinitely many rational points. The geometric explanation for this is that the logarithmic
pair

(X = P1,D = [0] + [1] + [1])
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is of log-general type, that is, the logarithmic canonical bundle !X(D) = O(1) is big.

In order to speak properly of integral points, fix a proper flat OK-scheme X with
generic fiber X. For an open subset U ⇢ X, a line bundle L on X, a height function h
relative to L, and a subring R ⇢ K containing OK set

⌫(X,L,U, h,R; c) := log+#{x 2 U(R) : h(x) 6 c},
where U⇢ X is the biggest open subset with generic fiber U, that is, the complement of
the Zariski closure of XrU in X. Also log+ t = logmax{1, t} for a real number t. With
this under the belt, given an effective Cartier divisor D ⇢ X with normal crossings, one
can easily write down a putative dictionary between the birational type of the logarithmic
pair (X,D) and the growth of the counting function

R 3 c 7�! ⌫(X,L,XrD, h,OK,⌃; c).

For instance when X = P1 and D = [0]+[1] the above function is seen to have logarithmic
growth, reflecting the fact that the logarithmic canonical bundle !X(D) = OX is trivial,
that is, the logarithmic pair (X,D) is log Calabi-Yau.

1.4. Linear growth rate. The main object of interest here will be a much coarser
invariant, namely the slope of the counting function,

gr. ratK(X,L,U) := lim sup
c!1

⌫(X,L,U, h,K; c)

c
,

henceforth called the growth rate of rational points. As the notation suggests the real
number gr. ratK(X,L,U) does neither depend on the choice of the model X nor on that
of the height function h. Its variant for integral points is defined as follows. For a finite
set of places ⌃ of K including the Archimedean ones, the real number

lim sup
c!1

⌫(X,L,U, h,OK,⌃; c)

c

measures the presence of the ⌃-integral points on U. Again this does not depend on X
and h, but a priori does depend on the set ⌃. Taking the supremum ranging over all
such finite sets of places ⌃ lets one get rid of such a dependence and gives rise to an
invariant

gr. intK(X,L,U)

called the growth rate of integral points of U with respect to X and L. When U = X
rational and integral points coincide, thus their growth rate do and in such case the
redundant repetition of X is discarded from notation. In terms of counting functions the
example section 1.1 become as follows:

Example. Schanuel’s formula implies gr. ratK(P
n,O(1)) = (n + 1)[K : Q]. For a

smooth Fano variety X Manin’s conjecture predicts

gr. ratK(X,!
_
X,U) = [K : Q]

for some non-empty open subset U ⇢ X.

Example. For an abelian variety A over K and an ample line bundle L on A implies

gr. ratK(A,L) = 0.
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Example. Let X be a smooth projective curve over K, L an ample line on X and U
a non-empty open subset in X. If the genus of X is > 2 then Faltings’s theorem implies

gr. ratK(X,L,U) = 0.

If U is not isomorphic to the affine or projective line, then Siegel’s theorem on integral
points on affine curves yields

gr. intK(X,L,U) = 0.

Note that the growth rate for integral and rational points in general differ: indeed,

gr. intK(P
1,O(1),Gm) = 0 < 2[K : Q] = gr. ratK(P

1,O(1),Gm).

The three examples above show that the growth rate of rational points does not
distinguish the Calabi-Yau and the general type classes.

2. Varieties with large fundamental group

Let k be an algebraically closed field of characteristic 0.

2.1. Basic properties. Let X be a normal integral variety over k.

Definition. The variety X has large étale fundamental group if for each integral
positive-dimensional subvariety Y ⇢ X,

(2.1) | Im(⇡ét
1 (Ỹ)! ⇡ét

1 (X))| = 1

where Ỹ ! Y is the normalization.3

When k = C this is what Kollár calls having a large algebraic fundamental group
[Kol93, Kol95]; see also [Cam95]. It follows immediately from the definitions that:

(1) it suffices to test (2.1) when Y is a curve;
(2) the variety X has large étale fundamental group if and only if, for any non-

constant morphism f : Y ! X with Y integral normal, the image of the induced
map ⇡ét

1 (Y)! ⇡ét
1 (X) is infinite [Kol93, proposition 2.9.1];

(3) the class of integral normal varieties with large étale fundamental group is closed
under products;

(4) given a quasi-finite morphism f : X0 ! X between integral normal varieties,
if X has a large étale fundamental group, then X0 has a large étale fundamental
group too; the converse holds as soon as f is finite étale.

(5) let f : X0 ! X be a morphism between integral normal varieties with connected
normal fibers satisfying the following property: the sequence

1 �! ⇡ét
1 (f�1(x)) �! ⇡ét

1 (X0) �! ⇡ét
1 (X) �! 1

is exact for all x 2 X(k). If X and all the fibers at k-points of f have large étale
fundamental group, then so does X0; this is the case for isotrivial fibrations
whose base and fiber have large étale fundamental group.

Example. A smooth curve has large étale fundamental group unless it is isomorphic
to the affine or the projective line.

3Here I dropped the choice of a base-point as property (2.1) does not depend on it.
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Example. A g-dimensional abelian variety A over k has large étale fundamental
group. Indeed, the étale fundamental group of A is identified with the Tate module:

⇡ét
1 (A, 0) = TA := proj lim

n>1
A[n] ⇠= Ẑ2g,

where A[n] ⇢ A(k) is the n-torsion subgroup and Ẑ the profinite completion of Z.
Let C ⇢ A be a curve and B ⇢ A the subabelian variety generated by A. The inclu-
sion C ,! B induces a surjective morphism Jac C̃ ⇣ B of abelian varieties where C̃! C
is the normalization of C. The image of ⇡ét

1 (C̃) ! ⇡ét
1 (A) = TA is TB which is infinite

because dimB > 0. It follows that also semi-abelian varieties, being fibrations over an
abelian variety by a torus, have large étale fundamental group.

Smooth projective Fano varieties have trivial étale fundamental group [Deb03], hence
the class of varieties having a large fundamental group sits somewhere in between the
class of Calabi-Yau varieties and that of general type. Beware that having a large étale
fundamental group is not a property stable under birational transformation: the blow-
up at a smooth point of a variety having large étale fundamental contains a projective
space, thus it does not have large étale fundamental group. Nonetheless taking products
of a suitable number of copies of an elliptic curve and of a curve of genus > 2 yields
examples of smooth projective varieties X with large étale fundamental group and any
possible Kodaira dimension between 0 and dimX. Kollár more precisely conjectures
that a smooth projective variety with large étale fundamental group admits a finite étale
cover which is a smooth family of abelian varieties over a projective variety of general
type [Kol93, conjecture 1.10]; see [CCE15, theorem 6.5] for a partial result in this
direction and [Bru22, theorem 3.16].

2.2. Comparison with the topological fundamental group. Over the complex
numbers, the property of having large étale fundamental group can be read off the usual
topological fundamental group. For, upon fixing a point x 2 X(C), the natural group
homomorphism

iX : ⇡top
1 (X(C), x) �! ⇡ét

1 (X, x)

identifies the étale fundamental group with the profinite completion of the topologi-
cal one. Let X̂ be the topological cover of X(C) corresponding to the normal sub-
group Ker iX ⇢ ⇡top

1 (X(C), x).
When X is proper, the variety X has large étale fundamental group if and only if

the complex analytic space X̂ does not contain positive-dimensional compact complex
analytic subspaces; see [Kol93, proposition 2.12.3]. This is the case for instance if the
complex space X̂ is holomorphically separable, that is, if points in X̂ can be separated
by holomorphic functions. In view of this characterization it is useful to be able to
determine X̂, but this not so evident. Already understanding when X̂ is a universal cover
of X(C), that is Ker iX = 0,4 is quite fruitful. To do this recall that a group � is said to
be:

• linear if it admits a faithful representation ⇢ : � ! GL(V) for some vector
space V of finite dimension over a field;

4This is not always the case as pointed out by Toledo [Tol93].
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• residually finite if the natural map � ! �̂ is injective, where �̂ is its profinite
completion.

A classical result of Malcev [Mal40] states that a finitely generated linear group is
residually finite. Gathering the above considerations, if ⇡top

1 (X(C), x) is linear, then X̂ is
a universal cover of X(C).

Example. The above discussion can be applied to recover that an abelian variety
has large étale fundamental group because it is the quotient of Cg by a lattice. More
interestingly, it can be used to say that X has large étale fundamental group when X is
a quotient of a bounded symmetric domain in Cn by a torsion-free co-compact lattice of
its biholomorphism group.

2.3. The role of local systems. Still under the assumption k = C let L be a local
system of vector spaces over some field on X(C). Such a local system can be interpreted
as a representation of the topological fundamental group by means of the monodromy
representation

⇡top
1 (X(C), x) �! GL(Lx).

Definition. The local system L is said to be large if, given a non-constant mor-
phism f : Y ! X with Y a normal irreducible complex variety, the local system f⇤L
on Y(C) has infinite monodromy.

Large local systems are called this way because if a complex variety carries one, then
it has large étale fundamental group. To see this pick f : Y ! X as in the definition.
Then the image of ⇡ét

1 (Y, y)! ⇡ét
1 (X, f(y)) surjects onto the profinite completion of the

image � ⇢ GL(Lf(y)) of the monodromy representation of f⇤L. The group � is finitely
generated and by definition linear, thus residually finite by Malcev’s result. In particular
if � is infinite so is its profinite completion.

The main source of large local systems are variations of Hodge structures. More
precisely, suppose that L underlies an admissible graded-polarizable variation of mixed
Hodge structures. If the associated period mapping on the universal cover of X(C) has
discrete fibers then the local system L is large. This furnishes us with plenty of interesting
examples:

Example. Let M be the moduli space for a certain class of polarized smooth pro-
jective varieties. Suppose that M is a fine moduli space, that is, it admits a universal
family ⇡ : X! M. Note that in order to do so it may be necessary to endow the varieties
in question with extra structure: for instance, in the case of abelian varieties, one may
fix a basis for n-torsion subgroup for some n > 1 large enough. By Ehresmann’s theorem
the sheaf

L := Rd⇡⇤QX

of Q-vector spaces on M(C) is a local system, where d is the dimension of the fibers
of X! M. Note that the fiber of L at some s 2 M(C) is the usual d-th cohomology
group

Ls = Hd(Xs(C),Q)

with rational coefficients. In the jargon of moduli spaces saying that the local system L
is large means exactly that the ‘infinitesimal Torelli theorem’ is satisfied by the moduli
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problem in question. By [Bea87] this is the case for a full range of moduli spaces: smooth
projective curves, abelian varieties, Calabi-Yau varieties, most complete intersections, . . .

Example. One way to think of Shimura varieties, and their mixed variants, is by
seeing them as the varieties parameterizing graded polarized integral (mixed) Hodge
structures. Somewhat by definition they come equipped with a local system L whose
associated period mapping is the identity, implying that L is large. Strictly speaking this
is only true when the mixed Shimura variety in question is associated with a torsion-free
congruence subgroup. The affine line A1 is a Shimura variety when seen as the quotient

h = {z 2 C : Im z > 0} / PSL2(Z) = SL2(Z)/{± id},
but the étale fundamental group of A1 is not large; this is because PSL2(Z) contains
torsion elements. The torsion-freeness hypothesis has to be thought as the Shimura-
theoretic analogue of the moduli spaces being fine in the previous example.

3. Subpolynomial growth

3.1. Main statement. Time has come to state the main theorem of this chapter.
Let K be a number field and ⌃ a finite set of places containing all the infinite ones.
A geometrically integral normal variety X over K is said to have large geometric étale

fundamental group if the base-change of X to an algebraic closure of K has large étale
fundamental group in the sense of section 2.1. For the sake of brevity I will sometimes
omit the adjective ‘geometric’. With this notation, the main result obtained with Y.
Brunebarbe is the following [1, main theorem]:

Main theorem. Let X be a projective variety over K, L an ample line bundle on X
and U ⇢ X an open subset which is geometrically integral and normal. If U has large

geometric étale fundamental group, then

gr. intK(X,L,U) = 0.

In other terms, upon fixing a projective flat model X of X and a height function h
relative to L, for each " > 0 and each finite subset of places S of K there is CS," > 0 such
that

⌫(X,L,U, h,OK,S; c) 6 "c+CS,", c 2 R.

As mentioned above, when X = U and X is non-singular, Kollár conjectures that X is a
family of abelian varieties parametrized by a projective variety of general type. Because
of this the function c 7! ⌫(X,L,U, h,OK,S; c) is expected to have logarithmic growth.
Needless to say, having null growth rate of integral points is far from having logarithmic
growth. However the main theorem above is the first result pointing in this direction.
Also note that having null growth rate of integral points is not a property stable under
birational transformations, as already seen in the case of the blow-up of an abelian variety.
This matches the fact that having a large étale fundamental group is not a birational
invariant either.

The main theorem is inspired by a recent paper of Ellenberg, Lawrence and Venkatesh
[ELV23]. They show that the growth of integrals points of U vanishes under the following
assumption: there is an embedding � : K ,! C for which U�(C) admits a geometric
variation of Hodge structures whose associated period mapping has discrete fibers. In
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view of the discussion in section 2.3 the complex variety U� has large étale fundamental
group, hence U has large geometric étale fundamental group. In this sense the main
theorem above generalizes [ELV23]. It also replies positively to the questions raised
in op.cit. whether the main theorem therein would hold for varieties with large étale
fundamental group and mixed Shimura varieties.

3.2. Examples. The main theorem can be applied in the following situations:
(1) Smooth curves (not isomorphic to the affine or projective line) have large étale

fundamental group. However the theorems of Siegel [Sie14] and Faltings [Fal83]
imply that there are only finitely many integral points.

(2) Abelian varieties and their subvarieties have large étale fundamental group. In
the first case the function counting rational points grows logarithmically, as seen
in section 1.1. This also happens in the second situation by the particular case
of the Lang-Vojta conjecture proved by Faltings [Fal91].

(3) Fine moduli spaces of curves and of abelian varieties have large étale fundamen-
tal group. Here the Shafarevich conjecture proved by Faltings [Fal83] implies
that these varieties have only finitely many integral points.

(4) Fine moduli spaces of Calabi-Yau varieties and complete intersections (save
a finite list of exceptions in low degree) have large étale fundamental group,
thus the main theorem applies. This should be put in perspective with the
Shafarevich conjecture in chapter 2. Upon fixing numerical invariants, it predicts
that over a number field K up to isomorphism there are only finitely many
varieties in the above classes having good reduction outside a fixed finite set of
places of K. The main theorem above thus gives a first result in direction of
the Shafarevich conjecture. Note that by definition these moduli spaces carry a
geometric variation of pure Hodge structures, thus [ELV23] applies as well.

(5) Pure or mixed Shimura varieties (associated with a torsion-free congruence sub-
group) have large étale fundamental group. When they are not pure, they are
the prototypical examples in which the results in [ELV23] cannot be applied,
whereas the main theorem here can—this replies to a question raised in op.cit.

Even in the pure case the main theorem here has a wider range of applica-
tion than the one in op.cit. As mentioned in section 2.3 pure Shimura varieties
of exceptional type carry a canonical variation of pure Hodge structures whose
underlying local system is large: it is not known whether this variation is of geo-
metric origin [Gro94]. Note that these Shimura varieties are of general type,
and so are their subvarieties. Therefore by the Lang-Vojta conjecture they are
expected to have only have finitely many integral points.

4. Sketch of the proof

The proof of the main theorem is inspired from [ELV23].

4.1. Arithmetic ingredient. The strategy relies on known uniform bounds on the
number of hypersurfaces needed to cover the rational points of a subvariety of the pro-
jective space. These bounds were initiated by Heath-Brown [HB02] via the determinant
method [BP89], and pursued by many authors including Broberg [Bro04], Salberger
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[Sal07], and Chen [Che12a, Che12b]. The crucial remark here is that these bounds
become stronger as the degree of the subvariety increases. Building on this intuition, a
simple induction on the dimension gives the following statement [1, theorem A]:

Theorem A. Let X be an integral projective variety of dimension n over a number

field K, and L an ample line bundle over X. Assume there is a subvariety Z ⇢ X
and d > 1 such that any positive-dimensional integral subvariety Y of X not contained

in Z satisfies deg(Y,L|Y) > ddimY
. Then,

gr. ratK(X,L,Xr Z) 6 n(n+ 3)

2d
[K : Q].

Recall that the degree of an ample line bundle on a projective variety is its top self
intersection number. Of course to make use of the previous results one needs to have a
lower bound for all the subvarieties of the one in question. Even when the variety has
large étale fundamental there is no whatsoever reason why one should hope for a such a
lower bound.

4.2. Geometric ingredient. Getting round of this relies on a previous insight of
Brunebarbe [Bru20], who pointed out that one can ‘increase hyperbolicity’ of a variety
with large étale fundamental group by looking at suitable covers; see [1, theorem B].

Theorem B. Let X be a normal integral projective variety over an algebraically closed

field of characteristic 0, L an ample line bundle over X, and U a non-empty open subset

of X whose étale fundamental group is large. Then, given an integer d > 1, there is a

finite surjective map ⇡ : X0 ! X with X0
normal integral such that ⇡ is étale over U and,

for each positive-dimensional integral subvariety Y0
of X0

meeting ⇡�1(U),

deg(Y0,⇡⇤L|Y0) > d.

Let me just sketch how to produce such a cover when X = U. To do this let me work
over the complex numbers. Borrowing the notation from the statement, the crucial point
is the finiteness of the following set
⇢
Im(⇡ét

1 (Ỹ)! ⇡ét
1 (X)) :

Y ⇢ X integral subvariety with dimY > 0,
deg(Y,L|Y) < d and normalization Ỹ ! Y

�
/ conjugation.

This is an immediate consequence of the boundedness of ‘weakly complete’ families of
normal cycles on X in Kollár’ terminology, where a normal cycle is the normalization
of an integral subvariety of X. The reason to work over C is that such a finiteness
statement relies on purely topological arguments, namely a variation for singular varieties
of Ehresmann’s theorem due to Goresky-MacPherson. Now let

H1, . . . ,Hr ⇢ ⇡ét
1 (X)

be a set of representatives for the above finite set. Note that each of the Hi is infinite
because X has large étale fundamental group. Since ⇡ét

1 (X) is profinite, there is a normal
subgroup of finite index

N ⇢ ⇡ét
1 (X) such that | Im(Hi ! ⇡ét

1 (X)/N)| =1 for all i = 1, . . . , r.

It is an instructive exercise to prove that the Galois covering X0 ! X of group ⇡ét
1 (X)/N

does the job.
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4.3. End of the proof. Theorems A and B are easily combined to give the main
theorem. Let K̄ be an algebraic closure of K and for a variety V over K let V̄ denote the
variety over K̄ obtained by extending scalars. With the notation of the main theorem,
there is no loss of generality in assuming X geometrically integral and normal, as U is
so. Fix " > 0 and pick an integer d > 1 such that

n(n+ 3)

2d
[K : Q] 6 " where n = dimX.

By Theorem B there is a finite surjective morphism f : X0 ! X̄ over K̄ with X0 integral, f
étale over Ū and, for a positive-dimensional integral subvariety Y0 of X0 not contained
in Z0 := f�1(Z̄),

deg(Y0, f⇤L|Y0) > dn.

Needless to say, one may assume that U has a K-rational point, otherwise the main
theorem is trivial. Such a rational point gives a splitting of the geometric-arithmetic
short exact sequence of étale fundamental groups:

1 �! ⇡ét
1 (X̄) �! ⇡ét

1 (X) �! Gal(K̄/K) �! 1.

It follows that X0 is dominated by a Galois cover of X étale over U defined over K,
say g : X00 ! X. Such a cover clearly satisfies again the needed lower bound on the
degrees: for a positive-dimensional integral subvariety Y00 of X00 not contained in g�1(Z)
satisfies

deg(Y00, g⇤L|Y00) > dn > ddimY00
.

We are now in perfect position to apply theorem B to the cover X00. Alas there is a
little hiccup: not all K-rational points of U lift to K-rational points of U00 = g�1(U).
On the other hand the cover U00 ! U is étale, thus an argument in the spirit of the
Chevalley-Weil theorem shows that the following inequality holds:

gr. intK(X,L,U) 6 sup
t2H1(K,G)

gr. intK(X
00
t , g

⇤
t L, g

�1
t (U)),

where G is the Galois group of X00 ! X and, for an isomorphism class t 2 H1(K,G)
of principal G-bundles over K, the cover gt : X00

t ! X is the twist of g : X00 ! X by t.
Over K̄ the twist X00

t is isomorphic to X00 thus the needed lower bound of the degree of
the subvarieties is still valid. Theorem A can therefore be applied to X00

t to give

gr. ratK(X
00
t , g

⇤
t L, g

�1
t (U)) 6 n(n+ 3)

2d
[K : Q] 6 ".

Combining these two inequalities yields gr. intK(X,L,U) 6 ", as the growth rate of
integral points is lesser than that of rational points. As " > 0 is arbitrary, this concludes
the proof. ⇤



CHAPTER 2

Finiteness of varieties over number fields

The Lang-Vojta conjecture, when applied to moduli spaces, predicts the finiteness of
certain classes of varieties over number fields. The most notorious of such finiteness is
the Shafarevich conjecture proved by Faltings on the route for the Mordell conjecture:
over any number field K, there are only finitely many isomorphism classes of smooth
projective curves of a given genus g > 2 with good reduction outside a fixed finite set ⌃
of places of K. Since then analogous statements for other varieties have also acquired the
name of Shafarevich conjecture, not to be confused with the eponymous conjecture on the
holomorphic convexity of the universal cover of a complex projective manifold! In this
chapter I present the Shafarevich conjecture for smooth projective varieties embedding
in their Albanese with ample normal bundle. Such a result is the object of a recent paper
in collaboration with T. Krämer [3] which is based on a technique of Lawrence, Sawin
and Venkatesh [LV20, LS20] and a big monodromy result that we earlier proved with
C. Lehn and A. Javanpeykar [2].

1. The Shafarevich conjecture

1.1. The original conjecture. At the International Congress of Mathematicians
in Stockholm in 1962 Shafarevich [Šaf63, §4] conjectured that over any number field K,
there are only finitely many isomorphism classes of smooth projective curves of a given
genus g > 2 with good reduction outside a fixed finite set ⌃ of places of K. Roughly
speaking the latter hypothesis means that the discriminant of an equation for the curve
in question is divisible at most by the primes in ⌃. More precisely, a smooth projective
curve C over K is said to have good reduction outside ⌃ if there is a smooth proper
scheme C over the ring of ⌃-integers OK,⌃ with geometrically connected fibers of dimen-
sion 1 and generic fiber C. The good reduction hypothesis cannot be avoided as shown
by quadratic twists of hyperelliptic curves:

Example. Pick a square-free integer d 2 Z and consider the hyperelliptic curve Xd

of affine equation
Xd : dy2 = x(x� 1)(x� 2)(x� 3)(x� 4)(x� 5).

Then X1 and Xd become isomorphic over Q(
p
d) but they are not isomorphic over Q.

On the other hand, given a prime p > 7, the curve Xd has bad reduction at p if and only
if p divides d.

The Shafarevich conjecture has been proved by Faltings [Fal83] in 1984. It is deduced
thanks to Torelli’s theorem from the analogous statement for abelian varieties: for g > 1
up to isomorphism there are only finitely many abelian varieties of dimension g with
good reduction outside ⌃. Here an abelian variety A over K has good reduction outside ⌃

13
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if it extends to an abelian scheme A over OK,⌃. Note that such an extension is unique,
as it coincides with the Néron model of A over OK,⌃. Let me review briefly the general
strategy of Faltings’s proof, as it will become useful for the upcoming discussion.

1.2. Faltings’s strategy. Let K̄ be an algebraic closure of K. For a g-dimensional
abelian variety A over K and a prime number ` recall that the `-adic Tate module

T`A = proj lim
n>1

A[`n](K̄)

is a free Z`-module of rank 2g and comes equipped with a continuous linear action of
the absolute Galois group � = Gal(K̄/K). If A has good reduction outside ⌃, then for
each place v 62 ⌃ the representation ⇢ : �! GL(T`A) is unramified at v. That is, given
an embedding of K̄ into an algebraic closure K̄v of the completion Kv of K at v, the
composite map

⇢v : �v := Gal(K̄v/Kv) ,�! � = Gal(K̄/K)
⇢�! GL(T`A)

factors through the quotient Gal(F̄v/Fv), where Fv and F̄v are the residue fields of Kv

and K̄v respectively. In this case it is known since Weil that the representation ⇢v is pure

of weight �1, that is, the Frobenius operator x 7! x|Fv | in Gal(F̄v/Fv) has characteristic
polynomial with integral coefficients and roots of complex absolute value |Fv|1/2. The
above procedure sets up a map

A

⇢
g-dimensional abelian varieties over K

with good reduction outside ⌃

�
/ ⇠=

V`(A) := T`A⌦Z` Q`

⇢
2g-dimensional `-adic Galois representations
unramified outside ⌃ and pure of weight �1

�
/ ⇠=

V`

and Faltings proceeds by proving that V` has finite image and fibers. Both statements
follow from what is called nowadays Faltings’s isogeny theorem which represents the
hardest part of his proof: given an abelian variety over K the set

⇢
abelian varieties over K

isogenous to A

�
/ ⇠=

is finite. Arguing along the same lines of Tate, Faltings then deduces that the represen-
tation V`(A) is semisimple. A rather elementary argument shows that the set

RK,⌃,`(d, w) :=

⇢
semisimple d-dimensional `-adic Galois representations

unramified outside ⌃ and pure of weight w

�
/ ⇠=

is finite [Del85, théorème 3.1], hence V` has finite image. On the other hand it was
already know that abelian varieties having isomorphic Tate module are isogenous, hence
the isogeny theorem lets one conclude. Before moving on, it is useful to notice that the
Tate module of A may be thought as the ‘homology’ of the abelian variety A because of
the isomorphism of Galois representations

H1
ét(AK̄,Q`) ⇠= Hom(T`A,Q`).
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1.3. Finiteness for other varieties. Since the work of Faltings there has been
attempts to generalize the Shafarevich conjecture to other classes of varieties. The Sha-
farevich conjecture has been proved in the following cases:

(1) K3 surfaces and certain hyper-Kähler manifolds [And96], [She97], [Tak20];
(2) del Pezzo surfaces [Sch85];
(3) flag varieties [JL15];
(4) complete intersection in the projective space of level 6 1 [JL17];
(5) fibrations of curves over smooth curves [Jav15];
(6) certain Fano threefolds [JL18];
(7) smooth cubic threefolds [JL21];
(8) Enriques surfaces [Tak19].

The proofs of the above results build on the only two techniques that have been available
for almost 40 years: the proofs of (1), (4), (5) and (7) rely on the Shafarevich conjecture
for abelian varieties, while those of (2), (3) and (6) follow from standard finiteness results
in Galois cohomology. A question raises naturally: for which kind of varieties is it
reasonable to expect this kind of arithmetic finiteness? As the next example shows, it is
quite clear that one cannot hope for it to hold for all varieties:

Example. The set of isomorphism classes of genus 1 curves over K with good re-
duction outside ⌃ is infinite. This may look a little odd since the Shafarevich conjecture
holds for elliptic curves. The subtlety lies in the fact that elliptic curves come with a
rational point by default. Instead for each n > 1 there are genus 1 curves over K with
no point of degree < n. It would be sufficient to bound the minimal degree of a point
on a genus 1 curve to have finiteness à la Shafarevich. As it will be useful later, notice
that this is equivalent to bound the degree of a polarization on such a curve.

So how does one guess if a given class of varieties ought to undergo the Shafarevich
conjecture? The natural point of view is to look at the moduli space M classifying the
class of varieties in question. If M is ‘hyperbolic’, that is, all subvarieties are of log
general type, then the Lang-Vojta conjecture predicts that M has only finitely ⌃-integral
points for each finite set of places ⌃ of K.1

Example. Consider elliptic curves E together with an isomorphism (Z/2Z)2 ⇠= E[2]
of group schemes, where E[2] is the 2-torsion subgroup of E. The moduli space of such

1A disclaimer: one should work at the level of fine moduli spaces as in the examples of section 2.3 in
chapter 1 or even better at the level of moduli stacks, and for a good reason: the Shafarevich conjecture
is really about K-isomorphism classes of varieties, whereas coarse moduli space only classify varieties up
to isomorphism over an algebraic closure. This may seem anodyne, but think of the example of elliptic
curves:

• the coarse moduli space is the affine line A1 which is anything but hyperbolic;
• over an algebraically closed field an elliptic curve is the same as a genus 1 curve; however the

Shafarevich does not hold for genus 1 curves: this is ultimately due to the pathological nature
of the moduli stack of non-polarized genus 1 curves.

To do things properly one should therefore introduce a notion of hyperbolic stack; this appears implicitly
in [JL17]. Not to overcomplicate this heuristic discussion I will swap these issues under the carpet and
stick to the case of fine moduli spaces.
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couples is
M = P1 r {0, 1,1}.

It is a fine as a moduli space: the universal family is the Legendre family of elliptic curves

E = {y2z = x(x� z)(x� �z)} ⇢ M⇥ P2

together with the isomorphism ↵� : (Z/2Z)2 ! E�[2] given by

(0, 0) 7! [0 : 1 : 0], (1, 0) 7! [0 : 0 : 1], (0, 1) 7! [1 : 0 : 1], (1, 1) 7! [� : 0 : 1].

For � 2 Kr {0, 1} saying that the couple (E�,↵�) has good reduction outside ⌃ means
that � is a ⌃-integral point of M:

� 2 M(OK,⌃) = {� 2 O⇥
K,⌃ : 1� � 2 O⇥

K,⌃}.

As recalled in section 1.3 of chapter 1 the theorem on the ⌃-unit equation implies that the
set M(OK,⌃) is finite. This agrees with M being of log general type, since the logarithmic
canonical bundle of M is the line bundle !P1 ⌦ O([0] + [1] + [1]) ⇠= O(1) on P1.

But this only shifts the question: how does one decide if the moduli space M is
hyperbolic or not? This is rather well-understood: suppose for simplicity that M is non-
singular and is fine as a moduli space, that is, there is a universal family ⇡ : X! M. To
avoid issues as in the case genus 1 curves it is also necessary to suppose that the varieties
come with a polarization, that is, there is a relatively ample line bundle L on X. Fix an
embedding K ,! C and consider the variation of Hodge structures

V := ( Rd⇡⇤QX , Hd
dR(X/M) , r , F• , ↵ )

on M where d is the relative dimension of X! M, r is the Gauss-Manin connection, F•

is the Hodge filtration and ↵ is the C1-isomorphism

↵ : Hd
dR(X/M)

⇠�!
M

p+q=d

Rq⇡⇤⌦
p
X/M

of complex vector bundles on M(C) inducing the Hodge decomposition point-wise. Upon
fixing a base-point, one can look at the period mapping

� : M(C) �! H/�

associated with the primitive part of V , where H is some bounded symmetric domain
and � is some arithmetic subgroup of the biholomorphisms of H. Note that the hypothesis
of M being a fine moduli space implies that the subgroup � is torsion-free; see section 2.3
of chapter 1. It follows from work of Zuo [Zuo00] and Brunebarbe [Bru18] that if � is
an immersion, then M is hyperbolic. By a theorem of Campana-Paŭn [CP15] (formerly
a conjecture of Viehweg) the moduli space M is hyperbolic if it parametrizes canonically
polarized varieties.

Example. The discussion above shows that smooth hypersurfaces of Pn of degree > 3
should verify the Shafarevich conjecture. More generally, the Shafarevich conjecture
should hold for complete intersections that are of general type or of some specific type
for which the period mapping is known to be immersive; see [JL17] for details.
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2. The Lawrence-Venkatesh method

2.1. Hypersurfaces in the projective space. The situation drastically changed
a few years ago when Lawrence and Venkatesh [LV20] came up with a brand new method
to prove non-density for the Zariski topology of integral points. Their primary application
was to give an alternative proof of the Mordell conjecture: this is possible because for
projective curves rational points are all integral and non-density is equivalent to finiteness;
see the written account of my Bourbaki seminar [6] for details. As opposed to the proofs of
Faltings and Vojta, the arithmetic part of their method did not require anything specific
about curves. As an instance of this remark, they proved a weak form of the Shafarevich
conjecture for hypersurfaces in a projective space. More precisely let n, d > 1 be integers
and consider the scheme P(H0(Pn,O(d))) parametrizing hypersurfaces of degree d in Pn.
The complement of the discriminant divisor

Un,d ⇢ P(H0(Pn,O(d)))

then parametrizes smooth hypersurfaces. In particular

Un,d(OK,⌃) =

⇢
hypersurfaces of degree d in Pn

K
with good reduction outside ⌃

�
.

Here a hypersurface X ⇢ Pn
K is said to have good reduction outside ⌃ if its Zariski closure

in Pn
OK,⌃

is smooth over OK,⌃. With this notation Lawrence and Venkatesh [LV20,
proposition 10.2] show that there are n0 > 1 and a function d0 : N! N such that,

Un,d(Z[1/N]) ⇢ Un,d is not Zariski-dense for n > n0, d > d0(n), N > 1.

In other words there is a non-zero homogeneous polynomial f 2 SymD H0(Pn,O(d))_ of
some degree D > 1 vanishing identically on Un,d(Z[1/N]). Note that the polynomial f
depends on n, d and N. Numerical experiments show that n0 ⇠ 60 should do the job.
Instead given n > 1 it is not clear how to bound the minimal choice for d0(n). Finally
giving an upper bound for D is doubtless out of the scope of the method of Lawrence-
Venkatesh. As recalled in the previous section, the Lang-Vojta conjecture implies

|U(Z[1/N])/PGLn+1(Z[1/N])| <1

thus non-density may be seen as a preliminary result towards it.

The technique of Lawrence-Venkatesh applies to varieties which support a sufficiently
complicated (geometric) variation of Hodge structures, where ‘sufficiently complicated’
means that the underlying local system must have big monodromy. In the case of the
Mordell conjecture this variation is given by a family of Prym varieties over some Hurwitz
space of non-abelian covers: big monodromy is then proved by exhibiting carefully some
Dehn twists. In the case of hypersurfaces the variation is given by the primitive part of the
middle cohomology of the fibers of the universal family X! Un,d: a classical computation
by Beauville [Bea86] (relying on the study by Ebeling [Ebe84] and Janssen [Jan83] of
the topology of singular fibers) shows that the family X! Un,d has big monodromy; see
also the discussion by Katz in [Kat04]. In order to have finiteness instead of non-density
for hypersurfaces one might consider working by induction and reapply the Lawrence-
Venkatesh method to any subvariety. This would require to have big monodromy on
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any subvariety of Un,d(C)/PGLn+1(C). Unfortunately this is certainly not the case for
subvarieties mapped to special subvarieties of the corresponding period domain.

2.2. Hypersurfaces of abelian varieties. In 2020 Lawrence-Sawin [LS20] suc-
ceeded in adapting the Lawrence-Venkatesh method to prove the Shafarevich conjecture
for hypersurfaces in abelian varieties. More precisely let A be a g-dimesional abelian va-
riety over K and suppose that ⌃ contains the places of bad reduction of A. The abelian
variety A then extends uniquely to an abelian scheme A over OK,⌃. Fix an ample class c
in the Néron-Severi group A. Assuming g 6= 3 Lawrence-Sawin prove that the set

8
<

:

smooth hypersurfaces in A
algebraically equivalent to c

with good reduction outside ⌃

9
=

; / translation by A(K)

is finite. Here a hypersurface X ⇢ A is said to have good reduction if its Zariski closure
in the abelian scheme A is smooth over OK,⌃. When g = 3 they prove such a statement
under the following additional (in all likelihood superfluous) numerical assumption on
the top self-intersection c3 of c. To state it, consider the sequences of integers (ai)i>1

et (di)i>1 defined by a1 = 1, a2 = 5 and, for i > 1, by

ai+2 = 4ai+1 � ai + 1, di =
1

6

✓
ai+1 + ai

ai

◆
.

Then the above finiteness holds unless c3/3! is divisible by some di for i > 2. Note that
the restriction is very mild since the sequence (di)i>2 has double exponential growth: its
first terms are

d2 = 8 855 and d3 = 36 030 431 772 522 503 316.

More interestingly, these results can be translated into classical diophantine statements
as follows. An ample line bundle L on A extends uniquely to a relatively ample line
bundle L on A. Let

UL ⇢ P(H0(A,L))

be the complement of the discriminant locus. Then the above statement implies the
finiteness of the set

UL(OK,⌃) =

8
<

:

smooth hypersurfaces in A
linearly equivalent to L

with good reduction outside ⌃

9
=

; .

As opposed to projective spaces, abelian varieties have an additional degree of freedom:
they are not simply connected. Non-trivial unramified covers, which are given in this
case by multiplication by an integer, are the essential ingredient permitting one to attain
finiteness instead of the mere non-density. The main novelty of their work lies in their way
to control monodromy. The arguments of Lawrence and Venkatesh have a topological
flavor. Instead, the approach by Lawrence and Sawin involves Tannaka groups of perverse
sheaves on abelian varieties introduced by Krämer and Weissauer [KW15c]; the relation
of these groups to monodromy is reminiscent of the one between the monodromy group
of a variation of Hodge structures and its generic Mumford-Tate group [And92]. I will
come back at this later in chapter 3.
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3. Finiteness of very irregular varieties

3.1. Very irregular varieties. In collaboration with T. Krämer [3] we adapted the
strategy of Lawrence-Venkatesh and Lawrence-Sawin to prove the Shafarevich conjecture
for a large class of varieties that we call very irregular. To defined them let k be a field
of characteristic 0.

Definition. A smooth projective variety X over k is very irregular if X(k) 6= ; and
if for any x 2 X(K) the Albanese morphism albx : X ! Alb(X) is a closed embedding
with ample normal bundle, and not an isomorphism.

The above properties do not depend on the choice of the point x. This notion
is not standard and the terminology ‘very irregular’ we introduced is inspired by the
name ‘irregularity’ classically given to the dimension of the Albanese variety of a smooth
projective surface. A smooth projective variety X with X(k) 6= ; is very irregular at least
in the following cases:

(1) X is a curve of genus > 2: indeed a theorem of Hartshorne [Har71, proposi-
tion 4.1] states that a smooth projective curve in an abelian variety A has ample
normal bundle if and only if it generates A.

(2) X is a proper subvariety of an abelian variety A with ample normal bundle
and such that the induced morphism Alb(X)! A is an isogeny. By the Barth-
Lefschetz theorem for abelian varieties proved by Debarre, this is the case if X is
a complete intersection of ample divisors or if the dimension of X is > dimA/2.

The canonical bundle of a very irregular variety X is the determinant of the normal bundle
of its Albanese embedding and it is therefore ample. It follows that its automorphism
group scheme Aut(X) is finite étale. Clearly Aut(X) acts on the Albanese variety and
the subgroup of Aut(X) acting on Alb(X) by translations is

Stab(X) := Ker
�
Aut(X)! GL(H0(X,⌦1

X))
�
.

3.2. Intrinsic results. Let K be an number field and ⌃ a finite set of places. Let A
be an abelian variety over K with good reduction outside ⌃ and let A be the unique
abelian scheme over OK,⌃ to which A extends. Similarly to the case of hypersurfaces
in Lawrence-Sawin, a subvariety X ⇢ A is said to have good reduction outside ⌃ if its
Zariski closure in A is smooth over OK,⌃.

Definition. A very irregular variety X over K has good reduction outside ⌃ if its
Albanese variety Alb(X) and the subvariety X ,! Alb(X) do.

In the above definition I implicitly picked a K-point of X to embed it in its Albanese.
Note that the good reduction property does not depend on the choice of such a point.
In the case of surfaces our main result can be stated as follows (see [3, theorem A]):

Theorem A. Fix an integer c > 1. Then up to K-isomorphism there are only finitely

many very irregular surfaces X with good reduction outside ⌃ such that

• c2(X) = c,

• h0(X,⌦1
X) > 6,

and such that c2(X)/| Stab(X)| 6= 27.
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A very irregular surface X is minimal hence � := �(X,OX) > h0(X,⌦1
X)� 3. On the

other hand the surface X is of general type thus the Bogomolov-Miyaoka-Yau inequality
together with Noether’s formula imply 3� 6 c2(X). Combining this two inequalities one
finds c2(X) > 3(q � 3). In particular the condition c2(X)/| Stab(X)| 6= 27 is empty as
soon as

h0(X,⌦1
X) > 13.

More generally we show the following result for very irregular varieties of dimension less
than half the dimension of the Albanese variety (see [3, theorem B]):

Theorem B. Let P 2 Q[z] a polynomial of degree d. Then up to K-isomorphism there

are only finitely many smooth projective very irregular varieties X with good reduction

outside ⌃ such that

• X has Hilbert polynomial P with respect to the canonical bundle,

• g = h0(X,⌦1
X) > 2d+ 2,

and such that (?) and (??) below hold with A = Alb(X), e = �top(X)/| Stab(X)|.

To see why theorem B implies theorem A note that for a smooth projective surface X
the Riemann-Roch theorem and Noether’s formula yield

�(X,!⌦n
X ) = 1

2n(n� 1)c1(X)
2 + 1

12(c1(X)
2 + c2(X)).

If X is of general type, then c1(X)2 6 3c2(X) by the Bogomolov-Miyaoka-Yau inequality
so, once c2(X) is fixed, there are only finitely many possibilities for the Hilbert polynomial
of X with respect to the canonical bundle.

Theorem B applies in particular to all smooth projective curves of genus > 4 with
a rational point. However, its proof relies on the Shafarevich conjecture for abelian
varieties proved by Faltings in [Fal83], thus theorem B does not furnish us with a new
proof of the Shafarevich conjecture for curves. Instead, one can regard theorem B as a
generalization of Faltings’s theorem to higher dimension.

3.3. Numerical conditions. In order to introduce the numerical conditions that
enter the statement of theorem B, let A be an abelian variety of dimension g over a field k
and X ⇢ A a smooth subvariety of dimension d. If k is algebraically closed X is said
to be symmetric up to translation if there is a point a 2 A(k) such that X = �X + a.
If k is an arbitrary field X is said to be symmetric up to translation if its base change
to an algebraic closure of k is so. The stabilizer of a subvariety X ⇢ A is the algebraic
group StabA(X) whose points in a k-scheme S are

StabA(X)(S) = {a 2 A(S): XS + a = XS}.

Ueno’s fibration theorem implies that X is of general type if and only if its stabilizer is
finite. Moreover, when A = Alb(X) and X is embedded via the Albanese morphism,

Stab(X) = StabAlb(X)(X).

To apply the big monodromy criterion below we impose that the topological Euler char-
acteristic e = �top(X)/| StabA(X)| of the quotient X/ StabA(X) satisfies the following
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conditions:

|e| 6= 27 if d > 2 and X ⇢ A is not symmetric up to a translation,
|e| 6= 56 if d > 3 is odd and X ⇢ A is symmetric up to translation,(?)

|e| 6= 22m�1 if d > (g � 1)/4, m 2 {3, . . . , d} has the same parity as d

and X ⇢ A is symmetric up to translation.

For d < (g � 1)/2 I do not know of any example of subvarieties X with ample normal
bundle for which (?) fails. Here the dimension is important as the Fano surface X of a
cubic threefold is embedded in its 5-dimensional Albanese variety and has e = 27. To
deal with the semisimplification of global Galois representations, we also need to assume
that

(??) 2�(X⇥X,⌦d
X⇥X) 6 �top(X⇥X).

Here regardless of the dimension I do not know any example of a subvariety X with ample
normal bundle for which (??) fails. Indeed, a straightforward computation involving
Serre’s duality and generic vanishing shows that (??) holds if d is odd. When X is a
surface, the inequality (??) is equivalent to

c2(X) 6 c1(X)
2 6 5c2(X),

and is satisfied because X is of general type with nef cotangent bundle. When X is a
hypersurface Lawrence and Sawin show that �(X,⌦i

X) is the Eulerian number A(g, i)
times the degree of X and (??) holds by log concavity of Eulerian numbers.

Let me take advantage of the general setup in this section to introduce two notions
that will be useful later:

Definition. If k is algebraically closed X is said to be
• divisible if StabA(X) 6= 0;
• a product if there are smooth subvarieties X1,X2 ⇢ A with dimXi > 0 such

that the sum morphism X1 ⇥X2 ! A is a closed embedding with image X.

If k is an arbitrary field X is divisible resp. a product if its base change to an algebraic
closure of k is so. If the Albanese morphism X ! Alb(X) given by some x 2 X(k) is a
closed immersion with ample normal bundle, then X is not a product.

3.4. Extrinsic result. The Shafarevich conjecture for abelian varieties proved by
Faltings lets one reduce the proof of theorem B to the case where the Albanese is a fixed g-
dimensional abelian variety A over a number field K. Let ⌃ be a finite set of places of K
including all places where A has bad reduction. More precisely theorem B follows from
a general result about subvarieties of A in the spirit of the work of Lawrence-Sawin (see
[3, theorem C]):

Theorem C. Fix a polynomial P 2 Q[z] of degree d < (g � 1)/2 and an ample

line bundle L on A. Then up to translation by points in A(K) there are only finitely

many smooth subvarieties X ⇢ A over K with ample normal bundle and good reduction

outside ⌃ that are not a product, that have Hilbert polynomial P with respect to L, and

that satisfy (?) and (??) with e = �top(X)/| StabA(X)|.
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A subvariety X ⇢ A is said to be a geometric complete intersection of ample divisors

if its base change to an algebraic closure of K is a complete intersection of ample divisors.
Smooth complete intersections of ample divisors in an abelian variety are never a product
and they satisfy (?) with e = �top(X); see remark 6.3, proposition 2.16 and corollary 2.17
in [2]. Hence as a direct consequence of theorem C we obtain:

Corollary. Fix a polynomial P 2 Q[z] of degree d < (g � 1)/2 and an ample line

bundle L on A. Then up to translation by points in A(K) there exist only finitely many

smooth nondivisible geometric complete intersections of ample divisors X ⇢ A over K
with good reduction outside ⌃, Hilbert polynomial P with respect to L and satisfying (??).

The proof of theorem C is based on the Lawrence-Venkatesh method [LV20] as
elaborated in Lawrence-Sawin [LS20]. As in their work the geometric input is the big
monodromy of the families of subvarieties in question. We proved this in collaboration
with A. Javanpeykar and C. Lehn [2] and is in my view our main contribution to the
story.

3.5. Big monodromy. In this section let me work over C. Let S be a smooth
irreducible complex variety and A be a complex abelian variety of dimension g. Inside
the constant abelian scheme AS := A ⇥ S, let X ⇢ AS be a closed subvariety which is
smooth over S with connected fibers of dimension d, seen as a family of subvarieties of A
over S:

X

A AS S

⇡ f

prA prS

It will be useful to consider both the analytic and the algebraic setup, using topological
local systems with coefficients in ⇤ = C resp. étale `-adic local systems with coeffi-
cients in ⇤ = Q` for a prime `. Let ⇡1(A, 0) be the topological resp. étale fundamental
group with the discrete resp. profinite topology, and denote the group of its continuous
characters by

⇧(A,⇤) = Hom(⇡1(A, 0),⇤
⇥).

In what follows, a linear subvariety is a subset ⇧(B,⇤) ⇢ ⇧(A,⇤) for an abelian quotient
variety A ⇣ B with dimB < dimA. A statement is said to hold for most � 2 ⇧(A,⇤)
if it holds for all � outside a finite union of torsion translates of linear subvarieties. For
a character � 2 ⇧(A,⇤), let L� denote the associated rank one local system on A. It
follows from generic vanishing [BSS18, KW15c, Sch15] that for most � the higher
direct images Rif⇤⇡⇤L� vanish in all degrees i 6= d. In this case it is interesting to look
at the local system

V� := Rdf⇤⇡
⇤L�

of rank |e| where e is the topological Euler characteristic of the fibers of X! S. More
generally, for an n-tuple � = (�1, . . . ,�n) 2 ⇧(A)n of characters set

V� := V�1 � · · ·�V�n .
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Using the natural identification ⇧(A,⇤)n = ⇧(An,⇤) I will also apply the terminology
most for such n-tuples of characters. Consider for s 2 S(C) the monodromy representa-
tion

⇢ : ⇡1(S, s) �! GL(V�,s) on the fiber V�,s =
nM

i=1

Hd(Xs,L�i).

The algebraic monodromy group of the local system V� is the Zariski closure of the image
of ⇢. By construction it is an algebraic subgroup of

GL(V�1,s)⇥ · · ·⇥GL(V�n,s) ⇢ GL(V�,s).

This upper bound can sometimes be refined: say that X ⇢ AS is symmetric up to

translation if there exists a : S ! A such that Xt = �Xt + a(t) for all t 2 S(C). In this
case, Poincaré duality furnishes us with a nondegenerate bilinear pairing

✓�,s : V�,s ⌦V�,s �! L�,a(s)

for each � 2 ⇧(A,⇤), because for the dual of a rank one local system and for its inverse
image under the translation ⌧a(t) : A! A, x 7! x+ a(t) we have natural isomorphisms

L_
�
⇠= [�1]⇤L�,

⌧⇤a(t)L�
⇠= L� ⌦⇤ L�,a(t).

The pairing ✓�,s is symmetric if d is even, and alternating otherwise. Since the pairing
is compatible with the monodromy operation on the fiber, it follows that the algebraic
monodromy group of V� is contained in an orthogonal resp. symplectic group in the two
cases. This leads to the following definition:

Definition. The local system V� has big monodromy if its algebraic monodromy
group contains G1 ⇥ · · ·⇥Gn as a normal subgroup where Gi ⇢ GL(V�i,s) is defined by

Gi :=

8
><

>:

SL(V�i,s) if X is not symmetric up to translation,
SO(V�i,s, ✓�i,s) if X is symmetric up to translation and d is even,
Sp(V�i,s, ✓�i,s) if X is symmetric up to translation and d is odd.

The family X! S has big monodromy for most tuples of torsion characters if V� has
big monodromy for each n > 1 and most torsion n-tuples � 2 ⇧(A)n.

Note that the connected component of the algebraic monodromy group of V� is
unaffected by base change along étale morphisms S0 ! S. To take this into account it is
convenient to consider the fiber X̄⌘ of X! S at a geometric generic point ⌘̄ of S. The
local system V� does not have big monodromy in each of the following four cases:

(1) if X̄⌘ is constant up to a translation, i.e. it is the translate of a subvariety Y ⇢ A
along a point in A(⌘̄): in this case the algebraic monodromy is finite. Note that
if X̄⌘ is nondivisible, then X̄⌘ is constant up to translation if and only if the
family X! S is isotrivial.

(2) if X̄⌘ is divisible, for instance when X̄⌘ is stable under translation by a torsion
point 0 6= x 2 A(⌘̄). In this case the algebraic monodromy of each V�i is itself
a group of block matrices which is normalized by the group generated by the
point x.
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(3) if X̄⌘ is a symmetric power of a curve, i.e. there is a smooth curve C ⇢ AS,⌘̄ such
that the sum morphism SymdC ! AS,⌘̄ is a closed embedding with image X̄⌘

and d > 2. After an étale base change over S, we may assume that C spreads
out to a relative curve C ⇢ AS which is smooth and proper over S such that
the relative sum morphism Symd

S C! AS is a closed embedding with image X.
Then we have an isomorphism compatible with monodromy:

Hd(Xs,L�) ⇠= Altd H1(Cs,L�).

(4) if X̄⌘ is a product, which by definition means that if there are smooth subvari-
eties X1,X2 ⇢ AS,⌘̄ with dimXi > 0 such that the sum map X1⇥X2 ! AS,⌘̄ is a
closed embedding with image X̄⌘. Again, after an étale base change over S one
may assume that Xi spreads out to a subvariety Xi ⇢ AS which is smooth and
proper over S such that the relative sum morphism X1 ⇥ X2 ! AS is a closed
embedding with image X. Then the Künneth isomorphism is compatible with
monodromy:

Hd(Xs,L�) ⇠=
M

i1+i2=d

Hi1(X1,s,L�)⌦Hi2(X2,s,L�).

In fact these are the only obstructions to big monodromy:

Big Monodromy Criterion. Suppose X := X̄⌘ ⇢ AS,⌘̄ has ample normal bundle,

dimension d < (g� 1)/2, and satisfies the numerical assumption (?). Then the following

conditions are equivalent:

• X is nondivisible, not constant up to translation, not a symmetric power of a

curve and not a product.

• X! S has big monodromy for most torsion tuples of characters.

I will discuss the main ingredients of the proof of the above criterion in chapter 3.
Before proceeding with its arithmetic applications note that the numerical condition (?)
here is needed in order to avoid the appearance of the exceptional groups E6 and E7

and some low-dimensional half-spin groups as monodromy groups. Also notice that
when A is simple the preceding theorem is as general as it gets for smooth subvarieties of
dimension d < (g� 1)/2 (save the finite list of exceptions in (?)) because smooth proper
subvarieties of a simple abelian variety have ample normal bundle.

Now let me put this to work in the framework the Lawrence-Venkatesh method. To
do this let K be a number field and ⌃ a finite set of places of K containing all infinite
ones. The abelian variety in theorem C has good reduction outside ⌃ and hence it extends
uniquely to an abelian scheme over OK,⌃. For simplicity I reset notation and write A
for this abelian scheme. Let S be a smooth separated finite type scheme over OK,⌃

with geometrically connected generic fiber, and X⇢ AS be a closed subscheme which is
smooth over S with geometrically connected fibers of dimension d. We say that X! S
has big monodromy for most tuples of torsion characters if for some (equivalently, any)
embedding � : K ,! C the family X� ! S� does so. By an induction argument Theorem C
is reduced to the following criterion for the nondensity of integral points [3, theorem D]:
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Theorem D. Suppose that

• X! S has big monodromy for most tuples of torsion characters, and

• every geometric fiber X of X! S satisfies (??).

Then S(OK,⌃) is not Zariski-dense in S.

4. Proof of the non-density criterion

In the rest of this introduction I will outline the main ideas in the proof of theorem D
assuming for simplicity that K = Q so that OK,⌃ = Z[1/N] for some integer N > 1. Pick
a prime p - N, let Q̄p be an algebraic closure of Qp and let Q̄ ⇢ Q̄p be the algebraic
closure of Q. This yields an inclusion

�p := Gal(Q̄p/Qp) ,�! � := Gal(Q̄/Q).

4.1. Auxiliary construction. As often in Diophantine results, the proof starts by
constructing auxiliary objects, for example polynomials vanishing at high order with low
height. Here the auxiliary object will be a character �0 : ⇡1(A(C), 0) ! C⇥ of order r
with p - r such that

(1) Hi(Xs(C),L�) = 0 for all i 6= d and all � 2 ��0, s 2 S(C),
(2) V� has big monodromy for the tuple � of all characters � 2 ��0.

Note that torsion characters of ⇡ét
1 (A(C), 0), such as �0, can be seen as torsion points

of the dual abelian variety of A on which the Galois group � acts naturally. There is
not much hope of finding such a character: assumption (2) is totally unrealistic. How-
ever bypassing it would bury the main ideas under a mass of technicalities which are
insignificant at the end of the day. The orbit ��0 corresponds to a direct summand

E ⇢ [r]⇤Qp,A

where [r] : A ! A denotes the multiplication by r and Qp,A is the constant p-adic étale
sheaf. The first step is exactly as in Faltings’s proof of the Shafarevich conjecture for
abelian varieties. For each s 2 S(Z[1/N]) consider the Galois representation

Vs := Hd
ét(Xs ⇥ Q̄,E)

of �. By hypothesis (2) it is of dimension n = |e|.|��0| where e is the topological Euler
characteristic of the fibers of X! S; by [Del74] it is pure of weight d. As a part of
the Tate conjecture, the representation Vs is expected to be semisimple. An absolutely
fantastic feature of the Lawrence-Venkatesh method is that it lets one circumvent the
semisimplicity assumption. To do this consider the semisimplification filtration V•

s on Vs.
By Faltings’s finiteness of pure global Galois representations, that is the finiteness of the
set RK,⌃,p(n, d) in section 1.2, the image of the composite map

S(Z[1/N])

⇢
filtered global Galois

representations

�
/ ⇠=

⇢
graded global Galois

representations

�
/ ⇠=

s (Vs,V•
s) grV•

s
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is finite. Hence to show that S(Z[1/N]) is not Zariski dense in S, it suffices to show that
the fibers of the map

S(Z[1/N]) 3 s 7�! isomorphism class of grV•
s

are not Zariski dense. A natural attempt would be to restrict representations to the local
Galois group at a prime ` 6= p with ` - N. To see why this is doomed to fail, fix an
embedding Q̄ ,! Q̄` and consider the inclusion

�` := Gal(Q̄`/Q`) ,�! � := Gal(Q̄/Q).

For s 2 S(Z[1/N]) let Vs,` be the p-adic representation of �` obtained from Vs by
restriction. By proper base change in étale cohomology, the isomorphism class of Vs,`

only depends on the image of s in S(F`). In particular the set
{Vs,` | s 2 S(Z[1/N])} / ⇠=

is finite, so there is no hope of proving nondensity by restricting to the subgroup �` for
a single ` 6= p. Instead the heart of the Lawrence-Venkatesh method lies in the insight
that the restriction of Vs to �p moves enough when s 2 S(Z[1/N]) varies, provided that
the family X! S has big monodromy.

4.2. The role of p-adic Hodge theory. To make this precise Lawrence and
Venkatesh suggest to apply p-adic Hodge theory: without entering in too much detail, let
me simply say that it associates to every finite-dimensional crystalline representation V
of �p a triple

Dcris(V) := (VdR,'V, h
•V)

of a finite-dimensional Qp-vector space VdR, an endomorphism 'V 2 EndQp(VdR) and
a filtration h•VdR of VdR by vector subspaces (not necessarily stable under 'V). Such
triples are called filtered isocristals in the literature, but in this introduction we will
informally call them p-adic Hodge structures.2 Rather than defining the functor Dcris let
me only mention what it does to the representations in question. To do so consider the
vector bundle [r]⇤OA with the connection r induced by the canonical derivation on OA.
There is a well-defined direct summand

E⇢ [r]⇤OAZp

associated to the local system E and stable under r. For s 2 S(Z[1/N]) the representa-
tion Vs is crystalline since Xs has good reduction at p. Then Faltings’s étale-de Rham
comparison theorem [Fal89, theorem 5.6], which should be thought as de Rham theorem
over the p-adic numbers, gives

Dcris(Vs) = (Hd
dR(Xs ⇥Qp, E), 's, Hodge filtration)

where 's is the endomorphism induced by the Frobenius operator on crystalline coho-
mology via the de Rham-crystalline comparison theorem. This should give the idea of
how to prove that the representations Vs move. In a sense to be made precise below,
one identifies the de Rham cohomology groups for s and s0 close enough by integrating
the Gauss-Manin connection. It then remains to show that the Hodge filtration moves

2The name ‘filtered isocrystal’ is unfortunate as the filtration is not made by subisocrystals but
mere vector subspaces. Moreover, we will consider filtrations on filtered isocrystals made by filtered
subisocrystals: the name ‘bifiltered isocrystals’ would be as confusing as imprecise.
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enough, i.e. the associated period mapping has large enough image, which will be implied
by the hypothesis of big monodromy.

Note that the semisimplication filtration V•
s on Vs induces a filtration Dcris(V•)

on Dcris(Vs) which is stable under the crystalline Frobenius. This operation is compatible
with taking the associated graded, leading to the following commutative diagram:

8
<

:

filtered global
Galois representations

crystalline at p

9
=

;

8
<

:

graded global
Galois representations

crystalline at p

9
=

;

⇢
filtered crystalline

local Galois representations

� ⇢
graded crystalline

local Galois representations

�

⇢
filtered p-adic

Hodge structures

� ⇢
graded p-adic

Hodge structures

�

restrict to �p

graded

restrict to �p

graded

Dcris Dcris

graded

To prove that S(Z[1/N]) is not Zariski dense, it will be enough to show that the fibers
of the map

S(Z[1/N]) 3 s 7�! isomorphism class of grDcris(V
•
s)

are not dense.

4.3. Parallel transport. Consider the d-th relative de Rham cohomology group

V := Hd
dR(XZp/SZp ;⇡

⇤(E,r))
where ⇡ : X ! A is the projection. This vector bundle V comes equipped with the
Gauss-Manin connection that I still denote r. Fix a point o 2 S(Z[1/N]) and consider
the residue disk

⌦ = {s 2 S(Zp) | s ⌘ o mod p}.
Since S(Fp) is finite, it suffices to show that the intersection ⌦\ S(Z[1/N]) is not Zariski
dense for any such residue disk. Working on ⌦ has the advantage that the Gauss-Manin
connection can be integrated on ⌦: there is a natural isomorphism of K-vector spaces

fs : Vs = Hd
dR(Xs ⇥Qp, E)

⇠�! Vo = Hd
dR(Xo ⇥Qp, E).

The filtration on Vo induced by the Hodge filtration on Vs via fs is by definition the
image of s via the p-adic period mapping

�p : ⌦ �! Flagt(Vo)

where Flagt(Vo) denotes the variety of flags on Vo whose type t is the type of the flag
underlying the Hodge filtration. Define an equivalence relation on ⌦ by putting

s ⇠ s0 if grDcris(V
•
s) ⇠= grDcris(V

•
s0).

The equivalence classes then give rise to certain constructible subsets Z ⇢ Flagt(Vo),
and we win as soon as we show that the preimage ��1

p (Z) of each of these subsets is
not Zariski dense in ⌦. The Ax-Lindemann property of period mappings proved by
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Bakker-Tsimerman [BT19], or rather its p-adic version given in [3, §7] following [LV20,
lemma 9.3], says that for this it will be enough to show that

• �p has a Zariski dense image in Flagt(Vo), and
• dimZ + dimSQ 6 dimFlagt(Vo).

It is time to pay for the careless job done so far. The period mapping �p will never

have a Zariski dense image in Flagt(Vo), for the simple reason that I forgot all the extra
structures that E comes with. Indeed, over a finite extension K of Qp the vector bundle E
splits into a direct sum of line bundles

E|AK
=

M

�2��0

L�

and the connection decomposes accordingly. So over K the image of �p is contained in

H :=
Y

�2��0

Flagt�(H
d
dR(Xs ⇥K,L�)).

Suppose to start the argument above all over again with all the extra structures in place.
The Ax-Lindemann property for period mappings implies that it is enough to show that

• �p has a Zariski dense image in H, and
• dimZ + dimSQ 6 dimH,

for each of the equivalence classes Z ⇢ H mentioned above. The Zariski-density in H

of the image of �p is now a consequence of the assumption that the family X ! S
has big monodromy with respect to the tuple of consisting of the characters in the
orbit ��0. It remains to bound the dimension of the equivalence classes Z mentioned
above. A generalization of [LV20, proposition 10.6] yields such an upper bound in terms
of a combinatorial function and of the dimension of the centralizer of the crystalline
Frobenius '0. In view of this, to have the needed inequality

dimZ + dimSQ 6 dimFlagt(Vo)

the centralizer of '0 must be very small compared to dimH. This is achieved by letting r
go to infinity.



CHAPTER 3

Sheaf convolution on abelian varieties

In this chapter I introduce the main ingredients entering the proof of the Big Mon-
odromy criterion in section 3.5 of chapter 2. This constitutes the bulk of the paper [2]
in collaboration with A. Javanpeykar, T. Krämer and C. Lehn. One would expect to see
topology at work in such a proof, like in [Bea86] or in [LV20, §9], but the reader willing
to see loops appearing will be utmost deceived. The strategy followed here, inspired from
[LS20], will be to compare the monodromy group with another group, in a spirit similar
to the relation between monodromy and the generic Mumford-Tate groups in a variation
of Hodge structures. The ‘other group’, arguably outlandish, will be the Tannaka group
for the convolution product of perverse sheaves on an abelian variety. I will therefore
begin with a brief introduction to perverse sheaves.

Let k be a field of characteristic 0 and ` a prime number.

1. Perverse sheaves on abelian varieties

1.1. Perverse sheaves. A Q̄`-sheaf F (for the étale topology) on a variety X over k
is constructible if there is a partition of X on locally closed subsets on which F is locally
constant.1 The category of constructible Q̄`-sheaves on X is Q̄`-linear and abelian, hence
it makes sense to consider the derived category Db

c(X, Q̄`) made of bounded complexes
of Q̄`-sheaves with constructible cohomology. The category Db

c(X, Q̄`) is not abelian.
However, inspired by the work of Goresky and MacPherson on the intersection homol-
ogy of a singular topological space, Beilinson, Bernstein, Deligne and Gabber [BBD82]
discovered an abelian subcategory

Perv(X, Q̄`) ⇢ Db
c(X, Q̄`)

whose objects are called perverse sheaves. To define them, say first that P 2 Db
c(X, Q̄`)

is semiperverse if its cohomology sheaves Hi(P) satisfy

dimSuppHi(P) 6 �i for all i 2 Z.

Then P is called a perverse sheaf if P and its Verdier dual are semiperverse.

Example. If X is smooth of dimension d and L is an `-adic local system on X, then
L[d] is a perverse sheaf: L[d] is semiperverse because it is concentrated in degree �d and
so is its Verdier dual R Hom(L[d], Q̄`(d)[2d]) = L_(d)[d] being of the same shape.

1Strictly speaking, one should write lisse instead of locally constant, or locally constant for the
pro-étale topology.

29
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The category Perv(X, Q̄`) is abelian and Q̄`-linear. Moreover any object is an iterated
extension of finitely many simple objects. For instance, given a d-dimensional smooth
subvariety Y ⇢ X, the perverse sheaf

�Y := i⇤Q̄`[d]

is simple, where i : Y ,! X is the closed immersion.

1.2. Convolution of perverse sheaves. Let A be an abelian variety over k and
let me apply the above discussion with X = A. The sum morphism � : A ⇥ A ! A
induces a convolution product

⇤ : Db
c(A, Q̄`)⇥Db

c(A, Q̄`) �! Db
c(A, Q̄`), P1 ⇤ P2 := R�⇤ (P1 ⇥ P2)

Unfortunately the subcategory of perverse sheaves is not stable under the convolution
product, as the next examples shows:

Example. Suppose A is an elliptic curve. As recalled above P = Q̄`[1] is a perverse
sheaf but P ⇤P is not: indeed Hi(P ⇤P) = 0 for |i+1| > 2 and Hi(P ⇤P) is the constant
sheaf of A of value Hi+2(E, Q̄`) for i = 0,�1,�2. In particular,

SuppH0(P ⇤ P) = 1 > 0.

Roughly speaking this is the only issue that may occur. To explain this, recall that
for any perverse sheaf P on A,

�(A,P) :=
X

i2Z
(�1)i dimQ̄`

Hi(A,P) > 0.

Indeed, over k = C this was observed by Franecki and Kapranov [FK00, corollary 1.4];
the general case can be reduced to the complex case by choosing a model over some
algebraically closed subfield of k which embeds into the complex numbers. The additivity
of the Euler characteristic in short exact sequences then implies that perverse sheaves of
Euler characteristic zero, such as P ⇤ P in the above example, form a Serre subcategory

S(A, Q̄`) := {P 2 Perv(A, Q̄`) | �(A,P) = 0} ⇢ Perv(A, Q̄`)

inside the abelian category of perverse sheaves. Let T(A, Q̄`) ⇢ Db
c(A, Q̄`) be the full

subcategory of sheaf complexes whose perverse cohomology sheaves2 are in S(A, Q̄`); its
objects will be called negligible sheaf complexes. With this notation the natural functor

Perv(A, Q̄`) := Perv(A, Q̄`)/S(A, Q̄`) ,�! Db
c(A, Q̄`) := Db

c(A, Q̄`)/T(A, Q̄`)

is faithful. The convolution product descends to the quotient Db
c(A, Q̄`) and preserves

the subcategory Perv(A, Q̄`). With respect to this product

⇤ : Perv(A, Q̄`)⇥ Perv(A, Q̄`) �! Perv(A, Q̄`),

the category Perv(A, Q̄`) is a Tannaka category. The internal characterization of Tannaka
categories furnishes us with a fiber functor

! : C := Perv(A, Q̄`) �! Vect(Q̄`).

2The derived category of Perv(A, Q̄`) turns out to be equivalent to Db
c(A, Q̄`). This furnishes us

with a perverse cohomological functor pHi : Db
c(A, Q̄`) ! Perv(A, Q̄`) for each i 2 Z. For instance, a

complex P is perverse if and only if pHi(P) = 0 for all i 6= 0.
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There is no canonical choice of such a fiber functor, but any two fiber functors are
noncanonically isomorphic [DMOS82, theorem 3.2.(b)]. The choice of a fiber functor
such as ! induces an equivalence between C and the category RepQ̄`

(G!(C)) of finite-
dimensional algebraic representations of the affine group scheme

G!(C) := Aut⌦(!)

over Q̄` called the Tannaka group of C. The group scheme G!(C) is proalgebraic as it
is obtained as the limit, over all perverse sheaves P on A, of

G!(P) := Im
�
G!(C)! GL(!(P))

�
⇢ GL(!(P)).

The dimension of an object P 2 C is dimQ̄`
!(P) which does not depend on the chosen

fiber functor. For a smooth closed d-dimesional subvariety i : X ,! A the perverse sheaf

�X := i⇤Q̄`[d]

has dimension (�1)d�top(X) where �top(X) is the topological Euler characteristic of X.

Definition. The Tannaka group of a smooth subvariety X ⇢ A is the algebraic group

GX,! := G!(�X) ⇢ GL(!(�X)).

The most interesting piece of the Tannaka group is the derived subgroup of its connected
component

G⇤
X,! := [G�

X,!,G
�
X,!].

Example. Suppose k algebraically closed and let x 2 A(k). Then,

G{x},! =

(
µr if x has finite order r,

Gm if x has infinite order,

because �{x} has dimension 1 and (�{x})
⇤n = �{nx} for each n > 1.

Example. Let C be a smooth projective curve of genus g > 2 embedded in its
Jacobian A = Jac(C). Then,

G⇤
X,! =

(
Sp2g�2 if C is hyperelliptic,
SL2g�2 otherwise.

acting on its standard representation; see [KW15b, theorem 6.1].

Example. Suppose k = C and consider a smooth cubic threefold X ⇢ P4
C. Its

intermediate Jacobian A is remarkably an abelian variety, as opposed to a mere complex
torus. This is seen identifying A with the Albanese variety of the Fano surface S of lines
on X [CG72]. In this case, the topological Euler characteristic of S is �top(S) = 27, the
Tannaka group of S ⇢ A is the exceptional group

G⇤
S,!
⇠= E6

and !(�S) is the 27-dimensional irreducible representation of E6; see [Krä16].
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It is often convenient to have an explicit fiber functor at hand, but it is not clear how
to define such a functor on the whole category C. To circumvent this, let me introduce
a subcategory C0 ⇢ C. Let k̄ be an algebraic closure of k and let Perv0(A, Q̄`) be the
full subcategory of Perv(A, Q̄`) made of those perverse sheaves P for which all simple
subquotients Q of Pk̄ satisfy

Hi(Ak̄,Q) = 0 for all i 6= 0.

Consider its image

C0 := Perv0(A, Q̄`) ⇢ C := Perv(A, Q̄`).

With this notation, the functor

! : C0 �! Vect(Q̄`), P 7�! H0(Ak̄,P)

is seen to be a fiber functor on C0. Let ⇧(A, Q̄`) = Hom(⇡1(Ak̄, 0), Q̄
⇥
` ) be the group of

continuous characters of the geometric étale fundamental group of the abelian variety A.
For a character � 2 ⇧(A, Q̄`) let L� be the local system of rank 1 with monodromy
representation given by �. For P 2 Perv(A, Q̄`) the perverse sheaf

P� := P⌦Q̄`
L� 2 Perv(A, Q̄`)

is called the twist of P by �. With this notation the generic vanishing theorem says that
there is a finite union S(P) ⇢ ⇧(A, Q̄`) of translates of linear subvarieties (in the sense
of section 3.5 in chapter 2) such that

Hi(A,P�) = 0 for all i 6= 0 and all � 2 ⇧(A, Q̄`)r S(P).

Example. Suppose P = �X := Q̄`[d] for a a d-dimensional smooth subvariety X ⇢ A.
Then S(P) can be taken to be a finite union of torsion translates of linear subvarieties.
That is, with the terminology of section 3.5 in chapter 2, the vanishing

Hi(X,L�) = 0 for all i 6= d

holds for most characters � 2 ⇧(A, Q̄`).

For a perverse sheaf P on A the absolute Galois group Gal(k̄/k) acts continuously on
the Q̄`-vector space H0(Ak̄,P) in a natural way. It is absolutely crucial that this action
preserves the Tannaka group [2, lemma 4.5]:

Proposition. Let P be a perverse sheaf on A such that Hi(Ak̄,Q) = 0 for all simple

subquotients Q of Pk̄ and i 6= 0. Then the natural action of Gal(k̄/k) on H0(Ak̄,P)
normalizes the Tannaka group of the perverse sheaf Pk̄ on Ak̄ with respect to the fiber

functor Q 7! H0(Ak̄,Q).

The previous statement is a consequence of a short exact sequence relating the Tan-
naka group of P and that of Pk̄; see [LS20, lemma 3.7] and [2, theorem 4.3] which are both
based on [DE21]. This short exact sequence is reminiscent of the geometric-arithmetic
short exact sequence of étale fundamental groups

1 �! ⇡ét
1 (X̄, x̄) �! ⇡ét

1 (X, x̄) �! Gal(k̄/k) �! 1,

for a geometrically connected variety X, X̄ = X⇥k k̄ and x̄ a geometric point of X.
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Remark. Convolution of perverse sheaves can be generalized to all commutative
algebraic groups, although extra care is needed as the sum morphism is not any longer a
proper morphism. Over finite fields this led to ground-breaking equidistribution results
such as those in [Kat12] for the additive group and [FFK21] in general.

1.3. Big monodromy from big Tannaka groups. In this section I explain how to
reduce the proof of the Big Monodromy criterion in section 3.5 of chapter 2 to computing
some Tannaka group. With the notation introduced therein I am only going to treat the
case ⇤ = Q̄`: since characters in the statement of the Big Monodromy criterion are all
torsion, the case ⇤ = C is deduced from the case ⇤ = Q̄` by the comparison of the étale
topology with the usual complex topology. So let A be a complex abelian variety and S
a connected smooth complex variety. Inside the constant abelian scheme AS := A ⇥k S
let X⇢ AS be an irreducible closed subvariety which is smooth over S:

X

A AS S

⇡ f

prA prS

Let ⌘ 2 S be the generic point and k̄ an algebraic closure of the function field k = (⌘)
of S. Write

⌘̄ : Spec k̄ �! S

for the so-defined geometric generic point. Recall that the fiber X̄⌘ of Xover ⌘̄ is constant
up to translation if there is a subvariety Y ⇢ A and a point a 2 A(⌘̄) such that X̄⌘ = Y+a.
When X̄⌘ ⇢ AS,⌘̄ is nondivisible, X̄⌘ being constant up to translation is equivalent to the
family X! S being isotrivial.

By the generic vanishing theorem [BSS18, KW15c, Sch15] for most characters
� 2 ⇧(A, Q̄`) the higher direct images Rif⇤⇡⇤L� vanish in all degrees i 6= d, where d
denotes the relative dimension of the family f : X! S. For such � consider the local
system

V� := Rdf⇤⇡
⇤L�.

More generally for an n-tuple of characters � = (�1, . . . ,�n) write V� := V�1� · · ·�V�n

and let ⇢ : ⇡1(S, ⌘̄)! GL(V�,⌘̄) be the corresponding monodromy representation on the
geometric generic fiber. The algebraic monodromy group of V� is defined as the Zariski
closure

M(V�) := Im(⇢) ⇢ GL(V�,⌘̄).

The key remark is to relate this to the Tannaka group of the geometric generic fiber

X := X̄⌘

seen as a smooth subvariety of the abelian variety Ak̄. Let �X = i⇤Q̄`[d] be the constant
sheaf on X shifted in degree �d where i : X ,! Ak̄ is the inclusion. With this notation,
given � such that Rif⇤⇡⇤L� = 0 for i 6= d,

V�,⌘̄ = Hd(X,L�) = H0(Ak̄, �X,�).

Moreover the composite map Gal(k̄/k) ⇣ ⇡1(S, ⌘̄) ! GL(V�,⌘̄) simply defines the nat-
ural linear action of Gal(k̄/k) on V�,⌘̄ = H0(Ak̄, �X,�). In particular, the discussion
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in section 1.2 then shows that the algebraic monodromy group M(V�) normalizes the
Tannaka group

GX,� ⇢ GL(V�,⌘̄).

Definition. Say that X has a simple derived connected Tannaka group if G⇤
X,� is

simple for some (hence every) character � with the above vanishing properties.

The main statement is the following relation between the algebraic monodromy group
and the above Tannaka groups; see [LS20, theorem 5.6] and [2, theorem 4.10]. It is
reminiscent of the relation between the algebraic monodromy group and the generic
Mumford-Tate group for a variation of Hodge structures:

Theorem A. Let S be a smooth integral variety over k, and let X⇢ AS an integral

subvariety such that

(1) the family f : X! S is smooth of relative dimension d, it is not constant up to

translation in A(S), and

(2) the geometric generic fiber X = X̄⌘ ⇢ AS,⌘̄ is nondivisible and has a simple

derived connected Tannaka group.

Then, for most � 2 ⇧(A, Q̄`)n,

G⇤
X,�1
⇥ · · ·⇥G⇤

X,�n
E M(V�).

Theorem A therefore reduces the proof of the Big Monodromy criterion in section 3.5
to computing the Tannaka group of X. This will be the main task of the upcoming
section.

2. Computation of Tannaka groups

Let k be an algebraically closed field of characteristic 0, A an abelian variety of
dimension g over k and X ⇢ A a d-dimensional smooth connected closed subvariety.

2.1. Big Tannaka groups. Consider the perverse sheaf
�X := i⇤Q̄`[d]

and fix a character � 2 ⇧(A, Q̄`) with Hi(X,L�) = 0 for all i 6= d. As discussed above
such a character furnishes us with a fiber functor

! : h�Xi �! Vect(Q̄`), P 7�! H0(A,P⌦ L�),

where h�Xi ⇢ C is the abelian tensor subcategory generated by �X. In particular for the
perverse sheaf P = �X the value of such fiber functor is

V := !(�X) = H0(A, �X ⌦ L�) = Hd(X,L�).

When X ⇢ A is symmetric up to translation in the sense of section 3.3 of chapter 2, then V
comes with a natural symmetric bilinear form ✓ which is induced by Poincaré duality.
This bilinear form is symmetric or alternating depending on the parity of d, and it is
preserved by the action of the group GX,� as in [KW15a, lemma 2.1]. Let G�

X,� ⇢ GX,�

be the connected component of the identity and
G⇤

X,! := [G�
X,�,G

�
X,�]

its derived group, which is a connected semisimple algebraic group.
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Definition. Say that the Tannaka group GX,� of X is big if the derived group of its
connected component of the identity is

G⇤
X,� =

8
><

>:

SL(V) if X is not symmetric up to translation,
SO(V, ✓) if X is symmetric up to translation and d is even,
Sp(V, ✓) if X is symmetric up to translation and d is odd.

The main theorem of this section is the following computation of Tannaka groups.

Main theorem. Suppose X ⇢ A has ample normal bundle, dimension d < (g�1)/2,
and (?) in section 3.3 of chapter 2 holds. Then the following are equivalent:

(1) X is nondivisible, not a symmetric power of a curve and not a product;

(2) The Tannaka group GX,� is big.

Thanks to the discussion in section 1.3 the main theorem above implies the Big Mon-
odromy criterion in section 3.5 of chapter 2. As we will see in a moment the numerical
condition (?) prevents the occurence as Tannaka group of the exceptional groups E6

and E7, and of some low-dimensional spin representations. Similarly to the Big Mon-
odromy criterion, the preceding statement is substantially sharp for simple abelian vari-
eties and can be applied in the following special cases:

Corollary. Suppose X ⇢ A is nondivisible and one of the following holds:

(1) X is a curve generating A and g > 4;

(2) X is a surface with ample normal bundle which is neither a product nor the

symmetric square of a curve, and e 6= 27, g > 6;

(3) X is a complete intersection of ample divisors and d < (g � 1)/2.

Then the Tannaka group GX,� is big.

When X is a complete intersection of ample divisors, then |e| 6= 27, 56 holds automat-
ically, and X is not a symmetric power of a curve nor a product. Before describing the
ingredients of the proof of the main theorem, let me mention the following observation
to illustrate the information captured by Tannaka groups:

Fact. Suppose that X ⇢ A has ample normal bundle and d < g/2. If GX,� is big,

then the sum morphism Sym2(X)! X+X is birational.

This follows from the observation that the direct image of the constant sheaf under
the sum morphism is related to the decomposition of V ⌦ V 2 RepQ̄`

(GX,�). In fact,
Larsen’s alternative yields a necessary and sufficient criterion for the Tannaka group to
be big, using only the decomposition of the direct image of the constant sheaf under the
sum morphism; see [2, corollary 3.8]. However, it seems hard to control this direct image
in the generality needed for the main theorem, so the proof of the main theorem follows
a different route that will be described in the next section.

2.2. Sketch of the proof. The first step in the proof of the main theorem from the
previous section is to show that under the given assumptions, the algebraic group G⇤

X,�

is simple [2, theorem A]:
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Theorem B. Suppose X ⇢ A has ample normal bundle and is nondivisible. Then

for g > 3 the following are equivalent:

(1) The algebraic group G⇤
X,� is not simple;

(2) There are smooth positive-dimensional subvarieties X1,X2 ⇢ A such that the

sum morphism induces an isomorphism

X1 ⇥X2
⇠�! X.

A smooth projective curve C ⇢ A generating A has ample normal bundle, thus the
algebraic group G⇤

C,� is simple for g > 3. When g = 2 the simplicity of G⇤
C,� remains

open. More generally theorem B implies that G⇤
X,� is simple when X ⇢ A is nondivisible

with ample normal bundle and the natural morphism Alb(X) ! A is an isogeny. By
Debarre’s Barth-Lefschetz theorem for abelian varieties [Deb95, theorem 4.5] this is the
case as soon as d > g/2 or when X is a complete intersection of ample divisors and d > 2.

The proof of theorem B relies deeply on results of Krämer linking characteristic cycles
on the cotangent bundle of A and representation theory [Krä22, Krä21]. Over k = C,
a look at characteristic cycles of the corresponding complex DA-modules shows that the
representation !(�X) 2 RepQ̄`

(G⇤
X,!) is minuscule in the sense that its weights form a

single orbit under the Weyl group of G⇤
X,!. There are only few nontrivial minuscule

representations V of a simply connected simple algebraic group G, all of which are listed
below:

Dynkin type G V dimV

An SLn+1 r-th wedge power
�n+1

r

�

Bn Spin2n+1 spin 2n

Cn Sp2n standard 2n

Dn Spin2n standard of SO2n 2n

Dn Spin2n half-spins 2n�1

E6 E6
smallest nontrivial

or its dual 27

E7 E7 smallest nontrivial 56

The dimension of !(�X) is the absolute value of the topological Euler characteristic
of X. Recall that if X ⇢ A is symmetric up to a translation, then !(�X) carries a
nondegenerate bilinear form preserved by the action of G⇤

X,�. Moreover, this pairing is
symmetric if d is even and alternating if d is odd; see [KW15a, lemma 2.1]. This rules
out the occurence of E6 for symmetric subvarieties; note that the group E6 appears as
the Tannaka group of the Fano surface in the intermediate Jacobian of a smooth cubic
threefold, but d = (g � 1)/2 here because d = 2 and g = 5. Similarly, the group E7

preserves a nondegenerate alternating bilinear form on its 57-dimensional irreducible
representation, so subvarieties X with G⇤

X,�
⇠= E7 must be odd-dimensional. However,

a direct geometric argument shows that this does not happen for d = 1. In higher
dimension I do not know any such example and it seems plausible that there should not
be any.
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Altogether, to prove that the Tannaka group is big and conclude the proof of the
main theorem from section 2.1, it suffices to exclude wedge powers and spin representa-
tions. Concerning wedge powers, in contrast to the situation for hypersurfaces studied
by Lawrence and Sawin in [LS20], one cannot rule them by numerical arguments for
subvarieties of higher codimension. In fact, wedge powers do appear:

Example. Let C ⇢ A be a smooth projective curve of genus n and r > 2 an integer.
Suppose that the sum morphism Symr C ! X := C + · · · + C ⇢ A is an isomorphism.
Then,

G⇤
X,�
⇠= Altr SLn := Im(SLn ! SL(Altr Q̄n

` )) and !(�X) = Hd(X,L�) ⇠= Altr Q̄n
` .

However we show that this is the only possible case [2, theorem B]:

Theorem C. Suppose X ⇢ A has ample normal bundle and is nondivisible. Then

for d < (g � 1)/2 the following are equivalent:

(1) There are integers r and n with 1 < r 6 n/2 such that G⇤
X,�
⇠= Altr(SLn)

and !(�X) is the r-th wedge power of the standard representation.

(2) There is a nondegenerate irreducible smooth projective curve C ⇢ A such that

• X = C+ · · ·+C ⇢ A is the sum of r copies of C, and

• the sum morphism Symr C! X is an isomorphism.

Concerning spin representations, recall that for N > 3 the group SON(Q̄`) admits a
double cover

SpinN(Q̄`) �! SON(Q̄`)

by the spin group. The spin group is a simply connected algebraic group and admits
a faithful representation SN 2 RepQ̄`

(SpinN(Q̄`)), the spin representation of dimension
dimSN = 2n where n = bN/2c. The behavior of this representation depends on the
Dynkin type [FH91, §20]:

Bn: If N = 2n+ 1 is odd, then the spin representation SN is irreducible.

Figure 1. Dynkin diagram of type Bn.

Dn: If N = 2n is even, then SN
⇠= S+

N�S�
N splits as the direct sum of two irreducible

representations called the half-spin representations. They both have dimension
dimS+

N = dimS�
N = 2n�1 but are not isomorphic to each other, they are only

related by an outer automorphism of the spin group. The dual of the half-spin
representations and the center of the spin group are given by the following table:

dual of S+
N center of Spin2n(Q̄`)

n even S+
N Z/2Z⇥ Z/2Z

n odd S�
N Z/4Z

For n = 2m+1 odd, the half-spin representations are faithful. For n = 2m even,
the half-spin representation S± is self-dual and the natural pairing is symmetric
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if m is even and alternating if m is odd. The images of Spin4m(Q̄`) via the
half-spin representations

Spin±4m(Q̄`) ⇢ GL(S±
4m)

are called the half-spin groups. They are isomorphic to each other and fit
in the following diagram of isogenies given by dividing out the subgroups of
Z(Spin4m(Q̄`)) ⇠= Z/2Z⇥ Z/2Z:

Spin4m(Q̄`)

Spin�4m(Q̄`) SO4m(Q̄`) Spin+4m(Q̄`)

SO4m(Q̄`)/± 1

Figure 2. Dynkin diagram of type Dn.

We show that spin or half-spin groups do not occur for smooth nondivisible subvari-
eties of high enough codimension [2, theorem C]:

Theorem D. Suppose that X ⇢ A has ample normal bundle, is nondivisible and has

dimension d < (g � 1)/2. Then the pair (GX,�,!(�X)) is not isomorphic to any of the

above spin or half-spin groups with their spin or half-spin representations unless

(G⇤
X,!,!(�X)) ⇠= (Spin±4m(Q̄`),S

±
4m) for some m 2 {3, . . . , d},

in which case X has topological Euler characteristic of absolute value |e| = 22m�1
and is

symmetric up to a translation, d�m is even and d > (g � 1)/4.

The main theorem in section 2.1 now follows by combining theorems B, C, D, and
from this we also obtain the Big Monodromy criterion section 3.5 of chapter 2 by the
analog of the theorem of the fixed part given by theorem A.



CHAPTER 4

Stein spaces in rigid geometry

A complex manifold is Stein if it can be embedded holomorphically in some Cn as a
closed subspace. It is the complex-analytic analogue of the notion of an affine variety in
algebraic geometry. It would be tempting to say that if a complex algebraic variety is
Stein, then it is affine; that is, one could choose an embedding as above to be given by
polynomial functions. This is false, as a classical example of Serre shows. In this chapter
I broach the analogous question over Qp and more generally over any non-Archimedean
field. This will start by defining what a Stein space in the non-Archimedean context
following the paper [7] in collaboration with J. Poineau. Then I will discuss the non-
Archimedean analogue of Serre’s example as in [4, 5]. Finally I will present some results
obtained with J. Poineau [8] showing that the affine and Stein notions are way closer in
the non-Archimedean framework than in the complex one.

1. Affine versus Stein in complex geometry

1.1. Complex Stein spaces. Stein spaces have their origin in the Mittlag-Leffler
theorem: if one prescribes the principal parts of a meromorphic function on a domain of
the complex plane, then there exists a meromorphic function defined on that domain hav-
ing exactly those principal parts. It was clear to Cousin that already in dimension 2 this
does not hold for an arbitrary domain X ⇢ C2: for instance it fails for the complement H
of

{(z1, z2) 2 C2 : |z1| 6 1
2 , |z2| > 1

2} ⇢ {(z1, z2) 2 C2 : |z1|, |z2| < 1}
in the unit bidisk. In the language of sheaves developed by Leray and implemented by

z1

z2

Figure 1. The domain H.

Cartan and Serre, the problem of Cousin is reformulated as follows: let OX resp. MX

be the sheaf of holomorphic resp. meromorphic functions on X. In this framework, a
39
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prescription of principal parts of a meromorphic function on X can be seen as a global
section c of the quotient sheaf MX/OX. In turn, finding a meromorphic function on X with
such principal parts corresponds to the existence of a global section f of MX mapping
to c via the linear map H0(X,M) ! H0(X,MX/OX). Now the short exact sequence of
sheaves

0 �! OX �!MX �!MX/OX �! 0

yields a long exact sequence of cohomology groups:

H0(X,OX) H0(X,MX) H0(X,MX/OX)

H1(X,OX) H1(X,MX) H1(X,MX/OX) · · ·
�

and the existence of the above f is equivalent to the vanishing �(c) = 0. In particular the
Cousin problem for X can be solved for all c 2 H0(X,MX/OX) if H1(X,OX) = 0. In this
special case of a domain of C2 the vanishing H1(X,OX) = 0 implies, for each coherent
sheaf F on X,

Hq(X,F) = 0 for all q > 1.

The celebrated theorem B of Cartan states that this vanishing result holds more generally
for Stein spaces and it characterizes them. Recall that a complex space X is said to be
Stein if it is

• holomorphically separable, that is, for distinct points x, y 2 X there is a holo-
morphic function f on X such that f(x) 6= f(y);

• holomorphically convex, that is, for each compact subset K ⇢ X, the holomorphic
convex hull

K̂X = {x 2 X : |f(x)| 6 sup
K

|f | for all f 2 H0(X,OX)}

is compact.
Examples of Stein spaces are Cn, disks, products of Stein spaces and closed subspaces of
Stein spaces. Conversely Narasimhan’s embedding theorem states that any Stein space
(under a mild finiteness condition) admits a closed embedding in Cn for some n > 1.

Example. An example of space which is not Stein is X = C2 r {0}. This can be
seen by showing that the cohomology group H1(X,OX) does not vanish. Alternatively,
since any holomorphic function on X extends to C2, the holomorphic convex hull of the
compact subset

K = {(x, y) 2 C2 : max{|x|, |y|} = 1} ⇢ X = C2 r {0}

is the closed bi-disk deprived of the origin, hence not compact.

1.2. Comparison with affine varieties. These results surely inspired Serre while
developing the theory of coherent sheaves for the Zariski topology over an algebraic vari-
ety [Ser55]. The notion analogous to Stein complex space is that of an affine algebraic
variety, that is, a variety admitting a closed embedding in some affine space An. Serre’s
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version of Cartan’s theorem B then says that X is affine if and only if for each coherent
sheaf F on X,

Hq(X,F) = 0 for all q > 1.

When k = C it is natural to compare the two notions. In this case for a complex algebraic
variety X let Xan denote the underlying complex space. When X is proper (that is X(C)
is compact) Serre’s GAGA theorem says that for each coherent sheaf F and each q > 0
the natural map

(1.1) Hq(X,F) �! Hq(Xan,Fan)

is an isomorphism. When X is not proper, this is no longer true: the map (1.1) is in
general not injective nor surjective. The lack of surjectivity is not surprising: the vector
space Hq(Xan,Fan) comes equipped with a topology for which it is complete, thus its
dimension as a complex space is never countable infinite; on the other hand the dimension
of Hq(X,F) is always countable. As a result, for X = A2 r {0} and F= OX the map
(1.1) is not surjective.

Producing an example where (1.1) is not injective is more subtle. In view of the above
cohomological characterizations of affine varieties and Stein spaces, it would be enough
to find a non-affine variety X which is Stein, that is, the underlying complex space Xan

is Stein. This is a classical example by Serre: consider a complex elliptic curve or, more
generally, a complex abelian variety A. A rank 1 connection on A is then a couple

(L,r) with L a line bundle on A, r : L! ⌦1
A ⌦L a connection.

Isomorphism classes of rank 1 connections on A are parametrized by the so-called uni-

versal vector extension A\ of A. Given rank 1 connections (L,r) and (L0,r0) on A the
formula

s⌦ s0 7�! r(s)⌦ s0 + s⌦r0(s0)

defines a connection on L⌦L0, thus leading to a group law on A\. The line bundle un-
derlying a rank 1 connection is algebraically trivial, hence the forgetful map (L,r) 7! L

takes values in the dual abelian variety Ǎ. According to a theorem of Atiyah, any alge-
braically trivial line bundle on A admits a connection, thus the forgetful map is surjective.
These considerations lead to the following short exact sequence of algebraic groups:

0 �! V (H0(A,⌦1
A)) �! A\ �! Ǎ �! 0.

Here V (H0(A,⌦1
A)) stands for the complex vector space H0(A,⌦1

A) seen as an algebraic
group and the morphism V (H0(A,⌦1

A)) ! A\ associates to a global differential form !
on A the rank 1 connection (OA, d + !) where d : OA ! ⌦1

A is the canonical derivation.
Connections on abelian varieties are all integrable, thus for a rank 1 connection (L,r)
one can consider its monodromy representation

⇢L,r : ⇡1(A, 0) �! GL(L0) = C⇥

where ⇡1(A, 0) is the topological fundamental group of A. This sets up a biholomorphism

A\,an ⇠�! Hom(⇡1(A, 0),C
⇥), (L,r) 7�! ⇢L,r

usually called Riemann-Hilbert correspondence. The complex manifold

Hom(⇡1(A, 0),C
⇥) ⇠= (C⇥)2g where g = dimA
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is Stein, hence so is A\,an. On the other hand the algebraic variety A\ is not affine:
otherwise Ǎ would be affine, since the quotient of an affine algebraic group by a normal
subgroup is so. Actually more is true: any algebraic function on A\ is constant. This
extra information lets one give an example where (1.1) is not injective.

Example. Let X = A\ and let Y ⇢ X be a closed affine subvariety, for instance any
fiber of the forgetful map A\ ! Ǎ. If F ⇢ OX is the ideal sheaf defining Y, then the
short exact sequence 0! F! OX ! OY ! 0 yields a long exact sequence of cohomology
groups

H0(X,F) = 0 H0(X,OX) = C H0(Y,OY)

H1(X,F) H1(X,OX) = 0 H1(Y,OY) = 0

where the vanishing of H1(X,OX) can be found in [Col98, Lau96]. In particular,
if dimY > 0, then the cohomology group H1(X,F) does not vanish and the map (1.1) is
not injective.

Following Simpson [Sim94a, Sim94b] the Riemann-Hilbert correspondence can be
seen more generally as an isomorphism between the de Rham and the Betti moduli space.
To fix ideas let C be a complex smooth projective curve of genus g > 1. For r > 1 consider
the (coarse) moduli space MdR,r of rank r vector bundles on C endowed with a (necessarily
integrable) connection. The Riemann-Hilbert correspondence here is incarnated by a
biholomorphism

Man
dR,r

⇠�! Man
B,r.

Here MB,r is the GIT quotient of the affine variety Hom(⇡1(C, x),GLr) parametrizing
group morphisms ⇡1(C, x)! GLr(C) under the action of GLr by conjugation. Again, it
is not hard to see that the variety MdR,r is not quasi-affine, while GIT ensures that MB,r

is. In particular MdR,r is a Stein non-affine variety.

1.3. Relation with Hilbert’s fourteenth problem. As pointed out by Neeman
[Nee88] this construction can be adapted to give counter-examples to Hilbert’s four-
teenth problem as extended by Zariski. Recall that Hilbert’s fourteenth problem asks
if, given a linear algebraic group G acting on an affine variety X, the algebra �(X,OX)G

of G-invariant regular functions is finitely generated. This is true if G is reductive (as
shown by Hilbert) but it is false for G = A13 acting on X = A32 as famously shown
by Nagata; let me mention the beautiful alternative counter-example for G = A3 acting
on X = A18 by Totaro [Tot08]. In a rather different direction Zariski [Zar50] proved
that for a normal surface X over a field k of characteristic 0 the algebra of regular func-
tions �(X,OX) is finitely generated. Rees showed that this is false in dimension > 3.
Following Neeman, a counter-example can be produced as follows. Let A\ be the uni-
versal vector extension of a complex abelian variety A. Let L be an ample line bundle
on A\ and

X = V (L_)r e(A\)

the total space of L_ deprived of its zero section e : A\ ! V (L_). By ampleness of L
the variety X is seen to be quasi-affine, that is, admitting an open immersion into an
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affine variety. The variety X is Stein, as any principal C⇥-bundle over a Stein space.
Neeman shows that a Stein quasi-affine variety Y is affine if and only if �(Y,OY) is
finitely generated. This is clearly not the case for X: if it were affine, then A\ would be
affine too.

2. Stein spaces in rigid geometry

2.1. Rigid geometry. The first trace of Tate’s rigid analysis can be found in a
letter of Serre of July 31, 1959 [Cor15]:

Il paraît que vous faites des choses rupinantes avec les courbes elliptiques sur
les p-adiques (j non entier), m’a raconté Lang; vous savez faire marcher ce
que nos pères appelaient les “fonctions loxodromiques” sur les p-adiques.

Given a complex elliptic curve E Serre is alluding to the partial uniformization C⇥ ! E
obtained by writing E as a quotient C⇥/qZ for some |q| > 1. Tate noticed that this is
given by explicit power series that, after opportune manipulation, converge p-adically
and give a bijection

E(Cp) ⇠= C⇥
p /q

Z with |q| > 1

where E is any elliptic curve over Cp whose j-invariant is not integral. The driving force
behind his foundation of rigid analysis was endowing both sides of the above equation
with a natural structure of analytic space over Cp so that the above bijection would
become an analytic isomorphism. As nowadays there are several approaches to rigid
analytic geometry: here I will take the point of view of Berkovich [Ber90, Ber93], as it
is closer to the complex intuition.

Given a non-Archimedean field K, understood to be complete and non-trivially val-
ued, analytic spaces over K are build by gluing local models, like balls for real manifolds,
affine varieties for algebraic varieties, . . . Similarly to algebraic geometry here local mod-
els are given by some kind of K-algebras. More precisely, a Banach K-algebra is said to
be affinoid if it can be written as a quotient of a Tate algebra,

K{z1/r1, . . . , zn/rn} =

(
f =

X

↵2Nn

|c↵|z↵ : c↵r
↵ ! 0 as |↵|!1

)
,

where I used the notation z↵ = z↵1
1 · · · z↵n

n and r↵ = r↵1
1 · · · r↵n

n for ↵ = (↵1, . . . ,↵n) 2 Nn

and real numbers r1, . . . , rn > 0. Such a Tate algebra is endowed with the norm

kfkr = max
↵2Nn

|c↵|r↵

and a quotient K{t1/r1, . . . , tn/rn}! A is endowed with the quotient norm k · kA. The
role of the spectrum of a ring in algebraic geometry is played by the Banach spectrum
of an affinoid algebra A: it is a locally ringed space X = (|X|,OX) whose underlying
topological space is the set

|X| = M(A) =

⇢
x : A! R+

����
x is a multiplicative seminorm with
|f(x)| := x(f) 6 kfkA for all f 2 A

�

endowed with the coarsest topology for which the map M(A) ! R+, x 7! |f(x)| is
continuous for any f 2 A. The topological space M(A) is compact Hausdorff, which is
rather surprising since the field K is not locally compact in general. Rather than giving
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the precise definition of the sheaf of functions and of the gluing procedure, let me describe
some examples that it will be useful to bare in mind.

Example. In Berkovich’s framework, analytic spaces have a natural boundary (which
may be empty) similarly to real manifolds with boundaries. Given an affinoid alge-
bra (A, k · kA), the quotient

Ã = {f 2 A : kfkA 6 1} / {f 2 A : kfkA < 1}

of the subring of power-bounded elements by its ideal of topological nilpotent elements
is an algebra of finite type over the residue field k of K. There is a reduction map

red: M(A) �! Spec(Ã)

which is anti-continuous, that is, the preimage of an open subset is closed. In particular,
the subset

IntM(A) = red�1({x 2 X : x closed}) ⇢ M(A)

is open and its complement @M(A) is the boundary of M(A). In the case of the Tate
algebra A = K{z} one has Ã = k[t]. In the affine line A1 = Spec Ã over k all points are
closed save the generic one ⌘. It is not hard to see that the preimage red�1(⌘) is made
of one single point in M(A) given by the so-called Gauss norm

K{z} �! R+,
1X

n=0

cnz
n 7�! max

n2N
|cn|.

Example. Let X be an algebraic variety over K. Similarly to the complex case one
can functorially associate to X a K-analytic space Xan. Its underlying set is

|Xan| = {(x, | · |) : x 2 X, | · | : (x)! R+ absolute value extending the one on K},

where (x) stands for the residue field at a point x 2 X. Note that here it is vital to
see X as a scheme, so that the points x 2 X are not necessarily closed. In fact, unlike the
complex picture, here the forgetful map ⇡ : |Xan| ! |X|, (x, | · |) 7! x is surjective: this
stems from to the fact that any non-Archimedean field can be embedded in a strictly
larger complete field. The set |Xan| is endowed with the coarsest topology for which the
forgetful map ⇡ is continuous and, for each open subset U ⇢ X and any f 2 �(U,OX),
the map

⇡�1(U) �! R+, (x, | · |) 7�! |f(x)|

is continuous. The topological space |Xan| is locally compact, thus it makes sense to talk
about uniform convergence. When X is reduced, this lets one describe analytic functions
on an open subset U ⇢ |Xan| as locally uniform limits of rational functions without
poles. When X is smooth, the topological space |Xan| is locally contractible [Ber99],
which is again a quite remarkable property considering the totally disconnected nature
of K. Even more remarkably, if E is an elliptic curve with integral j-invariant, then Ean is
contractible. Instead, when the j-invariant is not integral (and K is algebraically closed,
to fix ideas) then Ean is not simply connected and its topological universal cover is Gan

m :
this explains why Tate’s uniformization worked only in this case.
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Figure 2. On the left an elliptic curve with integral j-invariant and on
the right one with non-integral j-invariant. Drawings by Mattias Jonsson.

Example. Let R be the ring of integers of K and X a flat separated R-scheme of
finite type with generic fiber X. Then one associates to X a compact subspace X⌘ ⇢ Xan

called the Raynaud generic fiber of X. A point (x, | · |) in Xan lies in X⌘ if and only
if the morphism Spec(x) ! X extends to a morphism of R-schemes Spec(x)� ! X
where (x) is the residue field at x and (x)� ⇢ (x) its ring of integers with respect to
the absolute value | · |. When X= A1

R then

X⌘ = {x 2 A
1,an
K : |z(x)| 6 1} ⇢ A

1,an
K

where z is the coordinate function on A1
K.

2.2. What is a Stein space? In the context of rigid analytic geometry, the ana-
logue of Serre’s cohomological characterization of affine varieties is called Tate’s acyclicity
theorem. Let X be an affinoid space over K, that is, the Banach spectrum of an affinoid
algebra. Then,

(2.1) Hq(X,F) = 0 for any coherent sheaf F on X and all q > 1.

Unlike the theorem of Serre such a cohomological vanishing does not characterize affinoid
spaces: this is the beginning of the story. Of course, there are plenty of non-compact
spaces (hence non-affinoid) that satisfy (2.1): for instance, the analytic space attached
to any affine variety does. This led Kiehl to translate the complex notion of Stein
exhaustion by Stein compact blocks into the rigid analytic jargon: he calls an analytic
space X quasi-Stein if it can be covered1 by affinoid domains

X0 ⇢ X1 ⇢ · · · ⇢ Xn ⇢ Xn+1 ⇢ · · ·

such that the restriction map �(Xn+1,OX)! �(Xn,OX) has a dense image for any n > 0.
For instance compact quasi-Stein spaces are exactly affinoid spaces. Kiehl goes on prov-
ing that quasi-Stein spaces satisfy the cohomological vanishing (2.1). But the reason
why he hesitated in calling them Stein is that he could not prove that (2.1) characterizes
them. In fact, it does not: Liu later exhibited compact analytic spaces satisfying (2.1)

1Technically one should ask this to be an admissible cover in Tate’s terminology, or a G-cover in
Berkovich’s one.
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without being affinoid (hence not quasi-Stein). First, Liu exhibited a non-affinoid com-
pact analytic space whose normalization is affinoid [Liu88]; this construction has been
recently reinterpreted by Temkin [Tem22]. Second, Liu showed in [Liu90] (taking into
account some amendment in [7]) that a compact analytic space X satisfies (2.1) if and
only if

• it is holomorphically separable, that is, given distinct points x, y 2 X there is an
analytic function f 2 �(X,OX) such that |f(x)| 6= |f(y)|;

• Hq(X,OX) = 0 for all q > 1.
As a consequence he produced a non-affinoid compact domain of the unit closed bidisk
satisfying (2.1).This leads naturally to the following definition:

Definition. Let X be an analytic space countable at infinity. If X is compact, then
it is said to be Stein if it satisfies (2.1). In general, it is said to be Stein if it can be
covered by compact Stein domains

X0 ⇢ X1 ⇢ · · · ⇢ Xn ⇢ Xn+1 ⇢ · · ·

such that the restriction map �(Xn+1,OX)! �(Xn,OX) has a dense image for any n > 0.

The main advantage of adopting Berkovich’s language is that the underlying topo-
logical subspace is locally compact. This lets one translate verbatim in rigid analysis the
concept of a holomorphically convex analytic space. With J. Poineau we took profit of
this to prove the following characterization of Stein spaces [7, theorems 1.11, 1.12]:

Theorem A. Let X be a separated K-analytic space which is countable at infinity.

Then the following are equivalent:

(1) X is Stein;

(2) the cohomological vanishing (2.1) holds for the base-change of X to any complete

extension of K;

(3) X is holomorphically separable, holomorphically convex and Hq(X,OX) = 0 for

all q > 1.

Moreover, when X is without boundary, the preceding conditions are equivalent to:

(4) X is holomorphically separable and holomorphically convex;

(5) X is quasi-Stein in the sense of Kiehl.

In (2) I ignore whether it suffices to test (2.1) only on the base field K. The reason
why Kiehl could not access to such a characterization is undoubtedly the lack of local
(sequential) compactness of rigid spaces à la Tate which he was using. The above theorem
can be applied to prove that given a finite surjective morphism X! Y between analytic
space without boundary X is (quasi-)Stein if and only if Y is: this is not at all evident
from the definition of quasi-Stein because of Liu’s first counter-example. Later on, we
realized in [8, corollary 4.3] that the equivalence with (4) and (5) holds under a very
mild hypothesis on the boundary (instead of being empty): it suffices that X admits a
morphism X ! S without relative boundary where S is quasi-Stein. This shows that
in Liu’s counter-examples the boundary is of a rather bizarre nature compared to that
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of affinoid spaces. On other direction, Lütkebohmert proved that under the finiteness
condition
(2.2) sup

x2X
dimH(x)⌦

1
X,x ⌦OX,x H(x) < +1

where H(x) is the completed residue field at a point x 2 X, an analytic space X without
boundary is Stein if and only if it admits a closed embedding in some analytic affine
space An,an. Note that the condition (2.2) is exactly the one appearing in Narasimhan’s
embedding theorem for complex Stein spaces.

3. Stein vs. affine in rigid geometry

The main question in this section is: is there a non-affine variety on a non-Archimedean
field whose associated analytic space is Stein?

3.1. The case of algebraic groups. To get started with, an algebraic variety X
over a non-Archimedean field K is said to be Stein if the associated analytic space Xan is
so. In this case Xan obviously satisfies the condition (2.2) so being Stein is the same as
admitting an analytic closed embedding Xan ,! An,an. In view of Serre’s example in the
complex case explained in section 1.2 it is natural to start by looking at the universal
vector extension of an abelian variety. Unlike the complex case, here the affine and the
Stein notions are equivalent more generally for algebraic groups [4, main theorem]:

Theorem B. An algebraic group over K is Stein if and only if it is affine.

Of course to prove such a statement one has to understand analytic functions on
algebraic groups. For an algebraic group G, the K-algebra �(G,OG) is of finite type. Let

⇡G : G �! Gaff := Spec�(G,OG)

be the canonical morphism. Theorem B is a straightforward consequence of the following
result [4, theorem A]:

Theorem C. All analytic functions on G come from Gaff by precomposing with ⇡G.

Employing Brion’s nomenclature an algebraic group G over K is said to be anti-

affine if �(G,OG) = K. For instance, as recalled above, when K is of characteristic 0, the
universal vector extension of a non-zero abelian variety is anti-affine. In the anti-affine
case, the above theorem states that anti-affine algebraic groups over K do not admit
non-constant analytic functions. This is of course in contrast with the complex situation.
One of Brion’s motivation in studying anti-affine algebraic groups was understanding the
example of Neeman given in section 1.3. Let G be an anti-affine extension of an abelian
variety A and H an ample line bundle on A. Let P denote the total space of p⇤H_ deprived
of its zero section where p : G! A is the projection. By ampleness the variety P is quasi-
affine and Brion shows that the ring �(P,OP) is not Noetherian [Bri09, theorem 3.9].
The equivalence between affine and Stein holds even in this more intricate example [4,
theorem C]:

Corollary. Let G be an algebraic group, L a line bundle on G and P the total space

of L deprived of its zero section. Then the following are equivalent:

G is affine () G is Stein () P is affine () P is Stein.



48 4. STEIN SPACES IN RIGID GEOMETRY

Let me try to explain the content of theorem C by sketching its proof when G is
the universal vector extension of an abelian variety A over K and the characteristic of K
is 0. Actually to simplify notation G will be the universal vector extension of the dual
abelian variety Ǎ so that G is a vector extension of A. Also the superscript ‘an’ will be
dropped. The proof has a rather different flavour depending on the reduction behaviour
of the abelian variety A.

Totally degenerate reduction. The case of totally degenerate reduction is perhaps
the more intuitive, since it is quite close to the complex picture. When A is a complex
abelian variety, the biholomorphism

G
⇠�! Hom(⇡1(A(C), 0),C

⇥)

given by the Riemann-Hilbert correspondence admits an explicit description. To explain
it let exp: V := LieA ! A(C) be the exponential map and identify ⇤ := Ker exp with
the fundamental group of A(C). With this notation Hodge theory identifies H0(Ǎ,⌦1)
with the conjugated complex vector space V̄. Let ✓⇤ : ⇤! V̄ be the inclusion. Then

G(C) = (V ⇥ V̄)/⇤.

This can be mimicked over the non-Archimedean field K when A has totally degerate
reduction. In this case, passing to finite extension of K, the universal cover of A is
a K-torus T and the topological fundamental group is identified with a free abelian
group ⇤ ✓ T(K) of rank dimT. Consider the torus Ť with group of characters ⇤ and !Ť
the dual of its Lie algebra. Then the universal vector extension G can be identified with
the quotient (T⇥ V (!Ť))/⇤ thanks to the results in [5]. Here the action is given by

�.(t, v) = (�t, v + ✓⇤(�))

where ✓⇤(�) = �⇤ dz
z and � 2 ⇤ is seen as a character � : Ť ! Gm. Now an analytic

function on G is an analytic function on T⇥V (!Ť) invariant under the action of ⇤. Since
the image of ✓⇤ : ⇤ ! !Ť spans the K-vector space !Ť and accumulates to 0, such an
invariant function is necessarily constant.

Good reduction. Suppose that A has good reduction, that is, it is the generic fiber of
an abelian scheme A. In this case the topology offers no information as the topological
space underlying the universal vector extension G is contractible. When K has 0 residue
characteristic Coleman proved that all algebraic functions on each successive thickening
of the universal extension of A are constant. Passing to the limit then lets one conclude.
When K is a valued extension of Qp the situation is more interesting. There is no loss
of generality in supposing K algebraically closed. The idea is to replace the topological
universal cover by the ‘perfectoid’ one

Ã= lim �⇥p
A,

where the transition maps are the multiplication by p. Then the universal vector exten-
sion of the dual abelian scheme Ǎ can be identified with the quotient (Ã⇥ V (!Ǎ))/TpA

where !Ǎ is the dual of the Lie algebra of Ǎ and

TpA= lim �
n>1

A[pn]
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is the Tate module, where the torsion subgroups are seen as finite flat group schemes.
The action of TpA is given by some morphism of group schemes ✓TpA: TpA! V (!Ǎ).
Following an insight of Coleman and Faltings, the K-linear map

✓TpA: TpA(R)⌦Zp K �! !Ǎ⌦R K = !Ǎ

is surjective and leads to the Hodge-Tate decomposition of H1
ét(A,Qp). Moreover the

analytic functions on A\ are those on V (!Ǎ) invariant under the translation by TpA(R).
Since the image of ✓TpA spans the K-vector space !Ǎ and accumulates to 0, such functions
are necessarily constant.

Intermediate reduction. Finally, when A has intermediate reduction, the proof mixes
the two techniques. The main ingredient is the study of the universal cover of G carried
out in [5]. To explain this recall that the universal cover of A is an extension

0 �! T �! E �! B �! 0

where T is a K-torus and B an abelian variety with good reduction. The topological
fundamental group of A is identified with a free abelian group ⇤ ✓ E(K) of rank dimT.
The universal cover of the dual abeloid variety is a similar extension

0 �! Ť �! Ě �! B̌ �! 0

where B̌ is the dual of B and Ť is the K-torus with group of characters ⇤. Then the
universal cover G̃ of G is the push-out of B\ ⇥B E along the K-linear map !B̌ ! !Ě

induced by the projection Ě ! B̌. Here !B̌ is the dual of the Lie algebra of B̌, and
similarly for !Ě. In other words, the following diagram is exact and commutative:

0 V (!B̌) B\ ⇥B E E 0

0 V (!Ě) G̃ E 0

The topological fundamental group of G is identified with a subgroup of G̃(K) mapping
isomorphically to ⇤ via the projection G̃ ! E. Once again analytic functions on G
correspond to analytic functions on the universal cover G̃ invariant under the fundamental
group and a careful analysis lets one show that the latter are all constant.

3.2. General results. The case of algebraic groups pushed me to look further.
Together with J. Poineau we obtained the following criterion in [8, theorem A]:

Theorem D. A Stein variety X is quasi-affine and, for any closed subscheme Y of

dimension 6 1, the restriction map �(X,OX) ! �(Y,OY) is surjective. Furthermore, if

the ring �(X,OX) is Noetherian, then X is affine.

Recall that a variety X is quasi-affine if it admits an open embedding into an affine va-
riety. Since the K-algebra of regular functions on an algebraic group is finitely generated,
theorem D implies theorem B directly. More interestingly, a result of Goodman-Landman
says that an algebraic variety X is affine if it is quasi-affine and for each subvariety Y ⇢ X
the restriction map is �(X,OX) ! �(Y,OY) is surjective. Therefore theorem D in the
case of surfaces yields the following:
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Corollary. An algebraic surface is Stein if and only if it is affine.

Example. Suppose K of characteristic 0 and let C be a smooth projective curve of
genus > 1 over K. For r > 1 let MdR,r be the moduli space of vector bundles with a
connection on C. As recalled in section 1.2 the variety MdR,r is not quasi-affine. Therefore
theorem D implies that MdR,r is not Stein, whereas it was the case over C.

As for theorem B, proving theorem D requires to understand analytic functions on
algebraic varieties. The crucial point is the following approximation theorem [8, theo-
rem B]:

Theorem E. Let F be a semi-reflexive coherent sheaf on a variety X. Then �(X,F)
is dense in �(Xan,Fan).

When X is reduced the topology on �(Xan,Fan) is that of uniform convergence;
when X is not reduced, as in complex analysis, the topology is finer and I will not
define it here. Also recall that an OX-module F is semi-reflexive if the natural homomor-
phism F! F__ is injective. Therefore theorem E applies in particular to vector bundles
and coherent sheaves of ideals, and I ignore if its conclusion holds for any coherent sheaf
on X. Theorem E is quite easy to prove when X admits a proper morphism onto an affine
variety: this is a rather strong condition, and certainly not the ‘generic’ case. Finally,
note that theorem E implies theorem C at once.

Theorem E is the breaking point of the analogy between complex and rigid geometry:
roughly speaking, there are fewer rigid analytic functions with essential singularities
than holomorphic ones. For instance, there are plenty of non-constant holomorphic
functions on the universal vector extension of a complex abelian, whereas in the non-
Archimedean case analytic functions are all constant (as the algebraic ones). Mirroring
this discrepancy, the proof of theorem E has to rely on some technique unavailable in
the complex framework: with no big surprise, it is the involvement of models over the
ring of integers R of K. To state the result let $ 2 R r {0} be a topological nilpotent
element and for an R-scheme S let Sn be the closed subscheme S⇥R (R/$nR) of S. The
density result lying at the core of the method is the following [8, theorem C]:

Theorem F. Let D be an effective divisor in a proper and flat R-scheme X. If D
is flat over R, then for any semi-reflexive coherent OX-module F the natural map

�(Xr D,F) �! proj lim
n2N

�(Xn r Dn,F),

is injective, and has a dense image.

Recall that the topology on proj limn2N �(Un,F) is defined to be the prodiscrete one.
Let us relate this to theorem E. Let U be the generic fiber of U= XrD and consider the
Raynaud generic fiber U⌘ ⇢ Uan. With this notation theorem F states that any analytic
section of Fan over the compact subset U⌘ can be globally approximated by algebraic
sections in �(U,F).

Example. In general theorem F fails to be true when the flatness of D is discarded.
Suppose for simplicity R discretely valued and let k be the residue field of R. Consider
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the blow-up ⇡ : X! P1
R at a k-rational point of the special fiber. Let D be the excep-

tional divisor. The completion of the open subset U := Xr D along its special fiber is
isomorphic to the completion of the affine line A1

R along its special fiber. Thus
proj lim

n2N
�(Un,OX) ⇠= R{z} := proj lim

n2N
R/$nR[z],

where z is the coordinate function on the affine line A1
R. However the generic fiber of U

is the projective line P1
K over K so by flat base change �(U,OX) ,! �(P1

K,OP1) = K. In
particular, the image of

R = �(U,OX) ,�! proj lim
n2N

�(Un,OX) ⇠= R{z},

is not dense.

For theorem F to be of any use, given a variety U over K, one has to be able to produce
a model U of U which is the complement of an effective Cartier divisor D flat over R in
a proper flat R-scheme X. We obtain the following precise statement [8, theorem D]:

Theorem G. Let D be an effective Cartier divisor in a proper variety X. Then,

there is an effective Cartier divisor D in a proper flat R-scheme X and an isomorphism

of K-schemes X ⇠= X⇥R K inducing an isomorphism D ⇠= D⇥R K.

In order to construct such an X and D, the first reflex is to take any proper flat
model X of X and the Zariski closure D of D in X. The closed subscheme D is without
doubt flat over R but may fail to be a Cartier divisor. To repair such an issue, one
considers the blow-up X0 of X in D. The inverse image D0 of D in X0 is thus Cartier,
but will not be flat over R anymore in general. Looking at the Zariski closure in X0 of
the generic fiber of D0 brings us back to square one. Not to be caught in a vicious circle,
one has to choose carefully the blow-up of X to perform. Namely, if I is the sheaf of
ideals of OX defining the closed subscheme D, then we consider the blow-up ⇡ : X0 ! X
of X in the ideal I+$nOX, for some big enough n > 1. The strict transform D0 of D
in X0 is shown to be the effective Cartier divisor ⇡⇤D� E, where E is the exceptional
divisor and the minus sign stands for the difference of effective Cartier divisors.

With theorem G under the belt, the proof of theorem E is achieved by arbitrarily
enlarging the compact subset obtained as Raynaud’s generic fiber of the model—a routine
operation.

3.3. Further questions. The results above leave at least three questions without
an answer. The first one was the one I began with:

Question. Is there a non-affine algebraic variety X over K such that Xan
is Stein?

Thanks to the results in this chapter, now we know that if such a variety X exists,
then we may assume that it satisfies the following conditions:

(1) It is integral normal quasi-affine and of dimension > 3.
(2) If Y is a normal affine variety containing X as an open subset, then Y has

to be singular: the complement Y r X is pure of codimension 1 by Hartogs’
phenomenon. If Y were to be smooth, then YrX would be an effective Cartier
divisor and X affine.
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(3) Each closed algebraic subvariety X0 of X of dimension 6 2 is affine.
(4) The ring �(X,OX) is not Noetherian.
(5) The restriction map �(X,OX)! �(C,OC) is surjective for any subvariety C ⇢ X

of dimension 6 1.
It is worth noting that Neeman’s threefold does not give such an example: it satisfies

(1)–(4) but not (5). A weaker question to which I have no answer to offer is:

Question. Is there a variety X over K and a coherent sheaf F on X such that the

natural map H1(X,F)! H1(Xan,Fan) is not injective?

Leaving behind the non-Archimedean world, the first question has its counterpart in
the complex framework:

Question. Is there a non-affine complex algebraic variety X such that Xan
is Stein

and �(X,OX) ⇢ �(Xan,OXan) is dense?

A sought-for example can be assumed to undergo restrictions (1)–(5). Again, Nee-
man’s example X is not of this kind because �(X,OX) ⇢ �(Xan,OXan) is not dense, despite
containing plenty of non-constant functions.
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