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Abstract
Motivated by work of Lawrence, Venkatesh, and Sawin, we show that non-isotrivial
families of subvarieties in abelian varieties have big monodromy when twisted by
generic rank-1 local systems. While Lawrence and Sawin discuss the case of subvari-
eties of codimension 1, our results hold for subvarieties of codimension at least half
the dimension of the ambient abelian variety. For the proof, we use a combination of
geometric arguments and representation theory to show that the Tannaka groups of
intersection complexes on such subvarieties are big.
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1. Introduction
Recently, Lawrence and Venkatesh [40] have developed a technique to prove non-
density of integral points on varieties that are defined over a number field and sup-
port a geometric variation of Hodge structures with big monodromy. They used this
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method to give an alternative proof of the Mordell conjecture and to show nondensity
for hypersurfaces in projective space of a given (high) degree with good reduction
outside a fixed finite set of primes. Later, Lawrence and Sawin [39] applied this strat-
egy to show that (up to translation) any abelian variety over a number field contains
only finitely many smooth ample hypersurfaces with given Néron–Severi class and
good reduction outside a fixed finite set of primes. The main novelty of their work
lies in their way to control monodromy. The arguments of Lawrence and Venkatesh
have a topological flavor. For the Mordell conjecture they rely on a judicious choice
of Dehn twists; for hypersurfaces in projective space they use the computation of
the integral monodromy of the universal family by Beauville [3] (based on the work
of Ebeling [17] and Janssen [27]); see also the discussion by Katz in [29]. Instead,
the approach by Lawrence and Sawin involves Tannaka groups of perverse sheaves
on abelian varieties introduced by Krämer and Weissauer [38]; the relation of these
groups to monodromy is reminiscent of the one between the monodromy group of a
variation of Hodge structures and its generic Mumford–Tate group (see [2]).

With a view towards new arithmetic applications along these lines (see [35]), we
prove a big monodromy theorem for families of subvarieties of higher codimension
in abelian varieties. Our results hold for all subvarieties of codimension at least half
the dimension of the abelian variety. The geometry in this codimension range is very
different from the codimension-1 case in [39], and the results about Tannaka groups
that we obtain on the way may be of independent interest.

1.1. Big monodromy
Let S be a smooth irreducible variety over an algebraically closed field k of char-
acteristic 0. Let A be an abelian variety of dimension g over k. Inside the constant
abelian scheme AS WD A � S, let X � AS be a closed subvariety which is smooth
over S with connected fibers of dimension d . The goal of this paper is to understand
the monodromy of rank-1 local systems on the smooth proper family f W X ! S in
the following diagram:

X

A AS S

� f

prA prS

Our results apply both in the analytic and in the algebraic setup, using topological
local systems with coefficients in FD C for k D C (resp., étale `-adic local systems
with coefficients in FDQ` for a prime `) over an arbitrary algebraically closed field k
of characteristic 0. Let �1.A; 0/ be the topological (resp., étale) fundamental group
with the discrete (resp., profinite) topology, and denote the group of its continuous
characters by
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….A;F/DHom
�
�1.A; 0/;F

�
�
:

In what follows, by a linear subvariety we mean a subset ….B;F/�….A;F/ for an
abelian quotient variety A ↠ B with dim B < dim A. We say that a statement holds
for most � 2….A;F/ if it holds for all � outside a finite union of torsion translates of
linear subvarieties. For � 2….A;F/, let L� denote the associated rank-1 local system
on A. It follows from generic vanishing (see [6], [38], [47]) that for most � the higher
direct images Rif���L� vanish in all degrees i ¤ d ; we consider the local system

V� WD Rdf��
�L�

of rank jej, where e is the topological Euler characteristic of the fibers of X ! S.
More generally, the study of finite étale covers of the subvariety X �AS induced by
finite étale covers of A leads to direct sums

V� WDV�1 ˚ � � � ˚V�n ;

where � D .�1; : : : ; �n/ 2….A;F/n is an n-tuple of characters of the fundamental
group. Using the natural identification ….A;F/n D….An;F/, we will also apply the
terminology most for such n-tuples of characters. Consider for s 2 S.k/ the mon-
odromy representation

� W �1.S; s/�!GL.V�;s/ on the fiber V�;s D
nM
iD1

Hd .Xs;L�i /:

The algebraic monodromy group of the local system V� is the Zariski closure of the
image of �. By construction, it is an algebraic subgroup of

GL.V�1;s/� � � � �GL.V�n;s/�GL.V�;s/:

This upper bound can sometimes be refined. We say that the subvariety X � AS is
symmetric up to translation if there exists a W S!A such that Xt D�Xt C a.t/ for
all t 2 S.k/. In this case, Poincaré duality furnishes a nondegenerate bilinear pairing

��;s W V�;s ˝V�;s �! L�;a.s/

for each � 2….A;F/, because for the dual of a rank-1 local system and for its inverse
image under the translation �a.t/ W A! A, x 7! x C a.t/ we have natural isomor-
phisms

L_� ' Œ�1�
�L�; ��a.t/L� ' L�˝F L�;a.t/:

The pairing ��;s is symmetric if d is even, and alternating otherwise. Since the pairing
is compatible with the monodromy operation on the fiber, it follows that the algebraic
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monodromy group of V� is contained in an orthogonal (resp., symplectic) group in
the two cases. This leads to the following definition.

Definition
We say that V� has big monodromy if its algebraic monodromy group contains the
group G1 � � � � �Gn as a normal subgroup where Gi �GL.V�i ;s/ is defined by

Gi WD

8̂̂
<
ˆ̂:

SL.V�i ;s/ if X is not symmetric up to translation;

SO.V�i ;s; ��i ;s/ if X is symmetric up to translation and d is even;

Sp.V�i ;s; ��i ;s/ if X is symmetric up to translation and d is odd:

Note that the connected component of the algebraic monodromy group of V� is
unaffected by base change along étale morphisms S0! S. To take this into account,
we consider the fiber X N� of X ! S at a geometric generic point N� of S. There are
four obvious cases where the local system V� does not have big monodromy. We say
that X N� �AS; N� is
(1) constant up to a translation if it is the translate of a subvariety Y�A along a

point in A. N�/. In this case, the algebraic monodromy is finite.
(2) divisible if it is stable under translation by a nonzero torsion point x of A. N�/.

In this case, the algebraic monodromy of each V�i is itself a group of block
matrices which is normalized by the group generated by the point x.

(3) a symmetric power of a curve if there is a smooth curve C � AS; N� such that
the sum morphism Symd C! AS; N� is a closed embedding with image X N�
and d � 2. After an étale base change over S, we may assume that C spreads
out to a relative curve C �AS which is smooth and proper over S such that the
relative sum morphism Symd

S C !AS is a closed embedding with image X .
Then we have an isomorphism compatible with monodromy:

Hd .Xs;L�/'Altd H1.Cs;L�/:

(4) a product if there are smooth subvarieties X1;X2 �AS; N� of dimension greater
than 0 such that the sum morphism X1 � X2! AS; N� is a closed embedding
with image X N� . Again, after an étale base change over S we may assume
that Xi spreads out to a subvariety Xi �AS which is smooth and proper over S
such that the relative sum morphism X1 �X2! AS is a closed embedding
with image X . Then we have the Künneth isomorphism which is compatible
with monodromy:

Hd .Xs;L�/'
M

i1Ci2Dd

Hi1.X1;s;L�/˝Hi2.X2;s;L�/:
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If X N� is nondivisible, then condition (1) holds if and only if the family X ! S
is isotrivial (see Corollary 4.8). To avoid the appearance of the exceptional groups E6
and E7 and some low-dimensional half-spin groups, we require a mild assumption on
the topological Euler characteristic.

Assumption 1.1
The topological Euler characteristic e of X N� satisfies

jej ¤ 27 if d � 2 and X is not symmetric up to a translation;

jej ¤ 56 if d � 3 is odd and X is symmetric up to translation;

jej ¤ 22m�1 if d � .g � 1/=4, m 2 ¹3; : : : ; dº has the same parity as d

and X is symmetric up to translation:

Note that jej � g if X N� � AS; N� has ample normal bundle (see Lemma 2.12). We
do not know any example of a smooth subvariety of AS; N� with ample normal bundle
and dimension d < .g � 1/=2 whose Euler characteristic e does not satisfy Assump-
tion 1.1.

MAIN THEOREM (MONODROMY VERSION)
Suppose that X N� � AS; N� has ample normal bundle, dimension d < .g � 1/=2, and
Assumption 1.1 holds. Then the following are equivalent:
(1) X N� is nondivisible, not constant up to translation, not a symmetric power of a

curve, and not a product.
(2) V� has big monodromy for most torsion n-tuples � 2….A;F/n.

Smooth proper subvarieties of a simple abelian variety have ample normal bun-
dle. Therefore, when A is simple, the preceding theorem is as general as it gets
for smooth subvarieties of dimension d < .g � 1/=2, save the finite list of excep-
tions in Assumption 1.1. When A is arbitrary, the theorem can be applied in the fol-
lowing concrete cases.

COROLLARY

Suppose that X N� � AS; N� is nondivisible, not constant up to translation, and one of
the following holds:
(1) X N� is a curve generating AS; N� and g � 4.
(2) X N� is a surface with ample normal bundle which is neither a symmetric square

of a curve nor a product, and e¤ 27, g � 6.
(3) X N� is a complete intersection of ample divisors and d < .g � 1/=2.
Then V� has big monodromy for most n-tuples � 2….A;F/n of torsion characters.
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Indeed, a smooth complete intersection of ample divisors is neither a symmet-
ric power of a curve (Corollary 2.10) nor a product (Remark 6.3) and its topological
Euler characteristic satisfies jej � 2g and jej ¤ 27; 56 (Corollary 2.17 and Proposi-
tion 2.16).

Over k DC, the main theorem in the analytic setup is deduced from the algebraic
one by the comparison between classical and étale topology; the hypothesis that the
characters are torsion is only used here. For the proof in the algebraic setting, we
start as in [39] by relating the algebraic monodromy to the Tannaka group of the
rank-1 local systems in question, seen as perverse sheaves on X N� . The idea is similar
to the study of monodromy groups via Mumford–Tate groups in the complex case
(see [2]). An analogue of the theorem of the fixed part due to Lawrence and Sawin
says that the monodromy will be big if we can show that the Tannaka group of the
geometric generic fiber is big (see Theorem 4.10); note that the property of the family
being symmetric up to translation can be read off from its geometric generic fiber
(Corollary 4.8). Thus, we are left with a question about the Tannaka group of the
geometric generic fiber of our family. In this setting, we will reset our notation and
replace k by an algebraic closure of the function field of S.

1.2. Big Tannaka groups
As before, let A be an abelian variety of dimension g over an algebraically closed
field k of characteristic 0. Let i W X ,! A be the inclusion of a smooth connected
closed subvariety of dimension d . We define the perverse intersection complex

ıX WD i�FXŒd �

as the pushforward of the constant sheaf, shifted in cohomological degree �d so that
it becomes an object of the abelian category Perv.A;F/ of perverse sheaves on A as
in [4]. As we will recall in Section 3.1, the group law on the abelian variety induces
a convolution product on perverse sheaves, and the perverse intersection complex ıX

generates a neutral Tannaka category hıXiwith respect to this convolution. For the rest
of this introduction, we fix a character � 2….A;F/ with Hi .X;L�/D 0 for all i ¤ d .
Such a character exists by generic vanishing. We then have (see [38, Theorem 13.2])
a fiber functor

! W hıXi �!Vect.F/; P 7�!H0.A;P˝ L�/:

Applying this fiber functor to PD ıX, we recover the vector space

V WD !.ıX/DH0.A; ıX˝ L�/DHd .X;L�/:

The automorphisms of the fiber functor are represented by a reductive algebraic
group GX;! WD G!.ıX/ � GL.V/ which we call the Tannaka group of X (see also
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Definition 3.2). The definitions in Section 1.1 with SD Spec.k/ show that if X� A
is symmetric up to translation, then V comes with a natural symmetric bilinear form �

which is induced by Poincaré duality. This bilinear form is symmetric or alternating
depending on the parity of d , and it is preserved by the action of the group GX;! as in
[36, Lemma 2.1]. Let GıX;! � GX;! be the connected component of the identity, and
let

G�X;! WD ŒG
ı
X;! ;G

ı
X;! �

be its derived group, which is a connected semisimple algebraic group.

Definition
We say that the Tannaka group GX;! of X is big if the derived group of its connected
component of the identity is

G�X;! D

8̂̂
<
ˆ̂:

SL.V/ if X is not symmetric up to translation;

SO.V; �/ if X is symmetric up to translation and d is even;

Sp.V; �/ if X is symmetric up to translation and d is odd:

The main theorem from the previous section is obtained by combining the ana-
logue of the theorem of the fixed part by Lawrence and Sawin (Theorem 4.10) with
the following result, whose proof will be the main task of this paper. Again we need to
exclude a finite list of values of the topological Euler characteristic e of X, for which
we refer to Assumption 1.1 with SD Spec.k/ and X DX.

MAIN THEOREM (TANNAKA VERSION)
Suppose that X � A has ample normal bundle, dimension d < .g � 1/=2, and
Assumption 1.1 holds. Then the following are equivalent:
(1) X is nondivisible, not a symmetric power of a curve, and not a product.
(2) The Tannaka group GX;! is big.

The preceding statement can be applied in the following special cases.

COROLLARY

Suppose that X�A is nondivisible and one of the following holds:
(1) X is a curve generating A and g � 4.
(2) X is a surface with ample normal bundle which is neither a product nor the

symmetric square of a curve, and e¤ 27, g � 6.
(3) X is a complete intersection of ample divisors and d < .g � 1/=2.
Then the Tannaka group GX;! is big.
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The Tannaka version of the main theorem also applies when X does not arise
from a family as in Section 1.1, so it is stronger than the monodromy version. We also
note that over the complex numbers both versions apply in many cases where we have
no control on Mumford–Tate groups of the subvarieties. Again, when X is a complete
intersection of ample divisors, then automatically jej ¤ 27; 56, X is not a symmetric
power of a curve nor a product.

1.3. Sum morphisms
Before we describe the proof of the main theorem, let us illustrate the meaning of big
Tannaka groups with a simple application. Let X�A be a subvariety of dimension d .
For any integer r � 1, the sum morphism induces a morphism

Symr X�!Wr.X/ WDXC � � � CX�A

onto the r -fold sum of the subvariety inside the abelian variety. If X� A has ample
normal bundle, or more generally if it is nondegenerate in the sense of Section 2.3
below, then for r < g=d this sum morphism is generically finite onto its image. In
general it will not be birational.

Example
Let C be a smooth projective curve of genus g � 2, seen as a subvariety of its Jacobian
variety AD Pic0.C/ via the Abel–Jacobi embedding for a given basepoint. If C has
gonality > d , then

X WDWd .C/�A

is a smooth subvariety. For r > 1, the map Symr X! Wr.X/ D Wrd .C/ is not
birational. Moreover, the symmetric power Symr X is singular for d > 1 but its
image Wr.X/DWrd .C/ is smooth if C has gonality greater than rd .

In the above example the Tannaka group GX;! is not big for d > 1 (see
Lemma 7.2 below). For subvarieties whose Tannaka group is big, which by our
main theorem is true in most cases, we have the following result.

THEOREM

Let X � A be a smooth subvariety of dimension d with ample normal bundle, and
let r be an integer with 2� r < g=d . If the Tannaka group GX;! is big, then the sum
morphism Symr X!Wr.X/ is birational and for d > 1 its image Wr.X/ is singular.

The key point here is the birationality, which will be shown in Lemma 3.8. Once
the birationality is known, the smoothness of Wr.X/ implies that the sum morphism
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is an isomorphism by Proposition B.4. In particular, Symr X is then also smooth,
so d D 1 by Proposition B.3. The proof of Lemma 3.8 relates the direct image of the
constant sheaf under the sum morphism to the decomposition of wedge or symmetric
powers of V 2 RepF.GX;!/. In fact Larsen’s alternative yields a necessary and suffi-
cient criterion for the Tannaka group to be big, using only the decomposition of the
direct image of the constant sheaf under the sum morphism for r D 2. But it seems
hard to control this direct image in the generality needed for our main theorem, so
for the proof of the main theorem we follow a different route that will be described
in Sections 1.4, 1.5, and 1.6.

1.4. Simplicity of Tannaka groups
The first step in our proof of the main theorem from the previous section will be
to show that under the given assumptions, the algebraic group G�X;! is simple. We
refine the methods in [33, Section 6] to obtain the following simplicity criterion (see
Theorem 6.1).

THEOREM A
Suppose that X�A is nondivisible and has ample normal bundle. Then for g � 3 the
following are equivalent:
(1) The algebraic group G�X;! is not simple.
(2) There are smooth positive-dimensional subvarieties X1;X2 �A such that the

sum morphism induces an isomorphism

X1 �X2
�
�!X:

A smooth projective curve C � A generating A has ample normal bundle, thus
the algebraic group G�C;! is simple for g � 3. When g D 2, the simplicity of G�C;!
remains open. More generally, Theorem A implies that G�X;! is simple when X� A
is nondivisible with ample normal bundle and
(1) the image of the Albanese morphism X! Alb.X/ is nondegenerate in the

sense of Section 2.3, or more generally
(2) the natural morphism ' W Alb.X/! A is an isogeny. By Debarre’s Barth–

Lefschetz theorem for abelian varieties (see [11, Theorem 4.5] or Remark 6.3)
this is the case as soon as d > g=2 or when X is a complete intersection of
ample divisors and d � 2.

Note that situation (2) above is a particular case of (1).
Our proof of Theorem A uses characteristic cycles on the cotangent bundle T�A

and their link with representation theory (see [33], [34]). The idea is roughly as fol-
lows. If the group G�X;! is not simple, then the representation VD !.ıX/ is an exter-
nal tensor product of representations. This allows us to decompose the characteristic



1054 JAVANPEYKAR, KRÄMER, LEHN, and MACULAN

cycle of the perverse sheaf ıX as a Pontryagin product. But for smooth subvarieties the
characteristic cycle is integral and equal to the conormal bundle to X�A. Using our
assumption that the normal bundle is ample, we can then rule out decompositions as
Pontryagin products via computations with Segre classes. For convenience, we recall
some relevant background in Section 5, together with computations for the Dynkin
types A, B, D to be used later. The integrality of the characteristic cycle also implies
that the representation !.ıX/ 2 RepF.G

�
X;!/ is minuscule in the sense that its weights

for a maximal torus form a single Weyl group orbit, due to the following general result
(see Corollary 5.15).

FACT

Let P 2 Perv.A;F/ be a perverse sheaf whose characteristic cycle is integral and
not stable under any nontrivial translation on the abelian variety. Then !.P/ is a
minuscule representation of G!.P/.

There are only few nontrivial minuscule representations V of a simply connected
simple algebraic group G, all of which are listed in Table 1. The dimension of !.ıX/

is the absolute value of the topological Euler characteristic of X. Recall that the sub-
variety X� A is symmetric up to a translation if and only if the vector space !.ıX/

carries a nondegenerate bilinear form preserved by the action of G�X;! , and this pairing
is symmetric if d is even and alternating if d is odd (see [36, Lemma 2.1]). This rules
out the occurrence of E6 for symmetric subvarieties; note that the group E6 appears as
the Tannaka group of the Fano surface in the intermediate Jacobian of a smooth cubic
threefold, but d D .g � 1/=2 here because d D 2 and gD 5. Similarly, the group E7
preserves a nondegenerate alternating bilinear form on its 57-dimensional irreducible
representation, so subvarieties X with G�X;! ' E7 must be odd-dimensional. However,
for d D 1 this does not happen as we show by a direct geometric argument (see Corol-
lary 3.11), and in higher dimension we do not have any such example. Altogether, to
prove that the Tannaka group is big and conclude the proof of the main theorem from

Table 1. Minuscule representations V of simply connected simple groups G.

Dynkin type G V dim V

An SLnC1 r th wedge power
�
nC1

r

�
Bn Spin2nC1 spin 2n

Cn Sp2n standard 2n

Dn Spin2n standard of SO2n 2n

Dn Spin2n half-spins 2n�1

E6 E6
smallest nontrivial
or its dual 27

E7 E7 smallest nontrivial 56



THE MONODROMY OF SUBVARIETIES ON ABELIAN VARIETIES 1055

Section 1.2, we are left with wedge powers and spin representations. The next two
sections will characterize the occurrence of the former and rule out the latter.

1.5. Wedge powers
In contrast to the situation for hypersurfaces studied by Lawrence and Sawin in [39],
one cannot rule out the occurrence of nontrivial wedge powers for subvarieties of
higher codimension by numerical arguments. In fact, wedge powers do appear, but
we will use geometric arguments to obtain the following complete classification (see
Theorem 7.3).

THEOREM B
Suppose that X � A is nondivisible, has ample normal bundle, and d < .g � 1/=2.
Then, the following are equivalent:
(1) There are integers r , n with 1 < r � n=2 such that G�X;! ' Altr.SLn/

and !.ıX/ is the r th wedge power of the standard representation.
(2) There is a nondegenerate irreducible smooth projective curve C�A such that

� XD CC � � � CC�A is the sum of r copies of C, and
� the sum morphism Symr C!X is an isomorphism.

1.6. Spin representations
Recall that for N � 3 the group SON.F/ admits a double cover by the spin
group SpinN.F/, a simply connected algebraic group with a faithful representa-
tion SN, the spin representation. We have dimSN D 2

n for n D bN=2c, and if N
is odd, then the spin representation is irreducible. If N D 2n is even, then the spin
representation SN ' SCN ˚ S�N splits as the direct sum of two irreducible repre-
sentations called the half-spin representations. They both have dimension 2n�1. For
odd nD 2mC1, the half-spin representations are both faithful and dual to each other;
for even n D 2m, they are both self-dual and their images Spin˙4m.F/ � GL.S˙4m/
are called half-spin groups. We show that spin or half-spin groups do not occur for
smooth nondivisible subvarieties of high enough codimension (see Theorem 8.3).

THEOREM C
Suppose that X � A is nondivisible, has ample normal bundle, and d < .g � 1/=2.
Then the pair .GX;! ;!.ıX// is not isomorphic to any of the above spin or half-spin
groups with their spin or half-spin representations unless�

G�X;! ;!.ıX/
�
'
�
Spin˙4m.F/;S

˙
4m

�
for some m 2 ¹3; : : : ; dº;

in which case X has topological Euler characteristic of absolute value 22m�1 and is
symmetric up to a translation, d �m is even and d � .g � 1/=4.
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The main theorem in Section 1.2 now follows by combining Theorems A, B, C,
and from this we also obtain the main theorem in Section 1.1 by the analogue of the
theorem of the fixed part given by Theorem 4.10.

1.7. Conventions and notation
We always work over a field k of characteristic 0. A variety over k is a separated finite
type k-scheme, and a subvariety is a closed subvariety unless said otherwise. An alge-
braic group is a finite type group scheme over a field. For a locally free sheaf E (of
finite rank) on a variety X, we denote by P.E / WD Proj Sym� E _ the associated pro-
jective bundle. If A is an abelian variety over k, we denote by Lie A its tangent space
at the identity and define PA WD P..Lie A/_/. For a smooth projective connected vari-
ety X, we denote by Pic0.X/ the connected component of the identity in its Picard
scheme. This is an abelian variety, and we denote by Alb.X/ its dual abelian variety.
Given a locally closed subvariety Y of a variety X over k, let CY=X denote the conor-
mal sheaf of Y in X, that is, the OY-module I=I2, where I is the ideal sheaf of the
closed immersion i W Y!U for a suitable open subset U�X.

2. Gauss maps, positivity, and nondegeneracy
In this section, we recall from the view of conormal geometry various notions of
positivity and nondegeneracy for subvarieties in abelian varieties. We denote by A an
abelian variety over an algebraically closed field k of characteristic 0.

2.1. The stabilizer and the abelian variety generated
The stabilizer of a subvariety X � A is the algebraic subgroup StabA.X/ � A
whose k-points are

StabA.X/.k/D
®
a 2A.k/

ˇ̌
XC aDX

¯
:

Write Stab.X/D StabA.X/ if the ambient abelian variety is clear from the context.

Definition 2.1
We say X�A is nondivisible if it is integral and Stab.X/ is trivial.

If X � A is a connected subvariety, then the abelian subvariety generated by X
is defined to be the smallest abelian subvariety hXi � A containing the image of the
difference morphism X�X!A, .x; x0/ 7! x � x0. Note that this image X�X�A
is connected because X�X is so.

2.2. Conormal varieties and Gauss maps
Let us briefly recall the notion of conormal varieties and Gauss maps, which will be
crucial later. For abelian varieties, the cotangent bundle 	1A is a trivial bundle with
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fiber H0.A;	1A/D .Lie A/_ of rank gD dim A. Consider the projection

p W P.	1A/�! PA D P
�
.Lie A/_

�
:

If

V

� P.	1A/ is a .g�1/-dimensional integral subvariety, then for dimension reasons
the morphism


 VWD pj

VW

V

�! PA

is either dominant (and hence generically finite) or not dominant. We say that

V

is
clean in the first case and negligible in the second case. In the clean case, we denote
by deg

V

the generic degree of the generically finite dominant morphism 
 V, and in
the negligible case, we formally put deg

V

D 0.
We want to apply these definitions to conormal varieties, for which we need some

more notation. For any subvariety X � A, its conormal sheaf CX=A fits in the exact
sequence of coherent sheaves

CX=A
i
�!	1AjX �!	1X �! 0:

If X�A is regular immersion, then CX=A is locally free, and if X is moreover integral,
then i is injective. If X is smooth, then all three terms are locally free and the sequence
is short exact.

Definition 2.2
For a reduced subvariety X�A its (projective) conormal variety

V

X � P.	1A/ is the
closure of P.CXreg=A/ in P.	1A/. The Gauss map of X is the morphism


X WD 


V

X W

V

X �! PA:

Let prX W

V

X!X be the projection, and let

V

X;x WD pr�1X .x/ for x 2X.k/.

Remark 2.3
As we almost exclusively work with the projective conormal varieties and not with
affine ones, we will usually drop the adjective projective. We clearly have the follow-
ing:
(1) The morphism 
Xj

V

X;x W

V

X;x! PA is injective.
(2) If X is smooth at a point x, then

V

X;x D P.CX=A;x/, where CX=A;x denotes the
fiber at x of the conormal bundle.

(3) If X is smooth, then

V

X D P.CX=A/.

The effect of isogenies on conormal varieties is easy to control. For an integer
e � 1 and an integral subvariety X�A, we denote by Œe�.X/�A its image under the
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isogeny Œe� W A! A. We will always endow this image with the reduced subscheme
structure, and we denote by eX WD Œe�jX W X! Œe�.X/ the finite morphism obtained by
restriction of the isogeny to the given subvariety. By abuse of notation, we also denote
by Œe� WA� PA!A� PA the induced morphism. Then we have the following.

LEMMA 2.4
Let X � A be an integral subvariety, and let Y D Œe�.X/ � A for an integer e � 1.
Then we have an identity of cycles

Œe��

V

X D deg.eX/ �

V

Y:

In particular, if the subvariety X�A is nondivisible, then Œe��

V

X D

V

Y.

Proof
The first claim follows easily from the fact that by construction the conormal vari-
ety to any integral subvariety is integral. The second claim is then clear because the
morphism eX W X!Y is birational if X is nondivisible.

COROLLARY 2.5
Let X� A be a smooth integral subvariety, and let YD Œe�.X/ for an integer e � 1.
Then the fibers of prY W

V
Y!Y are pure of dimension codimA Y� 1.

Proof
Lemma 2.4 gives a commutative diagram

V

X

V

Y

X Y

Œe�

prX prY

eX

where the horizontal arrows are finite morphisms. If X is smooth, then the fibers of
the morphism prX W

V

X!X are pure of dimension codimA X� 1.

2.3. Positivity and nondegeneracy of subvarieties
We now discuss various notions of positivity and nondegeneracy for subvarieties of
an abelian variety. We say that an integral subvariety X � A is degenerate if there
exists a surjective morphism � W A! B of abelian varieties with

dim�.X/ <min¹dim B;dim Xº:

Otherwise, we say that X is nondegenerate. Any closed point on the abelian variety
is a nondegenerate subvariety, and so is the abelian variety itself. Also note that if
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the abelian variety A is simple, then any integral subvariety is nondegenerate. We
say that a proper integral variety X is of general type if there is a proper birational
morphism � W Y! X from a smooth proper connected variety Y with big canonical
bundle. For instance, we have the following:
(1) An integral effective divisor X�A is nondegenerate if and only if it is ample.

A curve X � A is nondegenerate if and only if it generates A. See [11, Sec-
tion 1, Examples].

(2) For any elliptic curve E and any simple abelian variety B of dimension at
least 3, Debarre has constructed in [11, p. 189] a smooth subvariety

X�AD E�B

of codimension 2 which is nondegenerate but whose normal bundle is not
ample. The smooth subvariety is obtained by choosing a general ample divi-
sor D� B and intersecting E�D with a general ample divisor in A.

(3) For i D 1; 2, let Ai be an abelian variety, and let Xi � Ai be a nondegenerate
integral subvariety. By considering the projections onto the factors, one sees
that X1 �X2 �A1 �A2 is of general type but degenerate.

Remark 2.6
Nondegeneracy is invariant under isogenies. Let f W A!A0 be an isogeny of abelian
varieties over k. Then an integral subvariety X � A is nondegenerate if and only
if f .X/�A0 is.

In what follows, we often consider the sum morphism � W X�Y!A for reduced
subvarieties X;Y � A, and we denote by XC Y � A its image. For nondegenerate
subvarieties, we have the following result by Debarre.

LEMMA 2.7
Let X;Y�A be integral subvarieties.
(1) If X is nondegenerate, then

dim.XCY/Dmin
®
dim.X/C dim.Y/;dim.A/

¯
:

(2) If X and Y are both nondegenerate, then so is XCY�A.

Proof
See [13, Corollary 8.11].

The relations between the various notions of nondegeneracy and positivity that
will play a role in this paper are summarized in the following diagram where for a
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smooth proper subvariety X ⊊ A we denote by NX=A its normal bundle:

X smooth and
NX=A ample

Gauss map 
X is
a finite morphism

X nondegenerate

X of general type

Stab.X/
finite

V

X clean

X smooth

A simple
X smooth

More precisely, we have the following.

THEOREM 2.8
Let X�A be an integral subvariety with 0 < dim X< dim A.
(1) The following are equivalent:

(a) The conormal cone

V

X is clean.
(b) The algebraic group Stab.X/ is finite.
(c) The variety X is of general type.

(2) If X is nondegenerate, then Stab.X/ is finite and hXi DA.
(3) If 
X W

V
X! PA is a finite morphism, then X is nondegenerate.

(4) Suppose that X is smooth. Then the normal bundle NX=A is ample if and only
if the Gauss map 
X W

V

X! PA is a finite morphism.
(5) If A is a simple abelian variety and X is of general type, then X is nondegen-

erate. If X is moreover smooth, then NX=A is ample.

Proof
(1) The equivalence (a) , (b) is shown in [52, Theorem 1], while the equivalence
(b) , (c) follows from Ueno’s fibration theorem (see [49, Theorem 3.10]; see also
[1, Theorem 3]).

(2) For the finiteness of the stabilizer, denote by p W A! B WD A=Stab.X/ the
quotient morphism. This quotient morphism is not surjective, since by construction
we have p�1.p.X//D X¤ A. The nondegeneracy of X then forces p W X! �.X/
to be generically finite, and it follows that Stab.X/ is finite as desired. To show
that hXi D A, consider the quotient morphism q W A! A=hXi. The image q.X/
is a point, hence the nondegeneracy of X and the assumption dim X > 0 imply
that dim A=hXi D 0, which shows that we have hXi DA.

(3) We prove the contrapositive. If X � A is degenerate, then by defini-
tion there is a surjective morphism � W A ! B of abelian varieties such that
dim Y<min¹dim B;dim Xº, where Y WD �.X/. We have the following commutative
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diagram of OX-modules with exact rows

.��CY=B/jX .��	1B/jX .��	1Y/jX 0

CX=A 	1AjX 	1X 0

j

" d�

i

where d� is the pullback of differential forms along � . Here i is injective over the
smooth locus Xreg � X, and likewise j is injective over ��1.Yreg/. Indeed, the short
exact sequence

0�! .CY=B/jYreg �!	1BjYreg �!	1Yreg �! 0

of OYreg -modules is locally split because the OYreg -module 	1Yreg is locally free; the
pullback along � of the above short exact sequence hence stays exact. It follows
that " is also injective over the nonempty open subset

U WDXreg \ ��1.Yreg/:

The hypothesis dim Y < dim X implies that the morphism �jU W U ! Yreg is not
generically finite. Thus, for y ranging over a dense open subset of Yreg, the
fiber Z WD ��1.y/ \ U is positive-dimensional. Pick v 2 CY;y nonzero, which
exists because dim Y< dim B. Then

0¤ j.v/ 2
\
x2Z

CX;x :

Thus, if we denote by F WD prX.

�1
X .Œj.v/�/�X the image of 
�1X .Œj.v/�/ under the

projection

V

X!X, then the subset Z is contained in F. This shows that the dimension
of 
�1X .Œj.v/�/ is positive.

(4) Since X is smooth, we have

V

X D P.CX=A/. The normal bundle NX=A is
globally generated, thus the equivalence is [42, Example 6.1.5].

(5) When A is a simple abelian variety, any integral subvariety is nondegenerate,
and the ampleness of the normal bundle of a smooth subvariety X in A follows from
[25, Proposition 4.1].

2.4. Symmetric powers of curves in abelian varieties
We show here that symmetric powers of a (smooth projective) curve C cannot be
embedded as a complete intersection of ample divisors as claimed in Section 1.5.
Recall that the curve C has gonality at least nC 1 if and only if the sum map induces
an isomorphism SymnC!X WD CC� � �CC� Pic0.C/. If so, the normal bundle of X
is ample (see [11, Section 1, Examples (2)]). Imposing further positivity properties to
the normal bundle is far more restrictive.
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PROPOSITION 2.9
Let C � A be a smooth irreducible projective curve such that the sum morphism
SymnC! X WD C C � � � C C � A is an isomorphism for some n � 2. Then C is
nonhyperelliptic of genus g � 3 and the following hold:
(1) If the normal bundle NX=A D V1 ˚ � � � ˚ Vr is a direct sum of ample vector

bundles, then

n� max
iD1;:::;r

rkVi C 1:

(2) The normal bundle NX=A is a direct sum of ample line bundles if and only
if gD 3, nD 2, and A is isomorphic to Pic0.C/.

Proof
By Lefschetz’s principle, we may assume k DC. First of all, the curve C is nonhyper-
elliptic of genus g � 3. Otherwise, C would be symmetric when suitably embedded
in its Jacobian. In particular, the sum morphism would contract the antidiagonal and
thus would not induce an isomorphism SymnC' CC � � � CC.

(1) Arguing by contradiction, suppose that the inequality in the statement does
not hold. Then we can apply the Barth–Lefschetz theorem (see [11, Theorem 4.5]) to
obtain isomorphisms

Hi .A/'Hi .X/; i D 1; 2;

of rational cohomology groups. On the other hand, the computation of cohomology
of symmetric powers of curves [43, (1.2)] yields the following expressions:

H1.X/DH1.SymnC/'H1.Cn/Sn DH0.C/˝H1.C/;

H2.X/DH2.SymnC/'H2.Cn/Sn DAlt2H1.C/˚H0.C/˝H2.C/n�1:

Recalling the equality H2.A/DAlt2H1.A/, we obtain a contradiction.
(2) If C has genus g D 3, then the subvariety CC C� Pic0.C/ is a theta divisor

and hence ample. Conversely, suppose that the normal bundle NX=A is a direct sum
of ample line bundles. We first claim that then A is isogenous to Pic0.C/. Indeed, as
above we have isomorphisms

H1.A/'H1.X/'H1.C/:

We cannot conclude as in (1) because the Barth–Lefschetz theorem here only says
that H2.A/!H2.X/ is injective. Instead, write NX=A DL1˚ � � � ˚Lg�2 for ample
line bundles Li on X. By looking at the short exact sequence

0�! TX �! Lie A˝OX �!NX=A DL1˚ � � � ˚Lg�2 �! 0;
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we see that the line bundles Li are globally generated and

L1˝ � � � ˝Lg�2 'KX; (2.1)

where KX D Alt2	1X is the canonical bundle on X. We identify X with Sym2C and
write � W C � C! X for the quotient morphism. Since � ramifies exactly on the
diagonal 
 of C�C, we have ��KX DKC�C.�
/. Let us fix a point p 2 C.k/ and
consider the embedding f W C! C�C, x 7! .x;p/. Then

f ���KX DKC.�p/: (2.2)

On the other hand, for i D 1; : : : ; g�2, the line bundle Mi WD f
���Li on C is ample

and globally generated. Moreover, the curve C being nonhyperelliptic, we necessarily
have degMi � 3. By combining (2.1) and (2.2) and then by taking degrees, we obtain
the inequality

2g � 3D degKC.�p/D

g�2X
iD1

degMi � 3.g � 2/:

This forces g D 3. For a suitable Abel–Jacobi embedding C ,! Pic0.C/, there exists
an isogeny ' W Pic0.C/!A such that the following diagram commutes:

Sym2C ‚ Pic0.C/

Sym2C X A

�

� '

�

Here the leftmost horizontal arrows are induced by the sum and ‚ � Pic0.C/ is a
theta divisor. The preimage '�1.X/ is smooth, thus its connected components are
irreducible. As ‚ is one of them, the others are ‚C a for a 2 Ker'. Since any two
translates of an ample divisor meet, we have ‚D '�1.X/. But the isogeny ' induces
an isomorphism ‚'X, thus ' must be injective.

COROLLARY 2.10
Let C � A be a smooth irreducible projective curve such that the sum morphism
SymnC! X WD C C � � � C C � A is an isomorphism for some n � 2. Then C is
nonhyperelliptic of genus g � 3 and the following are equivalent:
(1) The subvariety X�A is a complete intersection of ample divisors.
(2) We have gD 3, nD 2, and A is isomorphic to Pic0.C/.

Proof
For complete intersections of ample divisors, the normal bundle is a direct sum of
ample line bundles. Hence, Proposition 2.9(2) applies.
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As an amusing aside, of no use in what follows, note that Proposition 2.9 implies
the classical bound for the gonality of a smooth projective curve C of genus g.

COROLLARY 2.11
The gonality of C is at most .gC 3/=2.

Proof
As already mentioned, the curve C has gonality at least nC 1 if and only if the sum
morphism SymnC! X WD CC � � � C C � Pic0.C/ is an isomorphism, and if this is
the case, then X has ample normal bundle in Pic0.C/. Since the normal bundle has
rank g� n, Proposition 2.9(1) implies n� g� nC 1, that is, nC 1� .gC 3/=2.

In particular, Proposition 2.9(1) is sharp in the two extremal cases—that of an
indecomposable ample normal bundle and that of a sum of ample line bundles.

2.5. Bounds for the topological Euler characteristic
We now pass to some numerics concerning the topological Euler characteristic of
complete intersections. To ease notation below, we define g WD dim A. For a smooth
subvariety X�A, let eX denote its topological Euler characteristic. By definition it is
the top Chern class of the tangent bundle TX of X. Consider the short exact sequence
of vector bundles on X,

0�! TX �! TAjX �!NX=A �! 0:

Since the total Chern class is multiplicative in short exact sequences and the tangent
bundle of A is trivial, we have

c.TX/D c.TAjX/c.NX=A/
�1 D c.NX=A/

�1:

First of all, note that we have the following lower bound whenever the normal bundle
is ample.

LEMMA 2.12
Let X ⊊ A be a d -dimensional smooth subvariety with ample normal bundle. Then

jeXj �max¹g; 2min¹d;b
p
g�1cºº:

Proof
We may suppose k D C. By definition, the inverse of the total Chern class is the
total Segre class. We have jeXj D .�1/

d sd .NX=A/ D sd .N
_

X=A/, where d D dim X
and sd is the d th Segre class. Now the normal bundle NX=A is ample and glob-
ally generated. Since H1.X;C/ ¤ 0, we have jeXj � g by [5, Theorem 4]. We also



THE MONODROMY OF SUBVARIETIES ON ABELIAN VARIETIES 1065

have jeXj � 2
min¹d;b

p
g�1cº according to [18, Proposition 2.4] because the cotangent

bundle of X is nef.1

The previous lower bound is doubtlessly not sharp. Indeed, for a smooth projec-
tive curve X generating A, we have jeXj � 2g�2. For surfaces we have the following.

LEMMA 2.13
Let X�A be a smooth projective surface generating A and with finite stabilizer. Then

eX � 3g � 9:

Proof
Write c1 D c1.TX/ and c2 D c2.TX/ D eX and � D �.X;OX/ as usual. By Theo-
rem 2.8, the surface X is of general type. Thus the Bogomolov–Miyaoka–Yau inequal-
ity gives c21 � 3c2 which is in turn equivalent to 3� � c2 by Noether’s formula.
Write q D h1.X;OX/ and p D h2.X;OX/ so �D 1� q C p. The surface X is mini-
mal, thus we can apply the inequality p � 2q � 4 (see Beauville’s appendix to [10]),
which is equivalent to �� q � 3. Combining these inequalities yields c2 � 3.q � 3/.
Since X generates A by hypothesis, we have q � g which concludes the proof.

When the subvariety is a complete intersection of ample divisors, the previous
lower bounds can be drastically improved. In order to show this, for integers n � 2
and r 2 ¹1; : : : ; n� 1º, consider the following subset of partitions of n,

P.n; r/ WD
®
aD .a1; : : : ; ar/ 2 Z

r
ˇ̌
a1; : : : ; ar � 1; a1C � � � C ar D n

¯
:

Note that P.n; r/ has cardinality
�
n�1
n�r

�
.

LEMMA 2.14
Let X be a complete intersection of ample divisors D1; : : : ;Dr in A. If X is smooth,
then

eX D .�1/
dim X

X
a2P.g;r/

Da11 � � �D
ar
r :

Proof
Since X is a complete intersection of the divisors D1; : : : ;Dr , the normal bundle NX=A

is the direct sum of (the restriction to X of) the line bundles O.D1/; : : : ;O.Dr/. In
particular,

1Beware that in both references the authors adopt the convention dual to the one in [20] for the definition of
Segre classes.
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c.NX=A/D c
�
O.D1/

�
� � � c

�
O.Dr/

�
D .1CD1/ � � � .1CDr/ 2 CH.X/:

By inverting formally 1CDi we find the following expression

c.TX/D

g�rX
nD0

.�1/n
X

a1;:::;ar�0
a1C���CarDn

Da11 � � �D
ar
r 2 CH.X/:

Looking at it in the Chow ring of A amounts to multiplying it by D1 � � �Dr . We con-
clude by then taking the piece of degree g.

Recall that, for an ample divisor D� A, the self-intersection Dg is positive and
divisible by gŠ, as the ratio Dg=gŠ is given by h0.A;O.D//.

LEMMA 2.15
For ample divisors D1; : : : ;Dg �A, we have D1 � � �Dg � gŠ.

Proof
The Khovanskii–Teissier inequality (see [41, Theorem 1.6.1]) states that the lower
bound .D1 � � �Dg/g � Dg1 � � �D

g
g holds. Since each factor on the right-hand side is a

positive multiple of gŠ, this concludes the proof.

PROPOSITION 2.16
Let X ⊊ A be a smooth complete intersection of ample divisors of dimension d � 1.
Then eX is even and

jeXj � gŠ

 
g � 1

d

!
:

Proof
By assumption, X is the intersection of ample divisors D1; : : : ;Dr , where r D g � d
is the codimension of X. Lemma 2.14 shows that

eX D .�1/
d

X
a2P.g;r/

Da11 � � �D
ar
r :

The divisors D1; : : : ;Dr are ample, thus Da11 � � �D
ar
r � gŠ for each a 2 P.g; r/. Since

the cardinality of P.g;g�d/ is
�
g�1
d

�
, the inequality in the statement follows. For the

parity of eX, we may assume that k D C by the Lefschetz principle. It follows that
each ŒDi �ai 2 H2ai .A;Z/ is divisible by ai Š. Since d � 1, for each a 2 P.g; r/ we
have ai � 2 for some i , thus we conclude that eX is even.
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By Proposition 2.16, the absolute value of the Euler characteristic of a smooth
connected complete intersection of ample divisors in A is never equal to 27. We now
prove that jeXj ¤ 56, except in the case of curves in abelian surfaces and abelian
threefolds (in which case there are examples).

COROLLARY 2.17
If X ⊊ A is a smooth complete intersection of ample divisors of dimension d � 1
and .d;g/¤ .1; 2/; .1; 3/, then jeXj ¤ 56.

Proof
Proposition 2.16 implies jeXj � gŠ

�
g�1
d

�
which settles the matter for g � 5. On the

other hand, if X is itself a divisor, that is, d D g � 1, then jeXj D Xg is divisible
by gŠ. The two cases left are .d;g/D .1; 4/; .2; 4/ for which gŠ

�
g�1
d

�
D 72.

Proposition 2.16 furnishes another proof of Corollary 2.10. Indeed the nth sym-
metric power of a smooth projective curve of genus g � 2 has topological Euler char-
acteristic .�1/n

�
2g�2
n

�
; see [43, (4.4)]. Using that the gonality is at most .gC 3/=2,

we conclude because, for g � 4 and n� .gC 1/=2, we have
�
2g�2
n

�
< gŠ

�
g�1
n

�
.

3. Perverse sheaves on abelian varieties
In this section, we collect some general results about perverse sheaves on abelian
varieties. We work over a field k with char.k/D 0, but as in [39, Section 3] we do not
require this field to be algebraically closed; for the relation with monodromy groups
we will later need to work over function fields. For any variety X over k, we denote
by

Perv.X;F/�Dbc .X;F/

the abelian category of perverse sheaves with coefficients in FDQ` for a fixed prime
number `. For k D C, we will later also consider perverse sheaves in the analytic
sense with coefficients in F D C, and we will use the above notation also in this
case. The results below work both in the `-adic setting over any field k and in the
analytic setting with k D F D C. We let �1.A; 0/ be the étale (resp., topological)
fundamental group in the two settings, with the profinite (resp., discrete) topology,
and write ….A;F/DHom.�1.A; 0/;F�/ for the group of its continuous characters.

3.1. Convolution on abelian varieties
Let us briefly recall the Tannakian description of perverse sheaves on abelian vari-
eties XDA given in [38]. The sum morphism � W A�A!A induces a convolution
product
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� WDbc .A;F/�Dbc .A;F/�!Dbc .A;F/; K1 �K2 WD R��.K1 ⊠ K2/

which endows the derived category with the structure of a rigid symmetric monoidal
category (see [51]). In [51] this is stated only over algebraically closed fields k, but
the proof works in the general case without changes. The subcategory of perverse
sheaves is not stable under the convolution product, but it becomes so after passing to
a certain quotient category. To explain this, recall that for any P 2 Perv.A;F/ we have

�.A;P/ WD
X
i2Z

.�1/i dimF Hi .A;P/� 0:

Indeed, over k DC this was observed by Franecki and Kapranov [19, Corollary 1.4];
the case of an arbitrary algebraically closed field k of characteristic 0 can be reduced
to the complex case by choosing a model over some algebraically closed subfield
of k which embeds into the complex numbers (see Lemma A.1). The additivity of
the Euler characteristic in short exact sequences then implies that perverse sheaves of
Euler characteristic 0 form a Serre subcategory

S.A;F/ WD
®
P 2 Perv.A;F/

ˇ̌
�.A;P/D 0

¯
� Perv.A;F/

inside the abelian category of perverse sheaves. Let T.A;F/ � Dbc .A;F/ be the full
subcategory of sheaf complexes whose perverse cohomology sheaves are in S.A;F/;
its objects will be called negligible sheaf complexes.

PROPOSITION 3.1
The quotient category Dbc .A;F/ WD Dbc .A;F/=T.A;F/ is triangulated and inherits
from the perverse t -structure on the derived category a t -structure whose heart

Perv.A;F/�Dbc .A;F/

is equivalent to the abelian quotient category Perv.A;F/=S.A;F/. It also inherits
the structure of a rigid symmetric monoidal category with respect to a convolution
product

� WDbc .A;F/�Dbc .A;F/�!Dbc .A;F/

induced by the convolution product on the derived category. On the triangulated quo-
tient category, this product is t -exact in both of its arguments. Thus, it restricts to a
product

� W Perv.A;F/� Perv.A;F/�! Perv.A;F/;

and Perv.A;F/ is a neutral Tannaka category with respect to this product.
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Proof
Fix an algebraic closure K	 k. The functor Dbc .A;F/! Dbc .AK;F/ is exact for the
perverse t -structure, compatible with the convolution product, and preserves the sub-
categories of negligible objects. Hence, the result follows from the statement over
algebraically closed fields in [31] and [38]; note that by Deligne’s internal character-
ization of neutral Tannaka categories (see [8, Section 6.4]), it suffices to construct a
fiber functor on every finitely generated tensor subcategory.

In what follows, by an abelian tensor category we mean a rigid symmetric
monoidal abelian F-linear category.

3.2. Tannaka groups of perverse sheaves
Let C � Perv.A;F/ be a full abelian tensor subcategory, and let

! W C �!Vect.F/

be a given fiber functor on this subcategory. The existence of such fiber functors is
guaranteed by Proposition 3.1; there is no canonical choice of such a fiber functor,
but any two fiber functors on a neutral Tannaka category over an algebraically closed
field F are noncanonically isomorphic (see [15, Theorem 3.2(b)]). Once we have cho-
sen a fiber functor, we get an equivalence of abelian tensor categories between C

and the category RepF.G!.C // of finite-dimensional algebraic representations of the
affine group scheme

G!.C / WDAut˝.!/

over F called the Tannaka group of C . We are interested in algebraic quotients of this
proalgebraic group scheme.

Definition 3.2
For any P 2 C , we obtain from the above construction an affine algebraic group

G!.P/ WD Im
�
G!.C /!GL

�
!.P/

��
over F with a faithful representation on the vector space !.P/ 2 Vect.F/ whose
dimension is the Euler characteristic (see [38, proof of Corollary 4.2])

dimF

�
!.P/

�
D �.A;P/:

Let � W hPi ,! C be the smallest abelian tensor subcategory which contains the
object P and is stable under subobjects and quotients. Then G!.P/D G!ı�.hPi/ for
the fiber functor ! ı � W hPi!Vect.F/ and we have a commutative diagram of abelian
tensor categories:
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hPi RepF
�
G!.P/

�

C RepF
�
G!.C /

�
�

�

For a simple object P 2 C the faithful representation !.P/ 2 RepF.G!.P// is irre-
ducible and then G!.P/ is reductive by [26, Section 19.1, Proposition (b)]. This is in
particular the case when P D ıX is the intersection complex of an integral subvari-
ety X�A, in which case we write

GX;! WDG!.ıX/:

In what follows, fix a full abelian tensor subcategory C � Perv.A;F/ and a fiber
functor ! W C !Vect.F/. When there is no risk of confusion, we also write ! for the
restriction of the given fiber functor to any subcategory of C .

3.3. The derived group of the connected component
It is often convenient to pass from arbitrary reductive groups to connected semisim-
ple groups. For a reductive group G, let Gı � G be its connected component of the
identity, and note that the derived group

G� WD ŒGı;Gı�

is a connected semisimple group. For the reductive Tannaka groups from Section 3.2,
we will understand the connected components and the center in terms of direct
images of perverse sheaves under the morphisms Œd � W A! A, x 7! dx for d 2 N

and ta W A! A, x 7! x C a for a 2A.k/. For a perverse sheaf Q 2 Perv.A;F/ and a
point a 2A.k/, we define

Qa WD ta�P

and we say that Q is nondivisible if it is simple and satisfies Qa 6'Q for all a 2A.k/
with a¤ 0. We denote by

�P WD
®
a 2A.k/tors

ˇ̌
ıa 2 hPi

¯
the abelian group of torsion points whose associated skyscraper sheaf appears in
the Tannaka category hPi generated by a perverse sheaf P 2 C . Note that �P is
finite. Indeed, every skyscraper sheaf ıa 2 hPi defines a character of the Tannaka
group G!.P/ and algebraic groups have only finitely many torsion characters. In fact,
the first part of the following result shows that all torsion characters of the Tannaka
group are given by skyscraper sheaves in torsion points.
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PROPOSITION 3.3
Let k be algebraically closed, and let P 2 C be a simple perverse sheaf.
(1) The group of connected components of G WDG!.P/ is given by

G=Gı 'Hom.�P;Gm/:

(2) Fix an integer d � 1 with d � �P D ¹0º. Then for all Q;Q0 2 hPi we have

!.Q/jGı ' !.Q
0/jGı () Œd ��Q' Œd ��Q

0;

!.Q/jGı is irreducible () Q is nondivisible:

(3) Let det.P/ 2 hPi be the unique simple perverse sheaf which corresponds to the
top wedge power of V WD !.P/. Then det.P/ is a skyscraper sheaf. If VjGı is
irreducible, we have

Gı semisimple () Supp.det.P// is a torsion point:

Proof
For k D C, parts (1) and (2) are due to Weissauer [53] who also shows that every
invertible object in the Tannaka category of perverse sheaves is a skyscraper sheaf
(this in particular applies to det.P/); alternatively one could use the Riemann–Hilbert
correspondence and the results for holonomic D -modules in [34, Section 3.c].
From k DC one can pass to an arbitrary algebraically closed field of characteristic 0
because the Tannaka group is invariant under extensions of algebraically closed fields
and any perverse sheaf is defined over the algebraic closure of a finitely generated
field; see Corollary 4.4 (resp., Lemma A.1). The claim about semisimplicity in (3)
follows since by Schur’s lemma the center Z D Z.Gı/ acts on V by scalars and
hence det.V/ has finite order if and only if Z is finite.

Definition 3.4
For perverse sheaves P 2 C , we denote the derived group of the connected component
of the Tannaka group GDG!.P/ by

G�!.P/ WD ŒG
ı;Gı�:

If PD ıX is the intersection complex of a subvariety X�A, we put

G�X;! WDG�!.P/:

Proposition 3.3 allows us to realize this group as the Tannaka group of another
perverse sheaf.
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COROLLARY 3.5
Suppose that k is algebraically closed. Let P 2 C be a simple perverse sheaf. Then
for any integer d � 1 with Œd ��P 2 C and any a 2 A.k/ with Pa 2 C the following
properties hold:
(1) G�!.Pa/'G�!.P/.
(2) Gı!.Œd ��P/'Gı!.P/.
(3) G!.Œd ��P/ is connected if and only if d � �P D 0.
(4) Suppose that P is nondivisible with Œd �� det.Pa/ D ı0 and d � �Pa D 0.

If Œd ��Pa belongs to C , then

G!
�
Œd ��Pa

�
'G�!.P/:

Proof
(1) By [33, Lemma 4.3.2], the inclusions hPi � hP˚ ıai 	 hPai induce isomorphisms
G�!.P/'G�!.P˚ ıa/'G�!.Pa/.

(2) By [53] or [34, Corollary 1.6], the pushforward Œd �� W hPi ! hŒd ��Pi is a
tensor functor which induces an isomorphism between the connected components of
the identity of the respective Tannaka groups.

(3) Since d � �P D �Œd��P, this follows from Proposition 3.3(1) applied to Œd ��P.
(4) By the previous two steps, the group G!.Œd ��Pa/ is connected. One easily

sees that Œd ��Pa is nondivisible with det.Œd ��Pa/D Œd �� det.Pa/D ı0 so G!.Œd ��Pa/
is a semisimple group by the last part of Proposition 3.3. It is therefore equal to the
derived group of its connected component of the identity, which by (1) and (2) coin-
cides with G�!.P/.

Remark 3.6
The isomorphism Gı!.Œd ��P/'Gı!.P/ in Corollary 3.5(2) is not canonical, it involves
the choice of an isomorphism between the two fiber functors ! and ! ı Œd �� on the
tensor category hPi. But we can choose the isomorphism in a contravariant functorial
way with respect to monomorphisms in the full tensor subcategory

C \ Œd ��1� .C / WD
®
Q 2 C

ˇ̌
Œd ��Q 2 C

¯
� C

by fixing an isomorphism between the fiber functors ! and ! ı Œd �� on this cate-
gory.

3.4. Larsen’s alternative
Let X � A be a subvariety such that ıX 2 C . We are interested in criteria under
which the Tannaka group GX;! is big. Suppose that X�A is integral, nondegenerate,
and 2dim X< dim A, so that by Lemma 2.7 the sum morphism
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� W X�X�!W WDXCX�A

is generically finite onto its image W, and W is nondegenerate. Let U � W be a
smooth open dense subset over which � is finite étale. By adjunction, we have an
inclusion ıU � ��.ıX�X/jU as a direct summand. The decomposition theorem in [4]
extends this to an inclusion ıW � ıX � ıX D ��.ıX�X/ as a direct summand in the
derived category of constructible sheaf complexes. Namely, there is a unique semisim-
ple perverse sheaf "W 2 Perv.A;F/ without negligible direct summands, and a unique
negligible complex �X 2Dbc .A;F/, such that

ıX � ıX D ıW˚ "X˚ �X:

With this notation, we obtain the following criterion for big Tannaka groups.

LEMMA 3.7
With the notation above, the following are equivalent:
(1) GX;! is big in the sense of Section 1.2.
(2) "X is either a simple perverse sheaf, or a direct sum of a simple perverse sheaf

and a skyscraper sheaf of rank 1.

Proof
The subvariety W � A is nondegenerate and not whole A, so it cannot be the sup-
port of a negligible sheaf complex. Now we have Supp."X˚ �X/DW since the sum
morphism � W X � X! W has generic degree 2, thus Supp."X/ D W. In particu-
lar, V D !.ıX/ 2 RepF.GX;!/ must have dimension dim V > 2, since otherwise "X

would be the skyscraper sheaf corresponding to det.V/ by Proposition 3.3(3).
By applying the fiber functor !, one sees that condition (2) is equivalent to saying

that in the decomposition of the tensor square V˝ V there are only two irreducible
direct summands of dimension greater than 1. Since dim.V/ > 2, this is equivalent
to (1) by Larsen’s alternative (see [28, p. 113]) for the subgroup GX;! �GL.V/.

3.5. Symmetric powers
If the Tannaka group is big, then similar arguments allow us to control the sum mor-
phism from symmetric powers of the subvariety.

LEMMA 3.8
Let X � A be a nondegenerate subvariety, and let r � 1 be an integer such
that r dim X< dim A. If GX;! is big, then the sum morphism

�r W Symr X�!A

is birational onto its image Wr DXC � � � CX.
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Proof
Consider the following commutative diagram, where qr denotes the quotient mor-
phism:

Zr DXr Wr DXC � � � CX

Yr D Symr X

�r

qr �r

Since qr W Zr ! Yr is a finite branched cover with group Sr , the decomposition
theorem shows that as an Sr -equivariant perverse sheaf the direct image qr�.ıZr / is
a direct sum

qr�.ıZr /'
M
�

� ⊠ P� ;

where � runs through all irreducible representations of the symmetric group Sr and
where each P� is a semisimple perverse sheaf on Yr . In this isotypic decomposition
the action of the group Sr on � ⊠ P� is given by the action on � . Since the action
of the symmetric group on tensor powers of sheaf complexes involves a Koszul sign,
the perverse intersection complex on Yr D Symr X is the isotypic piece for the trivial
representation 1 or the sign representation sgn of S depending on the parity of dim X.
We have

ıYr ' P" for "D

´
sgn if dim X is odd;

1 if dim X is even;

as one may check on the open dense subset where qr is finite étale. So the direct
image ıX;r WD R�r�.ıYr / corresponds to the representation

!.ıX;r/'

´
Altr V if dim X is odd;

Symr V if dim X is even;

where V WD !.ıX/ is the defining representation of the group GX;! . If that group is
big, then we are in one of the following cases:
(1) GX D SL.V/. Then Altr V and Symr V are irreducible representations by

Schur–Weyl duality (see [21, Theorem 6.3(4)]).
(2) GX D SO.V/. Then we have an embedding Symr�2V ,! Symr V and the

quotient Symr V=Symr�2V is irreducible (see [21, Theorem 19.19]).
(3) GX D Sp.V/. Then we have an embedding Altr�2V ,! Altr V and again the

quotient Altr V=Altr�2V is irreducible (see [21, Theorem 17.11]).
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In the first case ıX;r is a simple perverse sheaf modulo negligibles, while in the other
two cases we have an embedding ıX;r�2 ,! ıX;r whose cokernel is a simple perverse
sheaf (note that dim X is even in case (2) and odd in case (3)). In all three cases the
semisimple perverse sheaf ıX;r has a unique simple direct summand "X;r � ıX;r with
full support, that is, with

Supp."X;r/DWr DXC � � � CX:

The decomposition theorem for the generically finite morphism �r W Yr !Wr also
shows that

ıWr � ıX;r D R�r�.ıYr /;

hence "X;r D ıWr . In particular, there exists an open dense subset U�Wr such that�
R�r�.ıYr /

�
jU ' .ıYr /jU

and by comparing the generic rank on U we obtain det.�r/D 1.

In fact, the above argument does not require the group GX;! to be big, we only
need to have sufficient control on the support dimension of the perverse sheaves that
enter the relevant wedge or symmetric power. For instance, we have the following
result which goes beyond the case of big Tannaka groups.

COROLLARY 3.9
Let X�A be nondegenerate with r dim X< dim A, and consider the representation

V WD

´
Altr !.ıX/ if 2 ∤ dim X;

Symr !.ıX/ if 2 j dim X:

If V 2 RepF.G
�
X;!/ has at most one irreducible direct summand of dimension greater

than 1, then the sum morphism �r W Symr X!XC � � � CX is birational.

Proof
By [53] or [34, Section 3.c], all 1-dimensional representations of the Tannaka group
arise from skyscraper sheaves, so for dim X > 0 they cannot contribute to the sup-
port Wr D XC � � � C X. Hence we can apply the same argument as in the previous
proof.

COROLLARY 3.10
Let X�A be a smooth irreducible curve generating A, and assume dim A� 3. If the
representation VDAlt2.!.ıX// 2 RepF.G

�
X;!/ is a sum of an irreducible representa-

tion and a 1-dimensional trivial representation, then
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(1) XD p �X for some point p 2A,
(2) � W YD Sym2X!WDXCX is finite birational over UDW n ¹pº,
(3) G�X;! D Sp.!.ıX/; �/ for the natural symplectic form � on !.ıX/.

Proof
By assumption, Alt2.!.ıX// contains a 1-dimensional trivial representation, so
the representation !.ıX/ is isomorphic to its dual. Therefore, X D p � X for some
point p 2A. Now for dimension reasons � W Y!W restricts to a finite morphism over
the complement UDW n† of a finite set †�W of points. Note that YD Sym2X is
smooth for a smooth curve X, so we have ıY D FYŒ2�. Base change then shows that
for any point q we have

H 0
�
R��.ıY/

�
q
'H2

�
��1.q/;F

�´D 0 if q …†;

¤ 0 if q 2†:

Since R��.ıY/ is a direct sum of a semisimple perverse sheaf P and a negligible
sheaf complex and since negligible sheaf complexes cannot have cohomology sheaves
which are skyscraper sheaves, it follows that P contains the skyscraper sheaves ıq in
all points q 2†. But by assumption R��.ıY/ contains a unique skyscraper summand;
hence, it follows that †D ¹pº and thus � is finite over UDW n ¹pº.

In particular, R��.ı�Y /jU is a perverse sheaf, and H i .R��.ı�Y //jjU D 0 in all
degrees i ¤ �2 because ı�Y is a constructible sheaf placed in degree �2. But any
semisimple perverse sheaf on a surface with cohomology sheaves only in degrees �2
is the minimal extension of a local system on any open dense subset of the sur-
face. In our case, that local system has rank 1 because ı�Y has generic rank 1 and
deg.�/D 1. Local systems of rank 1 are simple; hence, it follows that the minimal
extension R��.ı�Y / is a simple perverse sheaf.

In conclusion, this shows that ıX � ıX D R��.ıY/ ˚ R��.ı�Y / is a sum of two
simple perverse sheaves and a skyscraper sheaf. It then follows by the same argument
as in [37, Theorem 6.1] that G�X;! D Sp.!.ıX/; �/; note that

dim.!.ıX//D �.ıX/� g > 2

since the curve X generates A.

COROLLARY 3.11
Let X�A be a smooth irreducible curve generating A, and assume dim A� 3. Then
the group G�X;! is not isomorphic to E7 acting on !.ıX/ via its irreducible represen-
tation of dimension 56.
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Proof
For the 56-dimensional irreducible representation W of the group E7, the alternating
square Alt2.W/ is a sum of an irreducible and a 1-dimensional trivial representation.
However, Corollary 3.10 says that Alt2.!.ıX// can be a sum of an irreducible and a
1-dimensional trivial representation only if G�X;! ' Sp56.F/.

3.6. Character twists
Recall that ….A;F/D Hom.�1.A; 0/;F�/ denotes the group of continuous charac-
ters of the étale (resp., topological) fundamental group of the abelian variety. For
a character � 2 ….A;F/, let L� be the local system of rank 1 with monodromy
representation given by the character �. For a perverse sheaf P 2 Perv.A;F/, we
call P� WD P˝F L� 2 Perv.A;F/ the twist of the given perverse sheaf by the char-
acter. Such twists of perverse sheaves appear in the generic vanishing theorem of [6],
[38], and [47]. Let us say that a subset of ….A;F/ is a proper subtorus if it has the
form

….A=B;F/�….A;F/;

where B � A is a nonzero abelian subvariety. Then the generic vanishing theorem
says that there is a finite union S .P/�….A;F/ of translates of proper subtori such
that

Hi .A;P�/D 0 for all i ¤ 0 and all � 2….A;F/∖S .P/:

We will use this in Section 4.3 to write down explicit fiber functors with a natural
Galois action. Up to noncanonical isomorphism, the Tannaka group of a perverse
sheaf does not change under twists.

LEMMA 3.12
Let P 2 C . Then for any character � 2….A;F/ with P� 2 C we have

G!.P�/'G!.P/:

Proof
By [38, Proposition 4.1], twisting by � gives rise to an equivalence of tensor cate-
gories

hPi
�
�! hP�i; Q 7�!Q�

in Perv.A;F/. This equivalence need not be compatible with the fiber functor ! on
the source and target, but since F is algebraically closed, any two fiber functors are
noncanonically isomorphic; hence the same holds for the Tannaka groups.
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4. Galois theory for perverse sheaves
In this section, we discuss the behavior of Tannaka groups of perverse sheaves under
extension of the base field and recall the connection between such Tannaka groups and
classical monodromy groups in [39, Section 5]. We mostly follow the arguments there
but remove the assumption of geometric semisimplicity in the Galois exact sequence
by using a result of D’Addezio and Esnault [9].

4.1. Extension of the base field
Let K=k be a field extension, and consider the base change functor

.�/K W Perv.A;F/�! Perv.AK;F/; P 7�! PK:

Passing to the abelian quotient categories by the subcategories of perverse sheaves of
Euler characteristic 0, we have the following.

LEMMA 4.1
The base change functor descends to a faithful exact F-linear tensor functor

.�/K W Perv.A;F/�! Perv.AK;F/:

Proof
The functor .�/K W Perv.A;F/! Perv.AK;F/ is a faithful F-linear exact functor.
Let qK D q ı .�/K denote its composite with the quotient functor q as shown below:

Perv.A;F/ Perv.AK;F/

Perv.AK;F/

.�/K

qK q

Since qK is an exact functor between abelian categories which sends all objects of the
Serre subcategory S.A;F/ � Perv.A;F/ to zero, it factors by the universal property
of abelian quotient categories (see [22, Corollaire 2, p. 368]) through a unique exact
functor

.�/K W Perv.A;F/�! Perv.AK;F/:

This functor is clearly F-linear, and it admits the structure of a tensor functor
with respect to the natural isomorphisms .P � Q/K ' PK � QK inherited from the
derived category. Any exact F-linear tensor functor of rigid abelian tensor categories
with End.1/D F is automatically faithful (see [15, Proposition 1.19]), so the claim
follows.
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Starting from a given full abelian tensor subcategory C � Perv.A;F/, let us now
denote by

CK D ¹Q j 9P 2 C such that Q is a subquotient of PKº � Perv.AK;F/

the full abelian tensor subcategory generated by the essential image of C under the
functor .�/K from Lemma 4.1. The category CK is again neutral Tannaka as it is a
full abelian tensor subcategory of the neutral Tannaka category Perv.AK;F/. In what
follows, we fix a fiber functor

! W CK �!Vect.F/:

Precomposing with the base extension functor .�/K we get a fiber functor on C , and
we denote by

G!.CK/ D Aut˝.! j CK/;

G!.C / WD Aut˝.! j C /;

the corresponding Tannaka groups.

COROLLARY 4.2
We have a closed immersion G!.CK/ ,!G!.C /.

Proof
The faithful exact F-linear tensor functor .�/K W C ! CK is compatible with our cho-
sen fiber functors by construction; hence, it defines a homomorphism of Tannaka
groups. The latter is a closed immersion by [15, Proposition 2.21(b)], since every
object of CK is isomorphic to a subquotient of PK for some P 2 C .

4.2. The Galois sequence
Let k0 � K be the algebraic closure of k in K. The category of continuous finite-
dimensional representations

RepF

�
Aut.k0=k/

�
of the profinite group Aut.k0=k/ over F is a neutral Tannaka category. If k0=k is
Galois, then Aut.k0=k/D Gal.k0=k/ is a quotient of the absolute Galois group of k.
In this case, we can identify objects of the above category with sheaves on Spec.k/
and hence the pushforward under the neutral element e W Spec.k/! A gives a fully
faithful embedding

e� W RepF

�
Gal.k0=k/

�
Perv.A;F/:
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We will view Galois representations as a full subcategory of skyscraper sheaves and
drop the e� from the notation. Our chosen fiber functor on C restricts to a fiber functor

! W C \RepF

�
Gal.k0=k/

�
�!Vect.F/:

We denote its Tannaka group by

G!;C .k
0=k/ WDAut˝

�
! j C \RepF

�
Gal.k0=k/

��
:

Representations of this group correspond to skyscraper sheaves P 2 C supported in
the origin, whence a morphism Aut.k0=k/!G!;C .k0=k/.

THEOREM 4.3
Assume as above that k0=k is Galois. Then we have a short exact sequence of proal-
gebraic groups

1�!G!.CK/�!G!.C /�!G!;C .k
0=k/�! 1:

Proof
Corollary 4.2 gives a closed immersion i W G!.CK/!G!.C /. Moreover, since k0=k
is a Galois extension, we have by the above an embedding as a full tensor subcategory

C \RepF

�
Gal.k0=k/

�
C ;

which is stable under subobjects, and this embedding is compatible with the chosen
fiber functors on the source and target. By [15, Proposition 2.21(a)], we then have an
epimorphism

p W G!.C / G!;C .k0=k/:

By construction, p ı i is trivial. Thus, to complete the proof, by [9, Proposition A.13],
it suffices to check that
(1) the functor .�/K W C ! CK is observable (see [9, Appendix A]), and
(2) for every P 2 C the maximal trivial subobject of PK lies in the essential image

of the functor e� W C \RepF.Gal.k0=k//! C .
For part (1) it suffices by [9, Lemma A.4(1)] to show that, for P 2 C , any rank-1
subobject

S� PK

is a direct summand in a semisimple object QK with Q 2 C . To check this, note that
the rank-1 objects in the Tannaka category of perverse sheaves are rank-1 skyscraper
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sheaves, and that the sum of all perverse rank-1 skyscraper subsheaves of PK is
semisimple, being a sum of simple objects. To conclude the proof of (1), it suffices
to show that this direct sum descends to a perverse subsheaf Q� P, as it then follows
that S is a direct summand of QK as desired. To prove that the sum of all rank-1
skyscraper subsheaves descends to k, we first show that the maximal skyscraper
subsheaf of PK descends to a subsheaf of P. Indeed, the Verdier dual of the sum
of all perverse skyscraper subsheaves is the maximal perverse skyscraper quotient
of the Verdier dual D.PK/ which is H 0.D.PK// DH 0.D.P//K. Hence, the maxi-
mal skyscraper subsheaf descends. Replacing the perverse sheaf P by the maximal
skyscraper subsheaf supported at the origin, we are reduced to the case A D ¹0º.
Then P is given by a representation V 2 RepF.Gal. Nk=k// and the claim reduces to
the following two facts:
� A subspace of V is stable under Gal. NK=K/ if and only if it is so under

Gal. Nk=k0/ (since Gal. NK=K/! Gal. Nk=k0/ is surjective for k0 algebraically
closed in K).

� The sum of all 1-dimensional subrepresentations of VjGal. Nk=k0/ is stable

under Gal. Nk=k/ since the subgroup Gal. Nk=k0/�Gal. Nk=k/ is normal.
For (2) we argue similarly. The unit object of the tensor category CK is the skyscraper
sheaf ı0 of rank 1 supported in the origin. So the maximal trivial subobject of PK is
the maximal subobject of the form ı˚n0 for some integer n � 0, and this subobject
descends to a subobject Q� P as before.

COROLLARY 4.4
If k is algebraically closed, then for every extension K=k we have a natural isomor-
phism

G!.CK/
�
�!G!.C /:

In particular, for every perverse sheaf P 2 C , we have G!.PK/'G!.P/.

Proof
If k is algebraically closed, then k0 D k and hence G!.k0=k/' ¹1º.

4.3. A splitting of the sequence
We now apply the above when K D Nk is an algebraic closure of k. In the Galois
sequence in Theorem 4.3 we have used the fully faithful functor

e� W RepF

�
Gal. Nk=k/

�
Perv.A;F/

that identifies a Galois representation with the corresponding skyscraper sheaf at the
origin. We now describe a splitting of the sequence in Theorem 4.3 for a special
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category C such that the functor e� W C \ RepF.Gal. Nk=k// ,! C has a left inverse.
To do so, let

Perv0.A;F/

be the full subcategory of all P 2 Perv.A;F/ for which all simple subquotients Q of P Nk
satisfy

Hi .A Nk;Q/D 0 for all i ¤ 0:

Its image

Perv0.A;F/� Perv.A;F/

is a full abelian tensor subcategory which is equivalent to Perv0.A;F/=S0.A;F/,
where S0.A;F/ WD S.A;F/\Perv0.A;F/ is the full subcategory of perverse sheaves P
with the property that all the subquotients Q of P Nk satisfy H�.A Nk;Q/D 0. We then
get a functor

! W Perv0.A;F/D Perv0.A;F/=S0.A;F/�!Vect.F/; Q 7�!H0.A Nk;Q/

which is exact by definition of the source category. Moreover, ! is a tensor functor
by the Künneth isomorphism

H�.A Nk;P �Q/'H�.A Nk;P/˝H�.A Nk;Q/;

since for P;Q 2 Perv0.A;F/ only the cohomology in degree 0 contributes. For the
fiber functor obtained in this way, we can summarize the relation between the Tannaka
groups over k and over Nk as follows.

THEOREM 4.5
For C D Perv0.A;F/ with the fiber functor ! WD H0.A Nk;�/, the above construction
induces a splitting of the short exact sequence

1�!G!.C Nk/�!G!.C /�!G!;C . Nk=k/�! 1:

In particular, we have an isomorphism

G!.C /'G!.C Nk/⋊ G!;C . Nk=k/;

and for any P 2 Perv0.A;F/, the action of Gal. Nk=k/ on VD !.P/ factors through the
normalizer

N
�
G!.P Nk/

�
�GL.V/:
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Proof
While the fiber functor ! DH0.A Nk;�/ is only defined on C , it comes with a natural
Galois action in the sense that we have a commutative diagram

C RepF.Gal. Nk=k//

Vect.F/

˛

!

where ˛ is a left inverse of the functor e� W RepF.Gal. Nk=k//! C .

4.4. Big monodromy from big Tannaka groups
Now again assume that k is an algebraically closed field of characteristic 0. Consider
the constant abelian scheme AS WD A �k S, where S is an integral scheme over k.
We denote by N� a geometric point over the generic point � of S. Let X � AS be
an irreducible closed subscheme which is smooth over S. We want to control the
monodromy of the family X ! S twisted by a generic rank-1 local system as in
[39]. In this context, the following terminology will be useful.

Definition 4.6
We say that X �AS is constant up to translation in A.S/ if there is a point a 2A.S/
and a subvariety Y�A such that X DYSC a.

In favorable situations, this condition can be read off from the geometric generic
fiber of X ! S via the following descent result.

LEMMA 4.7
Suppose that S is a smooth and irreducible variety. Let Y ;Z � AS be subvarieties
which are flat over S. If the subvariety Y N� � AS; N� has trivial stabilizer, then the fol-
lowing are equivalent:
(1) Z D Y C a for some a 2A.S/.
(2) Z N� DY N� C a for some a 2A. N�/.

Proof
Clearly, the first property implies the second. Conversely, suppose Z N� D Y N� C a for
some point a 2 A. N�/. First, we claim that the point a comes from a point a 2 A.�/.
Indeed, let F be the function field of S, and let y D ŒY�� and z D ŒZ�� be the F-points
of the Hilbert scheme Hilb.A/ defined by the generic fibers of Y ! S and Z ! S,
seen as subvarieties of AS;� . Now, the abelian variety A acts on the Hilbert scheme
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by translation. The transporter

TD ¹t 2AS;� j z D y C tº

is a subvariety of AS;� . Note that T. N�/ is nonempty, as it contains the point a. Actually,
the point a is the only one of T. N�/. For, note that the stabilizer of Y N� �AS; N� acts freely
and transitively on the base change of T to N�. On the other hand, the stabilizer of Y N�
is trivial by assumption, so the transporter T. N�/ must be a singleton. The variety T
is defined over F and geometrically a singleton, thus T D Spec F which proves the
claim.

The point a 2A.�/ can be seen as a rational map a W S --￫ A, which is moreover
everywhere defined by the smoothness of S (see [45, Theorem 3.1]). To conclude the
proof, note that the generic fibers of Y C a and Z coincide; hence Z D Y C a by
flatness.

COROLLARY 4.8
If S is a smooth irreducible variety and if the subvariety X N� � AS; N� is nondivisible,
then the following are equivalent:
(1) X �AS is constant (resp., symmetric) up to translation in A.S/.
(2) X N� �AS; N� is constant (resp., symmetric) up to translation in A. N�/.
Moreover, the subvariety X �AS is constant up to translation in A.S/ if and only if
the family X ! S is isotrivial.

Proof
The equivalence of (1) and (2) follows directly from Lemma 4.7. Now suppose that
the family X ! S is isotrivial. In order to prove that the subvariety X � AS is
constant up to translation, we may by the equivalence of (1) and (2) replace S by an
étale cover and hence assume X ' YS for some Y� A. Fixing y 2 Y.k/, we get a
section x W S!X that gives rise to a commutative diagram:

X Alb.X =S/ AS AS

YS Alb.YS=S/ AS AS

albx

� �

z 7!zCx

alby z 7!zCy

Here alba and alby are the relative Albanese morphisms and the composite of the
horizontal arrows are the inclusions X � AS (resp., YS � AS). Hence, X � AS is
constant up to translation.

Example 4.9
The above primitivity is needed. Let Y � A be a subvariety with finite stabi-
lizer Stab.Y/¤ ¹0º. Viewing S WDA=Stab.Y/ as the orbit of the point ŒY� in Hilb.A/
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under the translation action of A, we get by restriction of the universal subvariety
of A �k Hilb.A/ a subvariety X � AS with fiber Y C a over a point Œa� 2 S.k/.
Then the family X ! S is not constant up to translation in A.S/, but it is so up to
translation by a section in A. N�/.

We now assume that the subvariety X � AS is not constant up to transla-
tion in A.S/. Then the monodromy of the smooth family X ! S twisted by
a generic rank-1 local system is related to the Tannaka group of the perverse
sheaf ıX 2 Perv.AS; N�;F/ on the geometric generic fiber

X WDX N�

as follows. For � 2 ….A;F/, let L� denote the corresponding rank-1 local system
on A. The generic vanishing theorem for perverse sheaves (see [6], [38], [47]) shows
that

ıX;� WD ıX˝ L� 2 Perv0.AS; N�;F/

for most � 2….A;F/, where most means all characters � outside a finite union of
torsion translates of linear subvarieties of ….A;F/. From Section 4.3 we get a fiber
functor

! WDH0.AS; N�;�/ W hıX;�i �!Vect.F/;

and we denote by

G�X;� WD
�
Gı!.ıX;�/;G

ı
!.ıX;�/

�
the derived group of the connected component of the Tannaka group. Note that by
Lemma 3.12 the isomorphism type of this group does not depend on the chosen char-
acter; we say that X has a simple derived connected Tannaka group if G�X;� is simple
for some (hence every) character � with the above vanishing properties.

To define the monodromy of the family f W X ! S twisted by a rank-1 local
system, let � W X !A be the projection to the abelian variety. Using generic vanish-
ing on the geometric generic fiber of X � AS; N� , one sees that for most � the higher
direct images Rif���L� vanish in all degrees i ¤ d , where d denotes the relative
dimension of the family f W X ! S. For such � the remaining direct image

V� WD Rdf��
�L�

is a local system. More generally, we consider for �D .�1; : : : ; �n/ 2….A;F/n the
direct sum
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V� WDV�1 ˚ � � � ˚V�n :

Let � W �1.S; N�/! GL.V�; N�/ be the corresponding monodromy representation on
the geometric generic fiber. We define the algebraic monodromy group of V� as the
Zariski closure

M.V�/ WD Im.�/�GL.V�; N�/:

The link between our main theorem from the introduction and the Tannaka groups
introduced above is the following result by Lawrence and Sawin, an analogue of the
theorem of the fixed part.

THEOREM 4.10
Let S be a smooth integral variety over k, and let X � AS an integral subvariety
such that
(1) the family f W X ! S is smooth of relative dimension d , it is not constant up

to translation in A.S/, and
(2) the geometric generic fiber XDX N� � AS; N� is nondivisible and has a simple

derived connected Tannaka group.
Then for most � 2….A;F/n we have

G�X;�1 � � � � �G�X;�n ⊴ M.V�/:

Proof
In [39, Theorem 5.6] this is stated for hypersurfaces, but the proof works for smooth
subvarieties of any codimension. For convenience, we recall the main ideas in our
setup. The fiber

V�; N� D
nM
iD1

Hd .X;L�i /

comes with a monodromy action of �1.S; N�/ preserving the summands on the right-
hand side; the algebraic monodromy is the Zariski closure of the image of �1.S; N�/
inside

GL.V�1; N�/� � � � �GL.V�n; N�/; where V�i ; N� DHd .X;L�i /:

Since S is smooth, this algebraic monodromy is the Zariski closure of the image of the
absolute Galois group of the function field of S. By Theorem 4.5, the Galois action
normalizes the subgroups G�X;�i � GL.V�i /, in fact the algebraic monodromy is a
subgroup

M.V�/�GX0;�1 � � � � �GX0;�n ;
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where X0 WDX� denotes the generic fiber and GX0;�i WDG!.ıX0;�i /. We must show
that this upper bound on the algebraic monodromy is almost sharp in the sense that
for most �D .�1; : : : ; �n/, the algebraic monodromy contains the normal subgroup

G�X;�1 � � � � �G�X;�n ⊴ GX0;�1 � � � � �GX0;�n :

In what follows, it will be convenient to identify all factors on the left-hand side with
a fixed simple algebraic group. For this, we fix a fiber functor � W hıXi ! Vect.F/
and pick an isomorphism between H0.A N�;�/ and the fiber functor obtained as the
composite

hıX0;�i i hıX0i hıXi Vect.F/;� .�/ N� 	

where the isomorphism on the left is the inverse of P 7! P�i . We get a commutative
diagram

G�X;�1 � � � � �G�X;�n .G�X/
n

M.V�/ GX0;�1 � � � � �GX0;�n .GX0/
n

�

�

where G�X WD ŒG
ı
	
.ıX/;Gı	.ıX/�� GX0 WD G	.ıX0/. Note that GX0 is contained in the

normalizer

N.G�X/�GL
�
�.ıX0/

�
by Theorem 4.5. Now we use the following general observation (see [39, Lem-
ma 5.4]).

FACT 4.11
Let G�GL.V/ be a simple algebraic group, and let N.G/�GL.V/ be its normalizer.
Then for every integer n� 1 there exists a finite list of irreducible representations

W˛ DW˛;1 ⊠ � � �⊠ W˛;n 2 RepF

�
N.G/n

� �
˛ 2 ¹1; : : : ;Nº

�
such that for any reductive subgroup H � N.G/n the following two properties are
equivalent:
(1) Gn �H.
(2) H has no invariants on any of the representations W˛ .
In particular, the group Gn has no invariants on any of the representations W˛ .

We apply the preceding fact to V D �.ıX0/, G D G�X, and H D M.V�/. Since
GX0 � N.G�X/, each W˛;i 2 RepF.N.G// defines a representation of the Tannaka
group GX0 and hence a perverse sheaf
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P˛;i 2 hıX0i:

The representation of GX0;�i obtained by pullback of the representation W˛;i under
the isomorphism GX0;�i !GX0 then corresponds to .P˛;i /�i 2 hıX0;�i i. By construc-
tion, we have an isomorphism

W˛ DW˛;1 ⊠ � � �⊠ W˛;n

' H0
�
AS; N�; .P˛;1/�1

�
⊠ � � �⊠ H0

�
AS; N�; .P˛;n/�n

�
(4.1)

of representations of N.G�X;�1/ � � � � � N.G�X;�n/. To keep track of how the Galois
action on the right-hand side depends on the chosen characters, it will be convenient to
pass to AnS; N� DAS; N� � � � � �AS; N� via the Künneth isomorphism. Consider the perverse
sheaf

K0 WD e1�ıX0 ˚ � � � ˚ en�ıX0 2 Perv0.A
n
S;�;F/;

where ei W AS;� ,! AnS;� is the inclusion of the i th factor. Let K be the base change
to AnS; N� of the perverse sheaf K0. Note that we have G�



.K/ D .G�X/

n for the fiber
functor � WD � ⊠ � � �⊠ � W hKi!Vect.F/ and

Q˛ WD e1�P˛;1 � � � � � en�P˛;n D P˛;1 ⊠ � � �⊠ P˛;n 2 hK0i:

Returning to character twists, consider the local system L� WD L�1 ⊠ � � �⊠ L�n and
put

K0;� WDK0˝ L�; K� WDK˝ L�; and Q˛;� WDQ˛ ˝ L�:

Then we have

G�!.K�/DG�X;�1 � � � � �G�X;�n and Q˛;� 2 hK0;�i:

Combining (4.1) with the Künneth isomorphism, we obtain a Galois equivariant iso-
morphism

W˛ 'H0.AnS; N�;Q˛;�/;

where the Galois group acts on the left-hand side via Gal. N�=�/!M.V�/ and on the
right-hand side by the natural Galois action.

Now recall that by the last claim in Fact 4.11, the group .G�X/
n has no invariants

on W˛ . But .G�X/
n D G�



.K/ is the derived group of the connected component of the

Tannaka group of the perverse sheaf K, and W˛ D �.Q˛/ is the representation defined
by Q˛ 2 hK0i. Hence, we can apply [39, Lemma 5.2]. The vanishing of invariants of
the derived connected Tannaka group on the geometric generic fiber implies that Q˛
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has no perverse subquotient coming by pullback from A via AS;�!A. By a spread-
ing out argument (see [39, Lemma 5.3]) the last property implies that for most � the
Galois invariants of H0.AS; N�;Q˛;�/ vanish. Thus, the algebraic monodromy has no
invariants on any of the representations W˛ and hence by the equivalence of (1) and
(2) above it contains all of .G�X/

n as required.

Remark 4.12
For n� 2, the above proof gives more precise information on the dependence of n of
the locus of characters on which the conclusion of Theorem 4.10 holds. There exists a
finite union †�….A;F/2 of torsion translates of proper linear subvarieties such that
the conclusion of the theorem holds for all n� 2 and all �D .�1; : : : ; �n/ 2….A;F/n

with

.�i ; �j / …† for all i ¤ j:

This follows from the fact that the list of representations constructed in the proof of
Fact 4.11 arises from a finite list of representations of N.G/2 by pullback under the
various projections N.G/n!N.G/2.

5. From representations to geometry
In this section, we explain the link between representations and characteristic cycles,
which will be our main tool to show that under certain assumptions the Tannaka group
of a smooth subvariety will be big. We work over an algebraically closed field k
with char.k/D 0, and starting from Section 5.3 we assume k DC.

5.1. The ring of clean cycles
Over the complex numbers an important invariant of a perverse sheaf is its character-
istic cycle, which is a formal sum of conormal varieties adapted to a suitable Whitney
stratification. As we recall in Section 5.3, the convolution product of perverse sheaves
is mirrored by a “convolution product” on their characteristic cycles. To define the
latter, we need to introduce a convolution product of conormal varieties, which can
be done over any algebraically closed field k of characteristic 0 as follows.

Recall that, for an integral subvariety Z � A, its conormal variety

V

Z is said to
be clean if its Gauss map 
Z W

V

Z! PA is dominant—by Theorem 2.8 this is the case
if and only if the variety Z is of general type—and negligible otherwise.

Definition 5.1
The group of clean cycles L .A/ is the free abelian group generated by the projective
conormal cones

V

Z of integral subvarieties Z � A, modulo the subgroup generated
by the negligible ones. The projection onto the quotient induces an isomorphism
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Z	A

Z �

V

Z
�
�!L .A/;

where the direct sum ranges over the integral subvarieties Z�A of general type.
A clean cycle is an element of L .A/ and, by means of the preceding isomor-

phism, will always be seen as a finite formal sum
P

ZmZ

V

Z, mZ 2 Z, indexed by the
integral subvarieties Z�A of general type.

Recall that in Definition 2.2 we defined the conormal variety

V

Z for a reduced but
not necessarily irreducible subvariety Z�A. For simplicity, we still write

V

Z for the
conormal variety seen as a cycle on A� PA, or merely as a clean cycle. In particular,
in the latter case, we have

V

Z D
X
Z0	Z

V

Z0 ;

the sum ranging over the irreducible components Z0 � Z of general type. We will
consistently perpetrate this abuse of notation by writing

V

Z Dm1

V

Z1 C � � � Cmn

V

Zn

for a cycle ZDm1Z1C � � � CmnZn on A, with mi 2 Z and Zi �A integral.

Definition 5.2
Let

V

X1 ,

V

X2 be clean conormal varieties. Let U� PA be an open dense subset of the
projective cotangent space to the abelian variety such that over this open subset the
Gauss maps

V

Xi jU WD 

�1
Xi
.U/!U are finite étale covers. The fiber product of these

two finite étale covers embeds into A�A�U�A�A� PA, and we denote by

V

WD

V

X1jU �U

V

X2jU �A�A� PA

its Zariski closure. We define the convolution of the conormal varieties to be the clean
cycle

V

X1 ı

V

X2 WD ��.

V

/ 2L .A/

arising by pushforward under the sum morphism � W A � A � PA ! A � PA. We
extend this product ı on conormal varieties bilinearly to a product on the group of
clean cycles

ıW L .A/�L .A/�!L .A/:

This endows the group L .A/ with a natural ring structure. The product ı should not
be confused with an intersection of cycles, indeed the intersection product of any two
cycles in L .A/ is zero for dimension reasons. For any integer n¤ 0, the pushforward
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Œn�� W L .A/�!L .A/

is a ring homomorphism. For

V

2L , we denote by h

V

i �L .A/ the smallest subring
of L .A/ which contains

V

and is stable under passing from a clean cycle to its
irreducible components.

5.2. A reminder on Segre classes
In the discussion of wedge powers and spin representations to be carried out in Sec-
tions 7 to 8, we will need to control the effect that certain tensor constructions on
clean cycles have on the dimension of their base. For this we recall in this section
some basic facts about Segre classes, or Chern–Mather classes2 in the terminology
of [33, Section 3].

Definition 5.3
The Segre classes of a cycle

V

on A� PA of pure dimension g � 1 are defined as the
cycle classes

sd .

V

/ WD .prA/�
�
Œ

V

� � ŒA�Hd �
�
2 CHd .A/;

where Hd � PA is a general linear subspace of dimension d < g D dim A and
CHd .A/ denotes the Chow group of dimension d algebraic cycles with Z-coeffi-
cients, modulo rational equivalence.

The following observation allows us to control the dimension of the base of a
clean cycle in terms of its Segre classes.

Remark 5.4
For any subvariety Z � A and d > dim Z, we have sd .

V

Z/D 0. On the other hand,
if Z has a top-dimensional irreducible component of general type, then the Segre
classes sd .Z/ are represented by nonzero effective cycles for all d 2 ¹0; 1; : : : ;dim Zº;
this follows from the dominance of the Gauss map 
Z and Kleiman’s generic transver-
sality theorem (see [33, Lemma 3.1.2(3)]). The top degree Segre class is the funda-
mental class

sdim Z.Z/D ŒZ�:

Clean cycles live on the projective cotangent bundle, thus there is no Segre class
in degree g D dim A. The total Segre class s.

V

/ WD s0.

V

/C � � � C sg�1.

V

/ is then
seen as an element of quotient

2In the case of abelian varieties Segre classes and Chern–Mather classes are the same, since the cotangent bundle
to abelian varieties is trivial.
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CH<g.A/ WD CH�.A/=CHg.A/:

To define a ring structure on this quotient, recall that the group CH�.A/ comes with a
natural ring structure where the product is given by the Pontryagin product

ŒX� � ŒY� WD ��ŒX�Y� for the sum morphism � W X�Y!XCY�A;

and that CHg.A/� CH�.A/ is an ideal for the Pontryagin product. Working with the
truncated Chow ring has the advantage that the total Segre class is compatible with
the convolution product of clean cycles in the following sense.

LEMMA 5.5
Let

V

1;

V

2 2L .A/. If both Gauss maps 
 V

i
W Supp.

V

i /! PA are finite morphisms,
then

s.

V

1 ı

V

2/D s.

V

1/ � s.

V

2/ in CH<g.A/:

Proof
See [33, Lemma 3.3.1].

Thus, the convolution product of clean cycles can be controlled via Pontryagin
products of Segre classes. For the latter, one can use the following observation.

LEMMA 5.6
Let X;Y�A be proper reduced subvarieties. Suppose that every irreducible compo-
nent of maximal dimension in Y is of general type and that at least one irreducible
component of maximal dimension in X is nondegenerate. Then the cycle

s.

V

X/ � s.

V

Y/

is nonzero and effective in all degrees at most min¹dim XC dim Y;dim A� 1º.

Proof
Since the Pontryagin product is bilinear and the Pontryagin product of two effective
cycles is effective or zero, it suffices to show the statement when X and Y are both
integral. Let d D dim X, eD dim Y, and gD dim A, and consider the Segre class

sm�d .

V

Y/ 2 CHm�d .A/ for d �m�min¹d C e; g � 1º:

This class is represented by an effective cycle since m � d 2 ¹0; 1; : : : ; eº. For any
irreducible component Zm�d � A of an effective cycle representing this class, we
have
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sd .

V

X/ � sm�d .

V

Y/D ŒX� � sm�d .

V

Y/D ŒX� � ŒZm�d �C � � � 2 CHm.A/;

where � � � stands for a cycle which is effective or zero. Since by assumption X is
nondegenerate, we furthermore know from Lemma 2.7 that the sum morphism

� W X� Zm�d �!XC Zm�d �A

is generically finite onto its image. So ŒX�� ŒZm�d �D ��.ŒX�Zm�d �/ is an effective
class in CHm.A/. Therefore, the Pontryagin product s.

V

X/ � s.

V

Y/ is nonzero and
effective in all degrees m with d �m � min¹d C e; g � 1º. For 0 �m < d instead
the effectivity of the Pontryagin product is trivial because in that range we can look
at sm.

V

X/ � s0.

V

Y/ D deg.

V

Y/ � sm.

V

X/; note that deg.

V

Y/ > 0 because Y is of
general type.

COROLLARY 5.7
Let X;Y� A be reduced subvarieties, possibly reducible. If the Gauss maps 
X, 
Y

are both finite morphisms, then

dim�
�
Supp.

V

X ı

V

Y/
�
Dmin¹dim XC dim Y;dim A� 1º;

where � W A� PA! PA is the projection.

Proof
Combine Lemmas 5.5 and 5.6.

5.3. Clean characteristic cycles
For the remainder of this section we work over k D C. Recall that to any per-
verse sheaf P 2 Perv.A;C/ one may attach a characteristic cycle (see [16, Defini-
tion 4.3.19]), a finite formal sum of conormal varieties

CC.P/D
X
Z	A

mZ.P/ �ƒZ with mZ.P/ 2N:

Here the sum runs over all integral subvarieties Z�A, and only finitely many mZ.P/
are nonzero. These cycles contain a lot of information, for instance, the Dubson–
Kashiwara index formula shows that we can read off the topological Euler character-
istic as

�.A;P/D
X
Z	A

mZ.P/ � deg.

V

Z/;

where deg.

V

Z/ is the degree of the Gauss map from Section 2.2 (see [19]). Passing
from CC.P/ to its projectivization and discarding all components which are not clean,
we define the clean characteristic cycle by
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cc.P/ WD
X

Z	A of
general type

mZ.P/ �

V

Z:

It contains all information needed for the Dubson–Kashiwara index formula. This
index formula implies that for P 2 Perv.A;C/ we have cc.P/ D 0 if and only
if P 2 S.A;C/. So the clean characteristic cycle of perverse sheaves is defined on the
abelian quotient category Perv.A;C/ D Perv.A;C/=S.A;C/. By additivity in short
exact sequences we then obtain a group homomorphism from the Grothendieck group
of this abelian quotient category to the group of clean cycles:

cc W K
�
Perv.A;C/

�
�!L .A/:

The Grothendieck group of an abelian tensor category is not just an abelian group,
but also a ring with the product given by the tensor product, which in our case is the
convolution product � of perverse sheaves. By [33, Theorem 2.1.1, Example 1.3.2],
we have

cc.P1 � P2/D cc.P1/ ı cc.P2/ for all P1;P2 2 Perv.A;C/;

where ı is the convolution product of clean cycles introduced previously.

Example 5.8
Passing to characteristic cycles is useful since the convolution of clean cycles is easier
to control than the convolution of perverse sheaves. For instance, in Corollary 3.5 we
have seen that for any P 2 Perv.A;C/ the connected component of its Tannaka group
can be realized as the Tannaka group of Œd ��P for any integer d � 1 with d ��P D ¹0º.
Here

�P WD
®
a 2A.C/tors

ˇ̌
ıa 2 hPi

¯
�A.C/

is a finite abelian group, but usually hard to control. However, we have the inclu-
sion �P � �cc.P/ for

�cc.P/ WD
®
a 2A.C/tors

ˇ̌ V

¹aº 2
˝
cc.P/

˛¯
;

and this latter group depends only on the characteristic cycle of the given perverse
sheaf. This will be useful in the proof of part (2) in Theorem 5.11 below.

5.4. Highest weight theory
We want to use characteristic cycles to study the tensor category generated by a given
semisimple perverse sheaf P on A. To pass from Tannaka groups to their connected
component, we introduce the following notation.
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Definition 5.9
Let m� 1 be the smallest integer n� 1 with n � �cc.P/ D ¹0º, and let

Pı WD Œm��P:

Fix a fiber functor � W hPıi ! Vect.C/, and consider the fiber functor obtained as the
composite

! W hPi hPıi Vect.C/:
Œm�� 	

Its associated Tannaka groups are

G WDG!.P/
Gı DG	.P
ı/;

where the rightmost equality follows from Corollary 3.5.

Recall that G is a reductive group over C and ! induces an equivalence of abelian
tensor categories

! W hPi
�
�! RepC.G/:

In what follows, we will assume that the perverse sheaf P 2 Perv.A;C/ is nondivisible
and det.P/ D ı0 (the latter can be achieved by replacing P with a translate). Then,
by Proposition 3.3 and Corollary 3.5, the connected component Gı is a semisimple
group. By highest weight theory, its representation ring has the form

R.Gı/ WDK
�
RepC.G

ı/
�
D ZŒX�W;

where X WD Hom.T;Gm/ is the character group of a maximal torus T� G, endowed
with the natural action of the Weyl group W D NG.T/=ZG.T/, and we denote
by ZŒX�W � ZŒX� the subring of Weyl group invariants. Recall that for semisim-
ple groups the universal cover inherits the structure of an algebraic group and the
covering map is an isogeny

p W QG Gı �G:

Hence, QT WD p�1.T/ is a maximal torus in QG, and p induces an isomorphism of Weyl
groups

N QG. QT/= QT
�
�!NG.T/=TDWW

by means of which these groups are identified in what follows. Moreover, p embeds
the character group as a subgroup X� QX WDHom. QT;Gm/ of finite index.
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Definition 5.10
Let d � 1 be the smallest integer e � 1 with e � QX� X.

The multiplication by d then gives a morphism Œd � W QX! X, and we have a com-
mutative diagram

R.Gı/ R. QG/ R.Gı/

ZŒX�W ZŒ QX�W ZŒX�W
Œd��

where the top row is the d th Adams operation‰d W R.Gı/! R.Gı/. Even though the
universal cover QG might not be realized as the Tannaka group of a perverse sheaf, we
can relate its representations to clean cycles as follows (here we say that a statement
holds for a very general point of PA.C/ if it holds for all points outside a countable
union of proper subvarieties).

THEOREM 5.11
Let m, d � 1 be as above.
(1) The following diagram of ring homomorphisms is commutative:

R.G/ R.Gı/ R. QG/ R.Gı/

K.hPi/ K.hPıi/ K.hPıi/

L .A/ L .A/ L .A/

.�/jGı

!�1 	�1 	�1

cc

Œm��

cc cc

Œm�� Œd��

(2) For any very general v 2 PA.C/, there is a morphism 'v W X!A.C/ of groups
such that the following diagram commutes:

R.Gı/ ZŒX�W ZŒX�

L .A/ ZŒA.C/�D Z0.A/

ccı	�1 'v

V

7!

V

v

where

V

v is the fiber of the Gauss map

V

! PA seen as a 0-cycle on A.

Proof
(1) See [33, Theorem 2.2.3]. For part (2), let � �A.C/ be the subgroup generated by
the points in the fiber of the Gauss map 
 W cc.Pı/! PA over a very general point v.
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Then [33, Theorem 2.2.3] gives 'v W X! �=�tors with the required properties. It then
only remains to note that the group � is free since our assumption m � �cc.P/ D ¹0º

implies that the subring hcc.Pı/i �L .A/ does not contain any conormal variety to a
torsion point in A.C/.

Definition 5.12
For ˇ 2 QX, let Œˇ� 2 ZŒ QX� denote the corresponding basis vector in the group algebra.
Note that the multiplication of basis vectors in the group algebra is defined by Œ˛� �
Œˇ�D Œ˛ C ˇ�, and Œ˛ C ˇ�¤ Œ˛�C Œˇ�. The subring ZŒ QX�W � ZŒ QX� of Weyl group
invariants has as its underlying additive group the free abelian group with Z-basis
consisting of the vectors

ŒW:˛� WD
X
ˇ2W:˛

Œˇ� 2 ZŒ QX�W;

where ˛ runs through the dominant integral weights in QX and W:˛ � QX denotes its
orbit under the Weyl group. Multiplying by the integer d from above, we obtain an
element ŒW:d˛� 2 ZŒX�W D R.Gı/. Applying the inverse of � W K.hPıi/

�
�! R.Gı/ to

this element of the representation ring and taking its characteristic cycle, we obtain a
clean cycle

cc.P; ˛/ WD cc
�
��1ŒW:d˛�

�
2L .A/:

Note that for any integer n¤ 0 we have cc.P; n˛/D Œn�� cc.P; ˛/.

Remark 5.13
By design cc.P; ˛/ lies in the subring hcc.Pı/i � L .A/. In particular, if the
cycle cc.P/ is defined over a given algebraically closed subfield of C, then so
is cc.P; ˛/.

LEMMA 5.14
For any ˛ 2 QX, the cycle cc.P; ˛/ 2L .A/ is effective. Moreover, with m and d as in
Definition 5.9 and Definition 5.10, we have

Œdm�� cc.Q/D
X
˛

m˛.V/ � cc.P; ˛/

for any Q 2 hPi and VD !.Q/ 2 Rep.G/ with weight multiplicities m˛.V/.

Proof
The morphism 'v W ZŒX�! ZŒA.C/� of groups is induced by 'v W X!A.C/ in Theo-
rem 5.11(2). Hence, it sends the submonoid NŒX�� ZŒX� into the submonoid NŒA.C/�
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of effective 0-cycles. This construction works for very general v 2 PA.C/ only. How-
ever, if a clean cycle is known to have effective fibers over a very general cotangent
vector v 2 PA.C/, then the cycle is effective. Hence, the claim about effectivity fol-
lows. The formula for multiplicities holds by construction.

By Lemma 5.14, the weight multiplicities m˛.V/ give us information about the
multiplicities in characteristic cycles and vice versa. For example, we say that a rep-
resentation of a connected reductive group is minuscule if it is an irreducible nontriv-
ial representation whose weights for a maximal torus form a single orbit under the
Weyl group. A representation of an arbitrary reductive group is called minuscule if its
restriction to the connected component of the identity is so. This is a very restrictive
condition: For the simple Dynkin types the table in Section 1.4 shows that the only
minuscule representations other than standard representations of classical groups are
the wedge powers of the standard representation in type A, spin and half-spin repre-
sentations in types B and D, and the representations of dimension 27 and 56 of the
exceptional groups of type E6 and E7. The previous lemma shows that for any per-
verse sheaf whose characteristic cycle is integral, the corresponding representation
must be minuscule (see [34, Corollary 1.10]).

COROLLARY 5.15
Let Y � A be a nondivisible subvariety, and let P be a simple perverse sheaf on A
with clean characteristic cycle cc.P/D

V

Y. Then !.P/ is a minuscule representation
of the group GDG!.P/.

Proof
Since Y is nondivisible, the cycle Œdm�� cc.P/ is integral. In the above identity for
the weight multiplicities of the representation VD !.ıY/ thenm˛.V/¤ 0 for at most
one dominant weight ˛, and this weight must enter with multiplicity 1.

We now give a geometric description of the cycles cc.P; ˛/ 2 L .A/ in cases
when G D G!.P/ is a classical group. The idea is to express arbitrary weights in
terms of the weights in the standard representation, similar to the argument in [32].
We do this for each of the classical Dynkin types A, B, D separately; the computation
for the Dynkin type C is similar, but we omit it since in type C there are no minuscule
representations other than the standard representation.

5.5. Weyl orbits for type A
For QG D SLn, let us denote by "1; : : : ; "n 2 QX the weights of the standard repre-
sentation. The triviality of the determinant implies that "1 C � � � C "n D 0, and the
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wedge powers of the standard representation have as highest weights the fundamental
weights

$i D "1C � � � C "i for 0 < i < n:

The dominant integral weights are the N-linear combinations of the fundamental
weights, that is, the weights

˛D

n�1X
�D1

˛�"� with integers ˛1 � � � � � ˛n�1 � 0:

More generally, for ˛D .˛1; : : : ; ˛n/ 2 Zn, let `Dmax¹� j ˛� ¤ 0º be the length
of the n-tuple ˛, and let I.`; n/ be the set of injective maps

� W ¹1; : : : ; `º ¹1; : : : ; nº:

Then ˛ has the Weyl group orbit

W:˛D
®
˛1"�.1/C � � � C ˛`"�.`/ 2 QX

ˇ̌
� 2 I.`; n/

¯
:

Each weight in W:˛ is obtained for precisely N.˛/ distinct choices of � where

N.˛/ WD
Y
i2Z

`i Š with `i WD #¹� j ˛� D iº;

with the convention 0ŠD 1 so that the above product is finite. Hence, we have

ŒW:˛�D
1

N.˛/
�
X

�2I.`;n/

Œ˛1"�.1/C � � � C ˛`"�.`/� 2 ZŒX�:

To describe the clean cycle cc.P; ˛/ in these terms, we need some more notation.

Definition 5.16
Let

V

2L .A/ be a reduced clean cycle. Let U� PA be any open dense subset over
which the Gauss map 
 VW

V

! PA restricts to a finite flat morphism, and denote its
preimage by

V

jU WD 

�1V.U/. For an integer `� 1, consider the fiber product

V�`
jU WD

V

jU �U �� � � �U

V

jU �A` �U

and inside it the big diagonal


` WD
®
.p1; : : : ; p`; v/

ˇ̌
pi D pj for some .i; j / with i ¤ j

¯
�

V�`
jU :

Since the fiber product of finite flat morphisms is again a finite flat morphism, every
irreducible component of the fiber product

V�`
jU is a finite flat cover of U. So the

Zariski closure
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VŒ`� WD

V�`
jU ∖
` �A` � PA

does not depend on the specific choice of the open dense subset U� PA over which 
 V

is finite and flat. For any ˛ D .˛1; : : : ; ˛`/ 2 Z`, we then define a clean cycle as the
pushforward

V˛ WD
1

N.˛/
� �˛�.

VŒ`�/ 2L .A/

for the “sum” morphism

�˛ W A` � PA �!A� PA; .p1; : : : ; p`; v/ 7�! .˛1p1C � � � C ˛`p`; v/:

Remark 5.17
The group S` acts on A`�PA by permutations of the abelian variety factors, and this
action restricts to an action on

VŒ`� �A` � PA. The morphism �˛ factors through the
quotient by the subgroup

S˛ WD
Y
i2Z

S`i �S`; where `i WD #¹� j ˛� D iº;

as shown in the following commutative diagram:

A` � PA A� PA

.A` � PA/=S˛

�˛

q 9ŠQ�˛

Here, the quotient morphism q is finite of degree N.˛/. The restriction of q to the
subvariety

VŒ`� �A` �PA is still finite of the same degree over its image, as one may
see by looking at a general fiber of the Gauss map. Hence, Definition 5.16 amounts to

V˛ D Q�˛�. Q

V˛
/; where Q

V˛
WD

VŒ`�=S˛ � .A
` � PA/=S˛:

In particular, it follows that if

V˛ is reduced (resp., integral), then so is Q

V˛
.

We now obtain from Theorem 5.11 the following description of the clean cycles
corresponding to the dominant weights.

LEMMA 5.18
Suppose that GDG!.P/ is semisimple with universal cover SLn, and let ˛ 2 QX be a
dominant weight. If the clean cycle cc.P; ˛/ is reduced (resp., integral), then the cycle

V

WD cc.P; "1/ is reduced (resp., integral), and
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cc.P; ˛/D

V˛;

where on the right-hand side we identify ˛D
Pn
iD1 ˛i"i with .˛1; : : : ; ˛n/.

Proof
Let v 2 PA.C/ be a very general point, and let p1; : : : ; pn 2A.C/ be the points in the
fiber of the Gauss map

V

! PA over v, counted with multiplicities so that

V

v D Œp1�C � � � C Œpn�

inside ZŒA.C/�. By Theorem 5.11, the points in the fiber are precisely the images of
the weights in the Weyl group orbit W � d"1 D ¹d"1; : : : ; d"nº � X under the homo-
morphism 'v W X! A.C/. Up to relabeling indices, we may assume 'v.d"i / D pi
for all i . Writing the weight as ˛D .˛1; : : : ; ˛`/ with ` < n, we have

cc.P; ˛/v D cc
�
��1ŒW:d˛�

�
v
D 'v

�
ŒW:d˛�

�
D

1

N.˛/
�
X

�2I.`;n/

�
'v.˛1d"�.1/C � � � C ˛`d"�.`//

�

D
1

N.˛/
�
X

�2I.`;n/

Œ˛1p�.1/C � � � C ˛`p�.`/�:

For very general v this 0-cycle contains no multiple points, since we assumed cc.P; ˛/
to be reduced. Therefore, each point

pD ˛1p�.1/C � � � C ˛`p�.`/

enters in the above expression for cc.P; ˛/v only for N.˛/ different choices of �. But p
does not change if we replace the map � W ¹1; : : : ; `º ,! ¹1; : : : ; nº by � ı � for any
permutation

� 2S˛ D
Y
i2Z

S`i �S`:

Since N.˛/D jS˛j, it follows from the above that for all �; �� 2 I.`; n/ we have the
equivalence

X̀
�D1

˛�p�.�/ D
X̀
�D1

˛�p��.�/ () 9� 2
Y
i2Z

S`i W �
� D � ı �:

Since ` < n, this forces p1; : : : ; pn 2 A.C/ to be pairwise distinct, so the 0-cycle

V

v

is reduced and

V

must be reduced as well. Now let U� PA be an open neighborhood
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of v such that the Gauss map

V

jU! U is finite and flat. For the complement of the
big diagonal, we then get a bijection

I.`; n/�! .

V�`
jU ∖
`/v; � 7�! .p�.1/; : : : ; p�.`/; v/

and therefore

cc.P; ˛/v D
1

N.˛/
�
X
�

Œ˛1p�.1/C � � � C ˛`p�.`/�D
1

N.˛/
�
�
�˛�.

V�`
jU ∖
`/

�
v

which is by definition the fiber of the cycle

V˛ over v. Since this holds for very
general v, it follows that cc.P; ˛/D

V˛ as claimed.
If we moreover assume that the cycle cc.P; ˛/ is integral, then it follows from

Remark 5.17 that the cycle

QV˛ D

VŒ`�=S˛

is integral as well. We claim that in this case, the cycle

V

must be integral. Indeed,
suppose for a contradiction that

V

D

V

1C

V

2 with effective cycles

V

1;

V

2 2L .A/.
We know that the fiber of the Gauss map 
 VW

V

! PA over a general point v 2 PA.C/

is reduced, hence every point in this fiber lies either on

V

1 or on

V

2 but not on both.
Thus, each point on the big diagonal comes from a point on the big diagonal of one of
the two summands. For the complement of the big diagonal, we therefore obtain that

V�`
jU ∖
` 	

X
`1C`2D`

.

V�`1
1jU ∖
1;`/�U .

V�`2
2jU ∖
2;`/;

where we denote the big diagonals in the summands by 
i;` �

V�`i
i jU . Taking Zariski

closure gives

VŒ`� 	
X

`1C`2D`

VŒ`1;`2�;

where

VŒ`1;`2� WD .

V�`1
1jU ∖
1;`/�U .

V�`2
2jU ∖
2;`/:

From a look at the degree of the respective Gauss maps we have

VŒ`1;`2� ¤ 0 if and
only if 0� `1 � deg.

V

1/ and 0� `2 � deg.

V

2/ . For `1C`2 D `, these four inequal-
ities are equivalent to

max
®
0; `� deg.

V

2/
¯
� `1 �min

®
deg.

V

1/; `
¯
:

This set of inequalities has at least two different solutions `1 2 Z, indeed we
have max¹0; ` � deg.

V

2/º < min¹deg.

V

1/; `º because all the occurring degrees
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of Gauss maps are greater than 0 and ` < n D deg.

V

/ D deg.

V

1/ C deg.

V

2/. In
conclusion, this shows that there are at least two irreducible components of the
form

VŒ`1;`2� in

VŒ`�. One easily sees that no two such components are related to each
other by a permutation of the factors in A` � PA, using again that the fibers of the
Gauss maps for

V

1 and for

V

2 are disjoint. Hence, the quotient

VŒ`�=S˛ has more
than one irreducible component, which contradicts our assumption.

5.6. Weyl orbits for type B
For QG D Spin2nC1, let "˙1; : : : ; "˙n 2 QX be the nontrivial weights of the standard
representation of the orthogonal group, with the relations "�i D�"i . The fundamental
weights are

$i D

´
"1C � � � C "i for i < n;
1
2
� ."1C � � � C "n/ for i D n:

The first n�1 fundamental weights are again highest weights of wedge powers of the
standard representation; the last fundamental weight is the highest weight of the spin
representation. The dominant integral weights are the weights of the form

˛D

nX
�D1

˛�"� with ˛1 � � � � � ˛n � 0;

where 2˛i 2 Z are either all even or all odd. Put `Dmax¹� j ˛� ¤ 0º, and let I.`;˙n/
be the set of maps

� W ¹1; : : : ; `º ¹˙1; : : : ;˙nº

with the property that the map � 7! j�.�/j is still injective. Then ˛ has the Weyl group
orbit

W:˛D
®
˛1"�.1/C � � � C ˛`"�.`/

ˇ̌
� 2 I.`;˙n/

¯
:

Each weight in this orbit occurs for precisely N.˛/ different choices of �, where the
number N.˛/ is defined as above; note that different sign choices will lead to different
weights and hence the extra signs do not change the count.

In order to translate this back to geometry, we need to adapt Definition 5.16 to
the symmetric case.

Definition 5.19
Let

V

2 L .A/ be a reduced clean cycle with Œ�1��

V

D

V

, and let U � PA be an
open dense subset over which all components of the cycle are finite and flat. For an
integer `� 1, let
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` WD
®
.p1; : : : ; p`; v/

ˇ̌
pi D pj for some .i; j / with i ¤ j

¯
�

V�`
jU ;


�` WD
®
.p1; : : : ; p`; v/

ˇ̌
pi D�pj for some .i; j / with i ¤ j

¯
�

V�`
jU

be the big diagonal (resp., antidiagonal) in the fiber product, and consider the Zariski
closure

VŒ`�
S
WD

V�`
jU ∖ .
` [


�
`
/�A` � PA:

For ˛D .˛1; : : : ; ˛`/ 2 Z`, we obtain a clean cycle

V˛
S
WD

1

N.˛/
� �˛�.

VŒ`�
S
/ 2L .A/

as the pushforward under the morphism

�˛ W A` � PA �!A� PA; .p1; : : : ; p`; v/ 7�! .˛1p1C � � � C ˛`p`; v/:

With this notation, we obtain from Theorem 5.11 the following description of the
clean cycles corresponding to the dominant weights.

LEMMA 5.20
Suppose that GD G!.P/ is a semisimple group with universal cover Spin2nC1, and
let ˛ 2 Z"1 C � � � C Z"n � QX be a dominant weight. If the clean cycle cc.P; ˛/ is
reduced, then

V

WD cc.P; "1/ is reduced, and

cc.P; ˛/D

V˛
S
;

where on the right-hand side we identify ˛D
Pn
iD1 ˛i"i with .˛1; : : : ; ˛n/.

Proof
Let v 2 PA.C/ be a very general point, and let p˙1; : : : ; p˙n be the projection in A.C/
of the 2n points in the fiber of the Gauss map

V

! PA over v, counted with multi-
plicities so that

V

v D Œp1�C � � � C Œpn�C Œp�1�C � � � C Œp�n�

inside ZŒA.C/�. By Theorem 5.11, the points in the fiber are precisely the images
of the weights in the orbit W:d"1 D ¹˙d"1; : : : ;˙d"nº � X under the homomor-
phism 'v W X! A.C/. Up to relabeling indices, we may assume that 'v.˙d"i / D
p˙i D˙pi for all i . Then as in the proof of Lemma 5.18 one obtains

cc.P; ˛/v D
1

N.˛/
�
X

�2I.`;˙n/

Œ˛1p�.1/C � � � C ˛`p�.`/�:
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For very general v, this 0-cycle contains no multiple points, since we assumed
cc.P; ˛/ to be reduced. The same counting argument as in Lemma 5.18 then shows
that for any �; �� 2 I.`;˙n/ we have the equivalence

X̀
�D1

˛�p�.�/ D
X̀
�D1

˛�p��.�/ () 9� 2
Y
i2Z

S`i W �
� D � ı �:

This forces p˙1; : : : ; p˙n 2 A.C/ to be pairwise distinct. Indeed, assuming that we
had

pi D pj for certain i; j 2 ¹˙1; : : : ;˙nº with i ¤˙j;

then the implication H) in the above equivalence would fail for any choice of �; �� 2
I.`;˙n/ with

�.1/D i D���.1/; �.2/D�j D���.2/; and

�.�/D ��.�/ for � D 3; : : : ; `;

a contradiction. This shows that the 0-cycle

V

v is reduced, hence

V

must be reduced
as well. For the complement of the big diagonal and antidiagonal, we then get a bijec-
tion

I.`;˙n/�!
� V�`
jU ∖ .
` [


�
` /
�
v
; � 7�! .p�.1/; : : : ; p�.`/; v/

and can conclude as in Lemma 5.18 that cc.P; ˛/D

V˛
S

.

5.7. Weyl orbits for type D
For QG D Spin2n, we let "˙1; : : : ; "˙n 2 QX denote the weights of the standard rep-
resentation of the orthogonal group, with the relations "�i D �"i . The fundamental
weights are

$i D

8̂̂
<
ˆ̂:
"1C � � � C "i for i < n� 1;
1
2
."1C � � � C "n�1 � "n/ for i D n� 1;
1
2
."1C � � � C "n�1C "n/ for i D n:

The first n � 2 fundamental weights are highest weights of wedge powers of the
standard representation; the last two fundamental weights are the highest weights of
the two spin representations. The dominant integral weights are the weights of the
form

˛D

nX
�D1

˛�"� with ˛1 � � � � � ˛n�1 � j˛nj � 0;
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where 2˛i 2 Z are either all even or all odd. Put ` D max¹� j ˛� ¤ 0º, and
let Ieven/odd.`;˙n/ be the set of maps

� W ¹1; : : : ; `º ¹˙1; : : : ;˙nº

with the property that the map � 7! j�.�/j is still injective and the number of negative
values of � is even (resp., odd). Then ˛ has the Weyl group orbit

W:˛D
®
˛1"�.1/C � � � C ˛`"�.`/

ˇ̌
� 2 Ieven/odd.`;˙n/

¯
with

´
even if ˛n � 0;

odd if ˛n < 0:

Each weight in this orbit occurs for precisely N.˛/ different choices of �; again the
signs do not matter for this count.

In order to translate this back to geometry, we need to refine Definition 5.19 as
follows.

Definition 5.21
Let

V

2L .A/ be a reduced clean cycle with Œ�1��

V

D

V

, and let U� PA be an open
dense subset over which all components of the cycle are finite and étale. Labeling the
points in a general fiber of the Gauss map

V

jU!U in pairs of opposite points as


�1V.u/D ¹p˙1; : : : ; p˙nº with p�i D�pi ;

we identify the monodromy group of the finite étale cover 
 V

jU W

V

jU! U as a sub-
group of .˙1/n ⋊Sn. We say that the monodromy of the Gauss map is even if it is
contained in the subgroup

.˙1/nC ⋊Sn; where .˙1/nC WD
®
.a1; : : : ; an/ 2 .˙1/

n j a1 � � �an DC1
¯
:

Then for `D n in Definition 5.19 we obtain that the cycle

VŒn�
S

on An � PA splits as
a sum

VŒn�
S
D

VŒn�
S;CC

VŒn�
S;�;

where

VŒn�
S;˙ �

VŒn�
S

are defined by the condition that their fiber over u 2U.k/ contains
an even (resp., odd) number of points with a negative sign; in other words,

.

VŒn�
S;˙/u WD

°
.pi1 ; : : : ; pin ; u/

ˇ̌̌ nY
�D1

sgn.i�/D˙1
±
:

Note that this condition depends on the way we have labeled the points in the
fiber 
�1Z .u/. The labeling by ˙ has no intrinsic meaning and is only used as a
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notational device to separate the two pieces in the decomposition; none of the two
pieces is distinguished. We define

V˛
S;˙ WD �˛�.

VŒn�
S;˙/ 2L .A/

for ˛ D .˛1; : : : ; ˛n/ 2 Zn and the sum morphism �˛ as in Definition 5.19. Note
that while there is no intrinsic meaning to the labels ˙, it might nevertheless happen
that prA.

V˛
S;�/¤ prA.

V˛
S;C/. We also note that by symmetry of Z�A we can assume

without loss of generality that ˛n � 0.

LEMMA 5.22
Suppose that G D G!.P/ is a semisimple group with universal cover Spin2n, and
let ˛ 2 Z"1C � � � CZ"n � QX be a dominant weight of length `. If cc.P; ˛/ is reduced,
then

V

WD cc.P; "1/ is reduced. In this case,

cc.P; ˛/D

´ V˛
S

for ` < n;

V˛
S;" for `D n and suitable " 2 ¹C;�º;

where on the right-hand side we identify ˛D
Pn
iD1 ˛i"i with .˛1; : : : ; ˛n/.

Proof
This is similar to the argument for type Bn.

6. Simplicity of the Tannaka group
We now take a closer look at the Tannaka group of the perverse intersection complex
on a smooth nondivisible subvariety. By Corollary 5.15, the corresponding represen-
tation is minuscule; the goal of this section is to show that, under suitable positivity
assumptions, the Tannaka group is simple modulo its center.

6.1. The simplicity criterion
For the rest of this section, we assume that k is algebraically closed of characteristic 0.
Throughout, we fix a subvariety X�A and denote by

! W hıXi �!Vect.F/

a fiber functor on the Tannaka category generated by the perverse intersection com-
plex ıX 2 Perv.A;F/. Consider the Tannaka group GX;! WDG!.ıX/, and denote by

G�X;! WD ŒG
ı
X;! ;G

ı
X;! �

the derived group of its connected component. This is a connected semisimple group;
hence, its Lie algebra is a product of simple Lie algebras. Recall that a connected alge-
braic group is simple if its Lie algebra is simple, or equivalently, it does not contain
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connected (reduced) normal subgroups. Writing g WD dim A, the goal of this section
is the following simplicity criterion.

THEOREM 6.1
Suppose that g � 3, and let X be a smooth nondivisible subvariety with ample normal
bundle. Then the following are equivalent:
(1) The algebraic group G�X;! is not simple.
(2) There are smooth positive-dimensional subvarieties X1;X2 �A such that the

sum morphism induces an isomorphism

X1 �X2
�
�!X:

The proof of this result will occupy the rest of this section, but let us first observe
that the criterion applies in many cases. First, a smooth projective curve X� A gen-
erating A has ample normal bundle (see [25, Proposition 4.1]), thus G�X;! is simple as
soon as X is nondivisible and g � 3. More generally, we have the following.

COROLLARY 6.2
Suppose that g � 3, and let X � A be a smooth nondivisible subvariety with ample
normal bundle. Assume that one of the following conditions holds:
(1) the image of any Albanese morphism X!Alb.X/ is a nondegenerate subva-

riety of Alb.X/ in the sense of Section 2.3, or
(2) the natural map Alb.X/!A is an isogeny.
Then the algebraic group G�X;! is simple.

Proof of Corollary 6.2
For smooth connected subvarieties X1;X2 � A, the image of all Albanese mor-
phisms X1 � X2! Alb.X1/ � Alb.X2/ is degenerate if 0 < dim Xi < dim Alb.Xi /
for i D 1; 2. Theorem 6.1 therefore shows the statement assuming (1). Now hypoth-
esis (2) implies hypothesis (1). Indeed, X� A is nondegenerate by Theorem 2.8 and
nondegeneracy is invariant under isogenies (see Remark 2.6).

Remark 6.3
For a smooth integral subvariety X�A, condition (2) holds if the normal bundle of X
is the direct sum of vector bundles V1; : : : ;Vr with r � 1 such that Vi is di -ample3

and (see [11, Theorem 4.5])

3A line bundle L on an integral variety X is d -ample if there is an integer n� 1 such that L˝n is globally
generated and the fibers of the morphism X! P.H0.X;L˝n/_/ have dimension 
 d . Ordinary ampleness is
equivalent to 0-ampleness. A vector bundle E on X is d -ample if the line bundle O.1/ on P.E_/ is d -ample.
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dim X> max
iD1;:::;r

rkVi C di :

By Theorem 2.8, ampleness of the normal bundle implies nondegeneracy, thus Theo-
rem 6.1 applies to any smooth nondivisible subvariety X�A such that
� the normal bundle of X is ample and dim X> g=2, or
� dim X� 2 and X is a complete intersection of ample divisors in A.

6.2. Product decomposition: From geometry to groups
We start by showing how to obtain a product decomposition of the Lie algebra of
the Tannaka group starting from a product decomposition of the subvariety. Keep-
ing the notation of Section 6.1, we write G�X;! WD G�!.ıX/ for any fixed fiber func-
tor ! W hıXi!Vect.F/.

LEMMA 6.4
Let G be a simple, simply connected algebraic group over F, and let V, W be non-
trivial irreducible representations of G. Then V˝W is not minuscule.

Proof
The minuscule representations of G are given up to isomorphism by Table 1. In par-
ticular, the highest weight of any minuscule representation is a fundamental weight.
But the highest weight in V˝W is the sum of the highest weights of V and W; hence,
it is a sum of two dominant integral weights and therefore cannot be a fundamental
weight.

PROPOSITION 6.5
Let X1;X2 � A be smooth subvarieties such that X WD X1 CX2 is nondivisible and
the sum morphism � W X1�X2!X is an isomorphism. Then we have an isomorphism
of Lie algebras

Lie G�X;! ' Lie G�X1;! ˚ Lie G�X2;! :

Proof
Let G be the universal cover of the derived connected component of the Tannaka
group of ıX1 ˚ ıX2 . The group G decomposes as a product

GDG1 � � � � �Gn

with G1; : : : ;Gn simply connected simple (nontrivial) algebraic groups. Both perverse
sheaves ıX1 and ıX2 belong to the tensor category hıX1 ˚ ıX2i and therefore define
representations of G. Since X1, X2 are smooth and nondivisible (otherwise X would
not be nondivisible), by Corollary 5.15 such representations are minuscule. By seeing
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them as representations of the product G1 � � � � �Gn they decompose as an external
tensor product,

!.ıXi /DVi;1 ⊠ � � �⊠ Vi;n; i D 1; 2;

for representations Vi;` of G`. Note that for all i , ` the representation Vi;` is neces-
sarily minuscule. By hypothesis, the sum morphism X1�X2!X is an isomorphism,
thus ıX D ıX1 � ıX2 by definition of the convolution product. In particular, ıX belongs
to hıX1 ˚ ıX2i and as representations of G we have

!.ıX/D !.ıX1/˝!.ıX2/D .V1;1˝V2;1/⊠ � � �⊠ .V1;n˝V2;n/:

Again by Corollary 5.15, the representation !.ıX/ of G is minuscule because X is
smooth and nondivisible. Thus, the representation V1;` ˝ V2;` of G` is also minus-
cule for each 1 � ` � n. Now Lemma 6.4 implies that for 1 � ` � n the representa-
tion Vi;` is trivial for exactly one i 2 ¹1; 2º. Strictly speaking, Lemma 6.4 gives only
the existence of such an i ; however, if V1;` and V2;` were both trivial, then G` would
act trivially on !.ıX1/˚ !.ıX2/ contradicting the fact that G` is a nontrivial simple
factor of G. Resuming the proof, for i D 1; 2, let Li � ¹1; : : : ; nº be the subset made
of those ` for which Vi;` is nontrivial. Then L1;L2 � ¹1; : : : ; nº are complementary
subsets and

G�Xi ;! D Im
�Y
`2Li

G`!GL
�
!.ıXi /

��
; i D 1; 2;

G�X;! D Im
�
G!GL

�
!.ıX/

��
:

Rather generally, for a simple, simply connected algebraic group H and a nontrivial
minuscule representation W of H, the kernel of H! GL.W/ is finite. This gives
isomorphisms of Lie algebras

Lie G�X;! ' Lie G'
M
`2L1

Lie G`˚
M
`2L2

Lie G` ' Lie G�X1 ˚ Lie G�X2 ;

as desired.

6.3. Conic maps
In this section, we introduce the notion of conic map, which will turn out useful
in dealing with conormal varieties (see Definition 6.7). Recall that the domain of
definition of a rational map is the maximal open subset of its source on which the
map is well defined.

PROPOSITION 6.6
Let X, X0 � A be integral subvarieties, and F W

V

X --￫ V

X0 a rational map between



THE MONODROMY OF SUBVARIETIES ON ABELIAN VARIETIES 1111

their conormal varieties. Then there exists a unique rational map f W X --￫ X0 such
that the following diagram commutes:

V

X

V

X0

X X0

F

prX prX0

f

Moreover, the domain of definition of f contains the smooth locus Xreg �X.

Proof
Let U be the domain of definition of the rational map F W

V

X --￫ V

X0 . For any smooth
point x 2 Xreg.k/, the fiber

V

X;x is a projective space. Every rational map from a
projective space to an abelian variety is constant (see [45, Corollary 3.9]), so for any
point x 2Xreg.k/ the morphism

prX0 ıFjUx W Ux WDU\

V

X;x �!X0 �A

must be constant. Therefore, the morphism

prX0 ıFjV W V WDU\ pr�1X .Xreg/�!X0 �A

is constant along the fibers of the smooth morphism prX W V! Xreg. Over the open
subset prX.V/�Xreg the morphism prX locally has sections, so we have

prX0 ıFD f ı prX

for a unique morphism f W prX.V/!X0. The latter extends to a morphism Xreg!X0

because a rational map from a variety to an abelian variety is defined at every smooth
point of the source (see [45, Theorem 3.1]).

In the above proof, we have not used anything specific about conormal vari-
eties. In fact, the only thing we used was that prX W

V

X! X is a projective bundle
over Xreg �X and that X0 embeds in an abelian variety. However, the conormal geom-
etry will be taken into account by the following notion of a conic map.

Definition 6.7
In the setup of Proposition 6.6, the rational map f W X --￫ X0 is called the base
of F W

V

X --￫ V

X0 . A rational map F W

V

X --￫ V

X0 is said to be conic if the diagram

V

X PA

V

X0 PA

�X

F

�X0
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commutes, that is, if F is compatible with the respective Gauss maps.

Example 6.8
Let X, X0 �A be integral subvarieties, and let F W

V

X --￫ V

X0 be a conic map whose
base is birational. Then

deg

V

X D deg

V

X0

because the Gauss degree can be computed over any nonempty open subset of PA.

Note that even when the base f W X --￫ X0 of a conic map is defined everywhere,
it is still not clear whether it is the restriction of an endomorphism of the abelian
variety A. However, the results about conic maps in the rest of this section will suffice
for our purpose.

PROPOSITION 6.9
Let X, X0 �A be integral subvarieties, and let F W

V

X --￫ V

X0 be a conic map. If the
algebraic group Stab.X/ is finite, then the rational map F is dominant and generically
finite.

Proof
By Theorem 2.8(1), the Gauss map 
X is generically finite. It follows from the com-
mutative diagram in Definition 6.7 that the rational map F is also generically finite.
Since dim.

V

X/D dim.

V

X0/D g � 1D dim.PA/, it follows that F is also dominant,
being a generically finite map between varieties of the same dimension.

6.4. Product decompositions: From groups to geometry
We now explain how to obtain from a product decomposition for the Lie algebra of
the Tannaka group a product decomposition for conormal varieties, using the above
results. Borrowing notation from Section 6.1, we write G�X;! WDG�!.ıX/ for any fixed
fiber functor ! W hıXi!Vect.F/.

PROPOSITION 6.10
Assume that X�A is smooth nondivisible and that G�X;! is not simple. Then there is
an integer n� 1 and for i D 1; 2 there are integral subvarieties Xi �A with conormal
varieties

V

Xi 2 h

V

Xi of Gauss degree deg.

V

Xi / > 1, conic maps Fi W

V

X --￫ V

Xi

with the following properties:
(1) We have an identity of cycles Œn��

V

X D

V

Œn�.X/ D

V

X1 ı

V

X2 .
(2) The following square is commutative
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V

X

V

Œn�.X/

V V

X1 ı

V

X2

F1�F2

Œn�

�

where

V

and � are as in Definition 5.2.
(3) The rational maps Fi W

V

X --￫ V

Xi are dominant and generically finite.
(4) The base of Fi is a morphism fi W X!Xi which is surjective.

Proof
By Corollary 4.4 and Lemma A.1, we may assume k D C, which will allow us later
to use the results about characteristic cycles in Theorem 5.11. By Corollary 3.5, the
group G�X;! does not change if we replace X by XCa for any a 2A.k/, and it clearly
suffices to achieve properties (1)–(4) for any such translate. We will therefore assume
that

det.ıX/D ı0

so that the connected component G WD GıX;! is semisimple by Proposition 3.3. If the
group G�X;! is not simple modulo its center, then by the structure theory of semisimple
groups there are simply connected semisimple groups G1;G2 6' ¹1º and an isogeny

p W QG WDG1 �G2 G:

Then V WD !.ıX/ restricts to an irreducible representation of the covering group QG
and as such it decomposes as

Vj QG 'V1˝V2 with irreducible Vi 2 RepF.Gi /� RepF.
QG/:

Note that both factors G1 and G2 must act nontrivially on V since otherwise they
would not appear in the Tannaka group. In particular, we have dim Vi � 2 as any
1-dimensional representation of a connected semisimple group is trivial.

Let nDm � deg.p/ for the smallest integer m� 1 with m ��cc.ıX/ D ¹0º. Since X
is smooth, its perverse intersection complex has characteristic cycle cc.ıX/D

V

X. Via
the first part of Theorem 5.11, the above decomposition as a tensor product of two
representations of the universal covering group yields clean cycles

V

1;

V

2 2 h

V

Xi

such that

Œn��

V

X D

V

1 ı

V

2;

and the second part of the theorem implies that deg

V

i D dim Vi � 2. Moreover, by
Lemma 5.14, the cycles

V

i are effective. Since we assumed the subvariety X� A to
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be nondivisible, the morphism Œn� W X! Œn�.X/ is dominant and birational, in fact we
have Œn��

V

X D

V

Œn�.X/ as an identity of cycles by Lemma 2.4. Altogether, it follows
that

V

Œn�.X/ D Œn��

V

X D

V

1 ı

V

2:

The cycle on the left-hand side is reduced and irreducible, so the same must hold
for both factors on the right-hand side because the convolution product ı on cycles is
bilinear and the convolution of any two clean effective cycles is again a clean effective
cycle. Hence, there exist integral subvarieties Xi � A with

V

i D

V

Xi . By definition
of ı, we have

V

1 ı

V

2 D ��.

V

X1jU �U

V

X2jU/;

where � W A � A � PA ! A � PA denotes the sum morphism and U � PA is as in
Definition 5.2. The multiplicities of the cycle-theoretic pushforward on the right-hand
side are given by the degree of the sum morphism

� W

V

WD

V

X1jU �U

V

X2jU �!

V

Œn�.X/

on the various components of its source. Since the cycle

V

1 ı

V

2 D

V

Œn�.X/ is integral
as observed above, it follows in fact that the fiber product

V
is integral and is mapped

birationally onto its image by � . Consider then the composition of rational maps

Fi W

V

X

V

Œn�.X/

V

D

V

X1jU �U

V

X2jU

V

Xi ;
Œn��id ��1 pri

where pri denotes be the projection onto the i th factor. By construction, Fi is a conic
map, and by Proposition 6.6 its base fi W X --￫ Xi is defined on all of X because
we assumed X to be smooth. Moreover, by Proposition 6.9, the rational map Fi is
dominant and generically finite, so the morphism fi is surjective.

6.5. Proof of Theorem 6.1
We can now prove the simplicity criterion for Tannaka groups as follows. Thanks to
Proposition 6.5, only the implication (1) H) (2) is left to be shown. Suppose that the
algebraic group G�X;! is not simple. According to [39, Lemma 4.6], this is never the
case when X is a smooth ample divisor, thus from now we may assume dim X< g�1.
Let n, Xi , Fi and fi W X!Xi be as in Proposition 6.10. For i D 1; 2, the Gauss map
of Xi is a finite morphism because the one of X is by Theorem 2.8 and

V

Xi 2 h

V

Xi

by construction. It is therefore possible to apply Corollary 5.7 and deduce the equality

dim XD dim X1C dim X2
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from the identity

V

X1 ı

V

X2 D

V

Œn�.X/ and the hypothesis dim X< g � 1. Moreover,
the subvarieties X1 and X2 are nondegenerate by Theorem 2.8. Thus, Lemma 2.7
implies that the subvariety

X1CX2 �A

is nondegenerate and the sum morphism � W X1�X2!X1CX2 is generically finite.
Thus, the conormal cone

V

X1CX2 appears as a summand with multiplicity deg.�/ in
the cycle

V

X1 ı

V

X2 . But

V

X1 ı

V

X2 D

V

Œn�.X/, hence

deg.�/D 1 and X1CX2 D Œn�.X/:

Together with Proposition 6.10(2), this gives the following commutative square:

X Œn� .X/

X1 �X2 X1CX2

f1�f2

Œn�

�

The primitivity assumption on X implies that the morphism Œn� W X! Œn�.X/ is finite
birational. This forces f D .f1 �f2/ to be finite birational. As X is smooth, this says
that f is the normalization morphism. For i D 1; 2, let QXi be the normalization of Xi .
The morphism Qf W X! QX1 � QX2 induced by f is an isomorphism, thus QX1 and QX2
are smooth. Identifying X with QX1 � QX2 permits us to embed QX1 and QX2 in A and to
write Alb.X/D Alb. QX1/ � Alb. QX2/. By suitably embedding X, QX1, and QX2 in their
Albanese variety, we have the following identity:�

QX1 � ¹0º
�
C
�
¹0º � QX2

�
DX�Alb.X/:

The commutativity of the following square

�
Alb. QX1/� ¹0º

�
�
�
¹0º �Alb. QX2/

�
Alb.X/

A�A A

where the horizontal arrows are the sum morphisms and the vertical ones are given
by universal property of the Albanese, implies that XD QX1C QX2.

7. Wedge powers
We now characterize low-dimensional smooth subvarieties whose Tannaka group is
the image of a special linear group acting on a nontrivial wedge power of its standard
representation. In the case of hypersurfaces, Lawrence and Sawin [39, Lemma 4.10]
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show that such groups do not occur using combinatorial properties of Eulerian num-
bers. In higher codimension, wedge powers do occur, but we show by geometric argu-
ments that they only arise from symmetric powers of curves.

7.1. Statement of the main result
As in the previous section, we assume the field k to be algebraically closed of char-
acteristic 0. Fix a subvariety X � A and a fiber functor ! W hıXi ! Vect.F/ on the
Tannaka category generated by the perverse intersection complex of X. As in Sec-
tion 6.1, put GX;! WDG!.ıX/, and denote by

G�X;! WD ŒG
ı
X;! ;G

ı
X;! �

the derived group of its connected component of the identity. We are interested in the
following situation.

Definition 7.1
Let r � 1 be an integer. We say that X�A is an r th wedge power if we have

G�X;! 'Altr
�
SLn.F/

�
with the standard action on !.ıX/'Altr.Fn/

for some n� 1. Notice that if r is given, then n is determined by the topological Euler
characteristic

�.ıX/D dimF

�
!.ıX/

�
D

 
n

r

!
:

If X is an r th wedge power, then by duality it is also an .n� r/th wedge power.

The typical example of wedge powers arises from symmetric powers of curves,
as announced in the introduction.

LEMMA 7.2
Let C � A be a smooth projective curve, and let r � 2 be an integer. If the sum
morphism

s W Symr C�!XD CC � � � CC�A

is an isomorphism onto its image, then this image X�A is an r th wedge power.

Proof
Replacing A by the abelian subvariety hCi � A, we may assume that C generates A.
The Abel–Jacobi map C ,!Alb.C/ for some basepoint induces a sum morphism
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Symr .C/�!Alb.C/:

Let Wr � Alb.C/ denote the image of this sum morphism. The embedding C ,! A
also induces a morphism Alb.C/! A; this last morphism is surjective because we
assumed AD hCi. We obtain the following commutative diagram:

Symr .C/ Wr Alb.C/

Symr .C/ X A�

The square on the left implies that the morphism Wr ! X is an isomorphism, there-
fore Wr is smooth (hence by the Riemann singularity theorem the curve C is not r -
gonal, so in particular it is not hyperelliptic if r � 2). Fixing any r � 2 points on
the curve and varying the remaining two points, the above also implies that the mor-
phisms Sym2.C/!W2 �Alb.C/ and Sym2.C/! CCC�A have the same fibers.
So we can apply the variant of Larsen’s alternative in [37, Section 6] to the perverse
sheaf ıC 2 Perv.A;F/ to see that

G�!.ıC/' SLn.F/ with the standard action on !.ıC/' Fn for nD �.ıC/:

The above diagram then shows that G�X;! 'Altr.SLn.F// and !.ıX/'Altr.Fn/.

The goal of this section is to show a converse to the above lemma. More precisely,
we obtain the following complete classification of wedge powers for all nondivisible
smooth subvarieties X� A of high codimension whose Gauss map 
X W

V

X! PA is
finite.

THEOREM 7.3
Let X� A be a nondivisible smooth subvariety with ample normal bundle, and sup-
pose that its Euler characteristic is �.ıX/D

�
n
r

�
for some integer r with 1 < r � n=2.

If 2dim X< dim A� 1, then the following are equivalent:
(1) The subvariety X�A is an r th wedge power.
(2) There is a nondegenerate irreducible smooth projective curve C�A such that

� XD CC � � � CC�A is the sum of r copies of C, and
� the sum morphism Symr C!X is an isomorphism.

In view of Lemma 7.2, we only need to show the implication .1/H) .2/, which
will take up the rest of this section.
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7.2. Structure of the proof
The proof relies on three independent steps. The first step is to show that the structure
of wedge powers is reflected by characteristic cycles. To any subvariety Z�A and an
integer r � 1 we will attach a clean effective cycle

Altr

V

Z 2L .A/;

and we show the following.

THEOREM 7.4
Let X � A be a positive-dimensional smooth nondivisible subvariety that is an r th
wedge power for some integer r � 1. Then there is an integral subvariety Z � A
with

V

Z 2 h

V

Xi such that

Altr

V

Z D

V

Œe�.X/

for some integer e � 1. The Gauss degrees are related by

deg

V

X D

 
n

r

!
; where nD deg

V

Z;

and if the Gauss map 
X W
V

X! PA is finite, then so is 
Z W
V

Z! PA.

For the construction of the clean cycle Altr

V

Z and the proof of the above result,
see Section 7.3. Once we have this, the second step in our classification of wedge
powers will be to prove a monotonicity statement for the cycles Altr.

V

Z/ as a function
of r . Let

Altr Z WD Im
�
prA W Supp.Altr

V

Z/!A
�
�A

be the image of the support of the clean effective cycle Altr

V

Z 2L .A/ under the
projection to the abelian variety. Then we will show the following.

THEOREM 7.5
Let Z � A be an integral subvariety whose Gauss map is a finite morphism of
degree nD deg.
Z/. Suppose there exists an integer r � 1 with r � n=2 such that

dim Altr Z< .dim A� 1/=2:

Then we have

r dim Z< dim A:
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The proof of this will be given in Section 7.4. Finally, the last step for our clas-
sification of wedge powers will be to show that in the given dimension range, the
smoothness of Altr

V

Z forces Z to be a curve. More precisely, we have the following
result.

THEOREM 7.6
Let X;Z� A be integral subvarieties whose Gauss maps are finite morphisms. Sup-
pose moreover that X is smooth and nondivisible and that there are integers e; r � 1
such that

Altr

V

Z D

V

Œe�.X/:

If r dim Z< dim A, then Z is a curve and
(1) the normalization C of Z embeds in A,
(2) XD CC� � �CC�A is the sum of r copies of C, embedded suitably in A, and
(3) the sum morphism Symr C!X is an isomorphism.

We will prove this in Section 7.5. Before coming to the details, let us note how
the above three results conclude the classification of wedge powers.

Proof of Theorem 7.3
Suppose that X � A satisfies the assumptions of the theorem and that it is an r th
wedge power for some r 2N with 1 < r � n=2 where deg
X D

�
n
r

�
. By Theorem 7.4,

then

Altr

V

Z D

V

Œe�.X/;

for some integer e � 1 and some integral subvariety Z� A. Since Œe� W A! A is an
isogeny, we have dimŒe�.X/D dim X< .dim A� 1/=2 by our dimension assumption
on X. Theorem 7.5 then shows that

r dim Z< dim A;

and hence Theorem 7.6 gives the desired result.

7.3. Characteristic cycles of wedge powers
We now explain how to compute characteristic cycles of wedge powers. Let Z � A
be a subvariety with dominant Gauss map 
Z W

V

Z! PA. For an integer r � 1, we
consider as in Definition 5.16 the Zariski closure

VŒr�
Z WD

V�r
ZjU ∖
r �Ar � PA;
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where U� PA is any open dense subset over which the Gauss map 
Z is finite and flat.
Let � W Ar �PA!A�PA, .z1; : : : ; zr ; �/ 7! .z1C� � �C zr ; �/ be the sum morphism,
and put

Altr

V

Z WD
1

rŠ
��.

VŒr�
Z / 2L .A/;

which is the special case ˛D .1; : : : ; 1/D .1r/ of the cycle in Definition 5.16.

Proof of Theorem 7.4
By Corollary 4.4 and Lemma A.1, we may reduce to the case k D C and FD C so
we can use the results about characteristic cycles from Section 5. Replacing X by
a translate, we may assume by Corollary 3.5 that the connected component of the
group G!.ıX/ is semisimple. Its universal cover is then isomorphic to QG' SLn.C/
for some n� 1, so the setup in Section 5.5 applies to PD ıX. By assumption,

!.P/'Altr .Cn/:

Since dim!.P/ > 1 for any non-negligible perverse sheaf P which is not a skyscraper
sheaf (see [53]), we have 1 < r < n. The highest weight of the above wedge power
representation of SLn.C/ is ˛D "1C� � �C"r . With notation as in Definition 5.12, the
Weyl group orbit W:˛ consists precisely of the weights in the representation �.Pı/,
so ��1ŒW:˛�D ŒPı� in the Grothendieck ring K.hPıi/. It follows that

cc.P; ˛/D cc
�
��1ŒW:d˛�

�
with notation as in Definition 5.12

D Œd �� cc.Pı/ since ��1ŒW:˛�D ŒPı�

D Œe�� cc.P/ for e WD dm and Pı WD Œm��P

D Œe��

V

X since cc.ıX/D

V

X for smooth X

D

V

Œe�.X/ by Lemma 2.4, since X is nondivisible.

In particular, the cycle cc.P; ˛/ is integral. So by Lemma 5.18 the cycle cc.P; "1/ is
integral as well, hence of the form cc.P; "1/D

V

Z for an integral subvariety Z � A,
and we have

V

Œe�.X/ D cc.P; ˛/D

V˛
Z DAltr

V

Z:

Then deg

V

X D deg cc.P; ˛/D dim!.P/D
�
n
r

�
. For the finiteness of the Gauss map,

recall from Remark 5.13 that

V

Z D cc.P; "1/ lies in the subring h

V

Xi �L .A/. As
such, it appears in some convolution power of the cycle

V

X. Recalling the definition
of the convolution product, this implies that if the Gauss map for 
X is finite, then so
is the one for 
Z.
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Remark 7.7
The discussion in the proof of Theorem 7.4 also shows that for any reduced subvari-
ety Z � A with dominant Gauss map of degree nD deg.
Z/ and any integer r � 1,
we have the following:
� The projection 
Z;r W

VŒr�
Z ! PA is dominant (and hence generically finite) if

and only if r � n. In that case,

deg
Z;r D rŠ

 
n

r

!
:

� If 
Z W

V

Z! PA is a finite morphism, then so is 
Z;r W

VŒr�
Z ! PA.

7.4. Dimension estimates for wedge powers
We will deduce Theorem 7.5 from a monotonicity property of wedge powers. To state
this, recall that for Z� A and an integer i � 1 we put Alti Z WD prA.Supp.Alti

V

Z//.
We are interested in its dimension

dZ.i/ WD dim Alti Z:

Example 7.8
Let Z be a smooth projective curve of genus g > 1, embedded via the Abel–Jacobi
map in its Jacobian variety AD Alb.Z/. When Z is suitably translated in A, by [32,
Examples 3.1 and 4.1],

dZ.i/D

´
i for 1� i � g � 1;

g � 1� i for g � 1� i � 2g � 2:

Here dZ is not monotonous, but it is so between zero and g � 1D deg
Z=2.

The following monotonicity result shows that the behavior in the above example
is typical for wedge powers in small degrees.

PROPOSITION 7.9
Let Z� A be an integral nondegenerate subvariety, and let r � 1 be an integer such
that r dim Z< dim A.
(1) Let Y WD ZC� � �CZ�A be the sum of r copies of Z. Then the sum morphism

� W Symr ZD Zr=Sr �!Y

is generically finite, and the subvariety Y�A is nondegenerate.
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(2) The cycle Altr

V

Z contains

V

Y with multiplicity d D deg.�/� 1, and we have

Altr ZDY:

(3) For general z D .z1; : : : ; zr/ 2 Zr.k/, the fiber of

V

Y over y D �.z/ is

V

Y;y D

V

Z;z1 \ � � � \

V

Z;zr � PA:

Proof
The image YD ZC � � �CZ of the sum morphism � W Symr Z!Y is a proper subva-
riety of A because dim Y� dim Symr ZD r dim Z< dim A. As we assumed Z�A to
be nondegenerate, it then follows by Lemma 2.7 that the morphism � is generically
finite and that Y�A is again nondegenerate.

This last property implies that the Gauss map 
Y W

V

Y! PA is generically finite
and dominant (see Theorem 2.8). Let W � Yreg be a nonempty open subset such
that V WD ��1.W/ is contained in .Zreg/r ∖
r and the sum morphism � W V!W
is finite étale. If we view the tangent spaces as subspaces of Lie.A/, then for every
point z D .z1; : : : ; zr/ 2V.k/ and y D �.z/ the tangent map

Tz.�/ W Tz1.Z/� � � � � Tzr .Z/�! Ty.Y/

is induced by the sum map Lie.A/r ! Lie.A/. In particular, Tzi .Z/ � Ty.Y/ and
hence

V

Y;y �
V

Z;zi for all i .
Let U � PA be a nonempty open subset over which the Gauss maps 
Y and 
Z

are finite étale, and such that prY.

�1
Y .U// �W. For any � 2 U.k/ and z 2 V.k/

with �.z/ 2 
�1Y .�/, we have

.z1; : : : ; zr ; �/ 2

V�r
ZjU ∖
r �

VŒr�
Z :

So the image of prZ;r W

VŒr�
Z ! Zr contains an open dense subset of Zr . Hence by

properness, the morphism prZ;r is surjective and then Altr Z D Y by definition. In
particular, dim Altr Z D dim Y D r dim Z, where the last equality follows from the
generic finiteness of the sum morphism � W Symr Z! Y. The statement about the
general fiber of prY W Altr

V

Z!Y follows from the fact that for general .z1; : : : ; zr/
we have

Ty.Y/D Tz1.Z/˚ � � � ˚ Tzr .Z/

because the summands on the right-hand side span Ty.Y/ and their dimension adds
up to r dim Z D dim Y D dim Ty.Y/; passing to the corresponding normal spaces
gives

V

Y;y D

V

Z;z1 \� � �\

V

Z;zr and the claim follows since Supp.Altr

V

Z/y D

V

Y;y

for y 2Y.k/ general. Finally, it is also clear from the above discussion that the clean
cycle Altr

V

Z contains the component

V

Y with multiplicity d D deg.�/.
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COROLLARY 7.10
Let Z�A be an integral nondegenerate subvariety of positive dimension. Then

deg.
Z/� 2
dim A

dim Z
� 2:

Proof
Set r0 WD max¹r j r dim Z < dim Aº. Then Proposition 7.9 shows that the func-
tion r 7! dZ.r/ WD dim Altr Z is strictly increasing on the interval ¹0; 1; : : : ; r0º. On
the other hand, we have

Altr

V

Z DAltn�r

V

p�Z;

where nD deg.
Z/ and where p 2A.k/ is defined by Altn

V

Z D

V

¹pº. It follows that

dim Altr ZD dim Altn�r Z:

The left-hand side is strictly increasing for r 2 ¹0; 1; : : : ; r0º, the right-hand side is
strictly decreasing for r 2 ¹n � r0; : : : ; nº. This forces r0 � n � r0, hence n � 2r0.
Then .r0C 1/dim Z� dim A implies .n=2C 1/ � dim Z� dim A as desired.

For smooth subvarieties Z � A, the degree of the Gauss map 
Z W

V

Z ! PA is
equal to the topological Euler characteristic of ıZ (see Section 5.3). So for smooth
curves Z � A with hZi D A, Corollary 7.10 says that the curve has genus at least
dim A; this follows of course also directly from the fact that for such curves the mor-
phism Alb.Z/! A must be surjective. Note that here the bound in Corollary 7.10 is
sharp.

Proposition 7.9 gives a monotonicity statement for wedge powers, but in order to
apply it we need to have an a priori bound on dim Z. The following result will allow us
to start instead from a bound only on some wedge power dim Altr Z, since the bound
will be inherited by all lower wedge powers.

LEMMA 7.11
Let Z�A be a reduced subvariety whose Gauss map is a finite morphism of degree n.
Let r be an integer with 1� r � n=2, and assume that

dim Altr Z< .dim A� 1/=2:

Then the function dZ W ¹1; : : : ; rº ! N, i 7! dZ.i/ WD dim Alti Z is nondecreasing; in
particular,

dim Alti Z< .dim A� 1/=2 for all i 2 ¹1; : : : ; rº:
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Proof
We only need to show that dZ.r � 1/ � dZ.r/, because we can then proceed by
descending induction. Put

V

i WD .Alti

V

Z/ ı .Alti

V

�Z/ for i D 1; : : : ; n:

The support of this cycle is the closure of the subset of points in .A � PA/.k/ of the
form .x1C � � � C xi � y1 � � � � � yi ; �/ where
� � 2 PA.k/ is a cotangent direction such that prA.


�1
Z .�//� Zreg.k/,

� ¹x1; : : : ; xiº; ¹y1; : : : ; yiº � prA.

�1
Z .�// are subsets of cardinality i .

For general � 2 PA.k/, the fiber 
�1Z .�/ consists of n � 2r > 2.r � 1/C 1 distinct
points, hence for any two subsets ¹x1; : : : ; xr�1º and ¹y1; : : : ; yr�1º as above there is
a point p in prA.


�1
Z .�// which belongs to neither of the two subsets. By writing the

point

z WD x1C � � � C xr�1 � y1 � � � � � yr�1

as z C p � p, we find that the point .z; �/ lies in the support of

V

r . Varying � and
the chosen subsets of points in the fiber of the Gauss map, we obtain the inclusion
Supp.

V

r�1/� Supp.

V

r/ for the supports. Since both cycles are linear combinations
of conormal varieties and hence pure of the same dimension dim A�1, it follows that
we have

V

r D c

V

r�1C E; (7.1)

where c > 0 is a rational number and E is an effective cycle with rational coefficients.
The finiteness of the Gauss map 
Z W

V

Z ! PA implies that Alti

V

Z ! PA is
finite as well. Indeed,

VŒi�
Z is by definition a subvariety inside the i -fold fiber prod-

uct

V

Z �PA � � � �PA

V

Z and the fiber product of finite morphisms is a finite mor-
phism. By design the sum map

VŒi�
Z ! Supp.Alti

V

Z/ is surjective and compati-
ble with Gauss maps, implying the desired finiteness. By Lemma 5.5, the finite-
ness of the Gauss map for Alti

V

Z allows us to compute the total Segre class of the
cycle

V

i DAlti

V

Z ıAlti

V

�Z as a Pontryagin product

s.

V

i /D s.Alti

V

Z/ � s.Alti

V

�Z/ in CH<g.A/ WD CH�.A/=CHg.A/:

Comparing this with (7.1), we obtain in the truncated Chow ring CH<g.A/ an identity

s.Altr

V

Z/ � s.Altr

V

�Z/D cs.Altr�1

V

Z/ � s.Altr�1

V

�Z/C � � � ;

where � � � stands for effective cycle classes (possibly zero). The left-hand side van-
ishes in all degrees greater than 2dZ.r/ since si .Altr

V

Z/ D si .Altr

V

�Z/ D 0 for
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all i > dZ.r/. On the other hand, Lemma 5.6 says that on the right-hand side the
Pontryagin product

s.Altr�1

V

Z/ � s.Altr�1

V

�Z/

is nonzero and effective in all degrees at most min¹2dZ.r � 1/;dim A � 1º because
the subvariety Altr�1 Z has finite Gauss map and hence all its irreducible components
are nondegenerate by Theorem 2.8. So a comparison of the left- and right-hand sides
yields

min
®
2dZ.r � 1/;dim A� 1

¯
� 2dZ.r/ < dim A� 1;

whence 2dZ.r � 1/� dim A� 1 and dZ.r � 1/� dZ.r/.

Proof of Theorem 7.5
Let g WD dim A. Suppose by contradiction r dim Z� g, and consider the integer

s WDmax¹i 2N j i dim Z< gº< r:

On the one hand, we have

s dim ZD dim Alts Z by Proposition 7.9, since s dim Z< g

< .g � 1/=2 by Lemma 7.11, since s < r:

In particular, dim Z< .g � 1/=2. But on the other hand,

s dim ZD .sC 1/dim Z� dim Z� g � dim Z since .sC 1/dim Z� g

> .gC 1/=2 since dim Z< .g � 1/=2;

which contradicts the previous displayed inequality.

7.5. Smooth wedge powers come from curves
It remains to show that the only smooth wedge powers in the dimension range in
question are those coming from smooth curves, as announced in Theorem 7.6. In
what follows, let X;Z�A be integral subvarieties such that
(1) the subvariety X�A is smooth and nondivisible,
(2) the Gauss maps 
X and 
Z are finite morphisms, and
(3) Altr

V

Z D

V

Œe�.X/ for some integers e; r � 1 with r dim Z< dim A.
We claim that then Y WD Œe�.X/ is birational to the r th symmetric power of Z. More
precisely, we have the following.
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PROPOSITION 7.12
If the above conditions (1)–(3) hold, then Y is a sum of r copies of Z, and the sum
morphism � W Zr !Y is finite and factors through a finite birational morphism

� W Symr ZD Zr=Sr �!Y:

Proof
The finiteness of the Gauss map 
Z implies that Z � A is nondegenerate by Theo-
rem 2.8. Since r dim Z< dim A, Proposition 7.9 says that prZ;r W

VŒr�
Z ! Zr is surjec-

tive and the sum morphism

� W Zr �!YD ZC � � � C Z

is generically finite. Moreover, � induces a morphism � W Symr Z ! Y and our
assumption Altr

V

Z D

V

Y implies by Proposition 7.9(2) that � has generic degree
deg.�/ D 1; that is, it is birational. It remains to show that this morphism is finite.
Since we have no control on the singularities of Z, we cannot use Proposition B.4.
Instead, to show that � and hence � is finite, we consider the following commutative
diagram:

Zr

VŒr�
Z PA

Y

V

Y PA

� Q�

prZ;r �Z;r

prY �Y

Here, the fibers of prY are all of pure dimension ND codimA Y� 1 by Corollary 2.5.
Moreover, the morphism Q� is finite since the rightmost square in the above diagram
commutes and since in that square the horizontal arrows 
Z;r and 
Y are finite mor-
phisms by our finiteness assumptions on Gauss maps. Hence, it follows that all fibers
of prY ı Q� W

V

Z;r !Y are of dimension N. Since � is generically finite, it follows from
the commutativity of the leftmost square in the above diagram that the generic fiber
of the morphism prZ;r has dimension N as well. We can now argue by contradiction.
Any positive-dimensional fiber of � would give rise to a fiber of prY ı Q� of dimension
at least NC 1, by semicontinuity of dimension of fibers for proper morphisms (see
[48, Lemma 0D4I]). This shows that � is finite.

Proof of Theorem 7.6
In Proposition 7.12, we have seen that the sum morphism � factors through a finite
birational morphism � W Symr Z! Y. We claim that a similar finite birational mor-
phism from a symmetric product also exists for X rather than for YD Œe�.X/. For this,
we use the following general remark.

https://stacks.math.columbia.edu/tag/0D4I
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For any integral subvariety W � A, the scheme-theoretic preimage Œe��1.W/ is
reduced because it is the preimage of a reduced subvariety under an étale morphism
(see [48, Proposition 03PC (8)]). If W0 is an irreducible component of Œe��1.W/, then
any other irreducible component is of the form W0Cx for an e-torsion point x 2AŒe�,
and hence the morphism Œe� W W0! Z is surjective. In particular, by Remark 2.6 the
subvariety W�A is nondegenerate if and only if W0 �A is.

Applying this to WD Z, we see that any irreducible component Z0 of Œe��1.Z/ is
nondegenerate. Hence, if we define X0 D Z0C � � � C Z0 �A to be the sum of r copies
of Z0, then Lemma 2.7 implies

dim X0 D r dim Z0 D r dim ZD dim Y:

It follows that X0 is an irreducible component of Œe��1.Y/. On the other hand, we have

Œe��1.Y/D Œe��1
�
Œe�.X/

�
D

[
t2AŒe�

XC t:

Therefore, there is an e-torsion point t 2AŒe� such that XDX0C t and X is the sum
of r copies of

QZ WD Z0C u;

where u 2 A.k/ is such that ru D t . Since the stabilizer of X D QZ C � � � C QZ is
trivial by assumption, it follows that the stabilizer of QZ is trivial, so the finite mor-
phism Œe� W QZ! Z is birational. Then the morphism

Symr Œe� W Symr QZ�! Symr Z

is finite birational by Proposition B.2. Now the sum morphism Q� W QZr !X is invariant
under the permutation action of Sr , so it factors through a morphism Q� as shown in
the following commutative diagram:

Symr QZ X

Symr Z Y:

Q�

Symr Œe� Œe�

�

(7.2)

The morphisms � , Œe�, and Symr Œe� in this diagram are finite birational, hence Q� must
be finite birational too. On the other hand, the variety X is smooth by hypothesis,
which forces Q� to be an isomorphism. In particular, the symmetric power Symr QZ is
smooth, which for r > 1 implies that QZ is a smooth curve by Proposition B.3.

Remark 7.13
Given X, Y, Z as in the proof of Theorem 7.6, it follows immediately from the fact that

https://stacks.math.columbia.edu/tag/03PC
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Table 2. Half-spin representations.

Dual of SCN Center of Spin2n.F/

n even S
C
N Z=2Z�Z=2Z

n odd S
�
N Z=4Z

the morphisms Œe� and � from (7.2) are finite and birational that X is dominated by the
normalization W of Symr Z, which is easily seen to be isomorphic to Symr QZ where QZ
is the normalization of Z. Smoothness of X implies that in fact Symr QZ ' X. The
argument we used instead is maybe a bit longer but yields more, namely, a canonical
(up to an e-torsion point) embedding of QZ into A.

8. Spin representations
We now show that under suitable assumptions on a smooth subvariety of an abelian
variety, its Tannaka group cannot be the image of a spin group acting via a spin repre-
sentation. For hypersurfaces, this can be done by showing that their topological Euler
characteristic is not a power of 2 (see [39, Lemma 4.9]); we here discuss the case
of higher codimension, where we do not know the Euler characteristic but consider
characteristic cycles as in the previous section.

8.1. Statement of the main result
Recall that for N� 3, the group SON.F/ admits a double cover

SpinN.F/�! SON.F/

by the spin group. The spin group is a simply connected algebraic group and admits
a faithful representation SN 2 RepF.SpinN.F//, the spin representation of dimen-
sion dim SN D 2

n where n D bN=2c. The behavior of this representation depends
on the Dynkin type (see [21, Section 20]):
Bn: If ND 2nC 1 is odd, then the spin representation SN is irreducible.
Dn: If N D 2n is even, then SN ' SCN ˚ S�N splits as the direct sum of two irre-

ducible representations called the half-spin representations. They both have
dimension dimSCN D dimS�N D 2

n�1 but are not isomorphic to each other,
they are only related by an outer automorphism of the spin group. The dual
of the half-spin representations and the center of the spin group are given by
Table 2.
For n D 2mC 1 odd, the half-spin representations are faithful. For n D 2m
even, the half-spin representation S˙ is self-dual and the natural pairing is
symmetric if m is even and alternating if m is odd. The images of Spin4m.F/
via the half-spin representations

Spin˙4m.F/�GL.S˙4m/
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are called the half-spin groups. They are isomorphic to each other and fit
in the following diagram of isogenies given by dividing out the subgroups
of Z.Spin4m.F//' Z=2Z�Z=2Z:

Spin4m.F/

Spin�4m.F/ SO4m.F/ SpinC4m.F/

SO4m.F/=˙ 1

We are interested in geometric incarnations of the above.

Definition 8.1
Let X � A be a subvariety. Let G D G�X;! be the derived group of the connected
component of the corresponding Tannaka group, and consider the faithful representa-
tion VD !.ıX/jG 2 RepF.G/. Let n� 1 be an integer. We say that X�A is
� of spin type Bn if G' Spin2nC1.F/ and V' S2nC1, and
� of spin type Dn if G' Spin"2n.F/ and V' S"2n for some " 2 ¹C;�º.

In both cases, the subvariety X is irreducible because the representation V is so.

Remark 8.2
Suppose that X is of spin type Dn for nD 2m. Since half-spin representations are self-
dual in this case, the subvariety X is symmetric up to translation. The Poincaré pairing
on X is symmetric if d D dim X is even and alternating if d is odd. By comparison
with the natural pairing on S˙n , the integers m and d must have the same parity.

The goal of this section is to show that for smooth subvarieties of small dimension
this cannot happen. To state our results, let gD dim A.

THEOREM 8.3
Let X � A be a d -dimensional nondivisible smooth subvariety with ample normal
bundle, and let d < .g � 1/=2. Then for any integer n� 1,
(1) X is not of spin type Bn;
(2) if X is of spin type Dn, then d � .g � 1/=4, nD 2m with 3 �m � d having

the same parity as d .
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The list of Dynkin types in the above theorem starts with B2 and D3, and at least
for these smallest cases the result is optimal in the sense that the dimension bound
cannot be weakened.

Example 8.4
Let X be a smooth projective curve of genus g D 3, embedded in its Jacobian vari-
ety ADAlb.X/. By [37, Theorem 6.1] and [50], there are two cases:
B2: If X is hyperelliptic, then G�X;! ' Sp4.F/ and !.ıX/' F4 is its standard rep-

resentation. This representation corresponds to the spin representation under
the isomorphism Spin5.F/' Sp4.F/.

D3: If X is not hyperelliptic, then G�X;! ' SL4.F/ and !.ıX/' F4 is its standard
representation or its dual. These two representations correspond to the two
half-spin representations under the isomorphism Spin6.F/' SL4.F/.

So spin representations do occur, but in this example 2dim XD dim A� 1.

8.2. Structure of the proof
The proof of Theorem 8.3 relies on three independent steps. The first is to show that
the structure of spin representations is reflected by characteristic cycles. We say that
a cycle

V

2L .A/ is symmetric if Œ�1��

V

D

V

. In this case, if the cycle is reduced
and effective of Gauss degree deg

V

D 2n, then for any integer r � 1 we will define
via the formalism in Lemma 5.14 a clean effective cycle

Altr
S

V

2L .A/ of Gauss degree deg Altr
S

V

D 2r

 
n

r

!
:

These cycles are closely related to the wedge powers from Section 7; for instance, we
have

Supp Altr

V

D

br=2c[
iD0

Supp Altr�2i
S

V

:

For r D n, the cycle Altn
S

V

will correspond to the spin representation. Instead, for
half-spin representations we consider the monodromy of the Gauss map 
 VW

V

! PA.
If the Gauss map has even monodromy in the sense of Definition 5.21, we will obtain
a decomposition

Altn
S

V

DAltn
S;C

V

CAltn
S;�

V

;

where Altn
S;˙

V

2L .A/ are clean effective cycles of Gauss degree 2n�1. We show
the following.
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THEOREM 8.5
Let X � A be a smooth nondivisible subvariety of spin type Bn or Dn for some n.
Then there exist a 2 A.k/, a reduced symmetric effective cycle Z on A of Gauss
degree deg

V

Z D 2n, and an integer e � 1 with the following properties:
(1) If X is of spin type Bn, then Altn

S

V

Z D

V

Œe�.XCa/.
(2) If X is of spin type Dn, then the Gauss map 
 Vhas even monodromy and we

have

Altn
S;"

V

Z D

V

Œe�.XCa/ for suitable " 2 ¹C;�º:

In both cases, if 
X W

V

X! PA is a finite morphism, then so is 
Z W

V

Z! PA.

For the precise definition of the clean cycles appearing above and the proof of the
theorem, we refer to Section 8.3. The second step will be a dimension estimate for the
images

Altn
S;" Z WD prA.Supp.Altn

S;"

V

Z/�A;

for " 2 ¹C;�;∅º. We show the following.

THEOREM 8.6
Let Z be a reduced symmetric effective cycle on A whose Gauss map is a finite mor-
phism of even degree deg.
Z/D 2n.
(1) If dim Altn

S
Z< .g � 1/=2, then ndim Z< g � 1.

(2) If the Gauss map 
Z has even monodromy and there is " 2 ¹C;�º for which
the dimension d WD dim Altn

S;" Z satisfies

d <

´
.g � 1/=4 if nD 2m is even and m� d C 1;

.g � 1/=2 otherwise;

then ndim Z< g � 1.

The proof of this is given in Section 8.4. Finally, the last step for ruling out spin
representations will be to show that in the given dimension range, the cycle Altn

S;"

V

Z

cannot be smooth and integral. More precisely, we have the following.

THEOREM 8.7
Let X � A be a smooth nondivisible subvariety with ample normal bundle, and let
Z be a reduced symmetric effective cycle on A whose Gauss map is finite of even
degree deg.
Z/D 2n � 4. Suppose that for some integer e � 1 one of the following
two conditions holds:
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(1)

V

Œe�.X/ DAltn
S

V

Z.
(2) 
Z has even monodromy and

V

Œe�.X/ DAltn
S;"

V

Z for some " 2 ¹C;�º.
Then ndim Z� dim A.

Proof of Theorem 8.3
Let X�A be a d -dimensional smooth nondivisible subvariety of spin type Bn or Dn
for some integer n with d < .g � 1/=2. After replacing X by a translate, there exists
by Theorem 8.5 an integer e � 1 and a reduced symmetric effective cycle Z on A
with deg.
Z/D 2n such that

Altn
S;"

V

Z D

V

Œe�.X/ for some " 2 ¹C;�;∅º:

It follows that

dim Altn
S;" ZD dimŒe�.X/D dim X:

Note that we have " ¤ ∅ only in spin type Dn and in that case 
Z has even mon-
odromy. Moreover, if X is of spin type Dn, n D 2m is even and m � d C 1,
assume d < .g�1/=4. Then Theorem 8.6 implies ndim Z< dim A, which contradicts
Theorem 8.7. The remaining cases are of type Dn with nD 2m even, d � .g � 1/=4
and m� d C 1. Remark 8.2 implies that d �m must be even. Lemmas 2.12 and 2.13
imply that in the current dimension range the absolute value of the topological Euler
characteristic of X is never 8, so the case mD 2 does not occur.

8.3. Characteristic cycles of spin representations
We now explain how to compute characteristic cycles for subvarieties of spin type.
Consider a symmetric reduced clean effective cycle Z on A with dominant Gauss
map 
Z W

V

Z! PA. For an integer r � 1, we put

VŒr�
Z;S WD

V�r
ZjU ∖ .
r [
�r /�

V�r
Z

as in Definition 5.16, where U� PA is any open dense subset over which the Gauss
map 
Z is finite and étale. For a partition ˛ D .˛1; : : : ; ˛r/, consider the sum mor-
phism

�˛ W Ar � PA �!A� PA; .z1; : : : ; zr ; �/ 7�! .˛1z1C � � � C ˛rzr ; �/:

We put

V˛
Z;S WD �˛�.

VŒr�
Z;S/:

We are mostly interested in the case of the partition ˛D .1r/D .1; : : : ; 1/ and write
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Altr
S

V

Z WD

V.1r /
Z;S

in this case. As in Definition 5.21, we say that the Gauss map 
Z W

V

Z ! PA has
even monodromy if its degree is an even integer deg.
Z/ D 2n and the finite étale
cover 
ZjU W

V

ZjU! U has as its monodromy group a subgroup of .˙1/nC ⋊Sn. In
this case,

VŒn�
Z;S D

VŒn�
Z;S;CC

VŒn�
Z;S;�

for

VŒn�
Z;S;˙ as in Definition 5.21, and for partitions ˛ of length r D n we put

V˛
Z;S;˙ D �˛�.

VŒn�
Z;S;˙/:

Again for ˛D .1n/ we instead write Altn
S;˙

V

Z WD

V.1n/
Z;S;˙.

Proof of Theorem 8.5
Translating X�A, we may assume det.ıX/D ı0. As in the proof of Theorem 7.4, but
replacing Lemma 5.18 by Lemma 5.20, we then find a reduced symmetric effective
cycle Z on A with

V

Z 2 h

V

Xi such that

V

Œe�.X/ DAltn
S;"

V

Z and deg.
Z/D 2n

for some integer e � 1 and " 2 ¹C;�;∅º as claimed.

8.4. Dimension estimates in the spin case
Let Z be a symmetric reduced effective cycle in A. As before, we put

Altr
S

Z WD prA.Supp Altr
S

V

Z/�A;

Altn
S;" Z WD prA.Supp Altn

S;"

V

Z/�A:

We want to show that under certain assumptions the dimension of these images grows
linearly with r in a suitable range. The first step is to relate the cycles associated with
the two half-spin representations.

LEMMA 8.8
Let Z � A be a symmetric reduced effective cycle whose Gauss map 
Z is finite of
degree deg.
Z/D 2n� 4 and has even monodromy. Suppose that n is odd, or suppose
that nD 2m is even and m� 1 >min"2¹C;�º dim Altn

S;" Z. Then

dim Altn
S;C ZD dim Altn

S;� Z:
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Proof
We may suppose k DC. For " 2 ¹C;�º, set

V

" WDAltn
S;"

V

Z; X" DAltn
S;" ZD prA.

V

"/:

If n D 2m C 1 is odd, then the definitions imply XC D Œ�1��X� and the state-
ment follows. The representation-theoretic analogue of the previous identity is that
the half-spin representations SC and S� are dual to each other. Suppose henceforth
that nD 2m is even and, up to changing signs, that we have dim XC � dim X�. With
this notation m� 1 > d WD dim XC. Similarly, drawing inspiration from the isomor-
phism Alt2.SC/'Alt2.S�/ of representations we obtain the following.

CLAIM 8.9
The following identity of Lagrangian cycles holds:

V

C ı

V

C � Œ2��

V

C D

V

� ı

V

� � Œ2��

V

� 2L .A/:

Proof of the claim
Pick a general cotangent direction v 2 PA.k/, and denote by

V

Z;v D ¹˙p1; : : : ;˙pnº �A

the corresponding fiber of the Gauss map, which we identify as a 0-cycle on the
abelian variety via the projection prA W

V

Z! A. Let ¹˙1ºn" � ¹˙1º
n be the subset

made of n-tuples a D .a1; : : : ; an/ such that the sign of a1 � � �an is ". As 0-cycles
on A, we have

.

V

"/v D
X

a2¹˙1ºn"

Œa1p1C � � � C anpn� 2 Z0.A/;

.

V

" ı

V

"/v D
X

a;b2¹˙1ºn"

�
.a1C b1/p1C � � � C .anC bn/pn

�
2 Z0.A/;

where the summation sign refers to the sum as cycles and Œx� is the 0-cycle given by
a point x 2A.k/. We split the sum in the preceding equation in two. The sum ranging
on couples .a; b/ with aD b gives the 0-cycle .Œ2��

V

"/v . For the remaining couples,
notice that we have a bijection®

.a; b/ 2
�
¹˙1ºnC

�2 ˇ̌
a¤ b

¯
�!

®
.a0; b0/ 2

�
¹˙1ºn�

�2 ˇ̌
a0 ¤ b0

¯
sending .a; b/ to the couple .a0; b0/ obtained by changing the sign of the first entry in
which a and b differ. Such a bijection is compatible with sum, that is, aCb D a0Cb0.
Letting vary v gives the desired identity of cycles.
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The identity in the claim can be rewritten as

.

V

CC

V

�/ ı .

V

C �

V

�/D Œ2��.

V

C �

V

�/:

Since

V

Z has finite Gauss map, so do

V

C and

V

� by construction. By Lemma 5.5,
we obtain, by passing to Segre classes,

s.

V

CC

V

�/ � s.

V

C �

V

�/D Œ2��s.

V

C �

V

�/ 2 CH<g.A/:

Let s and ı be the image of s.

V

C/ and s.

V

C �

V

�/ in the homology H�.A;Z/, so
that

.2sC ı/ � ıD Œ2��ı 2H�.A;Z/;

where � denotes the Pontryagin product in homology. Write si ; ıi 2H2i .A;Z/ for the
pieces of s, ı in degree 2i . Then in degree 2r the previous identity reads as

rX
iD0

.2si C ıi / � ır�i D 2
2rır 2H2r.A;Z/;

because the multiplication by 2 on A acts as multiplying by 22r on H2r.A;Z/. Now
for " 2 ¹C;�º, the 0th Segre class of

V

" has degree

deg
 V

"
D
ˇ̌
¹˙1ºn"

ˇ̌
D 22m�1:

Plugging in the identities s0 D 22m�1 and ı0 D 0 obtained in this way yields the
recursion formula

.22r � 22m/ır D

r�1X
iD1

.2si C ıi / � ır�i 2H2r.A;Z/:

Then the vanishing of ı0 inductively implies

ır D 0; r D 0; : : : ;m� 1:

Suppose by contradiction that dim X� > d D dim XC. Then

ıdC1 D sdC1.

V

�/� sdC1.

V

C/D sdC1.

V

�/¤ 0;

where we abusively identified Segre classes with their images in homology. Then
the vanishing of ır for r < m implies d C 1 � m, contradicting the assumption
m� 1 > d .



1136 JAVANPEYKAR, KRÄMER, LEHN, and MACULAN

The second step is the following analogue of Lemma 7.11 (note that at first we
only get a weaker estimate in the spin case since here we only start from a dimension
bound on the support of Altr

S
Z, which a priori might be strictly smaller than the one

of Altr Z).

PROPOSITION 8.10
Let Z be a symmetric reduced effective cycle on A whose Gauss map has degree
deg.
Z/D 2n� 4.
(1) If dim Altn

S
Z< .g � 1/=2, then dim Alti

S
Z< g � 1 for i D 1; : : : ; n� 1.

(2) If 
Z is finite and has even monodromy and if there is " 2 ¹C;�º such that the
dimension d WD dim Altn

S;" Z satisfies

d <

´
.g � 1/=4 if nD 2m is even and m� d C 1;

.g � 1/=2 otherwise;

then dim Alti
S

Z< g � 1 for 1� i � n and dim Altn
S

Z< g�1
2

if n is odd.

Proof
We may suppose k D C. (1) Put

V.s/ WD Alts
S

V

Z. Pick a general cotangent direc-
tion v 2 PA.k/, and denote by

V

Z;v D ¹˙p1; : : : ;˙pnº �A

the corresponding fiber of the Gauss map, which we identify as usual with a set of
points on the abelian variety via the projection prA W

V

Z! A. Writing p�i WD �pi ,
we have

Supp.

V.s//v D
®
pi1 C � � � C pis

ˇ̌
ji1j; : : : ; jisj pairwise distinct

¯
;

Supp.

V.n/ ı

V.n//v D
° nX
iD1

.ıi C "i /pi

ˇ̌̌
ı1; : : : ; ın; "1; : : : ; "n 2 ¹˙1º

±
:

By specializing to the case ıi D˙"i and varying the point v 2 PA.k/, we find

Supp
�
Œ2��

V.1/C Œ2��

V.2/C � � � C Œ2��

V.n/�� Supp.

V.n/ ı

V.n//:

Hence, for the images Z.s/ WD prA.Supp.

V.s/// D Supp.Alts
S

Z/ � A we obtain the
inclusions

Œ2�.Z[ Z.2/ [ � � � [ Z.n//� prA

�
Supp.

V.n/ ı

V.r//
�
� Z.n/C Z.n/:

Since Œ2� W A! A is an isogeny, for 1 � s � n a look at dimension then shows that
we have
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dim Z.s/ � dim.Z.n/C Z.n//� 2dim.Z.n// < g � 1;

where the last inequality holds by our dimension assumption. This proves (1).
(2) If nD 2mC 1 is odd or nD 2m is even with m > d C 1, then Lemma 8.8

implies

d D dim Altn
S;C D dim Altn

S;� D dim Altn
S

Z

so we are done by (1). Now assume nD 2m and m� 1� d < .g� 1/=4. In that case,
a set-theoretic look at the fibers of Gauss maps gives

Supp
�
Œ2��

V.2/C Œ2��

V.4/C � � � C Œ2��

V.n�2/�� Supp.Altn
S;"

V

Z ıAltn
S;"

V

Z/:

For all i < m, then

dim Z.2i/ � 2dim Altn
S;"

V

Z < .g � 1/=2;

the second inequality holding by assumption. Since Alt2 ZD Alt2
S

ZCAlt0
S

Z, it fol-
lows that dim Alt2 Z < .g � 1/=2, and the monotonicity of usual wedge powers in
Lemma 7.11 gives

dim ZD dim Alt1 Z� dim Alt2 Z< .g � 1/=2;

since the Gauss map is finite. Then Supp

V.2iC1/ � Supp

V.2i/ ı

V.1/ also implies,
for all i < m,

dim Z.2iC1/ � dim Z.2i/C dim Z.1/ < .g � 1/=2C .g � 1/=2D g � 1:

Likewise, Supp

V.n/ � Supp

V.n�2/ ı

V.2/ gives dim Z.n/ < g � 1.

Proof of Theorem 8.6
Let Z be a reduced symmetric effective cycle on A whose Gauss map is a finite mor-
phism of degree deg.
Z/D 2n for some integer n� 2. Assume that we are in one of
the following two cases:
(1) dim Altn

S
Z< .g � 1/=2, or

(2) n is even, the Gauss map 
Z has even monodromy, and for some " 2 ¹C;�º
we have

dim Altn
S;" < .g � 1/=4:

By Proposition 8.10, then dim Alti
S

Z< g�1 for all i 2 ¹1; : : : ; nº, so it will be enough
to show that

dim Alti
S

ZD i dim Z
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for all those i . For i D 1, there is nothing to show. We now use induction. Suppose
that

dim Alti
S

ZD i dim Z for all i 2 ¹1; 2; : : : ; s � 1º;

where s � r is a positive integer. We want to conclude that dim Alts
S

ZD s dim Z.
We may assume dim Z> 0. For simplicity, put

Vˇ WD

V˛
Z;S where ˇD ˛t denotes

the transpose of a partition ˛, extending our notation from the previous proof. The
definitions imply

Supp.

V.s�1/ ı

V.1//D

V.s/ [

V.s�1;1/ [

V.s�2/: (8.1)

We now compare dimensions. For the last two pieces on the right-hand side, the inclu-
sions

V.s�1;1/ �

V

2Z ı

V.s�2/ and

V.s�2/ �

V

Z ı � � � ı

V

Z (with s � 2 factors) imply

dim prA.

V.s�1;1/ [

V.s�2//� .s � 1/dim Z

D dim Alts�1
S

Z by our induction assumption

< g � 1 by Proposition 8.10 as s � 1� n.

Since dim Z> 0, it follows that

dim prA.

V.s�1;1/ [

V.s�2// < min¹s dim Z; g � 1º

D dim prA.
V.s�1/ ı

V.1//; (8.2)

where the last equality holds by Corollary 5.7 since by definition

V.1/ D

V

Z and by
induction dim prA.

V.s�1// D dim Alts�1
S

Z D .s � 1/dim Z. Note that the corollary
does not require integrality of the occurring clean cycles; we only need that each
irreducible component of their support has finite Gauss map, which follows from
our assumption that the Gauss map

V

Z! PA is a finite morphism. Comparing (8.1)
and (8.2) we conclude that

dim prA.

V.s//Dmin¹s dim Z; g � 1º:

But dim prA.

V.s// < g�1 again by Proposition 8.10 because s � n. Hence, it follows
that

dim prA.

V.s//D s dim Z;

which completes the induction step.

8.5. Spin representations do not occur in small dimension
It remains to show that smooth nondivisible subvarieties of small enough dimension
are not of spin type. Recall the setting of Theorem 8.7. We are given an integral
subvariety X�A and a reduced symmetric effective cycle Z on A such that
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� the subvariety X�A is smooth and nondivisible,
� the Gauss maps 
X, 
Z are finite, and deg.
Z/D 2n for some n� 2,
� we have Altn

S;"

V

Z D

V

Œe�.X/ for some e � 1 and suitable " 2 ¹C;�;∅º.
Here we make the convention that the labels "D˙ will only be used if 
Z has even
monodromy, so that the corresponding cycles are defined. We want to show that in
the above situation ndim Z� dim A.

Proof of Theorem 8.7
Suppose by contradiction that ndim Z < dim A. Let Z0 be an irreducible component
of maximal dimension in Z. The finiteness of the Gauss map implies by Theorem 2.8
that Z0 �A is nondegenerate. Hence, Corollary 7.10 gives

deg.
Z0/C 2

2
dim Z� dim A:

This is not quite strong enough to contradict our assumption, but it allows us to reduce
to the case of symmetric components. If Z0 ¤�Z0 were not symmetric, then the effec-
tive symmetric cycle Z would contain the two distinct components˙Z0 and these two
components clearly have the same Gauss degree, which would lead to the estimate

2nD deg.
Z/� deg.
Z0/C deg.
�Z0/D 2deg.
Z0/:

The previous inequality then leads to

nC 2

2
dim Z� dim A

and for n� 2 this contradicts our assumption that ndim Z< dim A.
So for the remainder of the proof we will assume that Z0 D �Z0 is symmetric.

Since by assumption ndim Z0 < dim A, it follows from Proposition 7.9 that the mor-
phism

prZ0;n W Supp

VŒn�
Z0 �! Z0n

is surjective. Let

V0 � Supp

VŒn�
Z0 be an irreducible component dominating Z0n. This

component is not contained in the union 
[
� �An � PA of the big diagonal and
the big antidiagonal, hence

V0 � Supp

VŒn�
Z;S:

If the Gauss map has even monodromy, then moreover

VŒn�
Z;S D

VŒn�
Z;S;C C

VŒn�
Z;S;� and,

by irreducibility,

V0 � Supp

VŒn�
Z;S;ı for some ı 2 ¹C;�º:
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To adjust the signs, use the involution ' WD idn�1�Œ�1� W An! An and consider the
subvariety

V

� Supp

VŒn�
Z;S;" defined by

V

WD

´
'�

V0 if "D�ı;

V0 otherwise:

Since Z0 D�Z0, we still have

prAn.

V

/D .Z0/n�1 � .˙Z0/D .Z0/n:

By construction,

V

is an irreducible component of Supp

VŒn�
Z;S;" and by assumption we

have

V

Y DAltn
S;"

V

Z WD
1

N.˛/
�˛�.

VŒn�
Z;S;"/ for ˛D .1n/;

so the irreducibility of the left-hand side forces

V

Y D Supp�˛�.

V

/. This gives a
commutative diagram

.Z0/n

V

PA

Y

V

Y PA

� �˛

prZ;r �Z;r

prY �Y

where � is the sum morphism, which is generically finite by Lemma 2.7.
In fact, � must be finite by the same argument as in Proposition 7.12. The fibers

of prY are of pure dimension ND codimA Y � 1 by Corollary 2.5. Moreover, �˛ is
finite since the rightmost square in the above diagram commutes and since in that
square 
Z;r and 
Y are finite morphisms by our finiteness assumptions on Gauss
maps. So all fibers of prY ı�˛ W

V

Z;r !Y are of dimension N. Since � is generically
finite, it follows from the commutativity of the leftmost square in the above diagram
that the generic fiber of the morphism prZ;r has dimension N as well. We can now
argue by contradiction. Any positive-dimensional fiber of � would give rise to a fiber
of prY ı�˛ of dimension at least NC 1, by semicontinuity of dimension of fibers for
proper morphisms [48, Lemma 0D4I]. This shows that � is finite.

But Z0 D �Z0 is symmetric and dim Z0 > 0, hence looking at antidiagonals one
sees that the sum morphism � cannot be finite, which is a contradiction.

Appendix A. Reduction to the complex case
For reference, we include the following well-known fact about `-adic constructible
sheaves with coefficients in FDQ` on varieties over an algebraically closed field k
of characteristic 0.

https://stacks.math.columbia.edu/tag/0D4I
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LEMMA A.1
Let k �K be an extension of algebraically closed fields of characteristic 0, and let X
be a variety over k. Then the base change functor

.�/K W Dbc .X;F/�!Dbc .XK;F/

is fully faithful. Moreover, for every P 2 Dbc .XK;F/ there exists a subfield k0 � K
which is the algebraic closure of a finitely generated extension of k such that P is in
the essential image of the functor

.�/K W Dbc .Xk0 ;F/�!Dbc .XK;F/:

Proof
For the full faithfulness, consider two complexes P;P0 2 Dbc .X;F/. To see the iso-
morphism HomDbc .X;F/

.P;P0/' HomDbc .XK;F/
.PK;P0K/ take QD RH om.P;P0/ in the

isomorphism

H�.X;Q/
�
�!H�.XK;QK/

which is obtained by base change (see, e.g., [44, Corollary VI.4.3] for the case of
étale torsion sheaves; the case of `-adic sheaf complexes then follows formally).

Now let P 2 Dbc .XK;F/. We want to show that it descends to a subfield k0 � K
which is the algebraic closure of a finitely generated extension of k. We use induc-
tion on the number of nonvanishing cohomology sheaves. Let m 2 Z be maximal
with H m.P/¤ 0, and consider the triangle

�<m.P/�! P�!H m.P/Œ�m��! :

Rotating the triangle, we obtain

P' cone
�
H m.P/Œ1�m�! �<m.P/

�
:

If the source and the target of a morphism descend to a given subfield, then so does the
morphism by full faithfulness, and hence also the cone descends to the same subfield.
By induction, it therefore suffices to discuss the case where P is a constructible Q`-
sheaf. Then by [14, Rapport, Proposition 2.5] there is an open dense subset of XK

on which P is smooth. Let k0 � K be the algebraic closure of a finitely generated
extension of k such that the open dense subset has the form jK W UK! XK for some
open j W U ,!Xk0 . Looking at the adjunction morphism

jKŠj
�
K .P/�! P

and arguing by induction on dim Supp.P/, it suffices to show that j �K .P/ ' LK for
some local system L on U. But this is clear because of the equivalence between `-adic
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local systems and representations of the étale fundamental group (see [14, Rapport,
Proposition 2.4]) and the invariance of the geometric étale fundamental group (see
[24, Exposé XIII, Proposition 4.6]).

Appendix B. Symmetric powers of varieties
Let X be a variety over an algebraically closed field k of characteristic 0, and fix an
integer n� 1. The n-fold symmetric product of X is defined as the categorical quotient

SymnX WDXn=Sn

of Xn D X � � � � � X by the permutation action of the symmetric group Sn. This
quotient exists, for instance, if X is quasiprojective (see [7, Section 9.3, p. 253]). In
that case, we denote by

�X W Xn �! SymnX

the quotient morphism. Let U�Xn be the complement of the big diagonal, that is, the
open subset of all n-tuples of pairwise distinct points. Then �X.U/ is open in SymnX
and �X W U! �X.U/ is a principal Sn-bundle (see [23, Exposé V, Théorème 4.1]), in
particular,

deg�X D nŠ:

On the other hand, �X is not étale at any point x 2 .Xn ∖ U/.k/.

PROPOSITION B.1
Let X be a quasiprojective variety. If X is reduced, irreducible, integral, or normal,
then the respective property holds also for SymnX.

Proof
If X has one of the stated properties, then Xn has the same property since k is alge-
braically closed. Therefore, the claim follows from the fact that the properties are
stable under categorical quotients (see [46, p. 5]).

PROPOSITION B.2
If f W X0! X is a finite birational morphism between integral quasiprojective vari-
eties, then Symn f W SymnX0! SymnX is finite birational.

Proof
In the commutative square
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X0n Xn

SymnX0 SymnX

f n

�X0 �X

Symnf

the morphisms f n, �X0 , and �X are finite, hence Symn f is also finite. Since f n is
birational, we obtain

deg.Symn f ı �X0/D deg.�X ı f
n/D nŠD deg.�X/;

which implies that the morphism Symn f has degree 1 as required.

PROPOSITION B.3
Let X be a positive-dimensional integral quasiprojective variety, and let n� 2 be an
integer. Then

SymnX is smooth () X is a smooth curve:

Proof
It is well known that for any smooth curve X the symmetric powers SymnX are
smooth (see [7, p. 255]). Conversely, assume that SymnX is smooth. First, we show
that dim X D 1. For this, we may replace X by its smooth locus and thus assume
that X is smooth. By Nagata–Zariski purity (see [24, Théorème X.3.1]), the branch
locus B of �X W Xn! SymnX is empty or a divisor in SymnX. On the other hand, the
morphism �X is ramified at a k-point x D .x1; : : : ; xn/ of Xn if and only if xi D xj
for some i ¤ j , that is, if and only if x lies in the big diagonal
n of Xn. Since n� 2,
the big diagonal is nonempty, so that the branch locus is a divisor and thus

ndim X� 1D dim BD dim
n D .n� 1/dim X;

hence dim X D 1. Having shown that X is a curve, we now verify that it must be
smooth. Suppose to the contrary that there exists a singular point x1 2 X.k/. Pick
pairwise distinct points x2; : : : ; xn 2 X.k/ ∖ ¹x1º. Then the morphism �X is étale
at x D .x1; x2; : : : ; xn/, so �X.x/ is a singular point in SymnX, a contradiction.

In Section 1.3, we needed a criterion for a birational morphism from a symmetric
power of a smooth variety to another smooth variety to be an isomorphism. The proof
is naturally cast for certain singularities. To define them, recall that for a coherent
sheaf F on a variety V and an integer m � 1 we write F Œm� for the reflexive hull
of F˝m. A reflexive sheaf F on V of generic rank 1 is a Q-line bundle if there
is m � 1 such that F Œm� is a line bundle. When V is proper, such a sheaf F is nef
if the line bundle F Œm� is. For V normal, the canonical sheaf KV is defined as the
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pushforward to V of the canonical bundle on Vreg and is reflexive of generic rank 1.
By definition, V is Q-Gorenstein if it is normal and the canonical sheaf is a Q-line
bundle. This is the case if V is Q-factorial, that is, if V is normal and any reflexive
sheaf of generic rank 1 on V is a Q-line bundle. The singularities of V are terminal
if V is Q-Gorenstein and the pullback of any local section of K Œm�

V for any m � 1
vanishes along all the components of the exceptional divisor of any resolution of V
(see [30, Definition 2.34]). With this terminology we have the following.

PROPOSITION B.4
Let X and W be Q-factorial normal, integral projective varieties. Suppose that W
has terminal singularities. If KX is nef and dim X � 2, then any proper birational
morphism f W SymnX!W is an isomorphism.

Proof
The symmetric product S WD SymnX of X is normal by Proposition B.1 and Q-
factorial by [30, Lemma 5.16]. The hypothesis dim X � 2 implies that the quotient
morphism � W Xn ! S is unramified in codimension 1, hence the natural mor-
phism .��KS/

__!KXn is an isomorphism. Thus KS is nef since KXn is so. To
conclude, apply Lemma B.5 below with VD S.

To keep track of the arguments that enter the proof, we state the lemma in a
generality which is slightly broader than actually needed. To do this, for a proper
morphism f W V!W a Q-line bundle L on V is said to be f -nef if the restriction
of L Œm� to any fiber of f is nef, where m� 1 is such that L Œm� is a line bundle.

LEMMA B.5
Let f W V!W be a proper birational morphism between normal quasiprojective
varieties. Suppose that V is Q-Gorenstein, KV is f -nef, and W is Q-factorial with
terminal singularities. Then f is an isomorphism.

Proof
By assumption, the varieties V and W are Q-Gorenstein, thus there is an integerm� 1
such that K Œm�

V and K Œm�
W are line bundles. Write

K Œm�
V D f �K Œm�

W ˝OV.E/

for some Cartier divisor E on V. Since W has terminal singularities, the divisor E is
effective and its support is exactly the divisorial part of the exceptional locus of f .
Moreover, E is f -nef; indeed, for any projective curve C � V contracted by f we
have
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E:CDK Œm�
V :C� f �K Œm�

W :CDK Œm�
V :C� 0

because KV is f -nef. Therefore, �E is effective by [30, Lemma 3.39(1)], hence triv-
ial because E is effective. It follows that the exceptional set of f has no divisorial
part. On the other hand, W is Q-factorial, so the exceptional locus of f is pure of
codimension 1 (see [12, Section 1.40]). Thus, f is an isomorphism.
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