In the proof of items (1) and (2) in Proposition 2.6 of [MP21] we refer twice to Lemma 2.5 which only applies in the compact case. Adopting the notation introduced therein, it can be replaced by the following:

Lemma. Let X be a cohomologically Stein k-analytic space, M a finitely generated $\mathfrak{O}_X(X)$ -module and \tilde{M} the associated coherent sheaf on X. Then, the natural map $M \to \tilde{M}(X)$ is surjective.

Proof. Let m_1, \ldots, m_n be a set of generators of M. The morphism of coherent sheaves $\varphi \colon \mathbb{G}^n_X \to \tilde{M}$, $(f_1, \ldots, f_n) \mapsto f_1 m_1 + \cdots + f_n m_n$ is surjective by construction of \tilde{M} . The short exact sequence of coherent sheaves $0 \to K \to \mathbb{G}^n_X \to \tilde{M} \to 0$ on X, where $K = \text{Ker } \varphi$, induces a short sequence of $\mathbb{G}_X(X)$ -modules

$$0 \longrightarrow K(X) \longrightarrow \mathfrak{G}_X(X)^n \longrightarrow \tilde{M}(X) \longrightarrow 0$$

because $H^1(X, K) = 0$ by the cohomologically Stein hypothesis. It follows that m_1, \ldots, m_n generate $\tilde{M}(X)$ as an $\mathcal{O}_X(X)$ -module. \square

References

[MP21] M. Maculan and J. Poineau, Notions of Stein spaces in non-Archimedean geometry, J. Algebraic Geom. 30 (2021), 287–330.