TD02 - Vector bundles

Exercise 1 (Sub-bundles). Let $E \to M$ be a smooth vector bundle of rank r and let $V \subset E$. We say that $V \to M$ is a sub-bundle of $E \to M$ of rank k if, for any $x \in M$, there exists a local trivialization $\phi : E_{|U} \simeq U \times \mathbb{R}^r$ of E over a neighborhood E of E such that:

$$\phi\left(E_{|U}\cap V\right) = U \times \left(\mathbb{R}^k \times \{0\}\right).$$

- 1. Check that a sub-bundle of a smooth vector bundle is a smooth vector bundle.
- 2. Let N be a smooth submanifold of M and let $i: N \to M$ be the inclusion. Is TN a sub-bundle of $i^*(TM)$?

Exercise 2 (Group of line bundles). 1. Let $L \to M$ be a line bundle on a smooth manifold, is $L \otimes L^* \to M$ trivial?

2. Define an abelian group structure on the set of line bundles over M up to isomorphism.

Exercise 3 (Tautological line bundle). Let $J = \{(D, x) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} \mid x \in D\}$, we say that $J \to \mathbb{RP}^n$ is the tautological line bundle over \mathbb{RP}^n .

- 1. Check that J is a sub-bundle of $\mathbb{RP}^n \times \mathbb{R}^{n+1}$ of rank 1. Is it trivial?
- 2. Let $L = J^*$, check that an homogeneous polynomial P of degree d in (n+1) variables defines a global section of $L^{\otimes d} \to \mathbb{RP}^n$.
- 3. For which $d \in \mathbb{Z}$ is $L^{\otimes d} \to \mathbb{RP}^n$ trivial?

Exercise 4 (Line bundles on the sphere). 1. What are the line bundles over \mathbb{S}^1 up to isomorphism? Which one is $T\mathbb{S}^1$?

- 2. Describe the group structure defined in exercise 2 when $M = \mathbb{S}^1$.
- 3. What are the line bundles over \mathbb{S}^n up to isomorphism when $n \geq 2$?