TD04 - Hyperbolic spaces

Exercise 1 (Hyperbolic spaces). Let $B = -dx^0 \otimes dx^0 + dx^1 \otimes dx^1 + \cdots + dx^n \otimes dx^n$ denote the standard Lorentz form on \mathbb{R}^{n+1} . Let \mathcal{H}^n denote the set $\{x \in \mathbb{R}^{n+1} \mid B(x,x) = -1, x_0 > 0\}$. We also denote by \mathbb{H}^n the half-space $\{x \in \mathbb{R}^n \mid x_n > 0\}$ and by \mathbb{D}^n the unit open ball in \mathbb{R}^n . Prove that the following are Riemannian manifolds that are isometric to one another:

- \mathcal{H}^n endowed with the restriction of B,
- \mathbb{H}^n with the metric $\frac{1}{|x_n|^2} \sum_{i=1}^n dx^i \otimes dx^i$,
- \mathbb{D}^n with the metric $\frac{4}{(1-\|x\|^2)^2} \sum_{i=1}^n dx^i \otimes dx^i$

Exercise 2 (Hyperbolic half-plane and Poincaré disc). In this exercise, we simply denote by \mathbb{H} the hyperbolic half-plane \mathbb{H}^2 and by \mathbb{D} the hyperbolic disc \mathbb{D}^2 (also called *Poincaré disc*).

- 1. Check that conformal diffeomorphisms of \mathbb{D} (resp. \mathbb{H}) preserving the orientation are biholomorphisms.
- 2. Describe the conformal diffeomorphisms of \mathbb{D} (resp. \mathbb{H}). Which one are isometries?