TD07 - Christoffel symbols and geodesics

Exercise 1 (Christoffel symbols). 1. Let (M,g) be a Riemannian manifold. We denote by (x_1,\ldots,x_n) local coordinates on a open subst U of M and by $G=(g_{ij})$ the matrix of g in these coordinates. Let (g^{kl}) denote the coefficients of G^{-1} . Check that the Christoffel symbols $(\Gamma^k_{ij})_{1\leqslant i,j,k\leqslant n}$ of the Levi-Civita connection ∇ of (M,g) are symmetric in (i,j). Prove that for any $i,j,k\in\{1,\ldots,n\}$ we have:

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{n} g^{kl} \left(\frac{\partial g_{il}}{\partial x_j} + \frac{\partial g_{jl}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_l} \right).$$

- 2. Recall that the half-plane model of the hyperbolic plane is $\mathbb{H}^2 := \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$ endowed with the metric $g_{(x,y)} := \frac{1}{y^2} (\mathrm{d}x \otimes \mathrm{d}x + \mathrm{d}y \otimes \mathrm{d}y)$. Compute the covariant derivatives of $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ for the Levi–Civita connection.
- 3. Recall that the Poincaré disc is the unit open disc $\mathbb{D}^2 \subset \mathbb{R}^2$ endowed with the metric $g_{(x,y)} := \frac{4}{(1-x^2-y^2)^2} (\mathrm{d}x \otimes \mathrm{d}x + \mathrm{d}y \otimes \mathrm{d}y)$. Compute the covariant derivatives for the Levi–Civita connection of the vector fields $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$ associated with the polar coordinates on $\mathbb{D}^2 \setminus \{0\}$.

Exercise 2 (Image of a geodesic). Let (M,g) and $(\widetilde{M},\widetilde{g})$ be two Riemannian manifolds and let $f: M \to \widetilde{M}$ be a smooth map.

- 1. If f is an isometric diffeomorphism, is the image of a geodesic of M a geodesic of \widetilde{M} ?
- 2. Same question if f is a conformal diffeomorphism.
- 3. Same question if f is an isometric embedding.