TD08 - Geodesics

Definition. Let (M, g) be a Riemannian manifold. We say that two maximal geodesics are parallel if they are either disjoint or equal up to reparametrization.

Exercise 1 (Model spaces). 1. Let us consider \mathbb{R}^n with is canonical Euclidean metric.

- (a) What are the geodesics?
- (b) Compute the exponential map at any point $p \in \mathbb{R}^n$.
- (c) What is its injectivity radius?
- (d) Are there periodic geodesics?
- (e) Are all geodesics periodic?
- (f) Is the image of a geodesic a submanifold of the ambient space?
- (g) Let γ be a geodesic and let $p \in \mathbb{R}^n \setminus \text{Im}(\gamma)$. How many geodesics passing through p and parallel to γ are there?
- 2. Let $\alpha_1, \ldots, \alpha_n > 0$, same questions for $\mathbb{T}^n_{\alpha} = \mathbb{R}^n/(\alpha_1\mathbb{Z} \oplus \cdots \oplus \alpha_n\mathbb{Z})$ with the metric induced by the Euclidean one on \mathbb{R}^n .
- 3. Same questions on \mathbb{S}^n with the metric induced by the Euclidean one on \mathbb{R}^{n+1} .
- 4. Same questions on the Poincaré disc \mathbb{D} with the metric $g_{\mathbb{D}} := \frac{4}{(1-x^2-y^2)^2} (\mathrm{d}x^2 + \mathrm{d}y^2)$
- 5. Same questions on the upper half-plane \mathbb{H} with the metric $g_{\mathbb{H}} := \frac{1}{y^2} (\mathrm{d}x^2 + \mathrm{d}y^2)$.