TD09 - Normal coordinates and tensor fields

Exercise 1 (Normal coordinates). Let (M, g) be a Riemannian manifold and let $p \in M$.

- 1. Can we find local coordinates (x_1, \ldots, x_n) centered at p such that the matrix $(g_{ij}(x))$ of g in these coordinates satisfies $(g_{ij}(x)) = I_n + O(||x||)$, where I_n is the identity matrix of size n?
- 2. Show that in the normal coordinates centered at p we have: $(g_{ij}(x)) = I_n + O(||x||^2)$, and $\Gamma_{ij}^k(x) = O(||x||)$ for any i, j and k.
- 3. Can we do better? $(I_n + O(||x||^3), \text{ constant equal to } I_n, \dots)$

Exercise 2. Let E and E' be two smooth vector bundles over the same base space M. Let $F:\Gamma(E)\to\Gamma(E')$ be a $\mathcal{C}^\infty(M)$ -linear map.

1. Prove that there exists a unique $f: E \to E'$ which is a bundle map over M (that is, for any $x \in M$, $f_{|E_x} \in \text{End}(E_x, E_x')$) and satisfies:

$$\forall s \in \Gamma(E), \forall x \in M, \qquad F(s)(x) = f(s(x)). \tag{1}$$

- 2. Check that f can be seen as an element of $\Gamma(E^* \otimes E')$.
- 3. Conversely, check that a section $f \in \Gamma(E^* \otimes E')$ defines a unique $\mathcal{C}^{\infty}(M)$ -linear map $F : \Gamma(E) \to \Gamma(E')$ satisfying (1).

Remark. In other terms we have defined a canonical isomorphism of $\mathcal{C}^{\infty}(M)$ -modules between $\operatorname{Hom}(\Gamma(E), \Gamma(E'))$ and $\Gamma(E^* \otimes_{\mathbb{R}} E')$.

Similarly, we can show that $s \otimes s' \mapsto (x \mapsto s(x) \otimes s'(x))$ defines a canonical isomorphism of $\mathcal{C}^{\infty}(M)$ -modules from $\Gamma(E) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(E')$ to $\Gamma(E \otimes_{\mathbb{R}} E')$. For example, $\Gamma(\bigwedge^k T^*M \otimes_{\mathbb{R}} E)$ is isomorphic to $\Omega^k(M, E) := \Omega^k(M) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(E)$, the space of k-forms with values in E.