SANTALÓ'S FORMULA

MARCO MAZZUCCHELLI

0.1. Contact geometry of the unit tangent bundle. Let M be a smooth manifold. The cotangent bundle T^*M admits a canonical exact symplectic form $d\lambda$, which is an exact 2-form on T^*M defined by $\lambda_{(x,p)} := p \circ d\pi(x,p)$. Here $\pi:TM \to M$, $\pi(x,v) = x$ is the base projection of the tangent bundle. Let us express λ in suitable local coordinates. On tangent and cotangent bundles, the charts that one employs are usually induced by charts on the base manifold. If $x^1, ..., x^n$ are local coordinates on M, the corresponding local coordinates $x^1, ..., x^n, v^1, ..., v^n$ on TM identify the point $(x,v) \in TM$, where $x \in M$ has coordinates $(x^1, ..., x^n)$, and $v = v^1 \frac{\partial}{\partial x^1} + ... + v^n \frac{\partial}{\partial x^n} \in T_x M$. Analogously, the local coordinates $x^1, ..., x^n, p_1, ..., p_n$ on T^*M identify the point $(x,p) \in TM$, where $x \in M$ is as before, and $p = p_1 dx^1 + ... + p_n dx^n \in T_x^*M$. Notice that, in these local coordinates,

$$d\pi(x,v)\frac{\partial}{\partial x^i} = \frac{\partial}{\partial x^i}, \qquad d\pi(x,v)\frac{\partial}{\partial v^i} = 0.$$

Therefore, λ and $d\lambda$ can be expressed in local coordinates as

$$\lambda = p_1 dx^1 + \dots + p_n dx^n, \qquad d\lambda = dp_1 \wedge dx^1 + \dots + p_n \wedge dx^n.$$

The symplectic form $d\lambda$ is non-degenerate, meaning that $d\lambda(w,\cdot) \neq 0$ whenever $w \neq 0$ (more generally, a symplectic form on a manifold is a closed, non-degenerate, 2-form). Its primitive λ is called the **Liouville form** of T^*M . The maximal exterior product $(d\lambda)^n = d\lambda \wedge \ldots \wedge d\lambda$ is a volume form on T^*M , as can be easily seen from its expression in local coordinates

$$(d\lambda)^n = n! (dp_1 \wedge dx^1 + \dots + dp_n \wedge dx^n).$$

The tangent bundle TM does not admit a canonical symplectic structure. However, a Riemannian metric g on M provides a bundle isomorphism

$$\flat : TM \to T^*M, \qquad (x, v) \mapsto (x, v^{\flat}),$$

where $v^{\flat} := g_x(v, \cdot)$. By means of this isomorphism, we can pull-back λ to a 1-form Λ on TM, which we will still call the Liouville form. Clearly, Λ depends on the Riemannian metric g, for it is given by

$$\Lambda_{(x,v)}(w) = g_x(v, d\pi(x,v)w), \quad \forall w \in T_{(x,v)}TM.$$

In local coordinates, if we write

$$g = \sum_{i,j=1}^{n} g_{ij} \, dx^{i} \otimes dx^{j},$$

Date: February 10, 2017.

we can write Λ and the symplectic form $d\Lambda$ as

$$\Lambda = \sum_{i,j=1}^{n} g_{ij} v^{i} dx^{j}, \qquad d\Lambda = \sum_{i,j=1}^{n} \left(g_{ij} dv^{i} \wedge dx^{j} + v^{i} dg_{ij} \wedge dx^{j} \right). \tag{0.1}$$

We now introduce the unit tangent bundle

$$SM := \{(x, v) \in TM \mid g_x(v, v) = 1\},\$$

which is a smooth hypersurface of the tangent bundle TM. The symplectic structure of TM induces a co-called contact structure on SM. In order to explain this, consider the radial deformation $\rho_t: TM \to TM$, $\rho_t(x,v) = (x,e^tv)$, which is generated by the vector field $R := \frac{d}{dt}|_{t=0}\rho_t$. In local coordinates, R is given by

$$R = v^{1} \frac{\partial}{\partial v^{1}} + \dots + v^{n} \frac{\partial}{\partial v^{n}}. \tag{0.2}$$

Proposition 0.1. We have that $\Lambda \wedge (d\Lambda)^{n-1} = \frac{1}{n}R \,\lrcorner\, (d\Lambda)^n$. In particular, the restriction of the Liouville form Λ to SM is a contact form, meaning that $\Lambda \wedge (d\Lambda)^{n-1}$ restricts to a volume form on SM.

Proof. Equations (0.1) and (0.2) readily imply that $R \, \lrcorner \, d\Lambda = \Lambda$, and Cartan's formula allows to compute the Lie derivative $\mathcal{L}_R d\Lambda$ as

$$\mathcal{L}_R d\Lambda = d(R \, \lrcorner \, d\Lambda) + R \, \lrcorner \, dd\Lambda = d(R \, \lrcorner \, d\Lambda) = d\Lambda.$$

In symplectic geometry, a vector field R satisfying this latter property is called a Liouville vector field. Clearly, R is transverse to the unit tangent bundle SM. Therefore, the (n-1)-form $R \, \lrcorner \, (d\Lambda)^n$ restricts to a volume form on SM. Since

$$\Lambda \wedge (\mathrm{d}\Lambda)^{n-1} = (R \,\lrcorner\, d\Lambda) \wedge (\mathrm{d}\Lambda)^{n-1} = \tfrac{1}{n} R \,\lrcorner\, (d\Lambda)^n,$$

we conclude that $\Lambda \wedge (d\Lambda)^{n-1}$ restricts to a volume form on SM.

From now on, we will consider the Liouville form Λ and its exterior derivative $d\Lambda$ as differential forms on SM, without denoting the restriction. Since Λ is nowhere vanishing, its kernel is a vector subbundle $\ker(\Lambda) \subset TSM$ of rank 2(n-1). In contact geometry, $\ker(\Lambda)$ is called a contact distribution. The fact that $\Lambda \wedge (d\Lambda)^{n-1}$ is a volume form is equivalent to the requirement that $d\Lambda$ be non-degenerate on $\ker(\Lambda)$, namely, $d\Lambda(w,\cdot) \neq 0$ for all $w \in \ker(\Lambda)$. We are now ready to define the **geodesic vector field** X on SM.

Proposition 0.2. There exists a unique vector field X on SM, called the geodesic vector field, satisfying $\Lambda(X) \equiv 1$ and $X \, \lrcorner \, d\Lambda \equiv 0$.

Proof. Since Λ is nowhere vanishing, we can find a vector field Y on SM such that $\Lambda(Y)$ is a nowhere vanishing function. Therefore we have a splitting $TSM = \operatorname{span}\{Y\} \oplus \ker(\Lambda)$, and we can write any vector field X on SM as X = fY + Z, where $f: SM \to \mathbb{R}$ is a smooth function and Z takes values in $\ker(\Lambda)$. The condition $\Lambda(X) \equiv 1$ is equivalent to $f = \Lambda(Y)^{-1}$, whereas $X \sqcup d\Lambda \equiv 0$ is equivalent to $Z \equiv 0$.

The flow ϕ_t of X, which is defined by the O.D.E. $\frac{d}{dt}\phi_t = X \circ \phi_t$, is called the **geodesic flow**. The following statement shows that ϕ_t is an example of a so-called strict contactomorphism.

Proposition 0.3. For each $t \in \mathbb{R}$ and $(x, v) \in SM$ so that $\phi_t(x, v)$ is well defined, we have $(\phi_t^* \Lambda)_{(x,v)} = \Lambda_{(x,v)}$.

Proof. On the domain of ϕ_t , we have

$$\frac{d}{dt}\phi_t^*\Lambda = \phi_t^* \mathcal{L}_X \Lambda = \phi_t^* (X \, \lrcorner \, d\Lambda + d(\Lambda(X))) = 0.$$

Let us now justify the terminology for the geodesic flow.

Proposition 0.4. The flow lines of the geodesic flow are of the form $\phi_t(\gamma(0), \dot{\gamma}(0)) = (\gamma(t), \dot{\gamma}(t))$, where $\gamma : [0, t] \to M$ is a unit-speed geodesic of (M, g).

Proof. We fix $(x,v) \in SM$, and consider the geodesic $\gamma(t) := \exp_x(tv)$. All we have to show is that $\dot{\Gamma}(0) = X(\Gamma(0))$, where Γ denotes the lifted geodesic $\Gamma(t) := (\gamma(t), \dot{\gamma}(t)) = (\exp_x(tv), d\exp_x(tv)v)$. One simple way to verify this is by employing the geodesic normal coordinates $x^1, ..., x^n$ centered at x. Namely, we fix a g-orthonormal basis $e_1, ..., e_n$ of the tangent space T_xM , and we write $(x^1, ..., x^n)$ for the coordinates of the point $\exp_x(x^1e_1 + ... + x^ne_n) \in M$. If we write our Riemannian metric in these local coordinates as $g = \sum_{i,j} g_{ij} dx^i \otimes dx^j$, its coefficients at x satisfy $g_{ij}(x) = \delta_{ij}$ and $dg_{ij}(x) = 0$. Indeed,

$$g_{ij}(x) = g_x(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}) = g_x(d\exp_x(0)e_i, d\exp_x(0)e_j) = g_x(e_i, e_j) = 0,$$

and, by Gauss Lemma, we have

$$dg_{ij}(x)e_i = \frac{d}{dt}\Big|_{t=0}g(d\exp(te_i)e_i, d\exp(te_i)e_j) = \frac{d}{dt}\Big|_{t=0}g(e_i, e_j) = 0.$$

Therefore, in these coordinates, Equation (0.1) gives

$$\Lambda_{(x,v)} = \sum_{i=1}^{n} v^{i} dx^{i}, \qquad d\Lambda_{(x,v)} = \sum_{i=1}^{n} dv^{i} \wedge dx^{i},$$

and therefore $X(\Gamma(0))=X(x,v)=v^1\frac{\partial}{\partial x^1}+...+v^n\frac{\partial}{\partial x^n}.$ For $t\in\mathbb{R}$ sufficiently close to $0,\,\Gamma(t)$ is given in local coordinates by $(tv^1,...,tv^n,v^1,...,v^n)$, and its derivative $\dot{\Gamma}(t)$ is thus given in local coordinates by $(v^1,...,v^n,0,...,0)$. This shows that $\dot{\Gamma}(0)=v^1\frac{\partial}{\partial x^1}+...+v^n\frac{\partial}{\partial x^n}.$

0.2. Santaló's formula. Consider the Liouville form Λ on SM, which we introduced in Section 0.1. We denote by m_g the measure on SM obtained by integrating the contact volume form $\frac{1}{(n-1)!}\Lambda \wedge (d\Lambda)^{n-1}$, i.e.

$$\int_{SM} F(x,v) \, dm_g(x,v) = \frac{1}{(n-1)!} \int_{SM} F \, \Lambda \wedge (d\Lambda)^{n-1},$$

$$\forall F \in C^0(SM).$$

We will refer to this measure as to the **Liouville measure** on SM.

We fix an arbitrary orientation on M, and denote by vol_g the Riemannian volume form compatible with this orientation. We recall that vol_g is the unique n-form such that $\operatorname{vol}_g(e_1,...,e_n)=1$ for each oriented orthonormal basis $e_1,...,e_n$ of a tangent space T_xM . In oriented local coordinates $x^1,...,x^n$ around $x\in M$, if we write $g=\sum_{i,j}g_{ij}dx^i\otimes dx^j$, vol_g is given by

$$vol_g = \det(g_{ij})^{1/2} dx^1 \wedge \dots \wedge dx^n.$$

The evaluation g_x of the Riemannian metric at some $x \in M$ gives an inner product on T_xM . We now treat the tangent space T_xM as a manifold itself, and see g_x as a flat Riemannian metric on it. If $x^1, ..., x^n, v^1, ..., v^n$ are the induced local coordinates on TM, the Riemannian volume form vol_{g_x} can be written in local coordinates as

$$\operatorname{vol}_{q_x} = \det(g_{ij}(x))^{1/2} dv^1 \wedge \dots \wedge dv^n.$$

Let R be the radial vector field to SM introduced in Equation (0.2).

Lemma 0.5. The vector field R is a unit normal to $S_xM \subset T_xM$ with respect to the Riemannian metric g_x , i.e. $||R(x,v)||_{g_x} = 1$ and $g_x(R(x,v),w) = 0$ for each $x \in M$ and $x \in T_v(S_xM)$.

Proof. The fact that R has unit norm along SM follows from

$$||R(x,v)||_{q_x} = ||v||_q, \quad \forall (x,v) \in TM.$$

We fix $x \in M$, and notice that $T_v(S_xM) = \ker(r)$, where $r: S_xM \to \mathbb{R}$ is the squared norm $r(v) = ||v||_{q_x}^2$. Since

$$dr(v)w = \frac{d}{dt}\Big|_{t=0} ||R(x,v) + tw||_{g_x}^2 = 2g_x(R(x,v),w),$$

we conclude that R is orthogonal to S_xM .

We now denote by $\iota_x: S_xM \hookrightarrow T_xM$ the inclusion, and we introduced the Riemannian metric $h_x:=\iota_x^*g_x$ on S_xM . Notice that, with the suitable orientation on S_xM , the Riemannian volume form associated to h_x is given by

$$\operatorname{vol}_{h_x} := R \,\lrcorner\, \operatorname{vol}_{g_x}.$$

The Riemannian measure m_g can be suitably disintegrated as follows.

Lemma 0.6. For each $F \in C^0(SM)$, we have

$$\int_{SM} F(x, v) dm_g = \int_{M} \left(\int_{S_x M} F(x, \cdot) \operatorname{vol}_{g_x} \right) \operatorname{vol}_{g}$$

Proof. We saw in Proposition 0.1 that $\Lambda \wedge (d\Lambda)^{n-1} = \frac{1}{n}R \, \lrcorner \, (d\Lambda)^n$. By the local coordinate expression (0.1), we readily compute

$$\frac{1}{n}(d\Lambda)^n = \frac{n!}{n}\det(g_{ij})\,dv^1 \wedge \dots \wedge dv^n \wedge dx^1 \wedge \dots \wedge dx^n$$

$$= (n-1)!\underbrace{\det(g_{ij})^{1/2}\,dv^1 \wedge \dots \wedge dv^n}_{(*)} \wedge \underbrace{\det(g_{ij})^{1/2}\,dx^1 \wedge \dots \wedge dx^n}_{(**)}.$$

Notice that (*) and (**) are the local coordinates expressions for the Riemannian volume forms vol_g and vol_{h_x} respectively. Therefore, we obtain the desired desintegration

$$\int_{SM} F(x,v) \, dm_g = \frac{1}{(n-1)!} \int_{SM} F \, \Lambda \wedge (d\Lambda)^{n-1} = \int_M \left(\int_{S_x M} F(x,\cdot) \operatorname{vol}_{g_x} \right) \operatorname{vol}_g.$$

We now consider the geodesic vector field X on SM, which was introduced with Proposition 0.2. if $\iota:\partial M\to M$ is the inclusion, we denote by $h:=\iota^*g$ the induced Riemannian metric on the boundary ∂M .

Lemma 0.7. We have the disintegration

$$\frac{1}{(n-1)!} \int_{\partial SM} F(d\Lambda)^{n-1} = \int_{\partial M} \left(\int_{S_x M} F(x, \cdot) g(\nu(x), \cdot) \operatorname{vol}_{h_x} \right) \operatorname{vol}_{h_x}$$

$$\forall F \in C^0(\partial SM).$$

Proof. Since $\Lambda(X) \equiv 1$, $X \, \lrcorner \, d\Lambda = 0$ and $\Lambda \wedge (d\Lambda)^{n-1} = \frac{1}{n} R \, \lrcorner \, (d\Lambda)^n$, we have $(d\Lambda)^{n-1} = X \, \lrcorner \, \Lambda \wedge (d\Lambda)^{n-1} = \frac{1}{n} X \, \lrcorner \, (R \, \lrcorner \, (d\Lambda)^n). \tag{0.3}$

We now fix $(x, v) \in \partial SM$, and proceed as in the proof of Proposition 0.4. We consider geodesic normal coordinates $x^1, ..., x^n$ centered at x, and the corresponding coordinates $x^1, ..., x^n, v^1, ..., v^n$ on ∂SM , so that

$$\begin{split} X(x,v) &= \sum_{i=1}^n v^i \frac{\partial}{\partial x^i}, \\ R(x,v) &= \sum_{i=1}^n v^i \frac{\partial}{\partial v^i}, \\ \frac{1}{n} (d\Lambda)^n &= (n-1)! \, dv^1 \wedge \ldots \wedge dv^n \wedge dx^1 \wedge \ldots \wedge dx^n. \end{split}$$

In this coordinates, we can write (0.3) at (x, v) as

$$(d\Lambda)^{n-1}_{(x,v)} = (n-1)!R(x,v) \, \lrcorner \, \left(dv^1 \wedge \ldots \wedge dv^n \right) \wedge X(x,v) \, \lrcorner \, \left(dx^1 \wedge \ldots \wedge dx^n \right)$$

$$= (n-1)!\underbrace{R(x,v) \, \lrcorner \, \left(dv^1 \wedge \ldots \wedge dv^n \right)}_{(*)} \wedge \underbrace{\sum_{i=1}^n v^i \frac{\partial}{\partial x^i} \, \lrcorner \, \left(dx^1 \wedge \ldots \wedge dx^n \right)}_{(**)}.$$

Here, (*) is the local coordinates expression for $R \,\lrcorner\, \mathrm{vol}_{g_x} = \mathrm{vol}_{h_x}$, whereas (**) is the local coordinates expression for $v \,\lrcorner\, \mathrm{vol}_g = g(\nu(x),v)\nu(x) \,\lrcorner\, \mathrm{vol}_g = g(\nu(x),v)\mathrm{vol}_h$. This implies the desired disintegration.

Proposition 0.7 implies that $\frac{1}{(n-1)!}(d\Lambda)^n$ restricts to a volume form on the non-tangential boundary $\partial SM \setminus S\partial M$, which is positive on $\partial_{\rm in}SM$ and negative on $\partial_{\rm out}SM$. We denote by $m_{q,\nu}$ the associated measure on $\partial_{\rm in}SM$, i.e.

$$\int_{\partial_{\text{in}}SM} F(x,v) \, dm_{g,\nu}(x,v) = \frac{1}{(n-1)!} \int_{\partial_{\text{in}}SM} F(d\Lambda)^{n-1},$$
$$\forall F \in C^0(\partial_{\text{in}}SM).$$

We will briefly call $m_{g,\nu}$ the **Liouville measure at the boundary**. It is worthwhile to stress the following immediate corollary of Proposition 0.7.

Corollary 0.8. The Liouville measure at the boundary $m_{g,\nu}$ is completely determined by the values of the Riemannian metric g at the boundary of M. Namely, if g and g' are two Riemannian metrics on M such that $g_x = g'_x$ for all $x \in \partial M$, then $m_{g,\nu} = m_{g',\nu}$.

We are finally ready to prove the following important theorem due to Santaló, which gives a further disintegration of the Liouville measure.

Theorem 0.9 (Santaló's formula). For each $F \in C^0(SM)$, we have

$$\int_{SM} F(x,v) \, dm_g(x,v) = \int_{\partial_{\operatorname{in}} SM} I_g F(x,v) \, dm_{g,\nu}(x,v), \qquad \forall F \in C^0(SM),$$

where $I_g:C^0(SM)\to\mathbb{R}$ is the X-ray transform of (M,g), i.e.

$$I_g F(x, v) = \int_0^{\tau_g(x, v)} F \circ \phi_t(x, v) dt.$$

Proof. Let us make a change of variables by means of the diffeomorphism

$$\psi: U \to SM \setminus S\partial M, \qquad \psi(x, v, t) = \phi_t(x, v),$$

where $U = \{(x, v, t) \mid (x, v) \in \partial_{\text{in}} SM, t \in [0, \tau_g(x, v)]\} \subset \partial_{\text{in}} SM \times [0, \infty)$. The differential of ψ is given by

$$d\psi(x, v, t) = d\phi_t(x, v) \circ \pi_1 + X(\phi_t(x, v))dt,$$

where $\pi_1: T_{(x,v)}SM \times T_t\mathbb{R} \to T_{(x,v)}\partial_{\text{in}}SM$ is the projection onto the first factor. Since $X \,\lrcorner\, d\Lambda \equiv 0$, and since the geodesic flow ϕ_t preserves the Liouville form Λ (Proposition 0.3), we have

$$\psi^*(\Lambda \wedge (d\Lambda)^{n-1}) = (\pi_1^* \phi_t^* \Lambda + \Lambda(X) dt) \wedge \pi_1^* \phi_t^* (d\Lambda)^{n-1}$$
$$= dt \wedge \pi_1^* (d\Lambda)^{n-1}.$$

This provides the desired disintegration

$$\int_{SM} F(x,v) dm_g = \frac{1}{(n-1)!} \int_{\partial_{\text{in}}SM} \left(\int_0^{\tau_g(x,v)} F \circ \phi_t(x,v) dt \right) (d\Lambda)^{n-1},$$

$$= \int_{\partial_{\text{in}}SM} I_g F(x,v) dm_{g,\nu}(x,v).$$

Marco Mazzucchelli

CNRS, ÉCOLE NORMALE SUPÉRIEURE DE LYON, UMPA 46 ALLÉE D'ITALIE, 69364 LYON CEDEX 07, FRANCE

E-mail address: marco.mazzucchelli@ens-lyon.fr