TD04: CONNECTIONS ON VECTOR BUNDLES

M1 - DIFFERENTIAL GEOMETRY, 2019-2020

CHIH-KANG HUANG

Exercise 1 (Warm up). Given two local coordinates $(x_1, \ldots, x_i, \ldots, x_n)$ and $(x'_1, \ldots, x'_j, \ldots, x'_n)$ on a open set U of M such that $x_i = a_{ij}x'^j$ for some matrix of functions $A = (a_{ij})_{1 \leq i,j \leq n}$. Let ∇ be a linear connection on M. Let Γ^k_{ij} and $(\Gamma')^k_{ij}$ denote the Christoffel symbols of ∇ with respect to these two coordinates. Express Γ^k_{ij} in terms of $(\Gamma')^k_{ij}$ and A.

Exercise 2. Let g and g' be two conformal metrics on M. Let ∇ and ∇' denote respectly the Levi-Civita connection of g and g'. Show that we have

$$\nabla_X' Y = \nabla_X Y + d\lambda(X)Y + d\lambda(Y)X - g(X,Y)\nabla\lambda,$$

where $\lambda: M \to \mathbf{R}$ is smooth map satisfying $q' = e^{2\lambda}q$.

Exercise 3 (Hessian and symmetric connection). Let M be a n-manifold and let $f: M \to \mathbf{R}$ be a smooth map.

- (1) Is there an intrinsic notion of second differential of f that would read as $D^2(f \circ \varphi^{-1})$ in any local chart (U, φ) ?
- (2) Let ∇ be a linear connection on M. Show that ∇ is symmetric if and only if its Christoffel symbols in any local chart are symmetric, that is, $\Gamma_{ij}^k = \Gamma_{ji}^k$ for any $i, j, k \in \{1, \dots, n\}$.
- (3) We define the *covariant Hessian* $\nabla^2 f$ of f by:

$$\nabla^2 f(X, Y) := (\nabla_X (df)) \cdot Y, \, \forall X, Y \in \Gamma(TM).$$

Show that $\nabla^2 f(X,Y) = X \cdot (Y \cdot f) - (\nabla_X Y) \cdot f$. (4) Show that ∇ is symmetric if and only if $\nabla^2 f$ is a symmetric (2,0)-tensor field for any $f \in C^{\infty}(M)$.

Exercise 4 (Computations of Christoffel symbols). (1) Let (M, g) be a Riemannian n-manifold. We denote by (x_1, \ldots, x_n) local coordinates on a open subset U of M and by G = $(g_{ij})_{1\leq i,j\leq n}$ the matrix of g in these coordinates. Show that we have, for any $i,j,k\in$

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{n} g^{kl} \left(\frac{\partial g_{il}}{\partial x_j} + \frac{\partial g_{jl}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_l} \right)$$

where $G^{-1}:=(g^{kl})_{1\leq k,l\leq n}$ is the invertible matrix of G. (2) Consider the hyperbolic half-plane $\mathbf{H}^2:=\{(x,y)\in\mathbf{R}^2\,|\,y>0\}$ endowed with the metric

$$g_{(x,y)} = \frac{1}{u^2} \left(dx \otimes dx + dy \otimes dy \right).$$

Let ∇ denote the associated Levi-Civita connection. Compute $\nabla \frac{\partial}{\partial x}$ and $\nabla \frac{\partial}{\partial y}$.

(3) Consider the Poincaré's disc $\mathbf{D}^2 := \{(x,y) \in \mathbf{R}^2 \mid y > 0\}$ endowed with the metric

$$g_{(x,y)} = \frac{4}{1 - (x^2 + y^2)} \left(dx \otimes dx + dy \otimes dy \right).$$

Let ∇ denote the associated Levi-Civita connection. Compute the covariant derivatives $\nabla \frac{\partial}{\partial r}$ and $\nabla \frac{\partial}{\partial \theta}$ associated with the polar coordinates.