Géométrie différentielle 2020-2021

TD8, mercredi 24 mars

Soit Σ une surface compacte lisse dans \mathbb{R}^3 . On admet qu'elle borde un domaine compact Ω , ce qui permet de définir la normale extérieure $N: \Sigma \to S^2$ qui est continue donc lisse (application de Gauss).

- a) Montrer que N est surjective.
- b) Montrer que si $\Sigma \subset D^3(x_0,r)$ et $x \in \Sigma \cap S^2(x_0,r)$, alors la courbure $K_{\Sigma}(x)$ est $\geq \frac{1}{r^2}$.
- c) Montrer que
 - (i) N reste surjective quand on la restreint aux points de courbure ≥ 0
 - (ii) il y a toujours des points de courbure > 0.
- d) En déduire que

$$\int_{\{x\in\Sigma|K_\Sigma(x)>0\}} K_\Sigma \sigma \Sigma \geq 4\pi,$$

où $\sigma \in \Omega^2(\Sigma)$ est la forme d'aire sur Σ .

- e) Si Σ borde un domaine compact convexe Ω , montrer que $K_{\Sigma} \geq 0$.
- f)* On suppose que $K_{\Sigma} > 0$. Montrer que N est un difféomorphisme, puis que Σ borde un domaine compact convexe.
- f)** On suppose que $K \geq 0$. Montrer que Σ borde un domaine compact convexe.