FROM SALEM NUMBERS TO MAHLER MEASURE OF K3
SURFACES (LECTURE 1)

MARIE-JOSE BERTIN

1. INTRODUCTION

Looking for large primes, Pierce [Pil7] proposed the following construction. Con-
sider P € Z[z] monic, and write

then, look at
An =]]laf = 1).
i

The «; are algebraic integers. By applying Galois theory, it is easy to see that
A, € Z. Note that if P = x — 2, we get the Mersenne sequence A, = 2" — 1.
The idea is to look for primes among the factors of A,,. The prime divisors of such
integers must satify some congruence conditions that are quite restrictive, hence
they are easier to factorize than a randomly given number. Moreover, one can
show that A,,|A,, if m|n. Then we may look at the numbers

Ap
Ay

Lehmer [Le33] noticed that the number of trial divisions would get minimized if

for p prime.

the sequence A,, grows slowly. Thus, he studied |?£+‘1|, observed that

lamtt —1] { la| if || > 1,

fim 1 ifla] <1,

and suggested the following definition.
Definition 1. Given P € Clz], such that

P(z) =a]](x - o)
define the (Mahler) ' measure of P

Q(P) = |a| [ [ max{1, |osl}.
The logarithmic (Mahler) measure is defined as
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IThe name Mahler came later after the person who successfully extended this definition to the
several-variable case.
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m(P) =logQ(P) =log |a| + ZlogJr ;.

Now I cite Lehmer [Le33].

1.1. A problem in the theory of equations. The following problem arises im-
mediately.
If € is a positive quantity, to find a polynomial of the form

flx)y=2"4+az" +... +a,
where the a’s are integers, such that the absolute value of the product of those roots
of f which lie outside the unit circle, lies between 1 and 1 + .
This problem, of interest in itself, is especially important for our purposes.
Whether or not the problem has a solution for € < 0.176 we do not know.

The best linear function f is of course z — 2 = 0.

The best quadratic is 2 — 2 — 1, for which = 1.61803399...

The best cubic is 2% — 2 — 1, for which Q = 1.32471796..

The best quartic is * — 2 — 1, for which Q = 1.380277569...

The examination of all quintic equations would require much time. The above
results would all suggest that good examples might be found among trinomial
equations. We have accordingly examined all trinomials of degree 5,6, and 7 with
the following results:

The best trinomial quintic is 2° — 23 — 1, Q = 1.3625986...

The best trinomial sextic is 2% —z — 1, Q = 1.3707...

The best trinomial septic is 7 — 2% — 1, Q = 1.3797...

None of the equations given above have a root on the unit circle.

Another important class of polynomials are those which are symmetric. The
best polynomials of this type have all their roots but two on the unit circle. The
best polynomials of degree 2, 4, 6, and 8 are

22 -3z +1 Q = 2.6180339885...
-2 +1 ) = 1.722083806...
20—t — - 2?41 Q = 1.401268369...
a8 —aP -zt — 2?41 Q = 1.280638157...

We have not made an examination of all degree symmetric polynomials but a rather
intensive search has failed to reveal a better polynomial than

2042 —2" -2~ -2t —2d 2+ 1 Q=1.176280821...

In fact these measures ) concern quite remarquable polynomials.

All these polynomials are monic, with integer coefficients and irreducible. The
best linear, quadratic, cubic and quartic belong to the same class and the symmetric
ones except the quadratic belong to another class. Use, for example PARI and
observe polynomials of both classes have only one root outside the unit circle. In
the first class the other roots lie inside the unit circle while in the second class there
are also roots on the unit circle. So, ten years before Pisot and Salem numbers
were discovered and studied, some of them and their measure 2, which will be
nothing else than the Mahler measure introduced in 1962 by Mahler [Ma62], play
an important role in Lehmer’s paper.



FROM SALEM NUMBERS TO MAHLER MEASURE OF K3 SURFACES (LECTURE 1) 3

2. PI1SOT AND SALEM NUMBERS

Definition 2. A Pisot number is an algebraic integer 0, 6 > 1, with all its other
conjugates of modulus less than 1.

Definition 3. A Salem number is an algebraic integer 7, 7 > 1, with all its other
conjugates of modulus less or equal to 1 and with at least one conjugate of modulus
1.

Theorem 4. (Salem (1945))[Sad5] Every Pisot number is a limit point of Salem
numbers on both sides

PROOF. In order to give a self contained proof we follow the Salem’s original
proof. But you can also refer to [BDGPS92]

Denote 6 (resp. P(z)) a Pisot number (resp. its minimal polynomial). Thus
P(z) is monic, irreducible with integer coefficients and degree p. Denote Q(z) :=
2PP(1/z) its reciprocal polynomial.

1) Suppose first that Q(z) and P(z) are not identical, that is 6 is not a quadratic
unit. Let m be a positive integer and define

Ry (2) :=2"P(2) + Q(2).

So R, (z) is a reciprocal polynomial whose zeros are algebraic integers. We have

P(z) z-10 ﬁ zZ—q;
Q(z) 1-0z 1—afz’
where the o; are the conjugates of 6 and o := ‘O;—‘lz Choose € > 0 such that Q(z)

has no zeros for 1 < |z| <1+ e. By properties of conformal representation, we get,
for [z =1+,

i=1

Pl
11 ‘>
11l —-afz
i=1 ?
Moreover, for |z| = 1 + €, supposing that 1+ € < 6 we can prove the inequalities
=0 0—(1+e 0+1
> >1l—ec——>0
1-60z| 0(1+e —1 91

for e small enough.
Now, on |z| =1 + ¢, it follows

ggg > (1 + me) [1—ez+1} —1+<m—zt1>e—m2t162.

Supposing € < (8 — 1)/(6 + 1) and taking m > 2(6 + 1)/(6 — 1), we get , for
|z =1+,

‘ m

ZM—

Q
and by Rouché’s theorem, inside the circle |z| < 1+ €, Ry, (2) has as many zeros as
z™P,ie. m+p—1. Since € is arbitrarily small, R,,(z) has only one zero 7, of
modulus larger than 1, thus real.

The polynomial R,,(z) being reciprocal, 1/7,, is the only zero inside the unit
circle, all the other zeros being of modulus 1. Now dividing R,,(z) by its cyclotomic

>1
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factors, after proving there are still zeros of modulus 1, the remaining polynomial
is a Salem polynomial and 7,,, a Salem number. By definition of a Pisot number,
P(#) =0and P'() > 0, hence P'(z) > u > 0for z € [§—0,0+0], 0 > 0 being small
enough. Thus taking |§] < o,P(0 + §) is never 0 and has the sign of §. Moreover if
|6] = \/—%, for m large enough, R,, (6 + 0) has the sign of P(# + §) hence the sign of
5. Since R,,(0) = Q(6), we get, if Q(6) >0

R0+ 0)Rp(0) <0if 6 <0

and, if Q(0) <0
R0+ 0)Ry(0) <0if §>0
It follows 6 < 7,,, < 0 + %77 if Q(A) <0 and 6 — %E < T < 0if Q) > 0.

Hence we obtain by the previous process an infinite sequence of 7,,, all different
and tending to the Pisot number 6 as m tends to infinity. We then deduce two
things. First these 7, have arbitrarily large degree (if not since their minimal
polynomials have bounded coefficients there would be a contradiction). Secondly,
for m large enough, they are not quadratic units hence have effectively conjugates
on the unit circle thus are Salem numbers.

~ Considering now, instead of the polynomial 2™ P + @, the reciprocal polynomial
= "IIQ, we construct, in the same way, a sequence of Salem numbers tending to
the Pisot number 6 on the other side.

2) If 6 is a quadratic unit, then 6 4+ 1/6 is an integer r > 3. Let T;,(x) be the
first kind Tchebycheff polynomial of degree m, i.e. T;,(z) = cosmv for x = 2cosv.
The polynomial T}, (x) has m distinct real roots between —2 and +2. We can prove
that the equation

2T (z)(x—r)—1=0
possess m real roots between —2 and +2 and one real root between r and r + ¢,
€m being positive and tending to 0 as m tends to infinity. Putting 2 = y + 1/y
we get a Salem polynomial defining a Salem number 7, tending on one side to the
Pisot quadratic unit #. Doing the same trick in the equation

2T (z)(x—r)+1=0
we get another sequence of Salem numbers approaching the quadratic Pisot unit
the other side.
|
And Salem adds
I have not been able to solve the problem of the existence of other limit points
than the P. V. numbers for the numbers of the class (T).

Remark 5. The above problem is still unsolved.

Remark 6. Ti(z) = z, Ta(z) = 222 — 1, Ty(x) = 423 — 3z, Ty = 8x* — 822 + 1,
Ts = 162° — 2023 + 52, Ty = 322° — 482* + 1822 — 1.

2.1. Reciprocal to Salem’s construction. In a paper at Duke, Boyd [Bo77]
proved in 1977 that every Salem number can be obtained from a Pisot number
using Salem’s construction.

Theorem 7. Let Q be a monic polynomial with integer coefficients, of degree q,
satisfying z9Q(z71) = €Q(z) with € either 1 or —1, having q — 2 distinct roots on
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the unit circle and one root o > 1 outside the unit circle. If e =1 and q is even we
also require the middle coefficient of Q to be even. Then there is a Pisot polynomial
Py of degree k and a positive integer n such that

(1) Q(z) = 2" Py(2) + ezF Py (2z71).

PROOF.
The proof needs first some remarks concerning the algebraic curve defined by

q(z,t) = 2"Py(z) + etzF Py(z71).

From Hille [Hi62], chapter 12 “Algebraic functions” in Analytic function theory,
Vol. TI, the equation ¢(z,t) = 0 defines an algebraic curve z = Z(t) with n + k
branches and a finite number of singularities which are multiple points. Moreover
this curve is an analytic function Z(t) that means that all the branches are branches
of the same analytic function, so that one can obtain all these functions by analytic
continuation of a single one of them along suitably chosen closed paths.

We consider each branch of the algebraic curve for 0 < ¢ < 1 oriented with ¢
increasing.

If 0 <t <1, then for |z| =1,

|2"P(2)| > |etz"P(z71)|

since P has real coefficients and Z = z~! on the unit circle.
If t > 1 and |z| =1, then

|2"P(2)| < |etz"P(z71)].

It follows:

(A) The equality z = z;(t) is impossible for |z| =1 and ¢ # 1.

Thus, if P has s zeros in |z| > 1 and k — s zeros in |z| < 1, the algebraic curve
Z(t) is made of s branches outside the unit circle and n + k — s branches inside the
unit circle.

From the relation q(z71,¢t71) = et 127" "¥*¢(2,t) we deduce

(B) Z(%‘l) = Z(t) i.e. the branches are exchanged under reflection in
the z-axis, with preservation of orientation and under inversion in the
unit circle with reversal of orientation.

If « is a simple root of modulus 1 of the equation Q(z) = 0, there exists a branch
of the algebraic curve for example z = z(t) satisfying z1(1) = a. From (A) we
deduce, either |21(0)| < 1 and « is an exit of the branch beginning inside the unit
circle or |z1(0)] > 1 and « is an entrance of the branch beginning outside the unit
circle.

If « is a root of order p, p > 1, of the equation Q(z) = 0, a certain number p;
(resp. pa) of branches enter (resp. leave) at «, with p; 4+ pa = p.

We now give a criterium for « to be an entrance or an exit.

Lemma 8. Denote by QQ a polynomial with real coefficients satisfying

(2) Q(z) = 2"P(2) + e2"P(z7),

with deg(P) = k, without zero on the unit circle and o a simple oot of modulus 1

of Q.

Then « is an exit (resp. entrance) if and only if
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(3) €@ 1Q' (a)P(a) <0 (resp. > 0),
or equivalently
(4) n—k+2R(aP'(a)/P(a)) >0 (resp. <0).

If « is a root of order p, then at least [p/2] branches enter the unit circle at «
and at least [p/2] leave at a.

PROOF.  Denote z(t) the branch of Z(t) satisfying z(1) = . From (B) we
deduce that this branch is orthogonal at ¢ = 1 to the unit circle hence 2/(1)z(1)
is real. From theorem 12.2.1 of Hille, z(¢) is an analytic function of ¢ so has an
expression of the form near ¢t = 1

(5) z(t) =a+ (t—1)2"(1) + ...
Now, the relation g(z(t),t) = 0 can be written as
(6) q(z(t), 1) = (L =) (2())" P(2(1)) + tQ(2(¢)) = 0

Then using (5), since Q(z) = (2 — @)Q’' () + €/(z — ), the expression (6) has a
factor 1 — ¢. Simplifying by this factor and letting ¢ — 1, we deduce
a"Pa) - 2'(1)Q' () =0,
which, in turn, using (2), becomes
e Pla™) 4+ 2/(1)Q'(a) = 0.

Notice that z’(1) # 0 since P has no zero on the unit circle.
After multiplication by Q’(«) of the conjugate expression, it follows

(7) e P(a)Q' () + 2/ (1)Q'(@)Q (o) = 0.

If  is an exit, we have |2(0)| < 1 and |2(¢)] < 1 for 0 <t < 1s0 z(1)2'(1) =
% > 0. Thus, from (7)

ea""1P(a)Q'(a) <0

which is (3).

A similar argument can be developped if « is an “entrance” leading to a reverse
inequality.

Differentiating (1) and using the relation a”P(a) + ea*P(a) = 0 since « is a
root of (), we can express

ea" " 1P(a)Q'(a) = —(n — k)|P(a)|* — aP'(a)P(a) — aP'(a)P(a).

Since |P(a)]? > 0, it follows the equivalence of (3) and (4). O

Corollary 9. Suppose the polynomial P of degree k has exactly s roots of modulus
strictly greater than 1, the other roots being in |z| < 1. Suppose that Q has s — 1
distinct roots on |z| = 1 each of which satisfies n—k+2R(aP’(«)/P(«)) < 0. Then
Q has at most one root outside the unit circle.

PROOF.  Since ¢(z,0) = 2" P(z) there are s branches of Z(t) outside the unit
circle for 0 < ¢ < 1. The s — 1 roots of ¢(z,1) on the unit circle are either simple
roots satisfying (2) or else multiple roots. Each of these supplies an entrance for at
least one branch. Thus at most one branch can end outside the unit circle. g
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Proof of the theorem We look for a polynomial P of degree ¢ — 1 with ¢ — 2
roots of modulus less than 1 and a root of modulus greater than 1 satisfying

(8) Q(2) = 2zP(2) + 297 ' P(z71).

Hence P(z) = 2" 1Py(z), Py being a Pisot polynomial and n > 1.

We consider only the case € = —1 and ¢ = 2m + 1, the proof being similar in the
other case.

The following abbreviation will be used in writing the polynomial

aozk—&—alzk_l +...+ar=ag a; ...ag.
Thus we suppose the polynomial @) to be of the form

1dy dy ... dyy —dpp ... —d7 —1.
Hence P will be
1 (61 +d1) (62+d2) (Cm+dm) Cm Cm—1 -.- C2 C1.

with ¢; € Z. We seek integers cy, ..., ¢, such that the 2m — 1 distinct roots of
modulus 1 of @, denoted by z1,...,2m—1,21,---,2m—1,1, are “exits”.
Thus the following m inequalities must be satisfied

9) 72 Q (z)P(z) >0, 1<j<m—1, Q(1)P(1)>0.
More precisely, if we write Q(z) = (2 — 1)R(2) and R(z) = 2™A(z + 27 1), the
polynomial A has degree m and m — 1 roots in | — 2,2[ denoted p; = 2cos¢;

(z; = expig;) and one root p =0 + o~ > 2. Hence we get
Q' (2) = (z7 = DR'(z) = (z; = D[]" (25 — )14 (p;)

and

G () Pleg) = (2 + 5 = A () (57 + 51%)

[01(27-”_1/2 +5mY?) 4 02(22"_1/2_1 +mmYh cm(,zl,/2 + 7Y%+

J J
220+ di T e d)] > 0
for1<j<m-—1

and

Q'(1HP(1)=R(1)P(1) <O0.

Since z; + z; —2 < 0 and R(1) < 0 the inequalities (9) are of the form
(10) bljcl + ijCQ + ...+ bmjcm > bj, 1<5<m

b;; and b; being real numbers. Moreover det((b;;)) = det(B) # 0. Otherwise
there would be a vector © = (21, ...,z ) # (0,0, ...,0) satisfying Bax = 0 that is

+...+xmz;/2+xmzj_1/2+...+xlzj_m+l/2:0;

m—1/2—1

m—1/2
12 /+£U225j

J
thus there would be a polynomial

X2 4 2y X X g X 4

with the 2m — 1 roots 21, ...,zm—1, 21, ---, Zm—1, 1. Since it possesses also the root
—1, this polynomial of degree 2m — 1 would have 2m roots, a contradiction.

Since the matrix B is non singular, it follows that the region in R™ determined
by (10) is a polyhedral cone affinely equivalent to an orthant of R™ and hence
containing infinitely many lattice points ( for example, each sphere of radius ml/2 /2
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contained in the cone contains a lattice point). Each of these points determines a
polynomial P satisfying (8) and the above inequalities. Now P can have no roots
on the unit circle since, by (8), they would be roots of @ thus among the z; and
1, a contradiction by (9). From the lemma we deduce that the 2m — 1 roots of
modulus 1 of @ are “exit” of branches beginning at roots of zP(z). Thus P has at
least 2m — 2 roots of modulus strictly less than 1. The root ¢ > 1 of @ is the end
of a branch beginning outside the unit circle at a root of P. Since there is no other
branch beginning outside the unit circle and coming inside, P has exactly one root
of modulus greater than 1.

|

2.2. A list of “small” Salem numbers. [Bo77] By “small” Salem numbers, we
mean Salem numbers less than 1.3. Known Pisot numbers give by the previous
theorem only a few “small” Salem numbers. For example, the smallest Pisot 6,
0o = 1.3247179572..., with minimal polynomial Py(x) = 23 — 2 — 1 gives only oy,
o7, 019, 022, O3, where o denotes the kth smallest Salem [Bo77]. As for the
second smallest Pisot number 61, #; = 1.3802775691..., with minimal polynomial

Pi(z) = 2* — 2% — 1, it gives only o5 and 092. The other Pisot numbers less than

1+v5
2

Thus Boyd used the corollary, applied for example to Py(z?), for s = 2 and

give no other “small” Salem.

a = —1, giving 09, 03, 05, 012, 022. Also P;(z?), for s = 2 and o = —1 give o¢, 01
and J19.
Other polynomials, one due to Cantor, 2% — 2% — 1, another due to Lehmer,

x® — 23 — 1 give respectively o019, 013, 019, 021 t0 036, 038, 039 and o1, 04, 05, O7

to 012, 014, 019, O22.
The remaining “small” Salem numbers were detected using a method based on
Schur’s algorithm [Bo78].

2.3. The list from Mossinghoff’s website. [Mo]

There are 47 known Salem numbers less than 1.3. The most recently discovered
Salem numbers are marked with an asterisk. This list is known to be complete
for degree at most 44. There is only one known small Salem number with larger
degree.

Note: Salem numbers are truncated, not rounded.

mimossinghoff ”at” davidson ”dot” edu Last modified June 5, 2009.
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