1. Characterization of some interesting subsets of Salem numbers—Bertin-Boyd’s results

Consider the construction

\[Q(z) = zP(z) + \epsilon P^*(z) \]

Boyd and myself [BB95] observed that they are two particular classes of polynomial \(P \) for which we can be sure that \(Q(z) \) has at most one zero in \(|z| > 1 \).

A: \(P \) has no zero in \(|z| \leq 1 \). Then \(zP(z) \) has one zero in \(|z| < 1 \) and \(n \) zeros in \(|z| > 1 \). The branches starting at the \(n \) zeros in \(|z| > 1 \) end at points in \(|z| \geq 1 \) so \(Q \) has at least \(n \) zeros in \(|z| \geq 1 \) and hence at most one zero in \(|z| < 1 \) (the end of the branch starting at 0). Since \(Q \) is reciprocal, it thus has at most one zero in \(|z| > 1 \). If there is such a zero it must be \(\pm \tau \) for a Salem number \(\tau \) (or reciprocal quadratic). This was the choice considered in Bertin’s thesis [Be81].

B: \(P \) has a single zero in \(|z| > 1 \) so \(zP(z) \) has \(n \) zeros in \(|z| < 1 \). The above argument can be repeated by considering the fate of the \(n \) branches beginning at these zeros. This was the case considered by Salem [Sa45] and Boyd [Bo78]. In this case, if the zero \(\theta \) of \(P(z) \) in \(|z| > 1 \) satisfies \(\theta > 1 \), then \(\theta \) is a Pisot number and \(P(z) = z^{m-1}P_0(z) \) where \(P_0 \) is the minimal polynomial of \(\theta \). If \(Q \) has a zero in \(|z| > 1 \) then it is a Salem number (or reciprocal quadratic).

Note that if \(Q \) has one zero in \(|z| > 1 \) and hence \(n - 1 \) zeros on \(|z| = 1 \) then these are all entrances in case (A) and exits in case (B).

Given any \(Q \) with integer coefficients reciprocal or antireciprocal, with a single root in \(|z| > 1 \) and simple roots on \(|z| = 1 \), and given \(k \) with \(1 \leq k \leq n \), it was shown in the previous section that they are monic polynomials \(P \) with integer coefficients satisfying (1) with exactly \(k \) zeros in \(|z| > 1 \) and \(n - k \) zeros in \(|z| < 1 \). **Thus any such class of \(P \), in particular (A) or (B), can be used to generate all Salem numbers.**

The classes (A) and (B) have the advantage that they generate only Salem numbers, reciprocal quadratics, and roots of unity. Note, in these two cases, that the restriction that \(Q \) have simple roots on \(|z| = 1 \) is necessary since an multiple root must be both an exit and an entrance.

Definition 1. The set \(A_q \) is the set of Salem numbers produced by (A) with \(|P(0)| = q \) and \(\epsilon = -sgnP(0) \).
The set B_q is the set of Salem numbers produced by (B) with $|P(0)| = q$ and $\epsilon = sgn P_0(0)$ where $P(z) = z^{m-1} P_0(z)$, $P_0(0) \neq 0$.

Remark 2. The set $A_q = \mathcal{T}_q \cap T$ where \mathcal{T}_q was the set introduced by Bertin in [Be81] and T the set of Salem numbers. In particular it was shown there that A_q is bounded above by $q + (q^2 - 1)^{1/2}$. Note that if $\epsilon = 1$ then the restriction $P(0) = -q$ is needed to insure that $Q(1) < 0$ so that Q has a zero $\tau > 1$. Moreover since all zeros of P are in $|z| > 1$ we must have $q \geq 2$ in case (A).

Remark 3. The sets B_q were considered by Boyd in [Bo78]. When $q = 0$, $P(z) = z^{m-1} P_0(z)$ with $m > 1$ so $B_q = \{ \theta_m, m > 1 \}$ in the notation [Bo77], [Bo78] while $B_q = \{ \theta_1; |N(\theta)| = q, \epsilon = sgn N(\theta) \}$.

Remark 4. By the result of [Bo80] mentionned above,

$$T = \bigcup_q A_q = \bigcup_q B_q.$$

Given $c > 1$, the hope was the existence of M such that $T \cap [1, c]$ be contained in the finite union $\bigcup_{2 \leq q \leq M} A_q$ or $\bigcup_{0 \leq q \leq M-2} B_q$.

Remark 5. The set $B_0 \cap \{9/8, 13/10\}$ was enumerated in [Bo78].

1.0.1. Examples of small Salem numbers in A_2. In 1980, I tempted to determine the smallest Salem numbers of the set A_2. Using an adapted version of the Schur's algorithm, I found for example.

σ_1 is zero of three different polynomials

$$z = \frac{1 + 2z + z^2 - z^3 - z^4 - z^5 - z^6 - z^7 + 2z^9 + 2z^{10}}{2 + 2z - z^3 - z^4 - z^5 - z^6 - z^7 + z^8 + 2z^9 + z^{10}}$$

$$z = \frac{1 + 2z + z^2 + z^8 + 2z^9 + 2z^{10}}{2 + 2z + z^2 + z^6 + 2z^8 + z^{10}}$$

$$z = \frac{1 + 2z + 2z^2 + 2z^3 + 3z^4 + 4z^5 + 4z^6 + 3z^7 + 3z^8 + 3z^9 + 2z^{10}}{2 + 3z + 3z^2 + 3z^3 + 4z^4 + 4z^5 + 3z^6 + 2z^7 + 2z^8 + 2z^9 + z^{10}}$$

σ_2 is zero of the polynomial

$$z = \frac{1 + 2z^2 + z^4 - z^6 - 2z^8 - 2z^{10} - 2z^{12} + 2z^{16} + 2z^{18}}{2 + 2z^2 - 2z^6 - 2z^8 - z^{10} - z^{12} + z^{14} + 2z^{16} + z^{18}}$$

σ_3 is zero of the polynomial

$$z = \frac{1 + 2z^2 + z^4 - z^6 - 2z^8 - 2z^{10} + 2z^{14} + 2z^{16}}{2 + 2z^2 - 2z^6 - 2z^8 - z^{10} + z^{12} + 2z^{14} + z^{16}}$$

σ_5 is zero of five polynomials

$$z = \frac{1 + z + z^2 + 2z^3 + 2z^4 + 2z^5 + 2z^6 + 3z^7 + 2z^8 + z^9 + 2z^{10}}{2 + z + 2z^2 + 3z^3 + 2z^4 + 2z^5 + 2z^6 + 2z^7 + z^8 + z^9 + z^{10}}$$

$$z = \frac{1 + 2z^2 + z^4 - z^6 - 2z^8 + 2z^{12} + 2z^{14}}{2 + 2z^2 - 2z^6 - z^8 + z^{10} + 2z^{12} + z^{14}}$$

$$z = \frac{1 + z + 2z^2 + 2z^3 + z^4 + z^5 + z^6 + 2z^7 + 2z^8 + 2z^9 + 2z^{10}}{2 + 2z + 2z^2 + 2z^3 + z^4 + z^5 + z^6 + 2z^7 + 2z^8 + z^9 + z^{10}}$$

$$z = \frac{1 + z + z^3 - z^4 - z^6 - z^7 - 2z^9 - z^{11} + z^{13} + 2z^{15}}{2 + z^2 - z^4 - 2z^6 - z^8 - z^9 - z^{11} + z^{12} + z^{14} + z^{15}}$$

1
\[z = \frac{1 + z + z^3 - z^4 - z^5 - z^6 + z^8 + 2z^{10}}{2 + z^2 - z^4 - z^5 - z^6 + z^7 + z^9 + z^{10}} \]

\(\sigma_6 \) is root of the polynomial
\[z = \frac{1 + z^2 - z^8 - 2z^{10} + 2z^{18}}{2 - 2z^8 - z^{10} + z^{16} + z^{18}} \]

\(\sigma_{10} \) is root of the polynomial
\[z = \frac{1 + z^2 - z^8 + 2z^{16}}{2 - z^8 + z^{14} + z^{16}} \]

\(\sigma_{16} \) is root of the polynomial
\[z = \frac{1 + z^2 - z^4 - z^6 + z^{10} - 2z^{14} + 2z^{18}}{2 - 2z^4 + z^8 - z^{12} - z^{14} + z^{16} + z^{18}} \]

1.0.2. Characterization of the sets \(A_q \) and \(B_q \).

Theorem 6 (Theorem A). Suppose that \(\tau \) is a Salem number with minimal polynomial \(T \). Then \(\tau \) is in \(A_q \) if and only if there is a cyclotomic polynomial \(K \) with simple roots and \(K(1) \neq 0 \) and a reciprocal polynomial \(L \) with the following properties:

1. \(L(0) = q - 1 \)
2. \(\deg L = \deg(KT) - 1 \)
3. \(L(1) \geq -K(1)T(1) \)
4. \(L \) has all its zeros on \(|z| = 1 \) and they interlace the zeros of \(KT \) on \(|z| = 1 \) in the following sense: let \(e^{i\psi_1}, ..., e^{i\psi_m} \) be the zeros of \(L \) with \(\Im z \geq 0 \), excluding \(z = -1 \), with \(0 < \psi_1 < ... < \psi_m < \pi \), and let \(e^{i\phi_1}, ..., e^{i\phi_m} \) be the zeros of \(KT \) on \(|z| = 1 \), \(\Im z \geq 0 \), with \(0 < \phi_1 < ... < \phi_m \leq \pi \); then
\[
0 < \psi_1 < \phi_1 < ... < \psi_m < \phi_m.
\]

Theorem 7 (Theorem B). Suppose that \(\tau \) is a Salem number with minimal polynomial \(T \). Then \(\tau \) is in \(B_q \) if and only if there is a cyclotomic polynomial \(K \) with simple roots and \(K(1) \neq 0 \) and a reciprocal polynomial \(L \) with the following properties:

1. \(L(0) = q + 1 \)
2. \(\deg L = \deg(KT) - 1 \)
3. \(L(1) \geq K(1)T(1) \)
4. \(L \) has all its zeros on \(|z| = 1 \) and they interlace the zeros of \(KT \) on \(|z| = 1 \) in the following sense: let \(e^{i\psi_1}, ..., e^{i\psi_m} \) be the zeros of \(L \) with \(\Im z \geq 0 \), excluding \(z = -1 \), with \(0 < \psi_1 < ... < \psi_m < \pi \), and let \(e^{i\phi_1}, ..., e^{i\phi_m} \) be the zeros of \(KT \) on \(|z| = 1 \), \(\Im z \geq 0 \), with \(0 < \phi_1 < ... < \phi_m \leq \pi \); then
\[
0 < \phi_1 < \psi_1 < ... < \psi_m < \phi_m.
\]

Remark 8. For proofs of Theorem (A) and Theorem (B) we refer to [BB95].

In case \(Q = zP - P^* \), we can write \((z - 1)Q_1 = zZ - P^* \) and we can take \(L = P - Q_1 \).

Corollary 9.
\[A_q \subset B_{q-2} \text{ for } q \geq 2. \]

PROOF. The conditions of Theorem (B) are weaker than the corresponding conditions of Theorem (A). \qed
Corollary 10. \(A_q \subset A_{kq-k+1} \) for \(q \geq 2, k \geq 1 \)

PROOF. If \(L \) satisfies Theorem (A) with \(L(0) = q - 1 \), then \(kL \) satisfies the theorem with \(kL(0) = kq - k \) showing \(\tau \) is in \(A_{kq-k+1} \). \(\square \)

Theorem 11. Denote \(C \) the list of 43 smallest known Salem numbers called \(\sigma_1, \ldots \) of Mossinghoff's list except \(\ast \sigma_{39}, \ast \sigma_{40}, \ast \sigma_{43}, \ast \sigma_{46} \) discovered later.

We have the inclusion

\[A_2 \subset C \setminus \{ \sigma_{20}, \sigma_{23}, \sigma_{28}, \sigma_{31}, \sigma_{33}, \sigma_{35} \} \]

PROOF. To show that \(\sigma_k \) belongs to \(A_2 \) it generally suffices to take \(K = 1 \) and to produce by inspection a suitable cyclotomic polynomial \(L \) whose zeros interlace those of \(KT \).

To show that a given \(\sigma_k \) is not in \(A_2 \), one can rely on the algorithm of [Bo78] which enumerates all the possible representations of \(\sigma_k \) as an element of \(B_0 \). For example, \(\sigma_{33} \), which is of degree 34, has just one such representation and this shows that the only choices of \(K \) and \(L \) are \(K = 1 \) and \(L = (z^4 - 1)(z^{29} - 1) \). Since \(L(1) = 0 \), this does not satisfy Theorem (A), so \(\sigma_{33} \notin A_2 \). \(\square \)

2. A MINORATION OF SALEM NUMBERS

Most of known minorations of \(\tau \), if \(\tau \) is a Salem number depend on the degree of the Salem polynomial (Dobrowolski, Voutier, etc use transcendental methods). Another, though not the sharpest is the elegant minoration due to Smyth (1980)

\[\tau > 1 + \frac{c}{d} \]

c being a constant and \(d \) denoting the degree of the Salem number.

We have seen in the previous section that the conjugates of modulus 1 of the smallest known Salem numbers offer a certain regularity, interlacing property with roots of unity. We propose here a minoration using the discriminant of the Salem polynomial or its trace polynomial [Be95]. And again we shall see a certain regularity of the discriminants.

Definition 12. Let \(T \) a Salem polynomial of degree \(2s \). We call trace polynomial of \(T \), the monic polynomial \(Q \), \(Q \in \mathbb{Z}[X] \), of degree \(s \), satisfying

\[X^sQ(X + \frac{1}{X}) = T(X). \]

For example, if \(T \) is the Salem polynomial of degree 6 of the Salem number \(\tau = 1.401288 \ldots \),

\[T(X) = X^6 - X^4 - X^3 - X^2 + 1, \]

its trace polynomial is

\[Q(Y) = Y^3 - 4Y - 1. \]

Denoting by \(\tau, \frac{1}{\tau}, \tau(j), \frac{1}{\tau(j)}, 2 \leq j \leq s \), the roots of \(T \), then the roots of the trace polynomial are \(\tau + \frac{1}{\tau}, \tau(j) + \frac{1}{\tau(j)} \) thus all real between \(-2, 2 \) except \(\tau + \frac{1}{\tau} > 2 \).

If \(\tau \) is the Salem number of degree \(2s \), then the integers of \(Q(\tau) \), namely \(1, \tau, \ldots, \tau^{2s-1} \) form a base of \(Q(\tau) \) over \(Q \). We denote \(\Delta_\tau \) the discriminant of that base, that is
Let \(\gamma \) be a Salem number, then there exists a non zero integer \(c \) such that

\[
\Delta_\gamma = c \cdot \left(\Delta_{\gamma+\frac{1}{\tau}} \right)^2.
\]

PROOF.

By definition,

\[
\Delta_\gamma = (\tau - \frac{1}{\tau})^2 \prod_{j=2}^s (\tau - \tau(j))^2 (\tau - \frac{1}{\tau(j)})^2 \prod_{j=2}^s \left(\frac{1}{\tau} - \tau(j) \right)^2
= \prod_{i<j} (\tau_i - \tau_j)^2,
\]

where \(\tau = \tau_1, \tau_2 = \frac{1}{\tau}, \tau_3 = \tau(2), \tau_4 = \frac{1}{\tau(2)}, \ldots, \tau_{2s} = \frac{1}{\tau(2s)} \).

The totally real number field \(\mathbb{Q}(\tau + \frac{1}{\tau}) \) has also a base of algebraic integers \(1, \tau + \frac{1}{\tau}, \ldots, (\tau + \frac{1}{\tau})^{s-1} \) with discriminant

\[
\Delta_{\tau+\frac{1}{\tau}} = \left| \begin{array}{cccc}
1 & 1 & (\tau(2)) & \cdots \\
\frac{1}{\tau} & \frac{1}{\tau(2)} & \cdots \frac{1}{\tau(2)}
\end{array} \right| = \prod_{i<j} (\gamma_i - \gamma_j)^2,
\]

where \(\gamma_1 = \tau + \frac{1}{\tau}, \gamma_2 = \tau(2) + \frac{1}{\tau(2)}, \ldots, \gamma_s = \tau(s) + \frac{1}{\tau(s)} \).

Proposition 13. Let \(\tau \) be a Salem number, then there exists a non zero integer \(c \) such that

\[
\Delta_\gamma = c \cdot \left(\Delta_{\gamma+\frac{1}{\tau}} \right)^2.
\]
Lemma 14. Let \(\tau \) be a Salem number and denote \(\tau = \alpha_1, ..., \alpha_d \) the conjugates of a Salem number \(\tau \). Then \(\tau^p = \alpha_1^p, ..., \alpha_d^p \) are the conjugates of the Salem number \(\tau^p \) and we get the inequality

\[
\prod_{i,j} (\alpha_i^p - \alpha_j) \geq p^d.
\]

PROOF. Let \(P \) (resp. \(\Pi \)) denote the minimal polynomial of the Salem \(\tau \) (resp. \(\tau^p \)) and \(A = \prod_{i,j} (\alpha_i^p - \alpha_j) \).

We observe that \(A \neq 0 \), otherwise \(P \) and \(\Pi \) would have a common root and since they are monic and irreducible, \(P = \Pi \), a contradiction.

Moreover \(A \) being a symmetric function of the \(\alpha_i \) is an integer, nothing else than the resultant of \(P \) and \(\Pi \).

First, given a polynomial \(Q \in \mathbb{Z}[X] \), we prove the existence of a polynomial \(R(X) \in \mathbb{Z}[X] \) satisfying

\[
(Q(X))^p = Q(X^p) + pR(X).
\]

We make an induction on the degree of \(Q \).

If the degree of \(Q \) is 1, that is \(Q = aX + b \), \(a \) and \(b \in \mathbb{Z} \), we obtain

\[
(aX + b)^p = a^pX^p + b^p + pR_1(X), \quad R_1 \in \mathbb{Z}[X]
\]

From the little Fermat’s theorem, since \(a^p \equiv a \mod p \) and \(b^p \equiv b \mod p \), we get

\[
(aX + b)^p = aX^p + b + (a^p - a)X^p + b^p - b + pR_1(X)
= aX^p + b + pR(X), \quad R \in \mathbb{Z}[X].
\]

Suppose the relation satisfied until degree \(n \) and suppose that the degree of \(Q \) is \(n + 1 \).

Write \(Q(X) = XQ_1(X) + c \) with \(c \in \mathbb{Z} \) and degree of \(Q_1 \) being \(n \). We get

\[
(XQ_1(X) + c)^p = X^p(Q_1(X))^p + c^p + pR_1(X), \quad R_1 \in \mathbb{Z}[X]
= X^p(Q_1(X^p) + pR_2(X)) + c^p + pR_1(X) \quad R_2 \in \mathbb{Z}[X]
\text{by induction}
= X^pQ_1(X^p) + c + c^p - c + p(R_1(X) + X^pR_2(X))
= Q(X^p) + pR(X) \quad R \in \mathbb{Z}[X]
\]

using again little Fermat’s theorem.

Taking now \(Q = P = (X - \alpha_1)...(X - \alpha_d) \), it follows

\[
P(\alpha_i^p) = -pR(\alpha_i) \neq 0
\]
and
\[|A| = \prod \left| P(\alpha_i^p) \right| = p^d \prod \left| R(\alpha_i) \right| \geq p^d, \]
since, \(\prod_i R(\alpha_i) \), symmetric function of the \(\alpha_i \), is a rational integer. \(\square \)

Theorem 15. (Bertin [Be95]) Let \(\tau \) be a Salem number of degree \(d = 2s \); then
\[\tau \geq 1 + \inf \left(\frac{|\Delta_{\tau + \frac{1}{\tau}}|^{1/s}}{96s}, 1/6 \right). \]

PROOF. Let \(p \) denote a prime number and \(\tau = \alpha_1, \alpha_2, \ldots, \alpha_d \) the conjugates of the Salem number \(\tau \). Consider the determinant
\[
D = \begin{vmatrix}
1 & 1 & \ldots & 1 & 1 & \ldots & 1 \\
\alpha_1 & \alpha_2 & \ldots & \alpha_d & \alpha_1^p & \ldots & \alpha_d^p \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\alpha_1^{2d-1} & \alpha_2^{2d-1} & \ldots & \alpha_d^{2d-1} & \alpha_1^{p(2d-1)} & \ldots & \alpha_d^{p(2d-1)}
\end{vmatrix}
\]

We can write
\[|D|^2 = \prod_{i \neq j} |\alpha_i - \alpha_j| \prod_{i \neq j} |\alpha_i^p - \alpha_j^p| \prod_{i,j} |\alpha_i^p - \alpha_j| \]

Then, from the lemma and the proposition, it follows
\[|D|^2 \geq |\Delta_{\tau}||\Delta_{\tau^p}|p^{2d} \geq |\Delta_{\tau^2}|p^{2d} \geq |\Delta_{\tau+1/\tau}|^{1/s}p^{2d}. \]

By Hadamard’s inequality applied to the columns of \(D \), we get
\[|D|^2 \leq 2d\tau^{2(2d-1)}(2d)^{d-1}2d\tau^{2p(2d-1)}(2d)^{d-1} \leq (2d)^{2d}\tau^{2(2d-1)(p+1)} \leq (2d)^{2d(p+1)}2d. \]

From the previous majoration and minoration of \(|D| \), we obtain
\[|\Delta_{\tau+1/\tau}|^{1/s}p^{2d} \leq (2d)^{2d(p+1)}2d \]
that is
\[\tau^{2(p+1)} \geq \frac{p}{2d} |\Delta_{\tau+1/\tau}|^{2/d} = \frac{p}{2d} |\Delta_{\tau+1/\tau}|^{1/s}. \]

Now we choose the prime number \(p \) as best as possible. By Bertrand’s lemma, given a rational integer \(m \in \mathbb{N} \), there exists a prime number \(m \leq p \leq 2m \). Thus we can choose \(p \) such that
\[\frac{6d}{|\Delta_{\tau+1/\tau}|^{1/s}} < \left[\frac{6d}{|\Delta_{\tau+1/\tau}|^{1/s}} \right] + 1 \leq p \leq 2 \left[\frac{6d}{|\Delta_{\tau+1/\tau}|^{1/s}} \right] + 2, \]
where \([x]\) denotes the integer part of \(x \). We deduce
\[\frac{p}{2d} |\Delta_{\tau+1/\tau}|^{1/s} > 3 > e; \]
thus
\[\tau^{2(p+1)} > e \quad \text{et} \quad \tau > 1 + \frac{1}{2(p+1)}. \]
If \(\frac{6d}{|\Delta_{r+1}/r|^{1/s}} < 1 \), we take \(p = 2 \), thus \(\tau > 1 + 1/6 \); otherwise \(12s \geq \frac{|\Delta_{r+1}/r|^{1/s}}{\tau} \) and \(p \leq \frac{12d}{|\Delta_{r+1}/r|^{1/s}} + 1 \). Thus

\[
\tau > 1 + \frac{|\Delta_{r+1}/r|^{1/s}}{96s}.
\]

This achieves the proof of the theorem.

\[\square\]

Remark 16. This result shows, in Lehmer’s question, the importance of the quantity \(|\Delta_{r+1}/r|^{1/s} \). The minoration by \(\frac{2^{1/d}}{\delta_d} \), where \(\delta_d \) denotes the smallest totally real discriminant of degree \(d \), is not interesting, since a result of Martinet only asserts that for \(d \) large, \(\Delta_{r+1}^{1/d} < 1085 \). However, trace polynomials of Salem polynomials are very peculiar totally real polynomials since we have seen that the roots are in a sense well distributed. I evaluated \(\Delta_{d}^{1/d} \) for the list of known small Salem numbers and found that this quantity varies between \(1.4299 \) for \(\sigma_{34} \) of degree 18 and \(2.27134 \) for \(\sigma_{8} \) of degree 20.

References

[Pi17] T. Pierce, The numerical factors of the arithmetic funtions \(\prod_{i=1}^{n}(1 \pm \alpha_i) \), *Ann. of Math.* **18** (1916-17).

Marie-José Bertin: Université Pierre et Marie Curie (Paris 6), Institut de Mathématiques, 4 Place Jussieu, 75005 Paris, France

E-mail address: bertin@math.jussieu.fr