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Introduction

We are interested in two types of polynomials:

1 two-variable polynomials with Mahler measure expressed as a
Dirichlet L-series

2 three-variable polynomials defining singular K3 surfaces with Mahler
measure expressed as L-series of the K3 surface

all polynomials define K3 surfaces over Q
all the Mahler measures are the logarithmic ones
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Boyd’s Conjectures

Let us begin with some of Boyd’s conjectures (1998)

m(y2 + (x3 − 4x2 − 4x + 1)y + x3)
?
= d7 (1)

m((x2 + x + 1)(y2 + 1) + 2xy
?
=

1

3
d8 (2)

m((x2 + x + 1)(y2 + x) + 3x(x + 1)y)
?
=

1

6
d15 (3)

m((x2 + x + 1)(y2 + x2) + (x4 − x3 − 6x2 − x + 1)y
?
=

1

3
d7 +

1

6
d15 (4)

m((x2 + x + 1)(y2 + 1) + 6xy)
?
=

1

6
d24 (5)

m(x2 + x + 1)(y2 + x) + (x3 − 4x2 − 4x + 1)y)
?
=

1

18
d39 (6)

m((x4 +x3 +x2 +x+1)(y2 +1)+(x4−3x3−6x2−3x+1)y)
?
=

1

30
d55 (7)
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m((x + 1)2y + x2 + x + 1)
?
=

1

3
d7 (8)

m((x2 + x + 1)y + x2 + 1)
?
=

1

12
d15 (9)

m((x + 1)2(x2 + x + 1)y + (x2 − x + 1)2)
?
=

2

3
d11 (10)
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The Dirichlet L-series df is defined by

df :=
f 3/2

4π
L(χ−f , 2) = L′(χ−f , 1)

The logarithmic Mahler measure m of a non-zero Laurent polynomial
A ∈ C[x±1

1 , ..., x±1
n ] is defined as

m(A) :=

∫ 1

0
. . .

∫ 1

0
log | A(e2πiθ1 , ..., e2πiθn) | dθ1...dθn

and its Mahler measure is the exponential of the latter.
If A(x , y) is in two variables we can write

A(x , y) = a0(y)
d∏

j=1

(x − xj(y))

with xj(y) algebraic functions in y .
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By Jensen’s formula

m(A) = m(a0) +
d∑

j=1

1

2πi

∫
|y |=1

log+ | xj(y) | dy
y

where log+ | z |= log | z | if | z |≥ 1 and 0 otherwise.
Defining

η(x , y) := log | x | d arg y − log | y | d arg x

a real differential 1-form on X \ S (X the variety defined by the polynomial
A, smooth projective completion of Y zero locus of A, S points of X
where x or y has a zero or a pole), we get

m(A) = m(a0) +
1

2π

∫
γ
η(x , y)

γ oriented path on X projecting to Y ∩ {| y |= 1, | x |≥ 1} and

δγ =
∑
k

εk [wk ], εk = ±1, | x(wk) |=| y(wk) |= 1, wk ∈ Q̄
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Since dimX = 1,

dη = =(
dx

x
∧ dy

y
)

vanishes and η is a closed differential.
If A is “tempered”, η extends to all of X .
“Tempered” means the roots of all the face polynomials of the Newton
polygon of A are roots of unity.
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Let X be a smooth projective algebraic curve defined over C and let C(X )
be its function field. Let x , y ∈ C(X ) be two non-constant rational
functions and let S ⊂ X be the set of zeros and poles of x or y . The
image of the rational map (x , y) : X \ S → C∗ × C∗ is of dimension 1; let
A ∈ C[x , y ] be a defining equation.

{x , y} ∈ K2(X )⊗Q⇔ A“tempered”
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If, in addition,
{x , y} = 0 in K2(X )⊗Q

or equivalently, for some rj ∈ Q and zj ∈ C(X )∗ we have

x ∧ y = r1〈z1〉+ . . . rn〈zn〉 (T)

in Λ2(C(X )∗)⊗Q with 〈z〉 := z ∧ (1− z),
we say we have a triangulation of the wedge x ∧ y .
Denote D the Bloch-Wigner dilogarithm

D(t) = =(Li2(t)) + arg(1− t) log | t |

One can prove, under (T) that

η(x , y) = dV , V = D(ξ), ξ = r1[z1] + . . .+ rn[zn]
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Using Stokes, it follows

2πm(A) = 2πm(a0) + D(ξ), ξ =
∑
k

εkξk , ξk =
∑
j

[zj(wk)].

To make short, the strategy is the following:
Assume

1 A is tempered

2 x ∧ y can be triangulated

then πm(A) equals an explicit rational linear combination of values of the
BlochWigner dilogarithm at algebraic arguments.
Moreover these algebraic values are linked to “toric points” i.e. points
(x , y) satisfying | x |=| y |= 1 and A(x , y) = 0. In the previous Boyd’s
conjectures the fields Fj associated to these toric points are imaginary
quadratic.
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Also we can prove:

ξj ∈ B(Fj)

where B(Fj) is the Bloch group of the field.
Hence use Zagier’s theorem

B(Fj)/Tors ' Z

D(ξj)
π2√
| DFj

|
= rζFj

(2)

where r is an unknown rational number.
Hence we need to determine r to achieve the proofs since

ζQ(
√
−f )(2) =

π2

6
L(χ−f , 2) =

4π3

4f
√
f
df .
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For the determination of r we need the following ingredient.
One associate to Fj an hyperbolic manifold M3

M3 = H3/ΓFj

ΓFj
being a discrete co-finite subgroup of Sl2(C) = Aut(H3).

ζFj
(2) is related to Vol(M3) (Humbert (1919) by

ζFj
(2) =

4π2

| DFj
|3/2

Vol(M3).
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The hyperbolic manifold M3 can be triangulated by hyperbolic ideal
tetrahedra (Milnor and Thurston) and its volume expressed in terms of a
sum of N ≤ 24 Bloch-Wigner dilogarithms on algebraic numbers.
Hence the theorem:

Theorem

If the number field F has only one complex embedding,ζF (2) is a sum of
Bloch-Wigner dilogarithms on algebraic numbers.

For example, Zagier obtained

ζQ(
√
−7)(2) =

4π2

21
√

7
(2D(

1 +
√
−7

2
) + D(

−1 +
√
−7

4
)).

Also, denoting a = 1+
√
−15

2 , Gangl found the formula

ζQ(
√
−15)(2) =

4π2

45
√

15
[3D(a) + 4D(

a + 1

2
) + 2D(a + 1) + 2D(a− 1)].
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Back to Boyd’s Conjectures

Using the previous method when the curve defined by the polynomial is
parametrizable , the triangulation of η is straightforward because of Tate’s
formula
if α 6= β,

η(t −α, t − β) = η(
t − α
β − α

, 1− t − α
β − α

) + η(t −α, α− β) + η(β−α, t − β)

I proved (8) and (9) thanks to Zagier’s and Gangl’s formulae but not (10)
because of lack of triangulation of the hyperbolic variety corresponding to
Q(
√
−11).

However, if (10) is true I propose an analog to Zagier’s and Gangl’s
formula
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ζQ(
√
−11)(2)

?
=

4π2

66
√

11
[2D(

−49 + 3
√
−11

50
) + D(

−49 + 3
√
−11

72
)

+6D(
−1 + 3

√
−11

10
) + D(

−2 + 6
√
−11

25
) + 2D(

−3 + 9
√
−11

25
)]

Hope it corresponds to a nice triangulation!
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Back to Boyd’s Conjectures: comments

Formula (3) was proved by Boyd and Villegas.
In fact the genus of the curve (3) is 1: so it is birational to an elliptic
curve. Using this, B-V found a triangulation of the wedge and concluded
using Gangl’s formula.
The genus of curves defined by (1) to (7) is respectively 2, 0, 1,1,0,1,1.
In case of genus 0 the triangulation of the wedge is easy, but not the
triangulation of the hyperbolic variety.
In case of genus 1, the elliptic curve to which it is birational is a non
singular plane model of the curve.
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Example: curve (4)

It is defined by the homogenous polynomial

(x2 + xt + t2)(y2 + x2)t + (x4 − x3t − 6x2t2 − xt3 + t4)y

Compute the genus; hence we take homogenous coordinates. We find
3 multiple points (0 : 1 : 0), (1 : 1 : 1), (−1, 1, 1)
(0 : 1 : 0) is an ordinary triple point since we have

t(x2 + xt + t2) + ...
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(1 : 1 : 1) is an ordinary double point since taking x = 1 + X , y = 1 + Y ,
t = 1 we get

3Y 2 − 6XY + 8X 2 + ...

so the tangents at this double point are distinct of slope 3±
√
−15

3 . Notice
that this point is toric hence its desingularization in the elliptic model gives
two points above (1 : 1 : 1) with coordinates expressed with Q(

√
−15).

Thus the term in d15 in the Mahler measure.
Finally (−1 : 1 : 1) is a toric double point associated to Q(

√
−7).

I found an elliptic model of (4) but got only a partial triangulation of x ∧ y !

M.J. Bertin (IMJ and Paris 6) Mahler measure of multivariate polynomials February 2015 18 / 34



Motivations for Mahler measures of K3-surfaces

Motivations concerning Mahler measure of polynomials defining K3
surfaces

1 Deninger’s guess (1996) proved in 2011 by Rogers and Zudilin, again
in 2013 by Zudilin

m(x +
1

x
+ y +

1

y
+ 1) =

15

4π2
L(E15, 2) = L′(E , 0)

2 Maillot’s hint (2003) using a result of Darboux (1875): the Mahler
measure of P which is the integration of a differential form on a
variety, when P is non reciprocal, is in fact an integration on a smaller
variety and the expression of the Mahler measure is encoded in the
cohomology of the smaller variety.
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This phenomenom can be seen in (Villegas’s Conjecture (2004))

m(x0 + x1 + x2 + x3 + x4)
?
=

675
√

15

16π3
L(f , 4)

f cusp form of weight 3 and conductor 15.
The smaller variety is defined by

x0 + x1 + x2 + x3 + x4 = 0

1

x0
+

1

x1
+

1

x2
+

1

x3
+

1

x4
= 0.

It is the modular K3-surface studied by Peters, Top, van der Vlugt defined
by a reciprocal polynomial. Its L-series is related to f .
Briefly, to guess the Mahler measure of a non reciprocal polynomial we
need results on reciprocal ones.
In particuliar, it is very important to collect many examples of Mahler
measures of K3-hypersurfaces.
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What is a K3 surface?
The polynomials

x +
1

x
+ y +

1

y
+ z +

1

z
+ xy +

1

xy
+ xz +

1

xz
+ yz +

1

yz
+ λ = 0

define a family of K3 surfaces.
But prior to the definition, let me show you the Newton polytope of that
family.
More precisely, this Newton polytope is in the same class as the reflexive
polytope of index 1529.
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Reflexive polytope 1529
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This Newton polytope is a reflexive polytope with 12 vertices and 14
facets. This polytope has the greatest number of facets of any
three-dimensional reflexive polytope; furthermore, there is a unique
three-dimensional reflexive polytope with this property, up to isomorphism.
In the database of reflexive polytopes found in Sage, this polytope has
index 1529.
Using the coordinates of the vertices we see that there are

1 8 facets of Mahler measure 1

2 6 facets of Mahler measure d3
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Another way of showing a surface is K3 is with the help of elliptic
fibrations.
For example, in the previous family, for λ = 0, take w := x + y + z (w is
called an elliptic parameter), express the equation under a Weierstrass
form and get

Y 2 + (w2 + 3)XY + (w2 − 1)2Y = X 3.

When you get such a Weierstrass equation

y2 + a1 (t) yx + a3 (t) y = x3 + a2 (t) x2 + a4 (t) x + a6(t)

with ai (t) polynomial in t of degree ≤ 2i and exactly 2i for one i , we have
a K3 elliptic surface fibered in t.
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Most of our results concern polynomials of the family

Pk = x +
1

x
+ y +

1

y
+ z +

1

z
− k ,

more precisely polynomials of the family defining K3 surfaces of Picard
number 20 i.e. with a Néron-Severi lattice of rank 20, thanks to Schütt’s
result:
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The last ingredient:Schütt’s classification of CM-newforms
of weight 3

Theorem

Consider the following classifications of singular K3 surfaces over Q:

by the discriminant d of the transcendental lattice of the surface up
to squares,

by the associated newform up to twisting,

by the level of the associated newform up to squares,

by the CM-field Q(
√
−d) of the associated newform.

Then, all these classifications are equivalent. In particuliar, Q(
√
−d) has

exponent 1 or 2.
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Mahler measure and L-series of K3-hypersurfaces

Theorem

m(P0) = d3 :=
3
√

3

4π
L(χ−3, 2) (B.2005)

m(P2) =
| detT (Y2) |3/2

π3
L(Y2, 3) =

8
√

8

π3
L(f8, 3) (B. 2005)

m(P10) =
| detT (Y10) |3/2

9π3
L(Y10, 3)+2d3 =

72
√

72

9π3
L(f8, 3)+2d3 (B. 2009)

m(P3) = 2
| detT (Y3)|3/2

4π3
L(T (Y3), 3) =

15
√

15

2π3
L(f15, 3) (BFFLM 2013)

m(P6) =
| detT (Y6) |3/2

2π3
L(Y6, 3) =

24
√

24

2π3
L(f24, 3) (BFFLM 2013)

m(P18) =
1

5

| detT (Y18) |3/2

4π3
L(Y18, 3)+

14

5
d3 =

120
√

120

20π3
L(f120, 3)+

14

5
d3

(BFFLM 2013)
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Concerning that family, we have also to prove similar results for k2 ∈ Q
corresponding to singular K3, since these K3 are in fact defined over Q
and we may apply Schütt’s theorem.
It remains also one more Boyd’s conjecture

m(P√−45)
?
= 16m(P3) + d15.

Question: Why d15 in the previous conjecture?
All the faces of the Newton polytope of family Pk have d3 as the same
Mahler measure.
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I would like to end with some of Samart’s results.
It concerns the family

(x + 1/x)(y + 1/y)(z + 1/z) + s1/2 = 0

τ s m√
−1
2 64 = 82 8M16√
−3
2 256 = 162 4

3 (M12⊗(−4) + 2d4)
1+
√
−3

4 16 = 42 ?8M12√
−7
2 4096 = 642 ? 4

7 (M7⊗(−4) + 8d4)
3+
√
−7

8 1 ?8M7

where MN := L′(gN , 0).
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One can easily prove that the first Mahler measure can be expressed in
terms of the L-series of the corresponding K3-surface.
We need an elliptic fibration of the surface

(x +
1

x
)(y +

1

y
)(z +

1

z
) + s1/2 = 0.

Take the elliptic parameter z = w . We get the elliptic fibration

E : S → P1
w

By standard birational transformations we get the following Weierstrass
equation

Y 2 − 4(w + 1)2XY = X (X − 8w(w2 + 1))2

With PARI, we find the singular fibers I4(w = 1,−1, 0, I ,−I ,∞). Hence
the Picard number of S is 20.
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We see easily a cyclic torsion group of order 4. But by Shimada, a singular
K3 surface with fibers 6I4 has necessary Z/(4)× Z/(4) as torsion group
and transcendental lattice [4, 0, 4].

Theorem

(Shimada) Let f : X → P1 be an elliptic K3 surface. Then the following
holds.

(MW )Tors = Z/(4)× Z/(4)⇐⇒ f = 6A3

Elliptic K3 surface with (MW )Tors = Z/(4)× Z/(4) is constructed as
elliptic modular surface corresponding to the congruence group
Γ(4) ⊂ Sl2(Z).
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We deduce, by Schütt ’s theorem, the level 16 of the associated newform
and counting points on Sw in Fp for w ∈ P1(Fp),

p 2 3 5 7 11 13 17 19

NewformN = 16 0 0 −6 0 0 10 −30 0

Ap 0 0 −6 0 0 10 −30 0

Hence
16
√

16

4π3
L(S , 3) =

16
√

16

4π3
L(g16, 3)
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Consider now the case s = 1. The corresponding Mahler measure is M(g7).
We are tempted to think that the corresponding variety has determinant of
its transcendental lattice equal to 7. Unfortunately it is not.
With the same elliptic parameter we get an elliptic fibration with fibers of
type 4I4 + 4I2 thus a Mordell-Weil with rank 2 and 4-torsion.
O. Lecacheux computed all elliptic fibrations of the K3 associated to
Γ1(7). Among them, no fibration of type 4I4 + 4I2 plus 4-torsion.
So the determinant of transcendendal lattice is of the form 7× a2.
So to compute the L-series of the K3, we have

to know the two infinite generators of the Mordell-Weil (difficult)

or to find an elliptic fibration with r = 1, using for example Elkies’s
method of 2-neighbours.
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For similar reasons, the K3-surface associated to M12 has probably a
discriminant equal to 12× b2, since we determined [BGHLMSW] all the
fibrations of the singular K3-surface with transcendental lattice 〈6〉 ⊕ 〈2〉.
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