
1

Realisation of Abelian varieties as automorphism groups

Mathieu Florence

Abstract.

Let A be an Abelian variety over a field F . We show that A is isomorphic to
the automorphism group scheme of a smooth projective F -variety if, and only if,
Autgp(A) is finite. This result was proved by Lombardo and Maffei [7] in the case
F = C , and recently by Blanc and Brion [1] in the case of an algebraically closed
F .

Résumé.

Soit A une variété abélienne sur un corps F . On montre que A est isomorphe au
schéma en groupes des automorphismes d’une F -variété projective et lisse, si et
seulement si le groupe des F -automorphismes de A est fini.
Ce résultat est dû à Lombardo et Maffei [7] lorsque F = C. Il est dû à Blanc et
Brion [1] lorsque F = F .
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1. Introduction.

Let F be a field, with algebraic closure F . Let X be a projective variety over
F . The automorphism group functor Aut(X) is represented by a group scheme,
locally of finite type over F ([8], Theorem 3.7). Conversely, given a group scheme
G, of finite type over F , it is natural to ask whether G can be realised as the
automorphism group of such an X. When G = A is an abelian variety, this
question was recently considered in [7]. When F = C, Lombardo and Maffei prove
that A is the automorphism group of a projective smooth complex variety, if and
only if Autgp(A) is finite. They use analytic methods. Their result was extended
to F algebraically closed of any characteristic in [1], using algebro-geometric
techniques: blowups, Lie algebra computations and modding out actions of finite
group schemes. Making a different use of these tools, we provide a generalisation
of this result, to the case of all ground fields F .

1.1. Sketch of our construction.
Let A/F be an abelian variety over a field F , such that G := Autgp(A) is finite.
We first introduce an integer n ≥ 1, invertible in F , such that G acts faithfully on
the n-torsion subgroup A[n](F ).
Then, we pick an abelian variety B1/F , enjoying the following properties.

(1) The abelian varieties A and B1 are ‘orthogonal’, in the sense that

Homgp(A,B1) = 0,

where homomorphisms are taken over F .
(2) There exists an injection (of algebraic F -groups)

ι : A[n] ↪→ B1.

We denote by B2/F the abelian variety fitting into the diagonal extension

0 −→ A[n]
a 7→(a,ι(a))−→ A×B1

π−→ B2 −→ 0.

Using point (1) above, we prove that automorphisms of (the variety) B2 are diag-
onal: they come from automorphisms of A× B1, respecting orbits under the em-
bedded A[n]. Next, we build an appropriate smooth closed F -subvariety Y2 ⊂ B2,
stable by translations by A ≃ π(A× {0}) ⊂ B2.
We define a smooth F -variety X as the blowup

X := BlY2
B2.

The natural arrow

A −→ Aut(B2),

given by translations, lifts to an arrow

τ : A −→ Aut(X).

We show that τ is an isomorphism of algebraic groups over F .
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2. Notation.

2.1. Geometry over F . Let F be a field, with algebraic closure F , and separable
closure Fs ⊂ F . We denote by F [ϵ], ϵ2 = 0, the F -algebra of dual numbers. We
use it for differential calculus.
By a variety over F , we mean a separated F -scheme of finite type.
An algebraic F -group (or simply F -group) is an F -group scheme of finite type. It
is often assumed to be reduced, hence smooth over F .
Let X be a variety over F . For a field extension E/F , we denote by XE := X×F E
the E-variety obtained from X by extending scalars. We put X := X ×F F .
If X is smooth over F , we denote by TX −→ X the tangent bundle of X. A global
section of the tangent bundle is called a vector field on X.
We denote by Aut(X) the (abstract) group of automorphisms of the F -variety X,
and by Aut(X) the group of automorphisms of the F -variety X.
If X/F is a projective variety, we denote by Aut(X) the F -group scheme of
automorphisms of X; it is locally of finite type over F . By [2], Lemma 3.1, there
is a canonical isomorphism

H0(X,TX)
∼−→ Lie(Aut(X)).

If an abstract group G acts on a variety X, and if Z ⊂ X is a closed subvariety,
we denote by StabG(Z) ⊂ G, or simply by Stab(Z) ⊂ G when no confusion arises,
the subgroup of transformations leaving Z (globally) invariant.
Let G/F be a group scheme, locally of finite type. In the situation where G acts on
X, we use the notation StabG(Z) ⊂ G for the closed F -subgroup scheme defined
by

StabG(Z)(A) = {g ∈ G(A), g(ZA) = ZA},
for all commutative F -algebras A. That it is representable follows from [3], II
1.3.6.

2.2. Frobenius and Verschiebung. If F has characteristic p > 0, we put

X(1) := X ×Frob F,

extension of scalars taken with respect to Frob : F
x7→xp

−→ F.
Recall the Frobenius homomorphism

FrobX : X −→ X(1);

it is a morphism of F -varieties, functorial in X.
If X/F is an algebraic group, it is a group homomorphism.
If X is a commutative algebraic group, there is the Verschiebung homomorphism

VerX : X(1) −→ X,

satisfying (VerX ◦ FrobX) = pIdX .
If moreover X/F is a semi-abelian variety, VerX and FrobX are isogenies.

2.3. Abelian varieties. If A and B are Abelian varieties over F , we denote by
Homgp(A,B) the group of homomorphisms of algebraic F -groups, from A to B.

We denote by Homgp(A,B) the group of homomorphisms of algebraic F -groups,

from A to B. These are finite free Z-modules. We adopt the similar notation for
endomorphisms (Endgp) and automorphisms (Autgp). For an integer n ≥ 1, we
denote by A[n] the n-torsion of A, seen as a finite group scheme over F .
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2.4. Barycentric operations. Let A be an abelian variety over F . Then A
comes naturally equipped with barycentric operations with integer coefficients.
More precisely, for a positive integer n, denote by

Zn
1 ⊂ Zn

the subset consisting of integers α = (α1, . . . , αn), with α1 + . . .+ αn = 1.
For α ∈ Zn

1 , there is a barycentric operation

Bα : An −→ A,

(x1, . . . , xn) 7→ α1x1 + . . .+ αnxn.

Associativity of the group law of A, provides natural associativity relations be-
tween the Bα’s, for various α

′s.
For instance, pick α = (α1, α2) ∈ Z2

1 and γ = (γ1, γ2) ∈ Z2
1, and set

δ := (α1γ1, α2γ1, γ2) ∈ Z3
1.

Then, we have the associativity rule

Bγ(Bα(x1, x2), x3) = Bδ(x1, x2, x3).

Remark 2.1. More generally, these barycentric operations exist for torsors under
commutative algebraic F -groups.

Definition 2.2. Let X ⊂ A be an F -subvariety. We say that X is stable under
all barycentric operations, if the restriction

(Bα)|Xn : Xn → A

factors through the closed immersion X ↪→ A, for every n ≥ 2 and every α ∈ Zn
1 .

In this case, we also say that X is barycentric.

Note thatX is barycentric if and only if it is a translate of an algebraic F -subgroup−→
X ⊂ A. Checking this fact is left as an exercise for the reader. Of course, X(F )
might be empty. If X is geometrically reduced and geometrically connected, so is−→
X - hence

−→
X is an abelian subvariety of A.

Let A and B be two abelian varieties over F . Recall the essential fact

HomF−var(A,B) = B(F )×Homgp(A,B).

In particular, morphisms (of varieties) between abelian varieties commute with
the barycentric operations Bα.
IfX ⊂ A is a geometrically reduced closed F -subvariety, the smallest geometrically
reduced barycentric F -subvariety containing X is called the barycentric envelope
of X. We denote it by E(X).
Assume now that X is geometrically reduced and geometrically connected. Pick
n ≥ 1 and α ∈ Zn

1 . Consider Bα(X
n) ⊂ A as a geometrically reduced and

geometrically connected closed subvariety of A. Then, if n and α are chosen so that
Bα(X

n) is of maximal dimension, we have Bα(X
n) = E(X). Thus, E(X), being

geometrically connected and geometrically reduced, is a translate of an abelian
subvariety of A.
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3. Statement of the theorem.

Theorem 3.1. Let A be an Abelian variety, over a field F . The following are
equivalent:
1) The group G := Autgp(A) is finite.
2) There exists a smooth projective F -variety X, such that A is isomorphic to
Aut(X) (as algebraic groups over F ).

Note that 2) ⇒ 1) can be checked over F , which follows from [1], Theorem A.
Our task in this paper is to prove the converse implication.

4. Auxiliary results.

4.1. Blowups. This section contains two elementary lemmas on automorphisms
of blowups, which we provide with short proofs. A good recent reference on this
topic, also containing more advanced material, is section 2 of [9].

Lemma 4.1. Let Y ↪→ D be a closed immersion of smooth F -varieties, such that
all connected components of Y have codimension ≥ 2 in D.
Denote by β : X := BlY (D) −→ D the blowup of Y inside D.
The F -variety X is smooth.
Let f be an automorphism of the F -variety D. Then, f lifts via β to an automor-
phism of X, if and only if f(Y ) = Y .

Proof. If f(Y ) = Y , then f lifts to an automorphism of X by the universal
property of the blowup.
Conversely, assume that f lifts to an automorphism ϕ of X, so that we have a
commutative square

X
ϕ //

��

X

��
D

f // D.

To check that f(Y ) = Y , can assume that F = F . It then suffices to prove that
Y ⊂ D and f(Y ) ⊂ D have the same set of F -rational points. This is clear, since
the fiber of β over a point x ∈ D(F ) is either a point if s /∈ Y (F ), or a projective
space of dimension ≥ 1 if x ∈ Y (F ). □

Lemma 4.1 has an infinitesimal analogue, as follows.

Lemma 4.2. Let Y ↪→ D be a closed immersion of smooth F -varieties, such that
all connected components of Y have codimension ≥ 2 in D.
Denote by β : X := BlY (D) −→ D the blowup of Y inside D.
Let s : D −→ TD be a vector field on D. Then, s lifts to a vector field on X, if
and only if s|Y takes values in TY .

Proof. Denote by i : E ↪→ X the exceptional divisor. The restriction

β|X−E : X − E −→ D − Y

is an isomorphism.
We thus have a natural injective F -linear arrow

ρ : H0(X,TX) −→ H0(D − Y, TD) = H0(D,TD),
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σ 7→ σ|X−E .

Note that the equality H0(D − Y, TD) = H0(D,TD) follows from the fact that
Y ⊂ D has codimension ≥ 2. On E, we have a natural extension of vector bundles

0 −→ TE −→ i∗(TX) −→ NE/X −→ 0,

where NE/X ≃ OE(−1) is the normal bundle of E in X. Since Y has codimension

≥ 2 in D, we have H0(E,OE(−1)) = 0. This can be checked on the fibers of β
over geometric points of Y , which are projective spaces of dimension ≥ 1. Hence,
σ|E takes values in TE. Consequently, ρ(σ)|Y takes values in TY .
Conversely, let s : D −→ TD be a vector field on D. Then s corresponds to
an automorphism ψ of the F [ϵ]-scheme D ×F F [ϵ], reducing to the identity at
ϵ = 0. Assume that s|Y takes values in TY . Then, ψ restricts to an automorphism
of the closed subscheme Z ×F F [ϵ] ⊂ D ×F F [ϵ]. By the universal property
(and compatibility with base change) of the blowup, ψ lifts, via β ×F F [ϵ], to an
automorphism of X ×F F [ϵ]. Equivalenty, s lifts, via β, to a vector field on X.

□

4.2. Hypersections in projective space.
We could not find a reference in the literature for the following result, so that we
provide it with a proof.

Proposition 4.3. Let S be a geometrically irreductible smooth projective F -
variety, of dimension ≥ 2. Let m ≥ 1 be an integer. Then, S contains a geo-
metrically irreductible smooth projective F -curve, of genus g ≥ m.

Proof. Pick a projective embedding S ⊂ Pn (everything is over F ). Let d ≥ 1 be
an integer. Let H ⊂ Pn be a degree d hypersurface, given by h ∈ H0(Pn,O(d)).
By Bertini’s theorem, for d large enough and h general, S ∩ H is smooth and
geometrically irreductible, of dimension one less than S. This version of Bertini’s
theorem works over any F - see [10] and [4] for the delicate case where F is finite.
Proceeding by induction, we reduce to the case where S is a surface.
We then take C := S ∩H, and show that g(= h1(C,OC)) goes to infinity with d.
To do so, consider the exact sequence of coherent OPn-modules

0 → OS(−d)
×h−−→ OS → OC → 0.

Taking Euler characteristics, we get

g − 1 = −χ(OC) = χ(OS(−d))− χ(OS).

We conclude using the following fact, applied to X = S.
For a closed m-dimensional F -subvariety X ⊂ Pn, the association

d 7→ χ(OX(−d))
is a degree m polynomial function of d. A classical proof is by induction on m ≥ 0.
□

4.3. (Semi-)abelian varieties. The next Lemma is borrowed from [2], Lemma
5.3. We provide here a different proof. In practice, we will apply it to abelian
varieties, in which case it is due to Chow.

Lemma 4.4. Assume that F has characteristic p > 0.
Let A,B be semi-abelian varieties over F . Then, all elements of Homgp(A,B) are

defined over the separable closure Fs ⊂ F .
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Proof. We have to show the following. Let E/F be a purely inseparable algebraic
extension. Let g : AE −→ BE be a homomorphism of algebraic groups over E.
Then g is defined over F . Without loss of generality, we can assume that E/F is
finite. By induction, we reduce to the case where E = F ( p

√
a)/F is a primitive

purely inseparable extension of height one. Note that Frob : E −→ E takes values

in F . Hence, g(1) : A
(1)
E −→ B

(1)
E is defined over F . The Frobenius homomorphism

FrobA : A −→ A(1)

presents A(1) as a quotient of A, by a finite (characteristic) sub-F -group µA ⊂ A.
From the relation

VerA ◦ FrobA = pIdA,

we deduce µA ⊂ A[p]. Same holds for B.
Combining these facts, we get that the E-morphism

A/µA −→ B/µB

induced by g, is defined over F . Modding out further, we get that the E-morphism

A/A[p] −→ B/B[p],

induced by g, is defined over F .
Via the iso

A/A[p]
∼−→ A

a 7→ pa,

this isomorphism is actually g itself. The Lemma is proved. □

Lemma 4.5. For each n ≥ 2, there exists an (absolutely) simple n-dimensional
abelian variety A over Fs.

Proof. Since Fs is separably closed, ‘simple’ is the same as ‘absolutely simple’, for
abelian varieties over Fs (use Lemma 4.4). Without loss of generality, we assume
that Fs is the algebraic closure of its prime subfield. Over Q, we can then use
the existence of abelian surfaces with a prescribed CM type. Over Fp, we can use
Honda-Tate theory. For concrete constructions, and more general results, we refer
to [9], Theorem 1 (where Fs = Q), and [6], Theorem 2 (where Fs = Fp).

□

Lemma 4.6. Let B be an abelian variety over F , whose simple factors (over F ) are
of dimensions ≥ 2. (Equivalently: all F -homomorphisms from an elliptic curve to
B are constant.)
Then, there exists a smooth F -subvariety Y ⊂ B, which is a disjoint union of
smooth F -curves, and of a separable closed point, such that

Stab(Y ) = {Id} ⊂ Aut(B).

Proof. Assume first that B is F -simple, in the sense that it has no non-trivial
proper abelian F -subvariety. By Proposition 4.3, we can pick a geometrically
irreducible smooth F -curve C ⊂ B, of arbitrarily large genus g ≥ 2.
The group Aut(C) is finite. Indeed, Lie(Aut(C)) is the space of vector fields on
C, which vanishes since g ≥ 2.
Let us show that E(C) = B. The barycentric envelope E(C) is a translate of an
abelian subvariety B′ ⊂ B. Since B is F -simple, we get B′ = B, hence E(C) = B.
Now, let g ∈ Aut(B)(F [ϵ]) = B(F [ϵ])×Autgp(B) be such that

g|C×FF [ϵ] = Id|C×FF [ϵ].
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Because g commutes to barycentric operations, g acts as the identity on the closed
subscheme

E(C)×F F [ϵ] ⊂ B ×F F [ϵ].

Since E(C) = B, it follows that g = Id. Thus, we get a natural embedding of
F -group schemes

H := StabAut(B)(C) ↪→ Aut(C).

In particular, H is finite étale over F . Let E/F be a finite separable field extension,
such that H(E) = H(F ). Denote by

Φ :=
⋃

h∈H(E),h ̸=e

B
h ⊂ B

be the (strict) closed subscheme, consisting of points fixed by at least one non-
trivial element h ∈ H(E). It is defined over F by Galois descent. There exists a
finite separable field extension L/E, and a point b ̸= 0 ∈ B(L), which does not lie
in Φ(L), nor in C(L). We then have a separable zero-cycle [b] in the F -variety B,
of degree [L : F ]. Define Y ⊂ B as the disjoint union of [b] and C. We claim that
Y has the required property. Indeed, let f ∈ Aut(B)(F [ϵ]) be an automorphism
stabilizing Y - or more accurately, Y ×F F [ϵ] ⊂ B ×F F [ϵ]. Then, f permutes the
two connected components of the scheme Y ×F F [ϵ]. For dimension reasons, it
preserves C ×F F [ϵ] on the one hand, and [b] ×F F [ϵ] on the other hand. From
the first fact, we know that f belongs to H(F ); in particular, it is defined over E,
hence over L. From the latter fact, we get f(b) = b, hence f = Id. The Lemma is
proved in this case.
Assume now that B = B1 × . . . Bn, where the Bi’s are F -simple abelian varieties.
We can then adapt the preceding proof, as follows. For each i, let Ci ⊂ Bi,
Li/Ei/F and bi ∈ B(Li) be as in the first part of the proof. We can fulfill the
extra requirements that no Ci passes through 0, and that the Ci’s are of different
genus (using Proposition 4.3). In particular, when i ̸= j, Ci is not F -isomorphic
to Cj . We can also assume that Li = L and Ei = E are independent of i. Set

b := (b1, . . . , bn) ∈ B(L).

Define Y to be the disjoint union of [b], and of the n curves

Ci ≃ {0} × . . .× {0} × Ci × {0} × . . .× {0} ↪→ B.

It is not hard to see, that Y enjoys the required property.
In general, write B = (

∏r
1Bj)/µ, where S1, . . . , Sr are F -simple abelian varieties,

and where µ is a finite F -subgroup, intersecting trivially each coordinate axis. We
can choose

Y ↪→ B1 × . . . Bn

as in the previous part of the proof, and such that the composite

Y ↪→ B1 × . . . Bn
can−→ (

r∏
1

Bj)/µ = B

is a closed immersion, identifying Y to a smooth closed subvariety of B.
An automorphism of B stabilizing Y ⊂ B then lifts, via the quotient can, to an
automorphism of B1 × . . . Bn stabilizing Y ⊂ B1 × . . . Bn. We conclude as before.
□



9

5. Proof of the implication 1) ⇒ 2).

Let A/F be an abelian variety, such that G := Aut(A) is finite. We give a
construction of a smooth projective F -variety X, such that A = Aut(X), in
several steps.

5.1. Construction of X.
Denote by g the dimension of A.
Let n ≥ 1 be an integer, invertible in F , such that the action of G on A[n](Fs) ≃
(Z/n)2g is faithful. Such an n exists: use that G is finite, and that torsion points
of order prime to char(F ) in A(F ) are Zariski-dense in A.
Let Bs be an abelian variety over Fs, of dimension g′ ≥ g, such that

Homgp(A,B) = Homgp(B,A) = 0.

Since A has a finite number of simple components (up to isogeny), which are all
defined over Fs by Lemma 4.4, the existence of Bs follows from Lemma 4.5. For
example, take for Bs a product of simple abelian varieties, of dimensions greater
than that of the simple components of A.

Let E/F , be the finite Galois extension, with group Γ, which is minimal w.r.t. the
following properties.

(1) The extension E/F splits the F -group of multiplicative type A[n].
In other words, A[n](E) ≃ (Z/n)2g.

(2) The abelian variety Bs is defined over E: there exists an abelian E-variety
BE , such that BE ×E Fs ≃ Bs.

(3) Same as (1), for BE : we have BE [n](E) ≃ (Z/n)2g′
.

Using (1), we view A[n](E) as a (Z/n)[Γ]-module.
Introduce the Weil restriction of scalars

B1 := RE/F (BE).

Geometrically, we have B1 ≃ B
m

s , where m is the cardinality of Γ.
We have

B1[n] = RE/F ((Z/n)2g
′
),

so that E/F splits B1[n], and B1[n](E) is a free (Z/n)[Γ]-module of rank 2g′.

Lemma 5.1. There exists an embedding of (Z/nZ)[Γ]-modules

A[n](E) ↪→ B1[n](E);

that is to say, an embedding of finite étale F -group schemes

ι : A[n] ↪→ B1[n].

Proof. We give two (seemingly) different proofs.
The first one uses the perfect duality

(.)∨ := Hom(.,Z/n),
in the category of (Z/n)[Γ]-modules. Pick a generating set t1, . . . , t2g′ of the Z/n-
module A[n](E)∨- which is free of rank 2g ≤ 2g′. Introduce the surjection of
(Z/n)[Γ]-modules

(Z/n)[Γ]2g
′
−→ A[n](E)∨,
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ei 7→ ti,

where ei denotes the i-th element of the canonical basis. Dualizing it yields an
injection of (Z/n)[Γ]-modules

ι : A[n](E) −→ (Z/n)[Γ]2g
′
≃ B1[n],

concluding the construction.
The second proof is more conceptual. Choose an embedding of constant E-group
schemes

(Z/n)2g ≃ AE [n] ↪→ BE [n] ≃ (Z/n)2g
′
,

which exists simply because g ≤ g′.
Applying RE/F yields an embedding of F -group schemes

RE/F (AE)[n] ↪→ RE/F (BE)[n] = B1[n].

Composing it with the natural embedding of F -groups

A[n] ↪→ RE/F (AE)[n],

arising by adjunction from the identity of AE [n], we get the desired ι. □

Form the exact sequence of algebraic F -groups

0 −→ A[n]
a 7→(a,ι(a))−→ A×B1

π−→ B2 −→ 0.

Its cokernel B2 is an abelian variety over F .
We have F -embeddings

A
a 7→(a,0)
↪→ B2

and

B1

b1 7→(0,b1)
↪→ B2.

Introduce the quotient

q : B2 −→ B3 := B2/A ≃ B1/ι(A[n]).

Let Y3 ⊂ B3 be a smooth F -subvariety, enjoying the properties of Lemma 4.6,
where we take B to be our B3, and set Y3 := Y .
Put

Y2 := q−1(Y3).

The restriction

q|Y2
: Y2 −→ Y3

is an A-torsor.
We now define

X := BlY2
(B2)

to be the blowup of Y2 in B2.
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5.2. Proof that Aut(X) ≃ A.
Translating by elements of A inside B2 yields a natural arrow

A −→ Aut(B2).

Since Y2 ⊂ B2 is stable by these translations, we get an induced arrow of F -group
schemes

τ : A −→ Aut(X).

It is clear that τ is an embedding. We are going to show that it is an isomorphism.
Let us first check that it induces a bijection

A(F )
∼−→ Aut(X) = Aut(X)(F ).

Pick ϕ ∈ Aut(X). It induces a birational isomorphism f2 of the F -variety B2,
which is a regular isomorphism since B2 is an abelian variety. Thus, we get a
commutative diagram

X
ϕ //

��

X

��
B2

f2 // B2,

where the vertical arrows are the structure morphism of the blowup.
Using Lemma 4.1, we get f2(Y 2) = Y 2. We know that

f2(x) = g2(x) + t2,

where g ∈ Autgp(B2), and t2 ∈ B2(F ). We have to show that g2 = Id and

t2 ∈ A(F ). To do so, we can assume without loss of generality that t2 ∈ B1(F ).
We then have to prove g2 = Id and

t2 ∈ A(F ) ∩B1(F ) = ι(A[n])(F ).

Geometrically, B1 ≃ B
m

s . Since Homgp(A,Bs) = Homgp(Bs, A) = 0, we get

Homgp(A,B1) = Homgp(B1, A) = 0.

Therefore g2 leaves A ⊂ B2 and B1 ⊂ B2 stable.
We infer that g2 lifts, via π, to a diagonal group automorphism

δ = (h, g1)

of A×B1, which automatically leaves the diagonally embedded A[n] stable.
Consider the automorphism of B1 given by

f1(b1) := g1(b1) + t2,

and the diagonal automorphism of A×B1 given by

∆(a, b1) := (h(a), f1(b1)).
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Since δ leaves A × ι(A[n]) ⊂ A × B1 stable, there exists f3 ∈ Aut(B3) such that
the diagram

A×B1
∆ //

π
��

A×B1

π
��

B2
f2 //

q

��

B2

q

��
B3

f3 // B3

commutes.

Because f2(Y 2) = Y 2, we get f3(Y 3) = Y 3. By Lemma 4.6, we conclude that
f3 = Id. Hence, we have t2 ∈ ι(A[n])(F ) and g2 = Id. Since δ preserves the
diagonally embedded A[n], we get that h, restricted to A[n] ⊂ A, is the identity.
Since G acts faithfully on A[n], we conclude that h = Id. Hence, g2 = Id as well,
and our job is done.

We have proved that τ induces a bijection on F -points. If F has characteristic
zero, this is enough to conclude that τ is an isomorphism of algebraic F -groups.
In general, it remains to check that the F -linear map on tangent spaces

de(τ) : Lie(A) −→ Lie(Aut(X))

is bijective. Recall that Lie(Aut(X) is the space of vector fields on X; that is,
global section of the tangent bundle TX −→ X. Let

s : X −→ TX

be such a section. Restricting s to the complement of the exceptional divisor, we
get a global section σ′ of the tangent bundle of B2 − Y2. Since B2 is an abelian
variety, its tangent bundle is trivial, so that σ′ is given by an arrow of F -varieties

σ′ : B2 − Y2 −→ A(Lie(B2)),

with target an affine space of dimension dim(B2). Since Z2 has codimension ≥ 2
in B2, σ

′ extends to a morphism

σ : B2 −→ A(Lie(B2)),

which is constant because B2/F is proper. Write σ = t, with t ∈ Lie(B2). To
conclude, we have to show t ∈ Lie(A).
For y ∈ B2(F ), denote by

αy : B2 −→ B2

the F -morphism given by
x 7→ x+ y.

Recall that the linear isomorphisms

dyα−y : Ty(B2)
∼−→ Lie(B2)⊗F F

are used to trivialize the tangent bundle of B2.
Since σ lifts to a section of the tangent bundle of the blowup BlY2

(B2), Lemma
4.2 implies, when y ∈ Y2(F ), that t belongs to

dyα−y(Ty(Y 2)) ⊂ Lie(B2)⊗F F .

Taking a y lying above (via q) an isolated separable point of Y 3, we conclude that
t ∈ Lie(A), as desired.
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