
1

Smooth profinite groups and applications

Charles De Clercq and Mathieu Florence

August 2016

La simplicité est la réussite
absolue. Après avoir joué une
grande quantité de notes, toujours
plus de notes, c’est la simplicité qui
émerge comme une récompense
venant couronner l’art.
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Abstract. In this paper, we introduce a notion of smoothness for profinite
groups, relative to a given prime number p (cf. Definition 9.7). The fundamental
example, following from Hilbert’s Theorem 90 for Gm, is that of an absolute Galois
group of a field F of characteristic not p (Proposition 9.11). Using the theory of
divided powers over Witt vectors, we prove Lifting Theorems for the cohomology
of smooth profinite groups (see for instance Theorems 12.1 and 12.4). In section
13, we prove a general Smoothness Theorem (Theorem 13.8). We then give three
applications. The first one is a new proof of the surjectivity of the norm-residue
homomorphism (Corollary 14.1). The second one is a bound on the symbol length
of central simple algebras (Theorem 14.2). The third one is a Lifting Theorem
for Galois representations: every mod p Galois representation, over a field F of
characteristic not p, can be lifted mod p2 (Theorem 15.2).
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1. Introduction.

The main goal of this paper is to define and study a smoothness notion for profinite
groups, relative to a given prime number, and to prove general Lifting Theorems
for their cohomology. We then give three applications.
First of all, we give a new self-contained proof of the surjectivity of the norm-
residue homomorphism. Recall that, if F is a field, and n, d are positive integers
with d invertible in F , the norm-residue homomorphism is a group homomorphism

δn : KM
n (F )/d −→ Hn(F, µ⊗nd ),

from the mod d Milnor K-theory of F to its Galois cohomology. The Bloch-Kato
Conjecture, also known as the norm-residue isomorphism Theorem, was proved
by Rost, Suslin and Voevodsky. It states that δn is an isomorphism. We focus our
efforts on proving surjectivity (cf. Corollary 14.1), which is, as it is well-known
by experts, the hardest part of the proof. As a byproduct of our approach, we
get upper bounds for the symbol length problem for central simple algebras (cf.
Theorem 14.2, which the authors suspect can be improved drastically). This is
our second application.
The third application is Theorem 15.2. It states that, over an arbitrary field F of
characteristic not p, any mod p Galois representation can be lifted mod p2 (note
that, in dimension one, this Theorem goes back to Teichmüller). This Theorem
is perhaps surprising, since most previously known results held over local or
global fields, often under extra assumptions. Let us mention the works of Böckle,
Hamblen, Khare, Manoharmayum, Taylor and Ramakrishna (see, e.g., [H] or [M]
for more details). The methods used by these authors seem to be of arithmetic
nature, whereas our work perhaps stresses a more Galois-theoretic aspect of the
problem, as well as its deep connection to Hilbert’s Theorem 90.
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Note that the first two applications of our Lifting Theorems are rather immediate,
whereas the last one requires the use of (seemingly) new material. In particular,
we introduce the fundamental 2-extension associated to a (Galois) representation
V over a finite field k (cf. section 15.2). It is the obstruction to the existence of a
lift of V over W2(k), the ring of length two Witt vectors over k.

The techniques we develop in this paper do not involve any algebraic geometry
over F , but rather algebraic geometry over finite fields, through the use of divided
powers of finite Zp-modules- the coefficients of the cohomology considered. Of all
algebro-geometric information concerning the field F , we only remember the fact
that its absolute Galois group, as well as all its open subgroups, satisfy Hilbert’s
Theorem 90 for Gm.
We now wish to share the main ideas which are at the heart of this paper. In
what follows, F is a field and d is a positive integer, invertible in F . We assume
that d = ps is a prime power. Let Fsep/F be a separable closure of F . We put
G := Gal(Fsep/F ).

1.1. First idea. Imagine you want to prove the surjectivity of the norm-residue
homomorphism, in the Merkurjev-Suslin case (n = 2). It amounts to proving the
following. For every class e ∈ H2(F, µ⊗2

d ), there exists an integer r ≥ 1, such that
e is in the image of the cup-product map

H1(F, µrd)×H1(F, µrd) −→ H2(F, µ⊗2
d ),

relative to the canonical diagonal pairing

µrd × µrd −→ µ⊗2
d

(note that µrd stands here for the direct sum of r copies of µd).

But it is immediate that, given a class e ∈ H2(F, µ⊗2
d ), one can find a finite discrete

G-module M , which is a free Z/dZ-module, and such that e is in the image of the
cup-product map

H1(F,M ⊗Z µd)×H1(F,M∗ ⊗Z µd) −→ H2(F, µ⊗2
d ),

relative to the canonical pairing

(M ⊗Z µd)× (M∗ ⊗Z µd) −→ µ⊗2
d ,

where

M∗ = HomZ/dZ(M,Z/dZ).

This is an avatar of the trivial fact that a (Yoneda) 2-extension is a cup-product
of two 1-extensions! The surjectivity of the norm-residue homomorphism is then
equivalent to saying that one may choose M such that G acts trivially on it.
Roughly speaking, our Lifting Theorems (Theorem 12.4 in particular), will allow
us to do the following. Starting from an arbitrary M , we will be able to recursively
simplify the way G acts on it, until M becomes induced, i.e. possesses a Z/dZ-basis
which is permuted by G. Of course, this is done at the expense of considerably
increasing the rank of M as a Z/dZ-module. An elementary input from Milnor
K-theory (namely, the existence of the norm, and its compatibility with the norm-
residue homomorphism) then allows us to assume that G acts trivially on M . Note
that we can in fact control the evolution of the rank of M (cf. Theorem 14.2),
using the Theorem of Rosset and Tate in Milnor K-theory.
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1.2. Second idea. How can we prove that a cohomology class, in Galois coho-
mology, vanishes? To the authors’ knowledge, the only systematic way to do so
is by invoking, somewhere, Hilbert’s Theorem 90. It is indeed folklore that, in
cohomological statements involving Galois cohomology of an arbitrary field, with
values in (twists of) roots of unity, Hilbert’s Theorem 90 plays an essential rôle.
This paper can in fact be viewed as a machinery, drawing information on the Ga-
lois theory of a field F , by applying Hilbert’s Theorem 90 to a -huge- amount of
its finite field extensions. Let us be more precise.
Working with finite coefficients, this Theorem asserts that the canonical surjection

µps+1
x7→xp

−→ µps

induces a surjective map

H1(E,µps+1) −→ H1(E,µps),

for every (finite separable) field extension E/F . We interpret this, in the spirit
of the classical definition of a formally smooth morphism in algebraic geometry,
as a smoothness property of the roots of unity, which we systematically study.
Through our Lifting Theorems, we eventually prove the Smoothness Theorem
(Theorem 13.8). it essentially states that all maps

Hn(E,µ⊗nps+1) −→ Hn(E,µ⊗nps )

are also surjective, and that this (almost) formally follows from the n = 1 case,
using the Third Idea below.

1.3. Third idea. The theory of Witt vectors associates, to every perfect field
k of characteristic p, a ring W(k), whose basic properties we shall recall in the
next section. We develop here the theory of divided powers over Witt vectors,
whose purpose is, somehow, to ’categorify’ Witt’s construction. In other words, we
associate to every k-vector space V , the divided power W(k)-modules ΓiW(k)(V ).

This is done in such a way that, in dimension one, we recover the construction
given by the Teichmüller section

τ : k× −→W(k)×.

In the recent preprint [K], a related construction is introduced. Note that Kaledin’s
construction, which does not use divided powers, commutes with Pontryagin du-
ality, whereas the formation of divided powers over Witt vectors does not. As a
matter of fact, we shall use the Pontryagin dual counterpart of divided powers
over Witt vectors, which we call Omega powers. We develop a Kummer-like the-
ory, for Omega powers of arbitrary (Galois) representations over a finite field. We
introduce the Transfer, of crucial importance. It is a slightly refined version of
the Steenrod algebra. Combining this with classical techniques from group coho-
mology (dimension shifting, restriction, corestriction, cup-product and Shapiro’s
Lemma), we are able to prove very general Lifting Theorems for the cohomology
of smooth profinite groups (e.g. Theorem 12.4).

The paper is organized as follows. We first recall some classical facts about
profinite groups, representation theory, cohomology, and Yoneda extensions. We
define the categories M(W(k), G) and M(k,G), in which we shall be working
later on. We then explain, in section 4, a categorical formulation of the induction
process from open subgroups and of Shapiro’s Lemma. Though elementary,
it plays an important rôle in this paper, where most properties concerning a
profinite group G (eg. n-surjectivity) involve all open subgroups of G at once. In
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section 5, we recall (mostly well-known) facts about divided powers. We mainly
concentrate on the case of modules over Witt vectors. Along the way, we give a
simple presentation of truncated Witt vectors, as a quotient of a divided power
module over Z (cf. Proposition 5.21). In section 6, we introduce the Frobenius
and Verschiebung operators, for divided powers. In section 7, we introduce
Omega powers, which are Pontryagin dual to divided powers, and which are
much better behaved for applications to (Galois) cohomology. In section 8, we
define the transfer, a fundamental gadget for Omega powers, enabling us to
prove some Theorems by induction on the dimension of the (k,G)-modules under
consideration (for k finite). In section 9, we introduce the notions of n-surjectivity
and of n-smoothness for profinite groups. We give, as a fundamental example
for 1-smoothness, that of an absolute Galois group. Section 10 sheds light on
the importance of Hilbert’s Theorem 90 in our approach. In Proposition 10.4,
we give a general formulation of this Theorem, probably well-known to some
algebraists. In section 11, we first emphasize the canonical (equivariant) aspect
of all the constructions done before. We then focus on a Lifting Proposition,
for the cohomology of smooth profinite groups. The proof is quite technical and
proceeds by induction from the one-dimensional case, using the transfer and
Shapiro’s Lemma. It is the key tool to proving the Lifting Theorems of the next
sections, culminating with Theorem 12.4, and with the Smoothness Theorem
(Theorem 13.8). We conclude by the applications we promised: a new proof of the
surjectivity of the norm-residue homomorphism, a bound on the symbol length
of central simple algebras, and a Lifting Theorem for mod p Galois representations.

This paper contains numerous remarks and exercises, which goal is to help the
reader getting familiar with our approach, especially for those wishing to read it
’linearly’. Note that, though we decided to treat the case of an arbitrary finite
field k in our Lifting Theorems, the case k = Fp is the essential one.

2. Notation and basic facts.

Throughout this paper, p is a prime number. For any integer n, we denote by vp(n)
the p-adic valuation of n. We denote by Sn the symmetric group on n letters.

If M is an Abelian group and n ≥ 1 is an integer, we denote by Tn(M) the n-
torsion of M . Let A be a ring. If X is a finite set, we shall denote by A[X] the free
A-module with basis indexed by X. For x ∈ X, the basis vector corresponding to
x will be denoted by [x]. If M is an A-module, we denote by

M∗ = Hom(M,A)

the A-dual of M . We denote by

SymA(M) =

∞⊕
i=0

Symi
A(M)

the symmetric algebra of M . We denote by

ΛA(M) =

∞⊕
i=0

ΛiA(M)

the exterior algebra of M .
If M is locally free of finite rank (as an A-module), we denote by

AA(M) := Spec(SymA(M∗))
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the affine space of M ; it is an affine variety over Spec(A). On the level of the
functor of points, we have

AA(M)(B) = M ⊗A B,

for every commutative A-algebra B.

Let k be a field. Let V be finite-dimensional k-vector space. We denote by P(V )
the projective space of V , consisting of lines d ⊂ V (when needed, these shall be
identified with hyperplanes in V ∗). It can, of course, be viewed as a k-variety.
However, in this work (where in most cases k and V will be finite), it will only be
considered as a set. Note that, if V is a linear representation of a group G, P(V )
is naturally endowed with an action of G.

2.1. Witt vectors. If k is a perfect field of characteristic p > 0, we denote by
W(k) the ring of Witt vectors built out from k. It is, up to isomorphism, the
unique complete discrete valuation ring whose maximal ideal is generated by p,
and with residue field k. Its construction is functorial in k. For any positive integer
n, we denote by

Wn(k) := W(k)/pn

the truncated Witt vectors of size n.
A simple (and perhaps new) formula, presenting Wn+1(k) as a quotient of the
pn-th divided power of the Z-module k, shall be given later on.
We shall put

K := Frac(W(k)).

For any W(k)-module M , we put

M∨ := HomW(k)(M,K/W(k)).

The Frobenius morphism

k −→ k,

x 7→ xp

lifts to a ring homomorphism

Frob : W(k) −→W(k).

For any W(k)-module V , and any integer i ≥ 0, we put

V (i) := V ⊗W(k) W(k);

where the tensor product is taken with respect to Frobi.

2.2. Profinite groups and cohomology. Let G be a profinite group. By
definition, a G-set is a set X, equipped with a continuous action of G (i.e. such
that the stabilizer of every element of X is open in G).
Let M be a discrete G-module; that is, an Abelian group M , equipped with the
structure of a G-set, for which the action of G is Z-linear. We then denote by
Hn(G,M) the usual cohomology groups, as defined in [Se]. At our disposal, we
have the restriction maps

Res : Hn(G,M) −→ Hn(G′,M),

for any closed subgroup G′ ⊂ G, and the corestriction maps

Cor : Hn(G′,M) −→ Hn(G,M),
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for any (nontrivial) open subgroup G′ ⊂ G.
If G′ ⊂ G is a (nontrivial) open subgroup, of index n in G, then Cor ◦ Res equals
multiplication by n.

Remark 2.1. In most of the proofs of the main Theorems of this paper, involving a
profinite group G, we shall often reduce to the case where G is pro-p-group, using
the ’restriction-corestriction’ argument. More precisely, imagine that the discrete
G-module M is of p-primary torsion, and that we have to show that a class in
Hn(G,M) is zero. Then, it is enough to show that its restriction to Hn(Gp,M)
vanishes, where Gp is a pro-p-Sylow of G.

3. Categories of representations and Yoneda extensions

Let G be a profinite group. Let k be a finite field, of characteristic p.

Definition 3.1. A (W(k), G)-module is W(k)-module M , which is finite as a
set, endowed with a continuous W(k)-linear action of G (i.e. factoring through a
nontrivial open subgroup of G). A (k,G)-module is a (W(k), G)-module which is
a k-vector space.

Remark 3.2. Let Fsep/F be a separable closure of a field F , of characteristic not
p. Then a (k,Gal(Fsep/F ))-module is nothing but a Galois representation over
the field k.

Remark 3.3. if G is a pro-p-group, we shall, in many places, use the following
classical facts.
(i) Every one-dimensional (k,G)-module is trivial, i.e. isomorphic to k, equipped
with the trivial action of G.
(ii) Let V be a nonzero (k,G)-module. Then, it admits a one-dimensional sub-
(k,G)-module. Equivalently, we have V G 6= {0}.

Definition 3.4. We denote by M(W(k), G) (resp. M(k,G) the category of
(W(k), G)-modules (resp. of (k,G)-modules), with morphisms being W(k)-linear
maps respecting the action of G. These categories are Abelian. They come equipped
with a tensor product

⊗ = ⊗W(k).

They are, moreover, equipped with a perfect duality

M 7→M∨ = HomW(k)(M,K/W(k)).

Let n ≥ 1 be an integer. Let A,B ∈ M(W(k), G). As in any Abelian category,
we have the notion of Yoneda n-extension of A by B, which we now briefly recall.
As usual, YExt0

(W(k),G)(A,B) is defined to be Hom(A,B).

A n-extension of A by B is an exact sequence (in M(W(k), G))

E : 0 −→ B −→ A1 −→ . . . −→ An −→ A −→ 0.

One can add two n-extensions of A by B using the Baer sum, the trivial extension
being the direct sum

0 −→ B −→ B ⊕A −→ A −→ 0

if n = 1, or the n-extension

0 −→ B
Id−→ B −→ 0 −→ . . . −→ 0 −→ A

Id−→ A −→ 0
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otherwise. The Baer sum of two n-extensions E1 and E2 (of A by B) will be denoted
simply by E1 + E2. A morphism E1 −→ E2 between two n-extensions of A by B is
a morphism of complexes, which is the identity on A and B. The n-extensions of
A by B thus form an additive category YExtn(W(k),G)(A,B).

Moreover, a morphism f : B −→ B′ (resp. g : A′ −→ A) induces a push forward
functor

f∗ : YExtn(W(k),G)(A,B) −→ YExtn(W(k),G)(A,B
′)

(resp. a pullback functor

g∗ : YExtn(W(k),G)(A,B) −→ YExtn(W(k),G)(A
′, B)).

Those functors commute, in the sense that f∗g
∗ and g∗f∗ are canonically isomor-

phic.

Let us say that two n-extensions E1 and E2 are elementary linked if there exists a
morphism E1 −→ E2 or E2 −→ E1. Now, say that E and E ′ are equivalent if there
exists extensions E = E0, E0, . . . , Er = E ′, such that Ei is elementary linked to Ei+1

for each i. This is an equivalence relation, compatible with the Yoneda sum.

Definition 3.5. We denote by YExtn(W(k),G)(A,B) the Abelian group of equiva-

lence classes of Yoneda n-extensions, in the category YExtn(W(k),G)(A,B).

Note that the exact functor M 7→M∨ induces a canonical isomorphism

YExtn(W(k),G)(B,A)
∼−→ YExtn(W(k),G)(A

∨, B∨).

Definition 3.6. Similary, we define YExtn(k,G)(A,B) and YExtn(k,G)(A,B), for

A,B ∈M(k,G), by working in the smaller category M(k,G).

Note that k-linear duality induces a canonical isomorphism

YExtn(k,G)(A,B)
∼−→ YExtn(k,G)(B

∗, A∗).

Lemma 3.7. Let A,B be two (k,G)-modules. Then, for any n ≥ 0, there is a
canonical isomorphism

YExtn(k,G)(A,B)
∼−→ YExtn(k,G)(k,Homk(A,B)).

Proof. Clearly, we have a canonical isomorphism

A∗ ⊗B ∼−→ Homk(A,B).

Applying the functor A∗ ⊗ . yields a functor

Φ : YExtn(k,G)(A,B) −→ YExtn(k,G)(A
∗ ⊗A,A∗ ⊗B),

(E : 0 −→ B −→ A1 −→ . . . −→ An −→ A −→ 0)

7→ (A∗ ⊗ E : 0 −→ A∗ ⊗B −→ A∗ ⊗A1 −→ . . . −→ A∗ ⊗An −→ A∗ ⊗A −→ 0).

But the G-equivariant map

Ψ : k −→ A∗ ⊗A = Endk(A),

λ 7→ λId

gives a pullback functor

Ψ∗ : YExtn(k,G)(A
∗ ⊗A,A∗ ⊗B) −→ YExtn(k,G)(k,Homk(A,B)).

The composite

Ψ∗ ◦ Φ : YExtn(k,G)(A,B) −→ YExtn(k,G)(k,Homk(A,B))
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gives, by passing to isomorphism classes of objects, a group homomorphism

YExtn(k,G)(A,B) −→ YExtn(k,G)(k,Homk(A,B)),

which is easily seen to be an isomorphism.

�

Proposition 3.8. Let V be a (k,G)-module. Then, for any n ≥ 0, there is a
canonical isomorphism

YExtn(k,G)(k, V ) ' Hn(G,V ).

Proof. Let us first deal with the case where G is finite.
The group Hn(G,V ) is the n-th derived functor of the functor

V 7→ V G = Hom(k,G)(k, V ).

Thus, it is nothing but the usual Ext group Extn(k,G)(k, V ), computed using injec-
tive resolutions. But, for any Abelian category with enough injectives, the derived
Ext’s coincide with the Yoneda YExt’s ([Ve], Ch. III, Par. 3).
The case G arbitrary readily follows from a classical limit argument, over the finite
quotients of G. �

4. On induction from subgroups, and Shapiro’s Lemma.

We now make some essential remarks, with which the reader shall tacitly be
assumed to be familiar in the sequel.

Definition 4.1. Let G be a profinite group. Let X be a finite G-set. A discrete
G-module over X is the data of

M = (Mx, φg,x),

consisting of an Abelian group Mx, for each x ∈ X, and of additive maps

φg,x : Mx −→Mgx,

for each x ∈ X and g ∈ G, subject to the following conditions.
(i) For all x ∈ X, and all m ∈Mx, the map

G −→
⊔
g∈G

Mgx,

g 7→ φg,x(m),

is continuous (=locally constant).
ii) For all x ∈ X, we have

φe,x = Id.

(iii) For all x ∈ X and g, h ∈ G, we have

φg,hx ◦ φh,x = φgh,x.

Remark 4.2. In the particular case of a one-element set, it is clear that a discrete
G-module over {∗} is just a discrete G-module.
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Remark 4.3. Discrete G-modules over X form an Abelian category in the obvious
way. More precisely, a morphism

M = (Mx, φg,x) −→M′ = (M ′x, φ
′
g,x)

is the data of additive maps

fx : Mx −→M ′x,

one for each x ∈ X, such that

φ′g,x ◦ fx = fgx ◦ φg,x,
for all x ∈ X and all g ∈ G.

If M = (Mx, φg,x) is a discrete G-module over X, we can form the direct sum

N(M) :=
⊕
x∈X

Mx;

it is a G-module in an obvious way, given by applying the φg,x’s. The association

M 7→ N(M)

is a functor, from the category of discrete G-modules over X to that of discrete
G-modules. It plays the rôle of a trace map, and is a categorical formulation of
the usual induction process, from open subgroups of G. We now explain why.

Assume that
X = G/H,

for H ⊂ G a nontrivial open subgroup. Denote by x0 ∈ X the class of the neutral
element.
Then we have a functor

M = (Mx, φg,x) −→Mx0
,

from the category of discrete G-modules over X to that of discrete H-modules,
whereMx0 is considered as anH-module via the maps φh,x0 , for h ∈ H = Stab(x0).
It is not hard to see that this functor is an equivalence of categories. The proof is
left to the reader as an exercise.

Remark 4.4. What precedes is a concrete example of the following philosophical
statement: if X = G/H, a G-equivariant structure over the base X is nothing but
an H-equivariant structure.

Now, let M = (Mx, φg,x) be a G-module over X. Put M := Mx0
, seen as a

discrete H-module. Then
N(M) =

⊕
x∈X

Mx

is canonically isomorphic to the induced module IndGH(M). Note that, since H
has finite index in G, this induced module can be defined either by the formula

IndGH(M) = M ⊗Z[H] Z[G],

or by
IndGH(M) = MapsH(G,M),

the group of H-equivariant maps from G to M (’induction=coinduction’ in this
case).
Now, recall Shapiro’s Lemma -which is elementary but of crucial importance in this
paper- asserting that the cohomology groups Hn(G, IndGH(M)) and Hn(H,M) are
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canonically isomorphic. Putting what we just said together, we get the following
statement.

Proposition 4.5. Put

X = G/H,

for H ⊂ G a nontrivial open subgroup. Denote by x0 ∈ X the neutral class.
Let M = (Mx, φg,x) be a discrete G-module over X. Then Mx0

is canonically a
discrete H-module, and Shapiro’s lemma yields canonical isomorphisms

Hn(G,
⊕
x∈X

Mx)
∼−→ Hn(H,Mx0

),

for each n ≥ 0.

Remark 4.6. If X is an arbitrary finite G-set and M = (Mx, φg,x) is a discrete
G-module over X, we can adapt the preceding Proposition, yielding canonical
isomorphisms

Hn(G,
⊕
x∈X

Mx)
∼−→

m⊕
i=1

Hn(Gi,Mxi),

where the x′is form a system of representatives of G-orbits in X, and where Gi is
the stabilizer of xi.

The preceding Remark shall be used constantly in proofs later on, without further
notice.
To finish this section, let us give a typical example of how this Remark will be
applied.
Let k be a finite field of characteristic p. Let V be a (k,G)-module. Put

X := P(V );

it is obviously a finite G-set.
There is a ’tautological’ discrete G-module over X, which is M, defined by

ML := V/L,

for each line L ∈ X, and where the map

φg,L : V/L −→ V/g(L)

is induced by the linear map v 7→ g.v. Shapiro’s Lemma then yields canonical
isomorphisms

Hn(G,N(M)) = Hn(G,
⊕

L∈P(V )

V/L)
∼−→

m⊕
i=1

Hn(Gi, V/Li),

like we just discussed in the Remark above. This fundamental fact will mostly be
used in the proof of Proposition 11.6, where, using the transfer, it allows us to
proceed by induction on the dimension of the (k,G)-modules under consideration.

5. Divided powers.

For a nice and short account on properties of divided powers, we refer the reader to
[Fe]. A more comprehensive study of divided powers can be found in [Ro], which
contains all the proofs of the Propositions which we state here without proof.

In this section, A is a commutative ring.
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Definition 5.1. Let V be an A-module.
We denote by ΓA(V ) (or simply by Γ(V ) if the dependence in A is clear) the
graded divided power algebra of V , defined as follows. It is generated by degree i
symbols [v]i, for each i ∈ N and each v ∈ V , with relations:

i) [v]0 = 1,
ii)[v + v′]n =

∑n
0 [v]i[v

′]n−i,
iii)[λv]n = λn[v]n,
iv) [v]n[v]m =

(
n+m
n

)
[v]n+m.

We define Γn(V ) to be the homogeneous component of degree n of Γ(V ). We put
Γ+(V ) := ⊕n≥1Γn(V ); it is an ideal of Γ(V ).

Remarks 5.2. As it is well-known, the symbol [v]n plays the rôle of vn/n!.
For each positive integer i, the ideal Γ+(V ) is moreover equipped with an operator

γi : Γ+(V ) −→ Γ+(V ),

a 7→ γi(a),

playing the rôle of a 7→ ai/i!, which endows (Γ(V ),Γ(V )+) with the structure of
an A-algebra with divided powers. We shall not use this operator.

Remark 5.3. Equality iv), applied several times, yields the formula

[v]n1
. . . [v]nr

=

(
n1 + . . .+ nr
n1, . . . , nr

)
[v]n1+...+nr

,

where (
n1 + . . .+ nr
n1, . . . , nr

)
=

(n1 + . . .+ nr)!

n1! . . . nr!

is the usual multinomial coefficient.

Proposition 5.4. Let M , N be A-modules. We have a canonical isomorphism

Γn(M ⊕N) ' ⊕n0 (Γi(M)⊗A Γn−i(N)).

Remark 5.5. The previous Proposition says that divided power functors are strictly
polynomial, in the sense of [FFSS].

Proposition 5.6. Let M be an A-module, and let B/A be a commutative A-
algebra. We have a canonical isomorphism of graded rings

ΓA(M)⊗B ' ΓB(M ⊗A B).

5.1. Polynomial laws. Let A be a commutative ring.

Definition 5.7. If M is an A-module, we denote by M the functor

R 7→M ⊗A R,
from the category of commutative A-algebras to that of sets.

Definition 5.8. Let M,N be A-modules. A polynomial law from M to N is a
morphism of functors

F : M −→ N.

We shall say that F is homogeneous of degree n ≥ 0 if, for every commutative
A-algebra R and every t ∈ R and m ∈M ⊗A R, we have

F (tm) = tnF (m).
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Remark 5.9. One can show that a degree 0 (resp. degree 1) polynomial law is
obtained from a constant (resp. A-linear) map M −→ N .

Remark 5.10. Slightly abusing notation, we will sometimes denote a polynomial
law

F : M −→ N

simply by

F : M −→ N,

dropping the underscore. We shall do so only if there is no chance of confusing F
with a mere map.

Remark 5.11. If M and N are locally free A-modules of finite rank, then a poly-
nomial law from M to N is nothing but a morphism of affine A-schemes

AA(M) −→ AA(N).

In this paper, we shall mainly be interested in polynomial laws between vector
spaces over a finite field k, and shall thus view them as morphisms between affine
spaces, defined over k.

Proposition 5.12. Let V , W be A-modules. Then HomA(Γn(V ),W ) is canoni-
cally isomorphic to the group of polynomial laws from V to W , which are homo-
geneous of degree n.

For V an A-module, the association

V −→ (V ⊗n)Sn ,

v 7→ vn,

is obviously a polynomial law, which is homogeneous of degree n. It thus induces
an A-linear morphism

Fn(V ) : ΓnA(V ) −→ (V ⊗n)Sn .

Proposition 5.13. If V is locally free of finite rank, the morphism Fn(V ) above
is an isomorphism.

Remark 5.14. If V is locally free of finite rank, the A-dual of (V ⊗n)Sn is nothing
but the symmetric power Symn

A(V ∗). Thus, the formation of divided powers, for
finite locally free modules, is dual to that of symmetric powers.

Among polynomial laws, there are fundamental ones: those, roughly speaking,
given by Teichmüller representatives in truncated Witt vectors. Let us be more
precise.

Lemma 5.15. The map

A −→ A/pn+mA,

x 7→ xp
n

,

factors through the quotient A −→ A/pmA. Since this hold functorially for any
commutative ring A, we get this way a polynomial law of Z-modules

Z/pmZ −→ Z/pm+nZ,

x 7→ xp
n

.
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Proof. By induction, it is enough to check the claim for n = 1. In this case, for
any x, y ∈ A, we have the well-known congruence

(x+ pmy)p ≡ xp

modulo pm+1A, whence the claim.

�

We now concentrate on the characteristic p case.

Lemma 5.16. Let

n = a1 + . . .+ ar

be a decomposition of the positive integer n into a sum of r nonnegative integers,
such that there are no carryovers in the base-p addition of a1, a2, . . . , ar.
Then

(
n

a1,...,ar

)
is prime-to-p.

Proof. It is easy to reduce to the case r = 2, using the formula(
n

a1, . . . , ar

)
=

(
n

a1 + a2, a3, . . . , ar

)(
a1 + a2

a1, a2

)
.

We then use the following well-known fact: if a and b are positive integers, then
vp(
(
a+b
a,b

)
) equals the number of carryovers in the base-p addition of a and b.

�

Remark 5.17. In particular, the hypothesis of the preceding Lemma is satisfied
if all ai’s are powers of p, such that each power of p occurs at most p − 1 times
among them.

Lemma 5.18. Let V be an A-module, such that pV = 0, and let n be a positive
integer. Then ΓnA(V ) is of pvp(n)+1-torsion.

Proof. Note first the following obvious fact. Let

n = a1 + . . .+ ar

be a decomposition of n into a sum of r nonnegative integers. For i = 1 . . . r, let
vi be an element of V . Then the (additive) order of

[v1]a1 . . . [vr]ar ∈ ΓnA(V )

is at most the minimum of the orders of the elements [vi]ai ∈ ΓaiA (V ).
In view of Lemma 5.16, of Remark 5.17 and of Remark 5.3, considering the base-p
expansion of n, we may thus assume that n = pm is a power of p. We have(

pm

pm−1, . . . , pm−1

)
[v]pm = [v]ppm−1 ,

and it is easy to see that the multinomial coefficient
(

pm

pm−1,...,pm−1

)
has p-valuation

equal to one, hence

p[v]pm = N(m)[v]ppm−1 ,

with N(m) prime-to-p (in fact congruent to −1 mod p). Since the symbols [v]1
depend linearly on V , they are of p-torsion, and the preceding formula readily
implies the result, by induction on m. �
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Remark 5.19. The preceding Lemma is crucial. It outlines a fundamental dif-
ference between divided powers and symmetric powers. Indeed, let V be an A-
module. If it is of p-torsion, then so will be the symmetric powers Symn

A(V ),
whereas the divided powers ΓnA(V ) will in general not be. For instance, we have

ΓpZ(Z/pZ) = Z/p2Z.

We will now study this phenomenon in more detail.

From now on, k is a perfect field of characteristic p. We shall denote by

τ : k −→W(k)

the Teichmüller representative (we set τ(0) = 0). Recall that the map

τ|k× : k× −→W(k)×

is the unique multiplicative section of the quotient map

W(k)× −→ k×.

Recall that K denotes the field of fractions of W(k). Note that the functor

M 7→M∨ = HomW(k)(M,K/W(k))

yields an equivalence between the category of torsion W(k)-modules of finite type
and its opposite category. This fact is nothing but a slight generalization of a
usual statement when k = Fp.

Let n be a positive integer. Take A to be Wn+1(k), the truncated Witt vectors of
size n+ 1. By Lemma 5.15, the formula

k = A/pA −→ A/pn+1A = Wn+1(k),

x 7→ xp
n

,

defines a (multiplicative) polynomial law over Z, homogeneous of degree pn. It
thus induces a group homomorphism

T ′n : Γp
n

Z (k) −→Wn+1(k).

It is easy to see that T ′n([x]pn) ∈Wn+1(k) is the Teichmüller representative τ(xp
n

).
Since the Teichmüller representatives generate Wn+1(k) additively, the map T ′n is
surjective. But obviously, the polynomial law

k = A/pA −→ A/pn+1A = Wn+1(k),

x 7→ xp
n

,

might as well be considered as a polynomial law over W(k), hence as a W(k)-linear
homomorphism

Tn : Γp
n

W(k)(k) −→Wn+1(k).

Lemma 5.20. The map Tn is an isomorphism.

Proof. It is clearly surjective. But Γp
n

W(k)(k) is generated by [1]pn , as a W(k)-

module, and is killed by pn+1, by Lemma 5.18. It is thus a Wn+1(k)-module,
generated by one element. The claim follows. �

Thus, the map T ′n factors as

T ′n : Γp
n

Z (k) −→ Γp
n

W(k)(k)
Tn−→Wn+1(k).
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It is then easy to infer a description of the kernel of T ′n, which in turn provides a
rather simple, seemingly new, functorial description of W(k). It will not be used
in the sequel.

Proposition 5.21. Denote by I the homogeneous ideal of ΓZ(k) generated by
expressions of the form

[x]ps+r [y]ps − [xp
r

y]ps [1]pr+s ,

with x, y ∈ k and r, s ≥ 1. Then the kernel of T ′n is Ipn , the homogenous component
of degree pn of I.

Proof. First of all, let us check that Ipn ⊂ Ker(T ′n). To do so, it is enough to

check that we have [x]pr+s [y]ps = [xp
r

y]ps [1]pr+s in ΓW(k)(k). This is obvious:

both sides equal τ(xp
r+s

yp
s

)[1]ps [1]pr+s . The rest of the proof is left as an exercise
for the reader. �

From now on, if V is a k-vector space (regarded as a W(k)-module of p-torsion),
we shall put

Γn(V ) := ΓnW(k)(V )

and

Symn(V ) = Symn
W(k)(V ) = Symn

k (V ).

Note that Γn is a functor, from the category of k-vector spaces to that of W(k)-
modules. It is, of course, not additive if n ≥ 2.

Remark 5.22. Note that the preceding discussion shows that Γp
r

(k), as a W(k)-
module, is generated by [1]pr and is canonically isomorphic to Wr+1(k). We are
now going to make this statement more canonical.

If L is a one-dimensional k-vector space, seen as a W(k)-module, then we put

Wn+1(L) := Γp
n

(L);

it is is a free Wn+1(k)-module of rank one, whose construction is functorial in L.
It comes equipped with a Teichmüller-like map (which is in fact a polynomial law)

Tn : L −→Wn+1(L),

v 7→ [v]pn .

Note that, if L = k, then Wn+1(L) = Wn+1(k), and Tn(x) = τ(xp
n

), as noted
before.

Lemma 5.23. Let L be a one-dimensional k-vector space. Let n = prm be a positive
integer, with m prime to p. Then the formula

L −→Wr+1(L⊗m),

v 7→ [v⊗m]pr ,

defines a polynomial law, which is homogeneous, of degree n. The induced W(k)-
linear map

φ : Γn(L) −→Wr+1(L⊗m)

is an isomorphism.
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Proof. Only the fact that φ is an isomorphism has, perhaps, to be checked.
We may assume that L = k. By lemma 5.18, the W(k)-module Γn(k), which is
obviously generated by [1]n, is of pr+1-torsion, hence a Wr+1(k)-module generated
by one element. The map φ is obviously surjective, with target a free Wr+1(k)-
module. It is thus an isomorphism.

�

Lemma 5.24. Let V be a k-vector space. For any positive integer n, and any
nonzero v ∈ V , the symbol

[v]n ∈ Γ(V )

has order pvp(n)+1.

Proof. By Lemma 5.18, the symbol in question has order ≤ pvp(n)+1. Now, pick
a k-linear form

f : V −→ k,

sending v to 1. By functoriality, it induces a W(k)-linear map

F : Γn(V ) −→ Γn(k),

mapping [v]n to [1]n. By Lemma 5.23, and by the fact that 1 ∈ Wr+1(k) has
order pr+1, we know that [1]n has order pvp(n)+1. The claim follows. �

Lemma 5.25. Let V be a k-vector space. Let n be a positive integer, lesser or equal
to the cardinality of k. Then the symbols [v]n, for v ∈ V , generate Γn(V )/p (as a
k-vector space).

Proof. By a straightforward induction on the dimension d ≥ 2 of V , it is enough
to show that the natural map⊕

H∈P(V ∗)

Γn(H)/p −→ Γn(V )/p,

given by the sum of the inclusions Γn(H)/p −→ Γn(V )/p, for all hyperplanes
H ⊂ V , is surjective. Dually, letting W := V ∗, we have to show that the natural
map

Symn(W ) −→ ⊕L∈P(W )Symn(W/L),

given as the sum of the quotient maps, is injective. But, choosing a k-basis of
W , an element of Symn(W ) is just a homogeneous polynomial of degree n in d
variables. The fact that it dies in Symn(W/L) is equivalent to asking that it is
divisible by v, where v ∈ L is a nonzero vector. The statement now follows, since
P(W ) has cardinality at least |k|+1 ≥ n+1, and since a homogeneous polynomial
of degree n, which is divisible by n+ 1 two by two non proportional linear factors,
has to be zero.

�

Lemma 5.26. Let V be a k-vector space. Let n be a positive integer, lesser or equal
to the cardinality of k. Then the symbols [v]n, for v ∈ V , generate Γn(V ) (as a
W(k)-module).

Proof. Consider the filtration

Γn(V ) ⊃ pΓn(V ) ⊃ p2Γn(V ) ⊃ . . . ⊃ {0},
and apply induction using Lemma 5.25 to get the result.

�
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We conclude this section by a concrete description of the divided power modules
of a k-vector space, using a basis.

Proposition 5.27. Let V be a k-vector space, with basis e1, . . . , ed. Let n ≥ 0 be
an integer. Then there exists an isomorphism⊕

a1+...+ad=n

(

d⊗
i=1

Γai(k))
∼−→ Γn(V ),

[1]a1 ⊗ . . .⊗ [1]ad 7→ [e1]a1 . . . [ed]ad ,

and the (additive) order of [e1]a1 . . . [ed]ad is pmin(vp(ai))+1.

The pt-torsion in Γn(V ) is then identified with the the subgroup generated by ele-
ments of the shape

pr[e1]a1 . . . [ed]ad ,

where min(vp(ai))− r + 1 ≤ t.

Proof. The first statement follows from Proposition 5.4 and Lemma 5.23. The
determination of the order of [e1]a1 . . . [ed]ad follows directly from Lemma 5.23.
The assertion concerning the torsion is then obvious. �

5.2. An alternate description of Γp(V ). Here k = Fp. Assume that V =
M ⊗Z Fp, for M a free Z-module of finite rank. One readily checks that the map

C : M ×M −→ Symp
Z(M),

(x, y) 7→ (x+ y)p − xp − yp

p
,

is a symmetric 2-cocycle, for the trivial action of M on Symp
Z(M). Indeed, this

can be checked after extending scalars to Q, where it is obvious: c is then a trivial
cocycle by definition! Reducing mod p, we obtain a symmetric cocycle

c : V × V −→ Symp
k(V ),

in fact given by

c(x, y) =

p−1∑
1

(−1)i−1

i
xiyp−i.

This cocycle defines an Abelian extension of V by Symp
k(V ). We leave it to the

reader, as an instructive exercise, to check that this extension is canonically iso-
morphic to Γp(V ).

6. The Frobenius and the Verschiebung.

Recall that k is a perfect field of characteristic p.
Let A be a commutative ring of characteristic p. Denote by

FA : A −→ A,

x 7→ xp,

the Frobenius endomorphism of A. For any A-module M , put

M (1) := M ⊗A A,
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where the tensor product is taken with respect to FA. This notation is obviously
coherent with the one used before.
Moreover, if B/A is a commutative algebra, we have a canonical isomorphism

M (1) ⊗A B
∼−→ (M ⊗A B)(1).

In other words, forming the twist by Frobenius commutes with extensions of com-
mutative rings of characteristic p.
Now, let V be a k-vector space. By what precedes, the formula

V −→ V (1),

v 7→ v(1) := v ⊗ 1,

actually defines a polynomial law, homogeneous of degree p. We shall refer to this
law as the Frobenius law. It can be viewed as a morphism of affine k-spaces

Ak(V ) −→ Ak(V (1)).

The next proposition contains the definition of the Frobenius and of the Ver-
schiebung, borrowed from the theory of commutative group schemes in character-
istic p. They are, needless to say, tools of utmost importance in this paper.

Proposition 6.1. Let V be a finite-dimensional k-vector space and let n ≥ 1 be
an integer.

Then the formula

V −→ Γn(V (1)),

v 7→ [v(1)]n,

is a polynomial law of degree np, thus defining a W(k)-linear map

Frob : Γnp(V ) −→ Γn(V (1)),

the Frobenius homomorphism (for divided powers).
The polynomial law

V −→ Γnp(V ),

v 7→ p[v]pn

canonically factors through the Frobenius law V −→ V (1). The resulting polyno-
mial law

V (1) −→ Γnp(V )

is homogeneous of degree n, yielding a W(k)-linear map

Ver : Γn(V (1)) −→ Γnp(V ),

[v(1)]n −→ p[v]pn,

the Verschiebung homomorphism (for divided powers).

Proof.

The first statement (defining the Frobenius map for divided powers) follows from
the definition of the Frobenius law. For the second one, pick a basis e1, . . . , ed of
V . On the one hand, the Frobenius V −→ V (1) then becomes the law

kd −→ kd,

(X1, . . . , Xd) 7→ (Xp
1 , . . . , X

p
d ).

On the other hand, The polynomial law (of W(k)-modules)

V −→ Γnp(V ),
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v 7→ p[v]pn

then becomes the law

kd −→ Γnp(kd),

(X1, . . . , Xd) 7→ p[X1e1 + . . .+Xded]pn

=
∑

a1+...+ad=pn

Xa1
1 . . . Xad

d p[e1]a1 . . . [ed]ad

=
∑

a1+...+ad=n

Xpa1
1 . . . Xpad

d p[e1]pa1 . . . [ed]pad ,

where the first (resp. second) sum is taken over all decompositions of pn (resp.
of n) into the sum of d nonnegative integers. Indeed, the symbols [ei]a, for a not
divisible by p, are of additive order p, hence all terms p[e1]a1 . . . [ed]ad vanish, as
soon as one of the ai’s is not divisible by p. The second part of the lemma, yielding
the definition of the Verschiebung morphism for divided powers, is now obvious.

�

Lemma 6.2. Let V be a k-vector space. Let a1, . . . , ad, n be nonnegative integers,
satistying a1 + . . .+ ad = np. For v1, . . . , vd ∈ V , the Frobenius

Frob : Γnp(V ) −→ Γn(V (1))

satisfies

Frob([v1]a1 . . . [vd]ad) = 0,

if one of the ai’s is not divisible by p. If all ai’s are divisible by p, says ai = pbi,
then

Frob([v1]a1 . . . [vd]ad) = [v
(1)
1 ]b1 . . . [v

(1)
d ]bd .

Dually, the Verschiebung

Ver : Γn(V (1)) −→ Γnp(V )

satisfies

Ver([v
(1)
1 ]a1 . . . [v

(1)
d ]ad) = p[v1]pa1 . . . [vd]pad .

Proof. We work in the polynomial ring W(k)[X1, . . . Xd]. The relation

Frob([X1v1 + . . .+Xdvd]np) = [Xp
1 (v

(1)
1 ) + . . .+Xp

d (v
(1)
d )]n

holds by definition. But

[X1v1 + . . .+Xdvd]np = Σa1+...+ad=np(X
a1
1 . . . Xad

d [v1]a1 . . . [vd]ad)

and

[Xp
1 (v

(1)
1 ) + . . .+Xp

d (v
(1)
d )]n = Σb1+...+bd=n(Xpb1

1 . . . Xpbd
d [v

(1)
1 ]b1 . . . [v

(1)
d ]bd),

so that the first assertion follows by identifying the coefficients of the monomials
occuring in those expansions. The proof for the Verschiebung is similar.

�

Corollary 6.3. For any s ≥ 1, the kernel of

Frobs : Γnp
s

(V ) −→ Γn(V (s))

coincides with the ps-torsion of Γnp
s

(V ).

Proof. This immediately follows from the description, given in Proposition 5.27,
of the torsion in Γnp

s

(V ), and from Lemma 6.2. �
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Proposition 6.4. Let V be a k-vector space. Let n, s ≥ 1 be integers. Then the
Frobenius

Frobs : Γnp
s

(V ) −→ Γn(V (s)),

[v]nps −→ [v(s)]n

is surjective. We have an exact sequence

0 −→ Tps(Γnp
s

(V )) −→ Γnp
s

(V )
Frobs

−→ Γn(V (s)) −→ 0.

The Verschiebung

Vers : Γn(V (s)) −→ Γnp
s

(V ),

[v(s)]n −→ ps[v]nps ,

is injective. We have an exact sequence

0 −→ Γn(V (s))
Vers−→ Γnp

s

(V ) −→ Γnp
s

(V )/ps −→ 0.

Proof. We may assume that V is finite dimensional, with basis e1, . . . , ed. The
surjectivity of Frobs directly follows from the description given in Lemma 6.2.
That its kernel is the ps-torsion is the content of Corollary 6.3. By Lemma 6.2,
it is clear that the image of Vers is psΓnp

s

(V ). It follows from the same Lemma,
combined with Proposition 5.27, that Vers is injective.

�

7. Omega powers and the Kummer-Witt exact sequence.

Recall that, for every k-vector space V , we have canonical isomorphisms

Γpk(V ) ' (V ⊗p)Sp ' Symp
k(V ∗)∗.

When working over a field of characteristic zero, it is common (though somewhat
misleading) to identify Symp

k(V ∗)∗ and Symp
k(V ), using what is called the ’sym-

metrizing operator’. Equivalently, in characteristic zero, the map

Γpk(V ) −→ Symp
k(V ),

[v]p 7→ vp,

is an isomorphism. It is of course far to be so in our context, where the perfect
field k has characteristic p. In other terms, the functor Γpk does not commute with
duality of vector spaces. However, it can be shown that the functor Γp = ΓpW(k)

does commute with duality, in the sense that Γp(V ∗) and Γp(V )∨ are canonically
isomorphic. This phenomenon does unfortunately not extend to higher divided
powers: the functors Γn, in general, do not commute with duality. In the spirit
of the classical duality between (split) groups of multiplicative type and Abelian
groups of finite type, we are thus led to introduce new functors which are Pon-
tryagin dual to divided powers. We then define the first and second Kummer-Witt
exact sequence, which generalize the usual sequences

S1(A) : 0 −→ pA −→ A −→ A/p −→ 0,

and

S2(A) : 0 −→ Tp(A) −→ A −→ pA −→ 0,
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for A a torsion W(k)-module of finite type.. Note that S2(A) is Pontryagin dual
to S1(A∨); in other words, we have a commutative diagram

S1(A∨) : 0 // p(A∨) //

o
��

A∨ // A∨/p

o
��

// 0

S2(A)∨ : 0 // (pA)∨ // A∨ // (Tp(A))∨ // 0,

and simiarly by replacing p by q, where q is a power of p. In the sequel, we shall
tacitly identify A∨/q and Tq(A)∨.

Definition 7.1. Let V be a finite-dimensional k-vector space. Let n ≥ 0 be an
integer. We put

ΩnW(k)(V ) = Γp
n

W(k)(V
∗)∨.

We call ΩnW(k)(V ) the n-th Omega power of V , and denote it simply by Ωn(V ), if

the dependence in k is clear. The Frobenius map

Frob : Γp
n+1

(V ∗) −→ Γp
n

(V ∗)(1)

induces, by Pontryagin duality, a W(k)-linear map

Ωn(V )(1) −→ Ωn+1(V ),

which we denote by Ver, the Verschiebung for (Omega powers). The Verschiebung
map

Ver : Γp
n

(V ∗)(1) −→ Γp
n+1

(V ∗)

induces, by duality, a W(k)-linear map

Ωn+1(V ) −→ Ωn(V )(1),

which we denote by Frob, the Frobenius (for Omega powers).

Remark 7.2. The n-th Omega power

V 7→ Ωn(V )

is a covariant functor from the category of k-vector spaces to that of W(k)-
modules.

Exercise 7.3. Show that we have Frob ◦ Ver = p and Ver ◦ Frob = p, for divided
powers and for Omega powers. This relation will not be used in this paper.

Remark 7.4. Note that the Pontryagin duality A 7→ A∨, from the category of
torsion W(k)-modules of finite type to itself, does not a priori commute with the
tensor product ⊗ = ⊗W(k). Thus, the functors Ωn are not strictly polynomial in
general.

Definition 7.5. Let V be a k-vector space. Let r, s ≥ 0 be integers. The exact
sequence

0 −→ Tps(Γp
r+s

(V ∗)) −→ Γp
r+s

(V ∗) −→ psΓp
r+s

(V ∗)
Frobs

' Γp
r

(V ∗(s)) −→ 0

(cf. Proposition 6.4) gives by duality an exact sequence

0 −→ Ωr(V (s))
Vers' psΩr+s(V ) −→ Ωr+s(V ) −→ Ωr+s(V )/ps −→ 0.

It is called the first Kummer-Witt sequence (for V , r and s). It is denoted by
KW1(V, r, s).
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Similarly, the exact sequence

0 −→ Γp
r

(V ∗(s))
Vers' psΓp

r+s

(V ∗) −→ Γp
r+s

(V ∗) −→ Γp
r+s

(V ∗)/ps −→ 0

gives by duality an exact sequence

0 −→ Tps(Ωr+s(V )) −→ Ωr+s(V ) −→ psΩr+s(V )
Frobs

' Ωr(V (s)) −→ 0

It is called the second Kummer-Witt sequence (for V , r and s). It is denoted by
KW2(V, r, s).

The next Proposition gives, in a particular case, a concrete interpretation of the
Verschiebung.

Proposition 7.6. Let V be a k-vector space. Let s ≥ 0 be an integer. Then, we
have a canonical injection

jV : Symps(V ) −→ Ωs(V ),

identifying Symps(V ) with Tp(Ω
s(V )). Define a k-linear map

iV : V (s) −→ Symps(V )

by the formula

iV (x) = xp
s

.

Then the composite

V (s) iV−→ Symps(V )
jV−→ Ωs(V )

equals Vers.

Proof. Let us prove the first claim. By Proposition 5.13, we have a canonical
(k-linear) isomorphism

Γp
s

(V ∗)/p = Γp
s

k (V ∗)
∼−→ ((V ∗)⊗p

s

)Sps ,

[φ]ps 7→ φ⊗
ps

.

The arrow jV is then given by applying Pontryagin duality to the composite

Γp
s

(V ∗) −→ Γp
s

(V ∗)/p
∼−→ ((V ∗)⊗p

s

)Sps ,

using Remark 5.14.

We now prove the second claim. The dual of iV is obviously the arrow

Γp
s

(V ∗)/p = Γp
s

k (V ∗) −→ V ∗(s),

[φ]ps 7→ φ(s),

which is the reduction mod p of the Frobenius

Frobs : Γp
s

(V ∗) −→ V ∗(s).

The claim follows, by definition of the Verschiebung for Omega powers. �
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7.1. Divided powers versus Omega powers. In this subsection, we investi-
gate the difference between divided powers and Omega powers. When needed, we
shall identify Wn(k) = W(k)/pnW(k) with the submodule

(
1

pn
W(k))/W(k) ⊂ K/W(k).

Definition 7.7. Let V be a k-vector space, of finite dimension d ≥ 1. Let n ≥ 1
be an integer. For any φ ∈ V ∗, the formula

V −→ Γp
n

(k) = Wn+1(k)

v 7→ [φ(v)]pn

defines a polynomial law, which is homogeneous, of degree pn. Hence a morphism

δ(φ) : Γp
n

(V ) −→Wn+1(k) ⊂ K/W(k),

[v]pn 7→ [φ(v)]pn .

The association
δ : V ∗ −→ (Γp

n

(V ))∨

is itself a polynomial law, homogeneous of degree pn, inducing a W(k)-linear mor-
phism

∆ : Γp
n

(V ∗) −→ (Γp
n

(V ))∨.

Remark 7.8. The morphism ∆ can of course be viewed as a pairing

∆′ : Γp
n

(V )× Γp
n

(V ∗) −→Wn+1(k) ' 1

pn+1
W(k)/W(k) ⊂ K/W(k).

We will denote ∆′(x, y) simply by < x, y >.

Lemma 7.9. Choose a basis e1, . . . , ed of V , with dual basis e∗1, . . . , e
∗
d. We then

have a commutative diagram

Γp
n

(V )× Γp
n

(V ∗)

o
��

<.,.> // K/W(k)

⊕
a1+...+ad=pn(

⊗d
i=1 Γai(kei))×

⊕
b1+...+bd=pn(

⊗d
j=1 Γbj (ke∗j ))

// K/W(k)

,

where the vertical map on the left is the product of the isomorphism given by
Lemma 5.27, and the lower horizontal map is the pairing given by

([e1]a1 . . . [ed]ad , [e
∗
1]b1 . . . [e

∗
d]bd) 7→

(
pn

a1, a2, . . . , ad

)
,

if ai = bi for all i, or by

([e1]a1 . . . [ed]ad , [e
∗
1]b1 . . . [e

∗
d]bd) 7→ 0

otherwise.

Proof. We work over the polynomial ring Wn+1(k)[Xi, Yi, i = 1 . . . d]. By defini-
tion,

< [X1e1 + . . .+Xded]pn , [Y1e
∗
1 + . . .+ Yde

∗
d]pn >= (X1Y1 + . . .+XdYd)

pn .

Developping the lefthand side, we get that the coefficient of Xa1
1 . . . Xad

d Y b11 . . . Y bdd
is < [e1]a1 . . . [ed]ad , [e

∗
1]b1 . . . [e

∗
d]bd >, whenever ai and bi are positive integers such

that a1 + . . . + ad = b1 + . . . + bd = pn. Developping the righthand side, and
identifying the coefficients, yields the result.

�
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Lemma 7.10. Choose a basis e1, . . . , ed of V . For every decomposition a1 + . . .+
ad = pn of pn into a sum of nonnegative integers, put

N(a1, . . . , ad) = max(0, n+ 1− vp(
(

pn

a1, a2, . . . , ad

)
)).

Then the kernel of
∆ : Γp

n

(V ) −→ (Γp
n

(V ∗))∨

is generated by the elements

pN(a1,...,ad)[e1]a1 . . . [ed]ad ,

where a1 + . . . + ad = pn runs through all decompositions of pn into a sum of
nonnegative integers.

Proof. Obvious from Lemma 7.9. �

Proposition 7.11. Let V be a finite-dimensional k-vector space. If n ≤ 1, or if
n is arbitrary and V has dimension less than or equal to two, the arrow

∆ : Γp
n

(V ) −→ Ωn(V ) = (Γp
n

(V ∗))∨

is an isomorphism.

Proof. Since the source and the target of ∆ are finite W(k)-modules of the same
length, it suffices to show injectivity. The case n = 0 is obvious. Assume that
n = 1. We use Lemma 7.10. Take a decomposition a1 + . . .+ad = p. Assume that
none of the ai’s equals p. Then [e1]a1 . . . [ed]ad has order p, and N(a1, . . . , ad) =
2 − 1 = 1, hence pN(a1,...,ad)[e1]a1 . . . [ed]ad = 0. If, on the other hand, one of the
a′is equals p (hence all other aj ’s are zero), then [e1]a1 . . . [ed]ad = [ei]p has order

p2, and N(a1, . . . , ad) = 2− 0 = 2. Thus pN(a1,...,ad)[e1]a1 . . . [ed]ad = 0, as well.
Assume now that d = 2. Then,

N(a1, a2) = n+ 1− vp(
(

pn

a1, a2

)
) = 1 + min(vp(a1), vp(a2))

is the base p logarithm of the order of [e1]a1 [e2]a2 , and the claim becomes obvious.

�

It will become clear in the sequel that Omega powers are far better behaved than
divided powers, for applications to (Galois) cohomology.

Exercise 7.12. Show that ∆ is, in general, not an isomorphism.

8. The Transfer.

In this section, we build an essential gadget for Omega powers over a finite field,
the transfer. The authors believe that it is very close to Steenrod operations in
algebra.

Let q = pr be a power of p, and let V be a k-vector space. In what follows, we
shall play with the Frobenius -law-

Frobr : Ak(V ) −→ Ak(V (r))

v 7→ v(r) := v ⊗ 1.

Up to the choice of a basis, it is given by raising all coordinates to the q-th power.
Note that the existence of this law does not rely on the fact that k is a field: it



26

exists for any commutative ring of characteristic p, and any k-module V .
Now, assume that k is finite, of cardinality q = pr. Then the Frobenius -map-

Frobr : V −→ V (r)

(given by the Frobenius law applied to k-rational points) is a k-linear isomorphism,
enabling us to canonically identify the vector spaces V and V (r), which we shall
do.

Definition 8.1. If k is a finite field, of cardinality q = pr, and if V is a k-vector
space, the Frobenius law

Frobr : Ak(V ) −→ Ak(V )

shall simply be denoted by FV (or even by F if the dependence in V is clear) in
the sequel.

Let H ⊂ V be a hyperplane. Let π ∈ V ∗ be a linear form with kernel H. The
formula

TV,π : Ak(V ) −→ Ak(V ),

v 7→ F (v)− π(v)q−1v

defines a polynomial law, homogeneous of degree q. Since λq−1 = 1, for all λ ∈ k×,
it is clear that TV,π depends on H only . Moreover, we have

π(TV,π(v)) = π(F (v))− π(v)q = π(v)q − π(v)q = 0,

hence TV,π actually takes its values in Ak(H) ⊂ Ak(V ).

It is thus legitimate to state the following important Definition.

Definition 8.2. Let H ⊂ V be a hyperplane. Let π ∈ V ∗ be a linear form with
kernel H. The formula

Ak(V ) −→ Ak(H),

v 7→ F (v)− π(v)q−1v

defines a polynomial law, independent of the choice of π. We denote it by TV,H .
It is homogeneous, of degree q. We shall refer to it as the transfer, from V to H.

Remark 8.3. There is a fancy algebro-geometric way of seeing the transfer, as
follows. The k-variety X := Pk(V ∗) (of hyperplanes in V ) is equipped with the
tautological bundle T , whose fiber at H is H itself.
Then, the transfer might be view as a single polynomial law of degree q

AX(V ⊗OX) −→ AX(T ),

between affine spaces associated to locally free sheaves of OX -modules.

Remark 8.4. Note that the transfer, on k-rational points, is just the extension by
zero of the inclusion H −→ V to all of V . Let us make this statement more precise

Lemma 8.5. Let V be a finite-dimensional k-vector space. Let H1, H2 be distinct
hyperplanes of V . Put K := H1 ∩H2; it has codimension two in V . Then we have
commutative diagrams

Ak(H2)

can

��

TH2,K // Ak(K)

can

��
Ak(V )

TV,H1 // Ak(H1)



27

and

Ak(H1)

can

��

Frobr
// Ak(H1)

Ak(V )
TV,H1 // Ak(H1).

Proof. This is rather obvious, by definition of the transfer. �

Definition 8.6. Let X ⊂ P(V ∗) be a subset.
We define

TX : Ak(V ) −→ Ak(
⊕
H∈X

H),

v 7→ (TV,H(v))H

to be the (finite!) sum of the transfers TV,H , for all hyperplanes H belonging to
X.

The next Proposition is a key tool in this paper.

Proposition 8.7. Let W ⊂ V be a linear subspace, of codimension at least
two. Take X ⊂ P(V ∗) to be the set of hyperplanes containing W (that is,
X = P((V/W )∗)).
Then the composite

Ak(V )
TX−→ Ak(

⊕
H∈X

H) −→ Ak(V ),

where the second map is given by the sum of the inclusions H −→ V , equals Frobr.

Proof. We argue on the level of the functor of points of the k-variety Ak(V ).
Let k′/k be a commutative k-algebra. Pick v ∈ V ⊗k k′.
Since each hyperplane in X is the kernel of q − 1 linear forms vanishing on W (a
number which equals −1 modulo p), the composite under consideration sends v to

−
∑

π∈(V/W )∗,π 6=0

(F (v)− π(v)q−1v).

The Proposition then follows from the fact that∑
π∈(V/W )∗

π(v)q−1 = 0.

Indeed, put n = dimk(V/W ) ≥ 2. Then the sum above is of the shape∑
x∈kn

P (x),

where P ∈ k′[X1, . . . , Xn] is a homogeneous polynomial, of degree q − 1. It is a
classical fact (used in the proof of the Chevalley-Warning Theorem) that the only
monomials which can contribute to this sum are those of the form Xa1

1 . . . Xan
n ,

with all ai’s nonzero and divisible by q − 1. Since n ≥ 2, these do not occur, and
the claim is proved. �

We now define the transfer for divided powers, and for Omega powers.
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Definition 8.8. Let X ⊂ P(V ∗) be a subset. For any integer s ≥ 0, we set

tX : Γp
s+r

(V ) −→ Γp
s

(
⊕
H∈X

H),

[v]ps+r 7→ [TX(v)]ps ;

it is a W(k)-linear map. It is the transfer with respect to X, for divided powers.

Definition 8.9. Let X ⊂ P(V ) be a subset. Let s ≥ 0 be an integer. The
Pontryagin dual of the W(k)-linear map

tX : Γp
s+r

(V ∗) −→ Γp
s

(
⊕
L∈X

(V/L)∗)

is a W(k)-linear map

tX : Ωs(
⊕
L∈X

V/L) −→ Ωs+r(V ).

It is the transfer relative to X, for Omega powers.

By Pontryagin duality, proposition 8.7 immediately yields the following.

Proposition 8.10. Let W ⊂ V be a linear subspace, of dimension at least two.
Put X := P(W ) ⊂ P(V ). Let s ≥ 0 be an integer. Then the composite

Ωs(V )
can−→ Ωs(

⊕
L∈X

V/L)
tX−→ Ωs+r(V )

equals Verr.

Remark 8.11. Informally speaking, the preceding Proposition says that Omega
powers, through the transfer, ’eat’ quotients, converting them into torsion.

Remark 8.12. The transfer

tV,L : V/L −→ Ωr(V )

takes its values in the p-torsion of Ωr(V ), which is Sympr (V ) by Proposition 7.6.

For s = 0, Proposition 8.10 may then by rephrased by saying that the k-linear
map

Verr : V −→ Sympr (V ) ⊂ Ωr(V ),

x 7→ xp
r

,

canonically factors through the k-linear map

V −→
⊕
L∈X

V/L.

Exercise 8.13. Show that the transfer

tV,L : V/L −→ Symq(V ) ⊂ Ωr(V )

is given by the formula

x 7→ xq − xvq−1
L ,

where vL is any nonzero element of L.
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9. The notions of n-surjectivity and of n-smoothness.

In this section, k is a finite field of cardinality q = pr, and G is a profinite group.

Definition 9.1. A cyclotomic G-module (relative to k) is a free W(k)-module of
rank one, endowed with a continuous W(k)-linear action of G. Such a module will
often be denoted by W(k)(1).

Remark 9.2. A cyclotomic G-module is thus given by a continuous character

χ : G −→W(k)×,

which shall, in our theory, play the rôle of the cyclotomic character in Galois
theory.

Let W(k)(1) be a cyclotomic G-module. For i a non negative integer, we put

W(k)(i) = ⊗iW(k)W(k)(1).

For negative i, put

W(k)(i) = HomW(k)(W(k)(−i),W(k)).

For any W(k)-module M , we put

M(i) = W(k)(i)⊗W(k) M.

Remark 9.3. Let M be a (W(k), G)-module. It is clear that all twists M(i) are
(W(k), G)-modules, whereas W(k)(1) itself is not.

Definition 9.4. Let k be a finite field. Let G be a profinite group. Let n ≥ 1 be
an integer. Let

f : M −→ N

be a morphism of (W(k), G)-modules. We say that f is n-surjective (resp. n-
injective) if the following holds. For every open subgroup G′ ⊂ G, the map

f∗ : Hn(G′,M) −→ Hn(G′, N)

is surjective (resp. injective).

Remark 9.5. Let n ≥ 0 be an integer. Let

E : 0 −→ A
i−→ B

π−→ C −→ 0

be an exact sequence of (W(k), G)-modules.
Then π is n-surjective if and only if i is (n + 1)-injective. Indeed, using the
associated long exact sequences in cohomology, both conditions are equivalent to
the vanishing of the connecting homomorphism (Bockstein)

Hn(G′, C) −→ Hn+1(G′, A),

for every open subgroup G′ ⊂ G.

The next Lemma states that n-surjectivity is preserved by pullback and pushfor-
ward of exact sequences.
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Lemma 9.6. Let n ≥ 0 be an integer. Let

E : 0 −→ A
i−→ B

π−→ C −→ 0

be an exact sequence of (W(k), G)-modules. Let

f : A −→ A′

and

g : C ′ −→ C

be morphisms of (W(k), G)-modules. Denote by

E ′ : 0 −→ A′
i′−→ B′

π′−→ C ′ −→ 0

the exact sequence f∗(g
∗(E)). If π is n-surjective, then so is π′.

Proof. Easy diagram chase, using the associated long exact sequences in coho-
mology. �

Definition 9.7. Let k be a finite field. Let G be a profinite group. Let n ≥ 0 be
an integer. Let W(k)(1) be a cyclotomic G-module. It is said to be n-smooth if,
for every integer s ≥ 1, the quotient map

W(k)(n)/ps+1 −→W(k)(n)/ps

is n-surjective. A smooth cyclotomic module is one which is n-smooth, for every
n ≥ 1.

Remark 9.8. Let G be an arbitrary profinite group. Put W(k)(1) := W(k), with
trivial G-action. Then it is clear that W(k)(1) is 0-smooth.

Definition 9.9. Let k be a finite field. Let G be a profinite group. Let n ≥ 0 be
an integer. The group G is said to be n-smooth (resp. smooth), relative to k, if
there exists an n-smooth (resp. smooth) cyclotomic G-module (relative to k).

One of the main results of this paper, the Smoothness Theorem (Theorem 13.8),
states that 1-smoothness implies smoothness.

Remark 9.10. It follows from Remark 9.8 that every profinite group G is 0-smooth.
Note, however, that a smooth cyclotomic G-module needs not be 0-smooth. In
the following, we shall mainly investigate the notions of n-smoothness, for n ≥ 1.

The fundamental example of 1-smoothness is given by absolute Galois groups.

Proposition 9.11. Let k be an arbitrary finite field of characteristic p. Let F be
a field, of characteristic not p, and let Fsep/F be a separable closure. Put

G := Gal(Fsep/F ).

Put

µ = lim←−
n

µpn(Fsep)

and

W(k)(1) := µ⊗Zp W(k);

it is a cyclotomic G-module. It is 1-smooth.
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Proof. Since W(k) is a free Zp-module of finite rank, we are immediately reduced
to the case k = Fp. We then have a diagram

1 // µp // µps+1

��

x 7→xp
// µps //

��

1

1 // µp // Gm
x 7→xp

// Gm // 1,

given by classical Kummer theory. An easy diagram chase, combined with Hilbert’s
Theorem 90 for Gm, yields the result. �

We conclude this section with an amusing exercise.

Exercise 9.12. Let G be a finite p-group, which is 1-smooth (relative, say, to Fp).
Show that G is either trivial, or p = 2 and G is isomorphic to Z/2Z.

10. About Hilbert’s Theorem 90.

The authors now want to stress the importance of Hilbert’s Theorem 90. It is,
by the way, the favorite Theorem of the second author of this paper. The theory
developped here shows that this Theorem, perhaps contrary to what one could
expect, is -the- key ingredient to a ’short’ proof of the Bloch-Kato conjecture,
over a field F of characteristic not p. Indeed, the Lifting Theorems in the next
section, in practise, are a machinery that applies Hilbert’s Theorem 90 for Gm
ceaselessly, not only to the base field F itself, but also to a vast amount of finite
extensions of F . Furthermore, we are tempted to make the following analogy.
Adopting the point of view of Grothendieck’s descent theory, the main content
of (the classical version of) Hilbert’s Theorem 90 for GLn is to convert into
cohomological information (H1(F,GLn) = 1) the highly non canonical fact that,
over a field, every vector space possesses a basis. This is perfectly in the spirit of
this paper: studying intrinsic properties of divided powers over Witt vectors, the
proof of which may involve choosing a basis.

In the sequel, we shall need the following generalization of Hilbert’s Theorem
90. It is probably folklore for some algebraists. It makes precise the following
philosophical statement: two finite linear data over a local ring A, which become
isomorphic after a faithfully flat extension of A, are already isomorphic over A.
Lacking a suitable reference, we include a proof.

We begin by an elementary correspondence, which is the set-theoretic version of
the equivalence between line bundles and Gm-torsors.

Lemma 10.1. Let S be a (not necessarily commutative, unital) ring. Then there
is an equivalence between (left) S-modules L which are free of rank one, and sets
X equipped with a (left) simply transitive action of the multiplicative group S×.
In one direction, it is given by associating to L its set of generators:

L 7→ X := {x ∈ L,L = Sx}.
In the other direction, it is given by

X 7→ (S ×X)/S×,

where we mod out the free action of S× given by

λ.(s, x) = (sλ−1, λ.x).
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Proof. This is clear. �

Lemma 10.2. Let A be a Noetherian local ring. Let A′/A be a faitfully flat exten-
sion of commutative rings, and let S be a A-algebra, which is finite as an A-module.
Let M be an S-module. Put S′ := S ⊗A A′ and M ′ := M ⊗A A′. If M ′ is a free
S′-module of rank one, then M is a free S-module of rank one.

Proof. Let κ be the residue field of A. Put M := M ⊗A κ, S := S ⊗A κ. Assume
that M is a free S-module of rank one. Then, by Nakayama’s Lemma, the lift of a
generator of M (as an S-module) to M will be a generator of M (as an S-module).
Hence, we are reduced to the case where A is a field. Another similar application
of Nakayama’s Lemma shows that we may mod out the Jacobson radical of S, and
assume that S is a semi-simple algebra. Hence, S is isomorphic direct product
of matrix rings of the form Mni

(Di), where Di are division A-algebras. We may
thus assume thatt S = Mn(D) for D a division A-algebra. But then, by Morita
equivalence, M is isomorphic to a sum of r copies of the simple module Dn. Since
M ⊗A A′ is free of rank one as an S′-module, we must have r = n by dimension
count, and M is free of rank one.

�

Remark 10.3. Assume, in what precedes, that S is finite and locally free as
an A-module. Then, the group of invertible elements in S is representable by
the affine A-group scheme GL1(S) (which is an open subscheme of AA(S)), and
Grothendieck’s descent theory asserts that GL1(S)-torsors over Spec(A), for the
fppf topology, correspond to S-modules M as in the previous Lemma. We thus
get

H1(Spec(A), GL1(S)) = {∗},
where cohomology is taken with respect to the fppf topology. This statement is
known as Grothendieck-Hilbert’s Theorem 90.

Proposition 10.4. Let A be a Noetherian local ring. Let A′/A be a faitfully
flat extension of commutative rings, and let R be an A-algebra. Let N be an
R-module, which is finite as an A-module. Let M1, M2 be two R-submodules of
N . Put R′ = R ⊗A A′, N ′ = N ⊗A A′, M ′1 = M1 ⊗A A′ and M ′2 = M2 ⊗A A′.
Assume there exists f ′ ∈ GLR′(N

′) such that f ′(M ′1) = M ′2. Then there exists
f ∈ GLR(N) such that f(M1) = M2.

Proof.

Put

S := {f ∈ EndR(N), f(M1) ⊂M1};
it is an A-algebra. It is a subalgebra of EndA(N). Writing N as a quotient of a
free module An, EndA(N) then occurs as a sub-A-module of Nn, which is finite by
assumption. Hence, S itself is a finite A-module. Put S′ := S ⊗A A′. By faithful
flatness, we get that the canonical morphism

S′ −→ {f ′ ∈ EndR′(N
′), f ′(M ′1) ⊂M ′1}

is an isomorphism. The set

X := {f ′ ∈ GLR′(N
′), f ′(M ′1) = M ′2}
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is endowed with a simply transitive action of the multiplicative group S′×. As
such (see Lemma 10.1), it canonically corresponds to a free S′-module of rank one
M ′, given by the set-theoretical formula

M ′ = (X × S′)/S′×.

But the S′-module M ′, viewed as an A′-module, is endowed with a canonical
descent data for the faithfully flat morphism A′/A. By descent, we get an A-
module M , which is in fact a locally free S-module of rank one. To prove the
Proposition is equivalent to proving that M is actually a free S-module of rank
one (to give a generator of the S-module M is equivalent to giving f ∈ GLR(N)
such that f(M1) = M2). We conclude by applying Lemma 10.2.

�

Corollary 10.5. Let A be a Noetherian local ring. Let A′/A be a faitfully flat
extension of commutative rings, and let R be an A-algebra. Put R′ := R ⊗A A′.
Let N,M be two R-modules, one of which is finite as an A-module. Assume
that M ⊗A A′ and N ⊗A A′ are isomorphic as R′-modules. Then M and N are
isomorphic as R-modules.

Proof. To see this, just apply the Proposition to M and N , viewed as R-
submodules of M

⊕
N . �

Remark 10.6. Specializing to linear representations, we get the following state-
ment. Two finite-dimensional linear representations of an abstract group G over a
field F , which become isomorphic over an extension E/F , are already isomorphic
over F . Note that this holds, in particular, in the modular case (i.e. where F has
characteristic p and G is a finite p-group).

We finish this section by stating a stronger corollary, which will be used in the
sequel.

Corollary 10.7. Let A be a Noetherian local ring. Let A′/A be a faitfully flat
extension of commutative rings, and let R be an A-algebra. Put R′ := R ⊗A A′.
Let

E : 0 −→M1 −→M2 −→M3 −→ 0

and

E ′ : 0 −→M ′1 −→M ′2 −→M ′3 −→ 0

be two short exact sequences of R-modules, where the Mi’s and the M ′j’s are finite
as A-modules. If E ⊗A A′ and E ′ ⊗A A′ are isomorphic, as exact sequences of
R′-modules, then E and E ′ are isomorphic, as exact sequences of R-modules.

Proof. Left as an exercise for the reader. �

Remark 10.8. In all what precedes, the Noetherian assumptions may probably be
dropped. They are here to simplify the proofs.

11. The Lifting Proposition.

In this section, k is a finite field, of cardinality q = pr, and G is a profinite group.
All tensor products are taken over W(k).
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The theory of divided powers (and Omega powers), equipped with the Frobenius,
Verschiebung and transfer morphisms, is perfectly canonical. Hence, divided pow-
ers and Omega powers shall, from now on, be viewed as functors from M(k,G)
to M(W(k), G). Moreover, the Frobenius, Verschiebung and transfer morphisms
are G-equivariant. Let us give an example. Let V be a (k,G)-module, of finite
dimension d ≥ 2. Let X ⊂ P(V ) be a G-invariant subset. Then the transfer

tX : Ωs(
⊕
L∈X

V/L) −→ Ωr+s(V )

is a morphism of (W(k), G)-modules. Recall that, as explained in section 4, the
source of tX is naturally a (W(k), G)-module, induced from dimension d− 1.

Definition 11.1. Let

f : A −→ B

be a morphism of (k,G)-modules. We denote by Ks(f) the kernel of the map

Ωs(A)
Ωs(f)−→ Ωs(B).

If f is the quotient of A by a (k,G)-submodule A′, we put

Ks(A,A′) := Ks(f).

Remark 11.2. Let

f : A −→ B

be a surjective linear map between (k,G)-modules. Then f admits a (non canon-
ical) k-linear splitting

g : B −→ A.

By functoriality of Omega powers, Ωs(g) is then a W(k)-linear splitting of Ωs(f).
Hence, the sequence

0 −→ Ks(f) −→ Ωs(A)
Ωs(f)−→ Ωs(B) −→ 0,

is not only an exact sequence of W(k)-modules, but is also split. It is, of course,
not split in general as an exact sequence of (W(k), G)-modules.
We infer that, for every r ≥ 0, the sequence

0 −→ Ks(f)/pr −→ Ωs(A)/pr
Ωs(f)−→ Ωs(B)/pr −→ 0

is also exact; a fact which shall constantly be used in the sequel.

Let V be a (k,G)-module, and let L ⊂ V be a G-invariant linear subspace. Then
we have an exact sequence

0 −→ L(s) −→ Ks(V,L) −→ Ks(V,L)/ps −→ 0,

fitting into the commutative diagram
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0

��

0

��

0

��
0 // L(s) //

��

Ks(V,L) //

��

Ks(V,L)/ps //

��

0

0 // V (s) //

��

Ωs(V ) //

��

Ωs(V )/ps //

��

0

0 // V (s)/L(s) //

��

Ωs(V/L) //

��

Ωs(V/L)/ps //

��

0

0 0 0.

Our goal here is Proposition 11.6. It is the key step towards the main Lifting
Theorems of this paper.
We start by introducing a slightly abusive notation, whose goal is to increase the
readability of the proofs.

Definition 11.3. Let T be a free W(k)-module of finite rank, endowed with a
continuous W(k)-linear action of G. For every (W (k), G)-module M , we shall
put

M(∗) := M ⊗W(k) T ,
the dependence in T being implicit. It is obviously a (W (k), G)-module.

Remark 11.4. The module T will only be used through the ’twisting’ (exact)
functor

M 7→M(∗)
it induces. Note that, although it will later often be the case, we do not assume
here that T has rank one over W(k).

Remark 11.5. The module T is of course not a (W (k), G)-module, unless it is
trivial. However, all finite quotients T /ps are (W (k), G)-modules.

Proposition 11.6. Let T be a free W(k)-module of finite rank, endowed with a
continuous W(k)-linear action of G. Let n ≥ 0 be an integer. Assume that, for
every integer s ≥ 0, the quotient map

T /ps+1 −→ T /ps

is n-surjective. Let V be a (k,G)-module. Let L0 ⊂ V be a G-invariant line.
Then, for every integer s ≥ 0, the quotient map

Ks(V,L0)(∗) −→ Ks(V,L0)(∗)/ps

is n-surjective.

11.1. Proof of Proposition 11.6. It is by induction on the dimension d of
V , though the case d = 2 is dealt with separately. Note that n does not play an
important rôle in the proof. For instance, assuming that n = 0 does not make it
any simpler.
We may assume that G is a pro-p-group, by the usual restriction-corestriction
argument.
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11.1.1. A Reduction step. The following will be used in the sequel. It says that
making a finite field extension does not affect the conclusion of the Proposition.

Lemma 11.7. Let k′/k be a finite field extension.
Put V ′ := V ⊗k k′, L′0 := L0 ⊗k k′ and K ′s(V ′, L′0) := Ks(V,L0)⊗W(k) W(k′).
If the quotient map

K ′s(V ′, L′0)(∗) −→ K ′s(V ′, L′0)(∗)/ps

is n-surjective, then so is the map

Ks(V,L0)(∗) −→ Ks(V,L0)(∗)/ps.

Proof. This follows rather formally from the fact that the canonical inclusion

W(k) −→W(k′),

as a W(k)-linear map, admits a retraction. More precisely, there exists an isomor-
phism of W(k)-modules

W(k′)
∼−→W(k)⊕ C,

with C a free W(k)-module. The choice of such an isomorphism induces, for every
(W(k), G)-module M , a functorial G-equivariant retraction of natural injection

M −→M ⊗W(k) W(k′),

m 7→ m⊗ 1,

whence the claim. �

11.1.2. The one-dimensional case. If d = 1, then V = L0 is isomorphic to the
trivial one-dimensional representation k (recall that G is a pro-p-group!), and
Ks(V,L0) is thus isomorphic to Ws+1(k). Thus, there is nothing to prove in this
case.

11.1.3. The two-dimensional case. We now want to prove the d = 2 case, where
we know that Ωs(V ) is canonically isomorphic to Γp

s

(V ) (cf. Proposition 7.11).
Thus, we may replace Omega powers by divided powers.

We have a commutative diagram

0

��

0

��

0

��
0 // Ks−1(V (1), L

(1)
0 )/ps−1 //

��

Ks(V,L0)/ps

��

// Ks(V,L0)/p //

��

0

0 // Γp
s−1

(V (1))/ps−1 Ver //

��

Γp
s

(V )/ps //

��

Γp
s

(V )/p //

��

0

0 // Γp
s−1

(V (1)/L
(1)
0 )/ps−1 Ver //

��

Γp
s

(V/L0)/ps //

��

Γp
s

(V/L0)/p //

��

0

0 0 0.
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A straightforward induction on s, using the (twist by T of the) top row of this
diagram, then shows that it is enough to prove that the quotient map

Ks(V,L0)(∗) −→ Ks(V,L0)(∗)/p

is n-surjective, which we now do. We first deal with the k = Fp case, and then
deduce the result for k arbitrary.

11.1.4. The case d = 2 and k = Fp. Assume first that k = Fp. The group G,
being a pro-p-group, then acts on V via an additive character

χ : G −→ C ⊂ GLk(V ),

where C is a cyclic group of order p, sitting as a p-Sylow subgroup in GLk(V ) '
GL2(Fp). We can assume that χ is non trivial. Indeed, if the action of G on V is
trivial, then V is isomorphic to k⊕ k as a (k,G)-module, and the statement is an
immediate consequence of the one-dimensional case, using the strict polynomiality
of divided powers.

Denote by k′ a field with ps elements. Put

Γ′ := ΓW(k′), V
′ = V ⊗k k′, L′0 = L0 ⊗k k′.

We denote by P(V ′) the G-set of one-dimensional k′-subspaces L′ ⊂ V ′; it has
cardinality ps + 1.

Note that any k′-vector space W ′ is canonically isomorphic to W ′
(s)

. Moreover,
the Frobenius map

Frobs : Γ′p
s

(W ′) −→W ′
(s)

= W ′

induces a k′-linear map

Frobs : Γ′p
s

(W ′)/p −→W ′,

which is an isomorphism if W ′ is one-dimensional.
For a k′-rational line L′ ∈ P(V ′) (not necessarily defined over k), recall that we
have the transfer (for divided powers)

tV ′,L′ : Γ′p
s

(V ′) −→ L′.

It induces a k′-linear map

Γ′p
s

(V ′)/p −→ L′,

which we also denote by tV ′,L′ .

The following Lemma was the starting point of this paper.

Lemma 11.8. The k′- linear morphism

Γ′
ps

(V ′)/p −→
⊕

L′∈P(V ′)

L′,

which is the sum of the transfers for all k′-rational lines L′ ⊂ V ′ (including L′0),
is an isomorphism of (k′, G)-modules.

Proof. For L′ ∈ P(V ′) and v ∈ V ′, the transfer tV ′,L′ sends a symbol [v]ps to v
if v ∈ L′, or to zero otherwise (cf. Remark 8.4). Thus, the map of the Lemma is
surjective (a nonzero vector belongs to a unique line!). It is then bijective, since
both source and target are k′-vector spaces of dimension ps + 1 (recall that V ′ is
a two-dimensional k′-vector space!). �



38

Note that the previous isomorphism holds over k′, and has, a priori, no canonical
analogue over k. However, by Lemma 11.7, base-changing from W(k) to W(k′),
which we now do, has no effect on what has to be proven (namely, Proposition
11.6, in the particular case of a two-dimensional (Fp, G)-module V ).

Any L′ ∈ P(V ′), distinct from L′0, will be a complement of L′0, whence a canonical
isomorphism

L′ −→ V ′/L′0,

which we use to identify those two k′-rational lines. The isomorphism of Lemma
11.8 then gives rise to a commutative diagram (of (W (k′), G)-modules)

Ñ
⊕

Γ′p
s

(L′0) //

��

Ks(V ′, L′0) //

��

Ks(V ′, L′0)/p ∼
//

��

N
⊕
L′0

��
(
⊕

L′ 6=L′0
Γ′p

s

(L′))
⊕

Γ′p
s

(L′0) //

π̃

��

Γ′
ps

(V ′) //

��

Γ′
ps

(V ′)/p ∼
//

��

(
⊕

L′ 6=L′0
L′)
⊕
L′0

π

��
Γ′p

s

(V ′/L′0) Γ′
ps

(V ′/L′0) // Γ′p
s

(V ′/L′0)/p ∼
// V ′/L′0,

where π̃ is zero on Γ′
ps

(L′0), and is induced by the isomorphism L′
∼−→ V ′/L′0

if L′ 6= L′0, and where Ñ is the kernel of π̃ restricted to
⊕

L′ 6=L′0
Γ′
ps

(L′) (and

similarly for π and N). Note that N = Ñ/p. By an immediate diagram chase, it
is then enough to show that the map

Ñ(∗)
⊕

Γ′p
s

(L′0)(∗) −→ N(∗)
⊕

L′0(∗),

which is the composite of the arrows of the top row, is n-surjective. But the map

Γ′p
s

(L′0)(∗) −→ L′0(∗)

is obviously n-surjective, by the one-dimensional case.
Hence, it remains to show that the quotient map

Ñ(∗) −→ N(∗) = Ñ(∗)/p

is n-surjective. But recall that we started from a two-dimension vector space V
over k = Fp, on which the pro-p-group G acts through the nontrivial additive
character χ : G −→ C, where C is a cyclic group of order p. The G-set P(V ′),
of cardinality ps + 1, is thus the disjoint union of the orbits {L′0}, and of ps−1

orbits of size p. The (W(k′), G)-module
⊕

L′ 6=L′0
Γ′p

s

(L′) is thus isomorphic to

Ws+1(k′)[C]p
s−1

, and N fits into an exact sequence

0 −→ N −→Ws+1(k′)[C]p
s−1

−→Ws+1(k′) −→ 0,

where the surjection is the augmentation map, sending each element of the canon-
ical permutation basis to 1. Note that everything is actually defined over Z here.
In other words, the surjection in the exact sequence above is obtained from the
surjection (augmentation)

Z[C]p
s−1

−→ Z −→ 0,
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by extending scalars from Z to Ws+1(k′).
Consider the usual exact sequence

0 −→ I −→ Z[C] −→ Z −→ 0,

where I is the augmentation ideal of Z[C].

Lemma 11.9. Let m ≥ 1 be an integer. Denote by Jm the kernel of the G-
equivariant surjection

Z[C]m −→ Z,
sending each element of the canonical basis to 1. Then there exists a G-equivariant
isomorphism

Z[C]m−1 ⊕ I ∼−→ Jm.

Proof. Consider the map

Z[C]m−1 ⊕ I −→ Z[C]m,

(x1, . . . , xm−1, y) 7→ (y + x1, x2 − x1, x3 − x2, . . . , xm−1 − xm−2,−xm−1).

It is straightforward to check that this map takes values in Jm, and induces an
isomorphism Z[C]m−1 ⊕ I ∼−→ Jm.
�

Put

Ik′ := I ⊗Z W(k′).

By the previous Lemma, we see that N is isomorphic to

Ws+1(k′)[C]p
s−1−1

⊕
Ik′/p

s+1.

By Shapiro’s Lemma, and by the one-dimensional case, the map

Ws+1(k′)[C]p
s−1−1(∗) −→Ws+1(k′)[C]p

s−1−1(∗)/p

is n-surjective.

Hence, we are reduced to showing that the map

Ik′(∗)/ps+1 −→ Ik′(∗)/p

is n-surjective. We will do this by showing that the sequence

0 −→ (pIk′/p
s+1Ik′)(∗) −→ (Ik′/p

s+1)(∗) −→ (Ik′/p)(∗) −→ 0

is obtained by pullback and pushforward from the sequence

0 −→ (T /ps)[C]
∗p−→ (T /ps+1)[C] −→ (T /p)[C] −→ 0,

in which the quotient map is n-surjective by assumption on T , using Shapiro’s
Lemma. We then use Lemma 9.6.
Working over Z, it is of course enough to show that the exact sequence (of Z[G]-
modules)

F : 0 −→ I/ps
∗p−→ I/ps+1 −→ I/p −→ 0

is obtained by pullback and pushforward from the sequence

E : 0 −→ (pZ/ps+1Z)[C] −→ (Z/ps+1Z)[C]
π−→ Fp[C] −→ 0,

which we now do.
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Choose a generator σ of C, which we identify with the corresponding basis element
of Z[C]. We then have the usual exact sequence

0 −→ Z −→ Z[C]
τ−→ I −→ 0,

where

τ(1) = 1− σ.
Put

N := 1 + σ + . . .+ σp−1 ∈ Z[C].

We have an injective map

j : I/p −→ Fp[C],

realizing I/p as the kernel of the augmentation map. We also have a map

i : (pZ/ps+1Z)[C] −→ I/ps,

p 7→ 1− σ.
Then j∗i∗(E) is an extension

0 −→ I/ps −→ E −→ I/p −→ 0.

I claim it is canonically isomorphic to the extension F . Indeed, the element

f := (1− σ) ∈ (Z/ps+1Z)[C]

maps to Im(j) via π. It thus defines an element e ∈ E. Since Nf = 0, we get
Ne = 0 in E. We thus have a Z[C]-equivariant map

I/ps+1 = (Z[C]/N)/ps+1 −→ E,

1 7→ e.

I claim it is an isomorphism. Since E and I/ps+1 have the same cardinality, it
suffices to show injectivity. Assume that xe = 0, with x ∈ Z[C].

Lemma 11.10. One can write

x = py + uN,

with u ∈ Z, and y ∈ Z[C], not involving σp−1 (in other words,

y =

p−2∑
i=0

yiσ
i,

with yi ∈ Z).

Proof. For sure, we can write

x = z + uN,

with u ∈ Z and z ∈ Z[C], not involving σp−1 (in other words, z =
∑p−2
i=0 ziσ

i, with
zi ∈ Z). From the equality xe = 0, we deduce that x(1 − σ) has to lie in pZ[C],
hence that z(1− σ) also lies in pZ[C]. This readily implies that z itself belongs to
pZ[C], i.e. that we can write z = py, for y ∈ Z[C], qed. �

We then write

x = py + uN,

as in the previous Lemma. We get pye = 0, hence

i(py(1− σ)) = 0,
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which is possible only if y ∈ psZ[C]. Thus, x reduces to zero in (Z[C]/N)/ps+1,
and the claim is proved.

11.1.5. The case d = 2 and k arbitrary. Let us now deal with the case where k
is an arbitrary finite field, equipped with a G-invariant line L0 ⊂ V . We can
assume that V = k2 as a vector space, that the action of G on V occurs through
an additive character

χ : G −→ k,

by the formula

g.(x, y) = (x, χ(g)x+ y),

and that L0 is the second axis, i.e. L0 = 0⊕ k.
Choose an Fp-basis (x1, . . . , xr) of k, yielding an isomorphism k −→ Frp. The
character χ breaks down into r characters

χi : G −→ Fp,

for i = 1, . . . , r, each of which defines a two-dimensional (Fp, G)-module

Vi := F2
p,

on which G acts by the same formula as above. Call Li the second axis; it is a
G-invariant line of the (Fp, G)-module Vi.

Definition 11.11. We denote by E the exact exact sequence of (Zp, G)-modules
which is the direct sum of the exact sequences

Ei : 0 −→ Ks(Vi, Li) −→ ΩsZp
(Vi) −→ ΩsZp

(Vi/Li) −→ 0,

for i = 1, . . . , r.

Lemma 11.12. The exact sequence E, up to isomorphism of exact sequence of
(Zp, G)-modules, is independent of the choice of the Fp-basis (x1, . . . , xr).

Proof. Pick another basis (x′1, . . . , x
′
r). Denote by χ′i, V

′
i , L′i, E ′i the constructions

explained before, but relative to this new basis. Clearly, we have a natural G-
invariant isomorphism

r⊕
i=1

Vi −→
r⊕
i=1

V ′i

(both sides are canonically isomorphic to V !). It is given by G-equivariant maps

fi,j : Vi −→ V ′j ,

sending Li to L′j . They induce, by functoriality, maps

gi,j : ΩsZp
(Vi) −→ ΩsZp

(V ′j ).

Taking the direct sum of these, we get a commutative diagram⊕r
i=1 ΩsZp

(Vi) //

��

⊕r
i=1 ΩsZp

(Vi/Li)

��⊕r
j=1 ΩsZp

(V ′j ) //⊕r
j=1 ΩsZp

(V ′j /L
′
j)

,

yielding the result. �
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Lemma 11.13. The exact sequence

F : 0 −→ Ks(V,L0) −→ ΩsW (k)(V ) −→ ΩsW (k)(V/L0) −→ 0,

seen as an exact sequence of (Zp, G)-modules, is isomorphic to E.

Proof. Put A′ = W(k), and A = Zp. The extension A′/A is an étale algebra
(even cyclic Galois, of course). If it was trivial (i.e. if A′ was isomorphic to Ar as
an A-algebra), then the claim would be obvious, using Lemma 11.12, and picking
as a basis the basis of primitive idempotents. But the situation becomes so after
extending scalars to A′: the étale algebra A′ ⊗A A′/A′ is trivial. Hence, the two
exact sequences in question become isomorphic after extending scalars to A′. By
Corollary 10.7, they are already isomorphic over A. The Lemma is proved.

�

We thus have an isomorphism (of (Zp, G)-modules)

Ks(V,L0)
∼−→

r⊕
i=1

Ks(Vi, Li).

We may view T as a Zp-module of finite rank (which is r times its rank as a
W(k)-module), endowed with a continuous Zp-linear action of G. By the case of
planes over Fp, which was dealt with in the previous subsection, we know that the
r arrows

Ks(Vi, Li)⊗Zp T −→ Ks(Vi, Li)⊗Zp T /ps

are n-surjective. Hence, the map

Ks(V,L0)⊗Zp T −→ Ks(V,L0)⊗Zp T /ps

is n-surjective. Considering the commutative diagram

Ks(V,L0)⊗Zp
T

��

// Ks(V,L0)⊗Zp
T /ps

��
Ks(V,L0)(∗) // Ks(V,L0)(∗)/ps

,

we see that it is enough to show that the canonical map

Ks(V,L0)⊗Zp
T −→ Ks(V,L0)(∗) = Ks(V,L0)⊗W(k) T

is n-surjective. We are going to show more: it admits a canonical G-equivariant
section. We are even going to show this in a slightly more general setting. Taking
A = Zp, B = W(k), M = Ks(V,L0) and N = T in what follows yields the result.

Let B/A be a finite étale extension of commutative rings. Then, as it is well-known,
the multiplication map

µ : B ⊗A B −→ B

corresponds, geometrically, to an open-closed immersion. In other words, there
exists a finite étale algebra C/A, and a canonical isomorphism

B ⊗A B
(µ,φ)−→ B × C.

Now, let M and N be two B-modules. Then M ⊗A N is a B ⊗A B-module, and

M ⊗B N = (M ⊗A N)⊗µ B,
so that, by what precedes, the natural surjection

M ⊗A N −→M ⊗B N
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has a canonical section.

11.1.6. The case d ≥ 3. Here k is arbitrary, of cardinality q = pr. We thus have
canonical isomorphisms

W 'W (r),

for every (k,G)-module W . We will use them tacitly in what follows.
Recall that we are given a (k,G)-module V , of dimension d ≥ 3, together with a
G-invariant line L0 ⊂ V . We have to show that the map

Ks(V,L0)(∗) −→ Ks(V,L0)(∗)/ps

is n-surjective. We assume the result known in dimension d− 1.

We have a commutative diagram

0

��

0

��
Ks(V,L0)/ps

��

Verr// Ks+r(V,L0)/ps+r

��
Ωs(V )/ps

��

Verr // Ωs+r(V )/ps+r

��
Ωs(V/L0)/ps

��

Verr // Ωs+r(V/L0)/ps+r

��
0 0,

where the horizontal maps are induced by the Verschiebung homomorphism.
The lifting property we have to show is stable, in the sense of the Lemma below.

Lemma 11.14. Let G′ ⊂ G be an open subgroup of finite index. Pick a class

a ∈ Hn(G′,Ks(V,L0)(∗)/ps).

Assume that the class

Verr∗(a) ∈ Hn(G′,Ks+r(V,L0)(∗)/ps+r)

lifts to a class in Hn(G′,Ks+r(V,L0)(∗)).
Then a itself lifts to a class in Hn(G′,Ks(V,L0)(∗)).

Proof. This is an easy chase in the (twist by T of the) diagram

0 // L(s)
0

// Ks(V,L0) //

Verr

��

Ks(V,L0)/ps

Verr

��

// 0

0 // L(s+r)
0

// Ks+r(V,L0) // Ks+r(V,L0)/ps+r // 0.

To understand this diagram, and why it commutes, recall the 9-term commuta-
tive diagram following Remark 11.2, making it clear that the top (resp. bottom)
injection is induced by Vers (resp. by Verr+s). �
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Now, choose a G-invariant two-dimensional k-subspace

W ⊂ V,

containing L0. Such a W exists, since G is a pro-p-group.
For L ∈ P(W ), L 6= L0, put

WL := W,

and put

WL0 = L0.

Denote by

f :
⊕

L∈P(W )

V/L −→
⊕

L∈P(W )

V/WL

the sum of the quotient maps V/L −→ V/WL.

We have a canonical map

Φ : Ks(V,L0) −→ Ks(f),

fitting into the commutative diagram

0

��

0

��
Ks(V,L0)

Φ //

��

Ks(f)

��
Ωs(V ) //

��

Ωs(
⊕

L∈P(W ) V/L)

��
Ωs(V/L0)

��

// Ωs(
⊕

L∈P(W ) V/WL)

��
0 0.

We have another commutative diagram

0

��

0

��

0

��
0 //⊕

L∈P(W )W
(s)
L /L(s) //

��

Ks(f) //

��

Ks(f)/ps //

��

0

0 //⊕
L∈P(W ) V

(s)/L(s) //

��

Ωs(
⊕

L∈P(W ) V/L) //

��

Ωs(
⊕

L∈P(W ) V/L)/ps //

��

0

0 //⊕
L∈P(W ) V

(s)/W
(s)
L

//

��

Ωs(
⊕

L∈P(W ) V/WL) //

��

Ωs(
⊕

L∈P(W ) V/WL)/ps //

��

0

0 0 0
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Put
P′(W ) := P(W )− {L0};

it is a one-dimensional affine space over k, endowed with a continuous action of G.
Note that, for each L′ ∈ P′(W ), we have a canonical homomorphism

Ks(f) −→ Ks(V/L′,W/L′),

fitting into the commutative diagram

0

��

0

��
Ks(f) //

��

Ks(V/L′,W/L′)

��
Ωs(
⊕

L∈P(W ) V/L) //

��

Ωs(V/L′)

��
Ωs(
⊕

L∈P(W ) V/WL) //

��

Ωs(V/W )

��
0 0,

where the horizontal arrows are induced by the projections⊕
L∈P(W )

V/L −→ V/L′

and ⊕
L∈P(W )

V/WL −→ V/WL′ = V/W.

Lemma 11.15. The quotient map

Ks(f)(∗) −→ Ks(f)(∗)/ps

is n-surjective.

Proof.

The claim follows from a straightforward chase in the twist by T of (the long
exact sequence in cohomology induced by) the diagram

0 //⊕
L∈P(W )W

(s)
L /L(s) // Ks(f) //

��

Ks(f)/ps //

��

0

0 //⊕
L∈P′(W )W

(s)/L(s) //⊕
L∈P′(W )K

s(V/L,W/L) //⊕
L∈P′(W )K

s(V/L,W/L)/ps // 0

in which the lower line is n-surjective, Shapiro’s Lemma and by the induction
hypothesis (dimension d− 1). �

Now, recall that we have, at our disposal, the transfer

tP(W ) : Ωs(
⊕

L∈P(W )

V/L) −→ Ωs+r(V ).
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Lemma 11.16. We have a canonical commutative diagram (of (W (k), G)-modules)

Ωs(
⊕

L∈P(W ) V/L)

��

// Ωs+r(V )

can

��
Ωs(V/L0

⊕
V/W ) // Ωs+r(V/L0),

where the vertical map on the left is obtained as follows. It is induced, by functo-
riality, from the linear map⊕

L∈P(W )

V/L −→ V/L0

⊕
V/W

which is the direct sum of the identity map V/L0 −→ V/L0, and of the projections
V/L −→ V/W , for L 6= L0.

Proof.

Let us explain how to build the Pontryagin dual diagram, which occurs in the
following setting.
Put

H0 := L⊥0 ' (V/L0)∗

and

K := W⊥ ' (V/W )∗,

where Z⊥ denotes the subspace of V ∗ consisting of linear forms vanishing on Z.
These are linear subspaces of V ∗. Put X := P(W ), seen as the set of hyperplanes
of V ∗, containing K. The formula

Ak(H0) −→ Γp
s

(H0 ⊕K),

x 7→ [(Frobr(x), TH0,K(x))]ps ,

is a polynomial law, of degree ps+r. It thus defines a W(k)-linear map

Θ : Γp
s+r

(H0) −→ Γp
s

(H0 ⊕K).

Then, we have a commutative diagram

Γp
s+r

(H0)

can

��

Θ // Γp
s

(H0

⊕
K)

can

��
Γp

s+r

(V ∗)
tX // Γp

s

(
⊕

H∈X H),

where the vertical map on the right is induced, by functoriality, from the linear
map which is the sum of the identity map H0 −→ H0, and of the inclusions
K −→ H, for H 6= H0. The diagram of the Lemma is its Pontryagin dual.
The fact that the diagram above commutes follows directly from the commutative
diagrams

Ak(H0)

can

��

TH0,K // Ak(K)

can

��
Ak(V ∗)

TV ∗,H // Ak(H),
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for each H 6= H0, containing K, and from the commutative diagram

Ak(H0)

can

��

Frobr
// Ak(H0)

Ak(V ∗)
TV ∗,H0// Ak(H0)

(cf. Lemma 8.5). �

From the preceding Lemma, we get a morphism Ψ, fitting into a commutative
diagram

0

��

0

��
Ks(f)

Ψ //

��

Ks+r(V,L0)

��
Ωs(
⊕

L∈P(W ) V/L)

��

tP(W ) // Ωs+r(V )

��
Ωs(
⊕

L∈P(W ) V/WL) //

��

Ωs+r(V/L0)

��
0 0

Lemma 11.17. The composite

Ks(V,L0)
Φ−→ Ks(f)

Ψ−→ Ks+r(V,L0)

equals Verr.

Proof. This is an immediate consequence of Lemma 8.10.

�

Remark 11.18. Note that Lemma 11.16 is just used to ensure that the map

tP(W ) : Ωs(
⊕

L∈P(W )

V/L) −→ Ωs+r(V )

sends Ks(f) to Ks+r(V,L0).

Lemma 11.19. The map

Ψ : Ks(f) −→ Ks+r(V,L0)

maps

psKs(f) =
⊕

L∈P(W )

W
(s)
L /L(s)

to Ks+r(W,L0) ⊂ Ks+r(V,L0).
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Proof. Bearing in mind that Ψ is induced by the transfer tP(W ), this follows from
the commutative diagram

0 //⊕
L∈P(W )W

(s)
L /L(s) Vers // Ωs(

⊕
L∈P(W )W/L)

tP(W ) //

��

Ωs+r(W )

can

��
0 //⊕

L∈P(W )W
(s)
L /L(s) // Ks(f)

tP(W ) // Ωs+r(V ).

That this diagram commutes is a consequence of the fact that the diagram

Ωs(
⊕

L∈P(W )W/L)
tP(W ) //

can

��

Ωs+r(W )

can

��
Ωs(
⊕

L∈P(W ) V/L)
tP(W ) // Ωs+r(V )

commutes. This can be seen, for instance, by writing down its Pontryagin dual
diagram. �

By the preceding Lemma, Ψ induces a morphism

Ψ : Ks(f)/ps −→ Ks+r(V,L0)/Ks+r(W,L0).

We also have a morphism

Φ : Ks(V/L0)/ps −→ Ks(f)/ps,

induced by Φ.

We now have the tools to prove the induction step, which is the only part that
remains in order to prove Proposition 11.6. It is a chase in the (twist by T of the)
commutative diagram

Ks(V,L0)

��

φ // Ks(f)
ψ //

��

Ks+r(V,L0)

Q

��
Ks(V,L0)/ps

φ // Ks(f)/ps Ks+r(V,L0)/ps+r

π

��
Ks(V,L0)/ps

φ // Ks(f)/ps
ψ // Ks+r(V,L0)/Ks+r(W,L0),

where the vertical arrows are the canonical projections. Remember that the com-
posite of the top arrows is Verr.
Let G′ ⊂ G be an open subgroup of finite index. Pick a class

a ∈ Hn(G′,Ks(V,L0)(∗)/ps).
We want to show that it lifts to a class in Hn(G′,Ks(V,L0)(∗)). By Lemma 11.14,
it is enough to show that

a′ := Verr∗(a) ∈ Hn(G′,Ks+r(V,L0)(∗)/ps+r)
lifts, via Q∗, to a class in Hn(G′,Ks+r(V,L0)(∗)). By Lemma 11.15, the class

φ∗(a) ∈ Hn(G′,Ks(f)(∗)/ps)
lifts to a class b ∈ Hn(G′,Ks(f)(∗)). Put

A := ψ∗(b) ∈ Hn(G′,Ks+r(V,L0)(∗)).
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Modifying a′ by Q∗(A), we can assume that π∗(a
′) = 0. We now use the (twist

by T of the) diagram

0 // Ks+r(W,L0) //

Q′

��

Ks+r(V,L0) //

Q

��

Ks+r(V,L0)/Ks+r(W,L0) // 0

0 // Ks+r(W,L0)/ps+r
i // Ks+r(V,L0)/ps+r

π // Ks+r(V,L0)/Ks+r(W,L0) // 0.

We get a class

a′′ ∈ Hn(G′,Ks+r(W,L0)(∗)/ps+r),
such that i∗(a

′′) = a′. But the map

Q′(∗) : Ks+r(W,L0)(∗) −→ Ks+r(W,L0)(∗)/ps+r

is n-surjective, by the two-dimensional case which has been treated independently
before. This shows that a′′ lifts via Q′∗, hence that a′ lifts via Q∗. This finishes
the proof.

12. The Lifting Theorems.

We now deduce, from Proposition 11.6, some lifting Theorems in profinite group
cohomology.

Theorem 12.1. Let k be a finite field, of cardinality q = pr. Let G be a profinite
group. Let n ≥ 0 be an integer. Let W(k)(1) be an n-smooth cyclotomic G-module.
Let V be a (k,G)-module. Then, for every integer s ≥ 1, the quotient map

Ωs(V )(n) −→ Ωs(V )(n)/ps

is n-surjective.

Proof. We can assume that G is a pro-p-group. We proceed by induction on the
dimension d of V ; there is nothing to prove if d = 0. There exists a G-invariant
line L ⊂ V . Recall the commutative diagram

0 // Ks(V,L) //

��

Ωs(V ) //

Q′

��

Ωs(V/L) //

Q

��

0

0 // Ks(V,L)/ps // Ωs(V )/ps
θ // Ωs(V/L)/ps // 0

.

We know that the map Q(n) is n-surjective, by the induction hypothesis.

Let G′ ⊂ G be an open subgroup of finite index. Pick a class

a ∈ Hn(G′,Ωs(V )(n)/ps).

We want to show that a lifts via Q′∗. But we have a commutative diagram

0 // V (ps) Vers // Ωp
s

(V )

Verr

��

Q′ // Ωp
s

(V )/ps //

Verr

��

0

0 // V (ps+r) Verr+s
// Ωp

r+s

(V )
Q′′ // Ωp

r+s

(V )/pr+s // 0
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(recall k has cardinality pr, hence M (r) 'M , for every W(k)-module M). By an
easy diagram chase, we see that it is enough to show that

a′ := Verr∗(a)

lifts via Q′′∗ , which we now prove.
We have a commutative diagram

0 // Kr+s(V,L)
i //

��

Ωr+s(V )
π //

Q′′

��

Ωr+s(V/L) //

��

0

0 // Kr+s(V,L)/pr+s
i // Ωr+s(V )/pr+s

π // Ωr+s(V/L)/pr+s // 0

,

analoguous to the one at the beginning of this proof, but in degree s + r instead
of s.

There exists a class b ∈ Hn(G′,Ωs(V/L)(n)), such that

Q∗(b) = θ∗(a).

But we have the transfer

t = tV,L : Ωs(V/L) −→ Ωs+r(V ),

which is such that the composite

Ωs(V/L)
t−→ Ωs+r(V )

π−→ Ωs+r(V/L)

equals Verr. Hence, we may replace a′ by a′ − Q′′∗(t∗(b)), and reduce to the case
where

π∗(a
′) = 0.

Hence, there exists a class

a′′ ∈ Hn(G′,Kr+s(V,L)(n)/pr+s),

such that i∗(a
′′) = a′. But he quotient map

Kr+s(V,L)(n) −→ Kr+s(V,L)(n)/pr+s

is n-surjective, by Proposition 11.6. Thus, a′ lifts by Q′′∗ , and the proof is complete.

�

Theorem 12.2. Let k be a finite field, of cardinality q = pr. Let G be a profinite
group. Let n ≥ 0 be such that G is n-smooth. Let V be a (k,G)-module. Let s ≥ 1
be an integer. Then the natural injection

iV : V (s) −→ Symps(V ),

x 7→ xp
s

,

is (n+ 1)-injective.

Proof. We can assume that G is a pro-p-group. By definition of smoothness for
profinite groups, there exists an n-smooth cyclotomic G-module W(k)(1). Since G
is a pro-p-group, k(n) is isomorphic to the trivial representation k. Fixing such an
isomorphism k(n) ' k yields, for every (k,G)-module W , a functorial isomorphism
W (n) 'W. It is thus equivalent to show that the map

iV (n) : V (s)(n) −→ Symps(V )(n)
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is (n+ 1)-injective.
But the map

Vers : V (s) −→ Ωs(V )

factors through iV , by Proposition 7.6 . It is thus enough to prove the result with
Vers(n) instead of iV (n). But, in the exact sequence

0 −→ V (s)(n)
Vers(n)−→ Ωs(V )(n) −→ Ωs(V )(n)/ps −→ 0,

the surjection on the right is n-surjective, by Theorem 12.1. Hence, the injection
Vers(n) is (n+ 1)-injective, qed. �

Lemma 12.3. Let k be a finite field, of cardinality q = pr.
Let G be a profinite group. Let n ≥ 0 be such that G is n-smooth. Let V be a
(k,G)-module. Let P ⊂ V be a two-dimensional G-invariant k-linear subspace.
Then the natural injection (of (k,G)-modules)

V −→
⊕

L∈P(P )

(V/L)

is (n+ 1)-injective.

Proof. Apply the preceding Theorem (for r = s), together with Remark 8.12.
�

The next Theorem can be considered as the Hauptpunkt of this paper. It uses
everything that that been done before. It is, surprisingly, very easy to state.

Theorem 12.4. Let k be a finite field, of cardinality q = pr.
Let G be a profinite group. Let n ≥ 0 be such that G is n-smooth. Let V be a
(k,G)-module. Then the natural injection

V
ev−→ k[V ∗],

v 7→ (f 7→ f(v)),

given by evaluation of linear forms, is (n+ 1)-injective.

Proof. By induction on the dimension of V , Lemma 12.3 implies that the mor-
phism of (k,G)-modules

Θ : V −→
⊕

H∈P(V ∗)

(V/H)

is (n+ 1)-injective (the sum is taken over all hyperplanes H ⊂ V ). We can then,
as usual, assume that G is a pro-p-group. Then, for every open subgroup G′ ⊂ G,
one-dimensional (k,G′)-modules are trivial. Hence, there exists a G-invariant map
(of G-sets)

Φ : V ∗ − {0} −→
⊔

H∈P(V ∗)

(V/H − {0}),

such that

Φ(f) ∈ V/Ker(f),

for each f ∈ V ∗ − {0}. Note that this amounts to choosing, for each hyperplane
H ⊂ V , a generator of V/H, in a G-equivariant way. It is then easy to see that
there exists a G-equivariant function

S : V ∗ − {0} −→ k×,
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where G acts trivially on k×, such that

f(v)Φ(f) = S(f)v ∈ V/H,
for each v ∈ V , and for each non zero f ∈ V ∗, with kernel H. Replacing Φ by
S−1Φ, we can assume that S = 1, i.e. that

f(v)Φ(f) = v ∈ V/H.
Then, we can form the composite

Θ′ : V
ev−→ k[V ∗]

Ψ−→
⊕

H∈P(V ∗)

(V/H),

where
Ψ([f ]) = Φ(f),

for all f ∈ V ∗, and
Ψ([0]) = 0.

It is straightforward to check that Θ′ = −Θ (modulo p, there are −1 nonzero
vectors on each line!). Since Θ is (n+ 1)-injective, so is ev, qed.

�

Remark 12.5. Let G be an arbitrary profinite group.
Since we know that G is 0-smooth, Theorem 12.4 implies the following. Let k be
a finite field. Let V be a (k,G)-module. Then the natural injection

V
ev−→ k[V ∗],

v 7→ (f 7→ f(v)),

is 1-injective.

Remark 12.6. Using Shapiro’s Lemma, the conclusion of Theorem 12.4 can be
reformulated as follows. Pick c ∈ Hn+1(G,V ). Assume that, for each (nontrivial)
open subgroup G′ ⊂ G, and for each linear form f ∈ Hom(k,G′)(V, k), we have

f∗(Res(c)) = 0 ∈ Hn+1(G′, k),

where
Res : Hn+1(G,V ) −→ Hn+1(G′, V )

is the restriction map. Then c = 0.

Remark 12.7. Note the difference, for instance, between Theorem 12.1 and Theo-
rem 12.4. The first one concerns, in its very statement, (W(k), G)-modules that
are of ps+1-torsion, where s is an arbitrary large integer. In the second one, the
statements only imply (k,G)-modules! However, its proof (through the use of
Theorem 12.1), uses cohomological computations modulo very large powers of p.

We conclude this section with a nice exercise.

Exercise 12.8. Let F be a global field, of characteristic not p. For each place v of
F , denote by Fv the completion of F at v.

Choose a separable closure Fsep (resp. Fv,sep ) of F (resp. of Fv).
Put G := Gal(Fsep/F ) (resp. Gv := Gal(Fv,sep/Fv)).
Up to conjugacy, each Gv might be viewed as a closed subgroup of G.
Let n ≥ 1 be an integer. Let V be an (Fp, G)-module, i.e. a mod p Galois
representation over F . From what precedes, there are well-defined restriction
maps

Resv : Hn(G,V ) −→ Hn(Gv, V ),



53

for each place v of F . Put

X
n(V ) :=

⋂
v

Ker(Resv),

where the intersection is taken over all places v of F . It is the usual Tate-
Shafarevich group of V . We know thatX1(Fp) = 0 (Grunwald-Wang).
Use Remark 12.5 to show that

X
1(V ) = 0,

for every (Fp, G)-module V .

13. The Smoothness Theorem.

In this section, k is a finite field of cardinality q = pr, and G is a profinite group.

Definition 13.1. Let W(k)(1) be a cyclotomic G-module . Let s, n ≥ 1 be inte-
gers. Cohomology classes in the image of the natural cup-product map

H1(G,W(k)(1)/ps)n −→ Hn(G,W(k)(n)/ps)

are called symbols. If H ⊂ G is a nontrivial open subgroup , the image of a symbol
of Hn(H,W(k)(n)/ps) by the corestriction (norm)

Cor : Hn(H,W(k)(n)/ps) −→ Hn(G,W(k)(n)/ps)

is called an H-quasi-symbol. A class which can be written as a sum a1 + . . .+ aN ,
where ai is an Hi-quasi-symbol, will be called a quasi-symbol.

Definition 13.2. Let G be a profinite group. Let W(k)(1) be a cyclotomic G-
module . We say that W(k)(1) has the weak Bloch-Kato property if the following
holds. For every integers s, n ≥ 1, every class in Hn(G,W(k)(n)/ps) is a quasi-
symbol.

Lemma 13.3. Let W(k)(1) be a cyclotomic G-module, which is 1-smooth. Let
n ≥ 1 be an integer. Assume that every class in Hn(G,W(k)(n)/p) is a quasi-
symbol. Then, for every s ≥ 1, every class in Hn(G,W(k)(n)/ps) is a quasi-
symbol, and W(k)(1) is n-smooth.

Proof. First of all, notice that, by definition of 1-smoothness and of the cup-
product, the natural map

Hn(G,W(k)(n)/ps+1) −→ Hn(G,W(k)(n)/p)

is surjective on H-quasi-symbols (for every open subgroup H ⊂ G), hence on
quasi-symbols. Thus, we only have to show the assertion about quasi-symbols.
We now proceed by induction on s. Assume that the result holds for s; let us
prove it for s+ 1. The (twisted) Kummer sequence

0 −→W(k)(n)/ps
∗p−→W(k)(n)/ps+1 π−→W(k)(n)/p −→ 0

induces an exact sequence

Hn(H,W(k)(n)/ps) −→ Hn(H,W(k)(n)/ps+1)
π∗−→ Hn(H,W(k)(n)/p),

for every open subgroup H ⊂ G. An easy diagram chase, combined with the
remark we just made, then yields the result.

�
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Definition 13.4. Let G be a profinite group. Let k be a finite field. Pick an
element

e ∈ Hn(G, k) = YExtn(k,G)(k, k).

The depth of e is, by definition, the lowest integer d, such that there exists an
n-extension (of (k,G)-modules)

E : 0 −→ k −→ A0 −→ . . . −→ An−1 −→ k −→ 0,

whose class is e, and such that

dimk A0 = d+ 1.

The depth of e shall be denoted by δ(e).

Remark 13.5. It is not hard to see that the depth of e may also be defined as
follows. Consider all injections of (k,G)-modules

i : k −→ V,

such that i∗(e) = 0.
As an example of such i (using Shapiro’s Lemma), one may take

k −→ k[G/H],

1 7→
∑

x∈G/H

[x],

where H ⊂ G is a nontrivial open sugroup, such that the restriction of e vanishes
in Hn(H, k).
Then δ(e) is one less that the minimal possible dimension of V , where i ranges
through all such injections.

Lemma 13.6. Let G be a pro-p-group. Let k be a finite field. Pick an element

e ∈ YExtn(k,G)(k, k)(= Hn(G, k)).

Then δ(e) = 0 if and only if e = 0, and δ(e) = 1 if and only if e can be written as
a ∪ b, with a ∈ H1(G, k) and b ∈ Hn(G, k).

Proof. This is obvious, since all one-dimensional (k,G)-modules are trivial. �

Theorem 13.7. Let G be a pro-p-group, which is n-smooth, for a positive integer
n. Let k be a finite field, of cardinality q = pr. Pick a class

e ∈ YExtn+1
(k,G)(k, k)(= Hn+1(G, k)),

with δ(e) ≥ 2.
Then there exists a class x ∈ Hn+1(G, k), an open sugroup H  G, of index at
most pr, and a class y ∈ Hn+1(H, k), such that

x+ Cor(y) = e,

where Cor : Hn+1(H, k) −→ Hn+1(G, k) is the corestriction map, with moreover

δ(x) ≤ 1

and

δ(y) < δ(e).
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Proof.

Pick an (n+ 1)-extension (of (k,G)-modules)

E : 0 −→ k −→ A0 −→ . . . −→ An −→ k −→ 0,

whose class is e, and with dimk A0 = δ(e) + 1. For sure, we can write E as the cup
product of an 1-extension

E1 : 0 −→ k
17→a0−→ A0 −→ B −→ 0

by an n-extension

E ′n : 0 −→ B −→ A1 −→ . . . −→ An −→ k −→ 0.

We have dimk B = δ(e) ≥ 2. In what follows, the class of the extension E1
(resp. E ′n) shall be denoted by e1 (resp. e′n). Pick a nonzero G-invariant line
< kb0 >= L ⊂ B (this is possible, since G is a pro-p-group). Form the pullback
diagram

P : 0 // k // P
π //

��

L

i

��

// 0

E1 : 0 // k // A0
s // B // 0.

IfG acts trivially on P , then the 1-extension P is trivial, which means the following.
Denoting by

j : B −→ B/L

the quotient map, there exists an 1-extension a ∈ YExt1
(k,G)(B/L, k) such that

j∗(a) = e1. But then,

e = e1 ∪ e′n = j∗(a) ∪ e′n = a ∪ j∗(e′n),

and we would get δ(e) ≤ dimk B − 1, a contradiction.
Thus, G acts non trivially on P (through a nontrivial additive character, with
values in k). Denote by H the kernel of this action; it is a normal subgroup of G
of index at most pr. In what follows, we denote by Res (resp. Cor) the restriction
(resp. corestriction) maps from the cohomology of G to that of H (resp. from the
cohomology of H to that of G). We put X := G/H. We are now at the main step
of the proof, which essentially uses all the theory developped before.
We have the (G-equivariant) trace map

B[X]
T−→ B,

b[x] 7→ b.

Denote by N the kernel of the surjective k-linear map

A0

⊕
B[X]

⊕
L

σ−→ B,

which is the direct sum of s, of T , and of i. Consider the (n+ 1)-extension

F : 0 −→ N −→ A0

⊕
B[X]

⊕
L −→ A1 −→ . . . −→ An −→ k −→ 0,

which is the cup product of

0 −→ N −→ A0

⊕
B[X]

⊕
L

σ−→ B −→ 0

and E ′n. Denote its class by f . We obviously have a morphism of complexes
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E : 0 // k //

1 7→(a0,0,0)

��

A0
//

��

A1
// . . . // An // k // 0

F : 0 // N // A0

⊕
B[X]

⊕
L // A1

// . . . // An // k // 0,

showing that
(a) The pushforward of f by the quotient map

N 7→ N/ka0

is zero in Hn+1(G,N/ka0).

But the trace map T obviously has anH-equivariant section. Thus, the 1-extension

0 −→ N −→ A0

⊕
B[X]

⊕
L

σ−→ B −→ 0

is killed by restriction to H. A fortiori, we have that

(b) Res(f) = 0 ∈ Hn+1(H,N).

But we have a canonical injection

P −→ A0

⊕
B[X]

⊕
L,

x 7→ (−x, 0, π(x)),

which obviously takes its values in N , yielding a G-equivariant injection

φ : P −→ N.

It is clear that, for every x ∈ P − Ker(π), the stabilizer of φ(x) is H. From (a)
and (b) (using Shapiro’s Lemma), it follows that f is killed by Φ∗, where

Φ : N −→
⊕

d∈P(φ(P ))

(N/d)

is the canonical map. Hence

f = 0 ∈ Hn+1(G,N) = YExtn+1
(k,G)(k,N),

by Lemma 12.3. This implies that there exists a class

z = (z1, z2, z3) ∈ Hn(G,A0

⊕
B[X]

⊕
L)

= Hn(G,A0)
⊕

Hn(G,B[X])
⊕

Hn(G,L),

whose pushforward by σ equals e′n. But, trivially, we have

e1 ∪ s∗(z1) = 0,

hence
e = e1 ∪ σ(z) = e1 ∪ (T∗(z2) + i∗(z3)).

By Shapiro’s Lemma, z2 can be viewed as a class in Hn(H,B), and the preceding
formula means that

e = i∗(e1) ∪ z3 + e1 ∪ Cor(z2) = i∗(e1) ∪ z3 + Cor(Res(e1) ∪ z2).

Set x := i∗(e1) ∪ z3 ∈ Hn+1(G, k) and y := Res(e1) ∪ z2 ∈ Hn+1(H, k). We
obviously have δ(x) ≤ 1. The action of H on P is trivial, so that we can conclude,
by the same argument already used at the beginning of this proof, that δ(y) < δ(e).

�
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We can now prove the main result of this paper, the Smoothness Theorem.

Theorem 13.8. Let G be a profinite group. Let k be a finite field. Then every
1-smooth cyclotomic G-module is smooth, and has the weak Bloch-Kato property.

Proof.

We proceed by induction on n ≥ 1. Thanks to Lemma 13.3, it is enough to show
that, if for every i ≤ n, we have that W (k)(1) is i-smooth and that every class in
Hi(G,W(k)(i)/p) is a quasi-symbol, then every class inHn+1(G,W(k)(n+1)/p) is
a quasi-symbol. We can assume that G is a pro-p-group. Then W(k)(n+1)/p ' k,
as (k,G)-modules. We are thus reduced to showing, under our assumptions, that
every class in Hn+1(G, k) is a quasi-symbol. This follows, by immediate induction
on the depth of such a class, from Theorem 13.7.

�

14. Two applications of the Smoothness Theorem to Galois
cohomology.

14.1. The Bloch-Kato glitch. The Smoothness Theorem yields, as a corollary,
the usual Bloch-Kato conjecture, proved by Rost, Suslin and Voevodsky. As it is
well-known to experts, the main part of this conjecture is the surjectivity of the
norm-residue homomorphism, which we now prove.

Corollary 14.1. Let F be a field of characteristic not p. Let d ≥ 1 be an integer,
which is nonzero in F . Then, for every n ≥ 1, the cup product map

⊗nZH1(F, µd) −→ Hn(F, µ⊗nd )

is surjective.

Proof. Denote by Fsep/F a separable closure of F , and by G its Galois group. We
immediately reduce to the case where d is a power of the prime p. By Proposition
9.11, we know that the Tate module

µ = lim←−
n

µpn(Fsep)

is 1-smooth (for k = Fp). By Theorem 13.8, we obtain that every class in
Hn(F, µ⊗nd ) is a quasi-symbol, i.e. a sum of corestrictions of symbols. But, by
the fact that the norm-residue homomorphism is compatible with the norm in
Milnor K-theory ([GS], Proposition 7.5.5), such a class is a sum of symbols as
well, qed. �

14.2. A bound on symbol length. A careful examination of the recursive pro-
cesses used in this paper would yield bounds for the symbol length of cohomology
classes. For example, here is what we can (easily) get in the Merkurjev-Suslin
case, i.e. when n = 2, for prime exponent, and for a p-special field.

Theorem 14.2. Let F be a p-special field of characteristic not p. Take a central
simple algebra A/F , of exponent p and of index pd. Then A is Brauer-equivalent

to the tensor product of at most pp
d−1−1
p−1 cyclic algebras of degree p.
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Proof. Put G := Gal(Fsep/F ); it is a pro-p-group. It is 1-smooth by Proposition
9.11. Under our assumptions, it is legitimate to identify µp and k = Fp. Let E/F
be a splitting field for A, of degree pd. Then the exact sequence (of finite F -groups
of multiplicative type)

1 −→ µp −→ RE/F (µp) −→ RE/F (µp)/µp −→ 1

is, in the langage of Galois representations, nothing but

0 −→ Fp
i−→ Fp[X] −→ Fp[X]/Fp −→ 0,

where X is the finite G-set, of cardinality pd, associated to the extension E/F .
Denote by x ∈ H2(G,Fp) ' Tp(Br(F )) the class of A. Then

i∗(x) = 0 ∈ H2(G,Fp[X]) ' Tp(Br(E)).

Hence, x is represented by a 2-extension of the shape

0 −→ Fp −→ Fp[X] −→ A −→ Fp −→ 0,

with A an (Fp, G)-module, showing that δ(x) ≤ pd−1. Recall the theorem of Rosset
and Tate in Milnor K-theory ([GS], Corollary 7.4.11). It implies the following. Let
H ⊂ G be an open subgroup, of index pn. Then the image by the corestriction

Cor : H2(H,Fp) −→ H2(G,Fp)

of a symbol is a sum of pn symbols. It then readily follows, by induction on the
depth using Theorem 13.7, that x is a sum of

pδ(x)−1 + pδ(x)−2 + . . .+ p+ 1

symbols, whence the result. �

15. An application of the Smoothness Theorem to Galois
representations.

In this section, we apply our lifting Theorems to the problem of lifting mod p
Galois representations.

Definition 15.1. Let G be a profinite group. Let k be a finite field. Let V be
a (k,G)-module. If there exists a a (W(k), G)-module V, which is a free W2(k)-
module, and such that

V ' V/p

as (k,G)-modules, we say that V has a lift modulo p2, and that V is a lift of V
modulo p2.

Theorem 15.2. Let G be a profinite group, which is 1-smooth (e.g. the absolute
Galois group of a field F , of characteristic not p). Let k be a finite field. Then
every (k,G)-module has a lift modulo p2.

The rest of this section is devoted to the proof of this Theorem.
Let us first discuss facts about n-extensions.
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15.1. Comparing YExtn(k,G) and YExtn(W(k),G). Let k be a perfect field of char-
acteristic p. Let G be an arbitrary profinite group.

Definition 15.3. Let A,B be (k,G)-modules. The canonical map

YExtn(k,G)(A,B) −→ YExtn(W(k),G)(A,B)

will be denoted by Θn
A,B.

Lemma 15.4. Let A,B be (k,G)-modules. Then the map Θ1
A,B is injective.

Proof. This is obvious, for an extension E ∈ YExt1
(k,G)(A,B) is trivial (in

YExt1
(k,G)(A,B), or in YExt1

(W(k),G)(A,B)) if and only if it is split. �

Pick an extension

E : 0 −→ A −→ B
π−→ C −→ 0,

of (W(k), G)-modules. Assume that A and C are (k,G)-modules.
Then B is obviously a W2(k)-module.

Definition 15.5. With the preceding notation, the map

B −→ B,

x 7→ px,

takes values in A and contains A in its kernel. Hence, we have a well-defined map

C −→ A,

π(x) 7→ px.

We denote this map by κ(E).

The map κ(E) enjoys a few elementary properties, which we now list. Proving
them is an easy exercise, left to the reader.

The map κ(E) is k-linear and G-equivariant.
It depends only on the isomorphism class e ∈ YExt1

(W(k),G)(C,A) of E , and will

thus often be denoted by κ(e).
It vanishes identically if and only if B is a k-vector space, i.e. if E belongs to
YExt1

(k,G)(C,A).

If f : A −→ A′ and g : C ′ −→ C are morphisms of (k,G)-modules, then we have

κ(f∗g
∗(E)) = f ◦ κ ◦ g.

If F is another object of YExt1
(W(k),G)(C,A), we have κ(E + F) = κ(E) + κ(F).

Remark 15.6. Let M be a W(k,G)- module, which is a free W2(k)-module. We
then have an exact sequence

S : 0 −→ pM −→M −→M/p −→ 0,

where κ(S) is an isomorphism. It is then clear that the following holds.
For a (k,G)-module V , to say that V has a lift modulo p2 is equivalent to requiring
the existence of an exact sequence of W(k,G)-modules

E : 0 −→ V −→ V −→ V −→ 0,

with κ(E) = Id.
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Lemma 15.7. Let V be a (k,G)-module. Assume that V admits a lift V, modulo
p2. Pick an exact sequence of W(k,G)- modules

E : 0 −→ V −→ V −→ V −→ 0,

with κ(E) = Id.

Then, for every (k,G)-module W , the map

Ψ : YExt1
(k,G)(V,W )

⊕
Hom(V,W ) −→ YExt1

(W(k),G)(V,W ),

(x, φ) 7→ Θ1
V,W (x) + φ∗(E),

is an isomorphism.

Proof. Pick an object F in YExt1
(W(k),G)(V,W ). Then, a straightforward com-

putation yields

κ(κ(F)∗(E)−F) = κ(F )− κ(F ) = 0.

Hence, the extension κ(F)∗(E)−F actually belongs to YExt1
(k,G)(V,W ). Passing

to isomorphism classes yields the formula

YExt1
(W(k),G)(V,W ) −→ YExt1

(k,G)(V,W )
⊕

Hom(V,W ),

f 7→ (f − κ(f)∗(e), κ(f)),

giving the inverse of Ψ. �

Proposition 15.8. Let V be a (k,G)-module, which has a lift modulo p2. Then,
for every (k,G)-module W , the map

Θ2
V,W : YExt2

(k,G)(V,W ) −→ YExt2
(W(k),G)(V,W )

is injective.

Proof.

This is a straightforward consequence of Lemma 15.7, by dimension shifting. In-
deed, pick w ∈ Ker(Θ2

V,W ). Pick an exact sequence of (k,G)-modules

0 −→W
i−→ X

π−→ Y −→ 0,

such that i∗(w) = 0. Then there exists a class y ∈ YExt1
(k,G)(V, Y ) such that

δ(y) = w, where

δ : YExt1
(k,G)(V, Y ) −→ YExt2

(k,G)(V,W )

is the connecting homomorphism. Since w ∈ Ker(Θ2
V,W ), there exists x′ ∈

YExt1
(W(k),G)(V,X) such that π∗(x

′) = Θ1(y). By Lemma 15.7, we can write

x′ = Θ1(x) + φ∗(e), for unique x ∈ YExt1
(k,G)(V,X) and φ ∈ Hom(V,X). We can

assume that x = 0. Then π ◦ φ = 0, hence φ = i ◦ ψ, for ψ ∈ Hom(V,W ). But
then

x′ = i∗(ψ∗(e)),

hence Θ1(y)=0. By injectivity of Θ1, we get y=0. Thus w = 0 as well. �
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15.2. The fundamental 2-extension. In this subsection, V is a (k,G)-module.

Definition 15.9. We put

γp(V ) := Γp(V )/p = Γpk(V ).

We define γp0 (V ) to be the kernel of Frob : γp(V ) −→ V (1).

Recall that we have an exact sequence (of W2(k)-modules)

E1 = E1,V : 0 −→ Tp(Γ
p(V )) = Symp(V ) −→ Γp(V )

Frob−→ V (1) −→ 0.

One easily checks that κE1 is induced by Ver : V (1) −→ Symp(V ) ⊂ Γp(V ).
Dually, we have the exact sequence

E2 = E2,V : 0 −→ V (1) Ver−→ Γp(V ) −→ γp(V ) −→ 0.

One checks that κE2 is induced by Frob : γp(V ) −→ V (1).

The composite
Symp(V ) −→ Γp(V ) −→ γp(V )

has image equal to γp0 (V ), and has kernel equal to V (1). It thus yields a canonical
isomorphism

Symp(V )/V (1) −→ γp0 (V ),

which we use to identify these two spaces.

Exercise 15.10. Show that γp0 (V ∗) and γp0 (V )∗ are canonically isomorphic, as
(k,G)-modules.

The pushforward of E1 by the surjection Symp(V ) −→ γp0 (V ) is nothing but the
exact sequence

E ′1 = E ′1,V : 0 −→ γp0 (V )
jV−→ γp(V )

Frob−→ V (1) −→ 0.

Dually, the pullback of E2 by the injection γp0 (V ) −→ γp(V ) is the exact sequence

E ′2 = E ′2,V : 0 −→ V (1) −→ Symp(V ) −→ γp0 (V ) −→ 0.

Definition 15.11. The cup product of E ′1 and E ′2 is a 2-extension
(in YExt2

(k,G)(V
(1), V (1)))

E2(V ) : 0 −→ V (1) iV−→ Symp(V ) −→ γp(V ) −→ V (1) −→ 0,

which we call the fundamental 2-extension associated to V . Its class in
YExt2

(k,G)(V
(1), V (1)) will be denoted by e2(V ).

Remark 15.12. Here is another way of defining E2(V ).
Consider the extension (of (W(k), G)-modules)

0 −→ Symp(V ) −→ Γp(V )
Frob−→ V (1) −→ 0.

Applying the functor .⊗W(k) k to this extension yields a 2-extension

0 −→ Tor
W(k)
1 (V (1), k) −→ Symp(V ) −→ γp(V )

Frob−→ V (1) −→ 0.

But we have a canonical isomorphism

Tor
W(k)
1 (V (1), k) ' V (1).

The 2-extension above is then nothing but E2(V ).
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Remark 15.13. The arrow

Symp(V ) −→ γp(V ),

in E2(V ), is the map

x1 ⊗ . . .⊗ xp 7→ [x1]1 . . . [xp]1.

If we identify γp(V ) with (V ⊗p)Sp , this arrow is the so-called ’symmetrizing oper-
ator’.

Lemma 15.14. Let V be a (k,G)-module. Then e2(V ) belongs to Ker(Θ2).

Proof. As an extension of (W(k), G)-modules, E ′2 is the pullback of

E2 = E2,V : 0 −→ V (1) Ver−→ Γp(V ) −→ γp(V ) −→ 0

by jV . Hence the cup product of E ′1 and E ′2, in YExt2
(W(k),G)(V

(1), V (1)), is trivial,
qed. �

Proposition 15.15. Let V be a (k,G)-module. The following are equivalent.

(a) the (k,G)-module V has a lift modulo p2,
(b) The class e2(V ) ∈ YExt2

(k,G)(V
(1), V (1)) vanishes.

Proof. We have e2(V ) ∈ Ker(Θ2), by Lemma 15.14. It then follows from Propo-
sition 15.8 that (a) implies (b).

Let us now prove that (b) implies (a). Assume that

e2(V ) = 0 ∈ YExt2
(k,G)(V

(1), V (1)).

Then there exists an extension

F : 0 −→ V (1) −→ F −→ γp(V ) −→ 0,

in YExt1
(k,G)(γ

p(V ), V (1)), such that j∗V (F) is isomorphic to E1. In the category

YExt1
(W(k),G)(γ

p(V ), V (1)), put

G = E2 −F .

Clearly, we have

κ(G) = κ(E2)− κ(F) = Frob− 0 = Frob,

and j∗V (G) is trivial. Hence, there exists an extension

H : 0 −→ V (1) −→ H −→ V (1) −→ 0,

in YExt1
(W(k),G)(V

(1), V (1)), such that Frob∗(H) is isomorphic to G. We compute

Frob = κ(G) = κ(Frob∗(H)) = κ(H) ◦ Frob.

Since Frob is surjective, we infer that κ(H) = Id. Hence H is a lift of V (1) modulo
p2. Since k is perfect, V also possesses a lift modulo p2, qed.

�

Combining the previous Proposition and Proposition 15.8, we immediately get the
following.
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Proposition 15.16. Let V be a (k,G)-module. The following are equivalent.

(a) The (k,G)-module V has a lift modulo p2.
(b) For every (k,G)-module W , the map

Θ2
V,W : YExt2

(k,G)(V,W ) −→ YExt2
(W(k),G)(V,W )

is injective.
(c) The class e2(V ) ∈ YExt2

(k,G)(V
(1), V (1)) vanishes.

Remark 15.17. Let V be a (k,G)-module. It is given by a group homomorphism

ρ : G −→ GLk(V ).

The 2-extension

E2(V ) : 0 −→ V (1) −→ Symp(V ) −→ γp(V ) −→ V (1) −→ 0

is actually a 2-extension of (k,GLk(V ))-modules. Hence, the class e2(V ) is in the
image of

ρ∗ : YExt2
(k,GLk(V ))(V

(1), V (1)) −→ YExt2
(k,G)(V

(1), V (1)).

15.3. Proof of Theorem 15.2. We proceed by induction on the dimension d
of V . There is nothing to prove if d = 0, and the result is standard if d = 1
(Teichmüller). We may thus assume that d ≥ 2, and that the conclusion of the
Theorem holds for all finite fields k, and all (k,G)-modules of dimension ≤ d− 1.
By Proposition 15.16, we see that it suffices to show that e2(V ) = 0. By Lemma
3.7, we can view e2(V ) as a class

h2(V ) ∈ YExt2
(k,G)(k,Homk(V (1), V (1))) = YExt2

(k,G)(k, V
(1) ⊗ V ∗(1)).

Let us briefly recall how. By definition, e2(V ) ∈ YExt2
(k,G)(V

(1), V (1)) is the class
of

E2(V ) : 0 −→ V (1) iV−→ Symp(V )
sp−→ γp(V )

Frob−→ V (1) −→ 0,

where sp is the symmetrizing operator. Tensoring by V ∗(1), we get a 2-extension
(of (k,G)-modules)

0 −→ V (1)⊗V ∗(1) I−→ Symp(V )⊗V ∗(1) S−→ γp(V )⊗V ∗(1) F−→ V (1)⊗V ∗(1) −→ 0,

whose class we denote by e′2(V ) ∈ YExt2
(k,G)(V

(1) ⊗ V ∗(1), V (1) ⊗ V ∗(1)). Define

Ψ : k −→ V (1) ⊗ V ∗(1)

by the formula

λ 7→ λId.

Then h2(V ) = Ψ∗(e′2(V )). We now have to show that h2(V ) = 0.

By Theorem 12.4, or more precisely by Remark 12.6, it is enough to prove the
following. Let G′ ⊂ G be a (nontrivial) open subgroup, and let

f ∈ Hom(k,G′)(V
(1) ⊗ V ∗(1), k).

Then, we have

f∗(Res(h2(V ))) = 0 ∈ H2(G′, k),

where Res is the restriction map, from the cohomology of G to that of G′.
Without loss of generality, we can assume that G′ = G. There exists

g ∈ Hom(k,G)(V, V )
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such that

f(x(1) ⊗ φ(1)) = φ(g(x))p

(this is a fancy reformulation of the standard fact that any linear form on the
space of n× n matrices is of the shape X 7→ Tr(XY ), for a unique matrix Y ).
Let k′/k be a finite field extension. The the natural map

H2(G, k) −→ H2(G, k′)

is obviously injective. Hence, enlarging k if necessary, we may assume that g
possesses an eigenvalue λ ∈ k. From the decomposition

g = (g − λId) + λId,

it follows that it is enough to show that f∗(h
2(V )) = 0 in one of the following two

cases.

(a) The endomorphism g is not injective.
(b) We have g = Id.

In case (a), The endomorphism g factors as

V −→ V/W
∼−→ Z −→ V,

with W = Ker(g) and Z = Im(g); these are k-subspaces of dimension ≤ d− 1.
Denote by π : V (1) −→ (V/W )(1) (resp j : Z(1) −→ V (1)) the natural map.
The map f hence factors through the quotient map

V (1) ⊗ V ∗(1) π⊗j
∗

−→ (V/W )(1) ⊗ Z∗(1).

It is thus clear that f∗(h
2(V )) depends only on

j∗(π∗(e
2(V ))) ∈ YExt2

(k,G)(Z
(1), (V/W )(1)).

But this class belongs to Ker(Θ2
Z(1),(V/W )(1)

), which is trivial by Proposition 15.16,

since Z(1) admits a lift modulo p2 by induction.
Hence, in case (a), we can indeed conclude that f∗(h

2(V )) = 0.

To finish the proof, it remains to show that f∗(h
2(V )) = 0 in case (b), i.e. when

f is the trace map

Tr : V (1) ⊗ V ∗(1) −→ k,

x(1) ⊗ φ(1) 7→ φ(x)p.

Let

ρ : G −→ GLk(V )

be the group homomorphism giving the action of G on V . By Remark 15.17, and
since Tr is GLk(V )-equivariant, it is clear that Tr∗(h

2(V )) is in the image of the
map

ρ∗ : H2(GLk(V ), k) −→ H2(G, k).

But, by [Q], Theorem 6, the source of ρ∗ is trivial if r(p− 1) > 2, where q = pr is
the cardinality of k (i.e. for all finite fields, except possibly for those of cardinality
2, 3 and 4). But replacing k by a finite field extension does not affect what has to
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be proven. To see this, take a finite field extension k′/k, put V ′ := V ⊗k k′, and
have a look at the commutative diagram

H2(GLk′(V
′), k′)

ρ′∗ //

��

H2(G, k′)

H2(GLk(V ), k′)
ρ∗ // H2(G, k′)

H2(GLk(V ), k)

OO

ρ∗ // H2(G, k)

OO

where the two vertical arrows going up are injective. If k′ is large enough, we
have H2(GLk′(V

′), k′) = 0 by loc. cit.
Hence, by an easy diagram chase, Tr∗(h

2(V )) = 0, and the proof is complete.

In the course of the preceding proof, the crucial fact that Tr∗(h
2(V )) = 0 was

shown using a result of Quillen. The next exercise provides a self-contained proof
of this fact.

Exercise 15.18. Let k be a finite field. Let d ≥ 1 be an integer. Let M2 be a free
W2(k)-module of rank d. Put M1 := M2/p.

(1) Show that we have an commutative diagram (with exact rows and columns)

1

��

1

��

1

��
1 // Endk(M

(1)
1 )0

��

// SLW2(k)(M2)

��

// SLk(M1)

��

// 1

1 // Endk(M
(1)
1 ) //

Tr
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GLW2(k)(M2)
π //
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det
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1

1 // k //
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W2(k)× //

��

k× //

��

1

1 1 1

,

where Endk(M
(1)
1 )0 denotes the kernel of the trace map Tr, and where the

horizontal surjections are given by reduction mod p.

(2) Show that the action of GLk(M1) on Endk(M
(1)
1 ) induced by the middle row

of the preceding diagram is the natural conjugation action (twisted by Frobenius).

Now, let G be a profinite group, acting trivially on the groups in the diagram
above. Let V be a (k,G)-module.

(3) Show that V corresponds to a GLk(M1)-torsor X, whose class in
H1(G,GLk(M1)) we denote by x. Show that V can be lifted mod p2 if and
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only if x in in the image of

π∗ : H1(G,GLW2(k)(M2)) −→ H1(G,GLk(M1)).

(3) Show that the twist of Endk(M
(1)
1 ) by X is canonically isomorphic (as a

(k,G)-module) to Endk(V (1)), and that the obstruction to lifting x via π∗ is a
class h′2(V ) ∈ H2(G,Endk(V (1))).

(4) Use the diagram above to show that Tr∗(h
′2(V )) = 0 ∈ H2(G, k).

(5) Show that h′2(V ) = h2(V ).
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