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1. Introduction.

This paper surveys recent progress on lifting Galois representations.
We focus on approaches that solely rely on Galois cohomology: [1], [2],
[9], [11] and [12]. For an overview of this widely investigated topic, also
beyond the scope of this survey, see for instance [1] or [11]. Observe that
sections 3 and 7 actually contain new material. In section 6, emphasis
is laid on results of [1], on which I gave a talk at the conference held
in Ottawa in June 2024, to celebrate Ján Mináč’s 71th birthday.
Dear Ján, it is a pleasure to know you. I wish you lots of enjoyable
mathematics in your life!

2. General facts on lifting problems.

Let p be a prime. In this text, G always denotes a profinite group.

Definition 2.1. A homomorphism from G to an abstract group is said
to be continuous, if its kernel is open.

Definition 2.2. Let R be a commutative ring. An (R,G)-module is a
finite locally free R-module, equipped with an R-linear G-action, whose
kernel is open in G.

Consider the following general question.

Question 2.3. LetG be a profinite group. Let Γ be an affine and smooth
Z-group scheme. Consider a continuous representation

ρ : G −→ Γ(Fp).

Does ρ admit a continuous lift

ρ2 : G −→ Γ(Z/p2)?

When G is an absolute Galois group and Γ := GLd, Question 2.3 yields
the main problem of interest in this paper- ubiquitous in arithmetic.

Question 2.4. Let F be a field, with a separable closure Fs.
For some integer d ≥ 1, consider a (continuous) Galois representation

ρ : Gal(Fs/F ) −→ GLd(Fp).

Does ρ admit a lift, to some

ρ2 : Gal(Fs/F ) −→ GLd(Z/p2)?

2.1. Variants and generalisations.

Denote by Bd ⊂ GLd the Borel subgroup of upper triangular matri-
ces, and by Ud ⊂ Bd its unipotent radical, consisting of strictly upper
triangular matrices. There is a ‘triangular’ (resp. ’strictly triangular’)
variant of Question 2.4, replacing GLd by Bd (resp. by Ud). In some
cases, these triangular variants are easier to handle, by recursive lifting
algorithms. This is the main guideline of [1].
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In the formulation of Question 2.3, the field of coefficients of ρ is
Fp. One may replace it by an arbitrary field k of characteristic p, and
accordingly, replace Z/p2 by W2(k) (truncated Witt vectors of length
two). Depending on the results aimed at, this may, or may not, make
a difference. For instance, the proof of Proposition 4.3 (liftability of
two-dimensional Galois representations) is insensitive to k. On the
other hand, for p = 2, both statement and proof of Theorem 5.1 (that
includes the non-liftability of the generic Galois representation of di-
mension 5 over k = F2) highly depend on k.

One may also search for liftings modulo pr, for r ≥ 3. This topic is
addressed in Section 6, for absolute Galois groups of local fields (and
more generally, for the so-called p-manageable profinite groups).

2.2. Cohomological obstructions to lifting.

Place ourselves in the context of Question 2.3. Endow the Lie algebra
Lie(Γ) with its natural (adjoint) linear Γ-action. Denote by

EndFp(ρ) := ρ∗(LieFp(Γ))

the Lie algebra of Γ over Fp, considered as a representation of G, by
group-change via ρ. By the general formalism of (group) cohomology,
the obstruction to the existence of ρ2, is a natural class

Obs(ρ2) ∈ H2(G,EndFp(ρ)).

This class can be described explicity via group extensions; see e.g.
section 2.2. of [11] for the cases Γ = GLd,Bd.

Remark 2.5. (Arbitrary field of coefficients.)
Let k be a field of characteristic p. Denote by

frob : k
x 7→xp

−−−→ k

the frobenius endomorphism of k. For a k-vector space V , denote by

V (1) := V ⊗frob k

its frobenius twist. Consider a continuous representation

ρ : G −→ Γ(k).

Then, the obstruction to lifing ρ to

ρ2 : G −→ Γ(W2(k)),

is a natural class

Obs(ρ2) ∈ H2(G,Endk(ρ)
(1)).

The frobenius twist, invisible when k = Fp, is actually essential.



4 MATHIEU FLORENCE

2.3. Subgroups of prime-to-p index, reduction to the triangular case.

Let G be a profinite group, and consider a representation

ρ : G −→ GLd(Fp).

There is an open subgroup G0 ⊂ G, of prime-to-p index, such that the
restriction ρ|G0 is upper triangular, up to conjugation. One may thus
assume that ρ|G0 reads as

ρ|G0 : G0 −→ Bd(Fp) ⊂ GLd(Fp).

Assume that ρ|G0 lifts, to a representation

G0 −→ Bd(Z/p2).

Then ρ lifts, to a representation

ρ2 : G −→ GLd(Z/p2).

The same result holds, replacing Bd ⊂ GLd, by Ud ⊂ Bd.
The proof is a classical restriction/corestriction argument, to a pro-p-
Sylow Gp ⊂ G. See for instance [12], Lemma 2.6.

Remark 2.6. This restriction/corestriction argument typically does not
apply to lifting modulo higher powers of p. Precisely, if one replaces
Z/p2 by Z/p3, it is likely that the analoguous result is false- though
I do not have a counter-example in mind. In general, there is the
following fact, that one should relate to Hensel’s Lemma. For some
n ≥ 1, consider a representation ρn : G −→ Γ(Z/pn). Then, liftability
of ρn, to a representation ρ2n : G −→ Γ(Z/p2n), is an abelian problem:
it is obstructed by a natural class

Obs(ρ2n) ∈ H2(G,EndZ/pn(ρ)).

However, lifting ρn, to ρ2n+1 : G −→ Γ(Z/p2n+1) is not an abelian
question: there is no natural cohomology class (with values in a G-
module) that obstructs it.

2.4. A simple descent Lemma.

Lemma 2.7. Let G be a (profinite) group, and let V, V ′ be (k,G)-modules.
Let l/k be an extension of fields of characteristic p. The following holds.

(1) If (V ⊕ V ′) lifts to a (W2(k), G)-module, then so does V .
(2) If the (l, G)-module V ⊗k l lifts to a (W2(l), G)-module, then V

lifts to a (W2(k), G)-module V2.

Proof. Item (1) is [2], Lemma 3.4. Item (2) is classical. It follows
from the facts, that the obstruction to the existence of V2, reading as

Obs(V2) ∈ H2(G,Endk(V )(1))

(see section 2.2) is compatible to base-change, and that the injection

Endk(V )(1) ↪→ Endl(V ⊗k l)
(1) = Endk(V

(1))⊗k l
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has a G-equivariant retraction- provided by the choice of a k-linear
retraction of the inclusion k ↪→ l. □

3. A non-liftable Heisenberg-Galois representation.

In this survey, we mostly (but not exclusively) focus on lifting mod
p Galois representations. By definition, they are representations of
G := Gal(Fs/F ), where F is a field, with values in GLd(k), where k
is a field of characteristic p. Such a representation that takes values in
Bd(k) resp. Ud(k), is called triangular, resp. strictly triangular.
We begin with a simple significant example, taken from an unpublished
earlier version of [5]. It was removed from recent versions.

For p ≥ 3, we give an elementary example of a field F , containing C,
such that the following natural arrow is not surjective:

H1(Gal(Fs/F ),U3(Z/p2)) −→ H1(Gal(Fs/F ),U3(Fp)).

Thus, all mod p “Heisenberg-Galois” representations do not lift mod p2.

Start with a field F , containing C. Set G to be its absolute Galois
group. For each n ≥ 1, use e

2πi
n ∈ F to identify µn to Z/n, as finite

G-modules. Pick x, y ∈ F×.

By Kummer theory, there are two classes

(x)p, (y)p ∈ H1(F, µp),

respectively associated to extensions of (Fp, G)-modules

Ex : 0 −→ Fp = µp −→ Ex −→ Fp −→ 0

and
Ey : 0 −→ Fp = µp −→ Ey −→ Fp −→ 0.

These give rise to group homomorphisms

ρx : G −→ U2(Fp) = Fp

and
ρy : G −→ U2(Fp) = Fp.

Definition 3.1. Assume there exists a complete flag of (Fp, G)-modules

∇3 : 0 ⊂ V1 ⊂ V2 ⊂ V3,

such that the truncated extension of (Fp, G)-modules

0 −→ V1 −→ V2 −→ V2/V1 −→ 0

is isomorphic to Ex, and such that the quotient extension

0 −→ V2/V1 −→ V3/V1 −→ V3/V2 −→ 0

is isomorphic to Ey. We then say that Ex and Ey glue, to the complete
flag ∇3.
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A fundamental fact is that the extensions Ex and Ey glue to a ∇3 as
above, if and only if the cup-product

a = (x)p ∪ (y)p ∈ H2(F, µ⊗2
p ) = H2(F, µp) = Br(F )[p]

vanishes.
Assume that this is the case, and let ∇3 be such a gluing. Using
the same construction as above, for coefficients in Z/p2, we get the
following.
The complete flag ∇3 lifts to a complete flag of (Z/p2, G)-modules

∇3,2 : 0 ⊂ V1,2 ⊂ V2,2 ⊂ V3,2,

with trivial graded pieces

Li,2 = Z/p2,
if and only if (x)p and (y)p, respectively, lift to classes

(X)p2 , (Y )p2 ∈ H1(F, µp2),

such that

(X)p2 ∪ (Y )p2 = 0 ∈ H2(F, µ⊗2
p2 ) = H2(F, µp2) = Br(K)[p2].

We now show that

F , x and y can be chosen, so that the liftability property above fails.

Equivalently:

• The extensions Ex and Ey glue, to a ∇3 as above.
• The flag ∇3 does not admit a lift to a flag of (G,Z/p2)-modules
∇3,2, with trivial graded pieces.

It follows that [∇3] ∈ H1(Gal(Fs/F ),U3(Fp)) cannot be lifted via

H1(Gal(Fs/F ),U3(Z/p2)) −→ H1(Gal(Fs/F ),U3(Fp)),

completing the goal of this section. The following elementary result is
the key. Alternatively, one may use a deeper, yet more involved result:
[8], Theorem 2.1.

Proposition 3.2 ([13, Théorème 1] or [14, Exercise 10.5]).
Let p be an odd prime. Put

F := C(x1, x2, y),

x := (xp
1 − y)(xp

2 − y) ∈ F

and
M := F (x

1
p , y

1
p ).

Consider the cyclic algebra

A := (x)p2 ∪ (y)p2 ∈ Br(F ).

It is of exponent p, split by M/F . There do not exist elements u, v ∈ F
such that

[A] = (u)p ∪ (y)p + (v)p ∪ (x)p ∈ Brp(F ).
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This proposition being granted, assume that (x)p and (y)p lift to classes

(X)p2 , (Y )p2 ∈ H1(F, µp2),

such that (X)p2 ∪ (Y )p2 = 0. Write

(X)p2 = (x)p2 − p(u)p2

and

(Y )p2 = (y)p2 − p(v)p2 ,

for u, v ∈ F×. Expanding the equality (X)p2 ∪ (Y )p2 = 0, we get

[A] = (u)p ∪ (y)p + (x)p ∪ (v)p ∈ Br(F ),

contradicting the above.

We did not exclude the possibility that ρ1 lifts to a representation

G −→ B3(Z/p2),
but I believe it does not. This would imply the non-liftability of the
versal B3(Fp)-Galois representation (over K = C). From there, one
could derive an alternate proof of Theorem 5.1, for p odd (see section
5 for the definition of ’versal’, and more).

Actually, in the literature, the first simple triangular counter-example
(i.e. for B3) was given in the note [6]. Observe that its construction
heavily relies on the assumption µp2 ⊈ F , and would not work over
number fields containing µp2 .
In the sequel, write Gal(F ) for Gal(Fs/F ). For the sake of concreteness,
the statement given next slightly differs from [6], that only deals with
fields of Laurent series, i.e. with representations of the absolute Galois
groups Gal(F ((T ))). It is clear however, that the construction thereof
is ‘non-formal’: it indeed provides a ρ1 as below.

Proposition 3.3. (See [6].)
Let p be an odd prime.
Let F be a number field, such that µp ⊂ F but µp2 ⊈ F .
Pick a 1-cocycle

c : Gal(F ) −→ Fp ≃ µ⊗2
p ,

that does not lift to a 1-cocycle

Gal(F ) −→ µ⊗2
p2 .

[From class field theory, it is not hard to see that such a c exists.]
Denote by

t : Gal(F (T )) −→ µp

the 1-cocycle (which is here a homomorphism) corresponding, via Kum-
mer theory, to

(T ) ∈ H1(F (T ), µp) = F (T )×/F (T )×p.
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Consider the representation

ρ1 : Gal(F (T )) −→ B3(Fp),

given by the formula 1 t t2 + c
0 1 2t
0 0 1

 .

It does not lift to a representation

ρ2 : Gal(F (T )) −→ B3(Z/p2).
In fact, it does not even lift formally at T : the composite representation

ρ̂1 : Gal(F ((T )))
nat−−→ Gal(F (T ))

ρ1−→ B3(Fp)

does not lift to a representation

Gal(F ((T ))) −→ B3(Z/p2).
The raw idea of proof goes like this. By contradiction, suppose that ρ̂1
lifts, to

ρ̃2 : Gal(F ((T ))) −→ B3(Z/p2).
Via a computation of residues in Galois cohomology, one shows that ρ̃2
can be picked of the shape χ2 ∗ ∗

0 χ ∗
0 0 1

 ,

where χ : Gal(F ) −→ (Z/p2)× is the cyclotomic character modulo p2

(that is trivial modulo p, by the assumption µp ⊂ F ). Observe that
the Galois module corresponding to χ2 is µ⊗2

p2 .

Using that the center of U3(Fp) is

Z/p ≃

1 0 ∗
0 1 0
0 0 1

 ,

another computation shows that c would lift, to a 1-cocycle with values
in µ⊗2

p2 , contradicting the initial assumption.

4. Positive results, over all fields.

4.1. When p is odd...

... two-dimensional Galois representations always lift, as the follow-
ing general statement shows. It is Theorem 6.1 of [2], whose main
contribution is to provide a formalism that is insensitive to k.

Theorem 4.1. Let F be a field. Let k be a field of characteristic p. Then,
the arrow

H1(Gal(Fs/F ),GL2(W2(k))) −→ H1(Gal(Fs/F ),GL2(k))

is surjective.
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It is natural to ask, if this generalises to Witt vectors of higher length.

Question 4.2. Let F be a field. Let k be a field of characteristic p.
Is the arrow

H1(Gal(Fs/F ),GL2(W3(k))) −→ H1(Gal(Fs/F ),GL2(k))

surjective?

To my knowledge, the answer is not known. A partial result is stable
liftability of two-dimensional Galois representations, again furnished
by [2], Theorem 6.1. Precisely, given a two-dimensional (Galois) rep-
resentation V over k, there exists another (explicit) representation V ′,
such that V

⊕
V ′ lifts to a representation over W(k) (the ring of full

p-typical Witt vectors.)
Proving/disproving actual liftability to W3(k), would definitely require
some new insight.

4.2. When p = 2...
...Galois representations over F2 lift up to dimension four, as follows.

Proposition 4.3. [dimension three, over F2.]
Let F be a field of characteristic not 2, containing µ4. Then, the arrow

H1(Gal(Fs/F ),U3(Z/4)) −→ H1(Gal(Fs/F ),U3(Z/2))
is surjective.

Proof. It is a straighforward adaptation of the construction of sec-
tion 3, to the case p = 2. This is done using the following fact,
well-known to specialists (see Proposition 5.2 of [10]). Let M :=

F (x
1
2 , y

1
2 )/F be a biquadratic extension. Then, every central simple

algebra
[A] ∈ Br2(M/F )

is of the shape
[A] = (u)2 ∪ (y)2 + (x)2 ∪ (v)2,

for some u, v ∈ F×. Details are left to the interested reader. □
To my knowledge, it is unknown whether the surjectivity statement of
Proposition 4.3 holds for U4 (I believe it does not). However, there is
the following result.

Proposition 4.4. [dimension four over F2, See [2], Theorem 6.1.]
Let F be a field. Then, the arrows

H1(Gal(Fs/F ),B4(Z/4)) −→ H1(Gal(Fs/F ),B4(Z/2))
and

H1(Gal(Fs/F ),GL4(Z/4)) −→ H1(Gal(Fs/F ),GL4(Z/2))
are surjective.
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Remark 4.5. Let k be a field of characteristic 2. If k ̸= F2, Proposition
4.3 actually fails over k; see Theorem 5.1.

Remark 4.6. In [2], Theorem 6.1 is stated for GL4 only, but the proof
clearly gives the same result for B4.

5. Negative generic results.

In their recent work [11] and [12], Merkurjev and Scavia gave the list
of all pairs (p, d), such that Question 2.4 has an affirmative answer for
all fields F . They also solve the same problem, replacing GLd by Bd,
and Fp (resp. Z/p2) by an arbitrary field k of characteristic p (resp.
W2(k)). Their result can be formulated in a simple way: for GLd or
Bd, there are no other cases in which all Galois representations lift
mod p2, than those listed in Section 4. Precisely:

Theorem 5.1. Let k be a field of characteristic p, and let d ≥ 1 be an
integer. The following are equivalent.

(1) The arrow

H1(Gal(Fs/F ),GLd(W2(k))) −→ H1(Gal(Fs/F ),GLd(k))

is surjective for all fields F .
(2) If |k| ≥ 3, then d ≤ 2.

If |k| = 2 (equivalently, if p = 2 and k = F2), then d ≤ 4.

In fact, Theorem 1.1 of [12] is slightly more precise. Here are some
details. The crucial case is that of a finite field of coefficients, say
k = Fq. Starting with any field K, one can then consider the generic
d-dimensional Galois representation over K, with coefficients in k. It
consists of a field extension F/K, together with a representation

ρd,vers : Gal(Fs/F ) −→ GLd(k)

that is versal. Roughly speaking, this means that, for every field exen-
sion L/K, and for every Galois representation

ρ : Gal(Ls/L) −→ GLd(k),

ρd,vers has a specialisation that is conjugate to ρ. Equivalently, it is a
versal torsor over K, for the finite group GLd(k), in the sense of [7].
Liftability of all d-dimensional representations, over all field extensions
of K, is thus equivalent to that of ρd,vers. Therefore, one focuses on
disproving liftability of ρd,vers. A meaningful observation, is that

Non-liftability of ρd,vers implies that of ρd′,vers, for all d′ > d.

This is a consequence of item (1) of Lemma 2.7, applied to V := ρd,vers
and to the trivial representation V ′ = kd′−d. At the light of this Lemma,
the work is thus to disprove liftability of ρd,vers, in the following cases:

(1) p ≥ 3, k = Fp, and d = 3,
(2) p = 2, k = F2r for r ≥ 2, and d = 3,
(3) p = 2, k = F2 and d = 5.
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Item (1) is treated in [11], as an application of a result of indepen-
dent interest: the computation of negligible cohomology classes in
H2(G,M), for all finite groups G and all finite G-modules M , over
fields containing enough roots of unity. This result is explicit, and its
proof is nicely constructive.
In item (2), the crucial case is k = F4. As far as I can see, this definitely
requires more subtlety, than in the arguments of section 3.
In the current version of [12], item (3) is the hardest one- dealt with
by intricate (though elementary) computations. These can hopefully
be simplified.

6. Positive results, over specific fields.

In [9], Khare and Larsen prove lifting statements for Heisenberg-Galois
representations (=representations of absolute Galois groups, with val-
ues in U3), when the field F is a global field, or a non-archimedean
local field, containing µp2 .
In particular, they prove the following result. At the time this survey
is written, it is the only general result available in the literature, about
Question 2.4 for global fields, in dimension d ≥ 3.

Proposition 6.1. [See [9], Theorem 5.4.] Suppose that p is odd. Let F
be a local field, or a number field, containing µp2. Then, the following
arrows are surjective:

H1(Gal(Fs/F ),U3(Z/p2)) −→ H1(Gal(Fs/F ),U3(Fp))

and

H1(Gal(Fs/F ),GL3(Z/p2)) −→ H1(Gal(Fs/F ),GL3(Fp)).

Remark 6.2. Here again, the case of GL3 follows from that of U3, for
purely group-theoretic reasons- see section 2.3.

Remark 6.3. Proposition 6.1 still holds upon replacing Fp by a field k
of characteristic p (and accordingly, replacing Z/p2 by W2(k)). This
upgrade is at the cost of minor modifications in proofs, as the interested
reader may check.

For local fields, the proof of Proposition 6.1 just uses the following
properties of F .

(1) It contains p2-th roots of unity.
(2) The Fp-vector space H2(F,Fp) is one-dimensional.
(3) The cup-product

H1(F,Fp)×H1(F,Fp) −→ H2(F,Fp)

is a perfect pairing of finite-dimensional Fp-vector spaces.

In the recent work [1], very general lifting theorems are proved for the
so-called p-manageable profinite groups. We refer to [1] for details on
the material presented next.
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Definition 6.4. Let Gp be a pro-p-group. Say that Gp is p-manageable
if the following conditions are satisfied.

(1) The Fp-vector space H2(Gp,Fp) is one-dimensional.
(2) The cup-product pairing of (possibly infinite-dimensional) Fp-

vector spaces

H1(Gp,Fp)×H1(Gp,Fp) −→ H2(Gp,Fp) ≃ Fp,

has trivial (left) kernel.
(3) There exists a continuous character

θp : Gp −→ Z×
p ,

with the following property. Set Zp(1) := Zp, on which Gp acts
via θp. Then, for every r ≥ 2, the natural arrow

H1(Gp, (Z/pr)(1)) −→ H1(Gp,Fp(1))

is onto.
Let G be any profinite group. Let Gp ⊂ G be a pro-p-Sylow.
Say that G is p-manageable, if Gp is p-manageable, and the
character θp of item (3) extends to a character

θ : G −→ Z×
p .

Remark 6.5. Let Gp be a p-manageable pro-p-group. Using item (2),
one can prove that the character θp : Gp −→ Z×

p in item (3) is unique.

Let us give three famous examples of p-manageable profinite groups.

Example 6.6. (Absolute Galois groups of local fields.)
Let F be a finite extension of Ql, or of Fl((T )), with l = p allowed.
Then G := Gal(Fs/F ) is p-manageable. Moreover, in (3), Zp(1) is the
Tate module (of roots of unity of p-primary order) if char(F ) ̸= p, or
Zp(1) = Zp if char(F ) = p.

Example 6.7. (Fundamental groups of curves.)
Let G be the algebraic fundamental group of a smooth proper complex
curve of genus g > 0. Then G is p-manageable. Moreover, in (3), θ is
trivial, i.e. Zp(1) = Zp.

Example 6.8. (Demushkin groups.)
Let G be a pro-p-group. If G satisfies items (1) and (2) of Definition
6.4, say that G is a Demushkin group. [In the classical terminology,
one also requires that G be finitely generated, or equivalently that
H1(Gp,Fp) is finite.] If G is finitely generated, then a character θ as in
item (3) exists, so that G is p-manageable. For a proof that does not
use dualizing modules, see [1], Proposition 5.1.

Until the end of this section, G is a p-manageable profinite group, and
θ,Zp(1) are as in item (3) of Definition 6.4.
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A variant of Question 2.3 for G, then has a very strong positive answer.
To state it, we introduce the following notation.

Definition 6.9. For r ≥ 2, consider a triangular representation

ρr : G −→ Bd(Z/pr).
Denote its mod p reduction by

ρ1 : G −→ Bd(Fp).

Denote by Vr the representation of G on the free Z/pr-module (Z/pr)d,
furnished by ρr. Observe that Vr is naturally equipped with a complete
flag of representations of G over Z/pr.

Definition 6.10. (Wound Kummer flag, for r = 1.)
Consider a triangular representation

ρ1 : G −→ Bd(Fp).

Observe that ρ1 gives rise to homomorphisms, for i = 1, 2, . . . d− 1,

λi : G −→ B2(Fp),

corresponding matrixwise, to the (2×2) blocks centered at the diagonal.
If one of the following three equivalent conditions is satisfied, we say
that the (triangular) representation ρ1 is wound Kummer.

(1) For all i, p divides |Im(λi)|.
(2) For all i, the extension (of one-dimensional representations of

G over Fp) corresponding to λi is non-split.
(3) There is a unique G-invariant complete flag on V1, given by ρ1.

Definition 6.11. (Wound Kummer flag, general case.)
For r ≥ 1, consider a triangular representation

ρr : G −→ Bd(Z/pr).
The diagonal of ρr gives d multiplicative characters (for i = 1, 2, . . . d)

χi : G −→ (Z/pr)×.
Say that ρr is wound Kummer if the following conditions hold.

(1) ρ1 is wound Kummer, in the sense of Definition 6.10.
(2) For i = 1, . . . , d, the order of the character

χi.θ
i : G −→ (Z/pr)×

divides (p− 1).

Remark 6.12. Item (2) of Definition 6.11 can be reformulated as: the
p-primary parts of χi and (the reduction modulo pr of) θ−i coincide.

We do not provide here a precise definition of a Kummer representation,
but the rough idea goes like this. A representation

ρr : G −→ Ud(Z/pr)
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is Kummer, if the combinatorics of partial splittings of ρr, is the same
as that of its mod p reduction ρ1.

A very strong step-by-step lifting result is available for wound Kummer,
resp. for Kummer representations: Theorems 7.10, resp. 7.21 of [1]. In
this survey, we contend ourselves with two corollaries of these: Theo-
rems 6.13 and 6.15 below. Separately, they illustrate the two meanings
of “step-by-step”:

• On the one hand, w.r.t. the depth r of the flag- see Theorem
6.13.

• On the other hand, w.r.t. the dimension d- see item (2) of
Theorem 6.15.

The construction of the liftings is explicit, using an iterative deforma-
tion process, along which extensions are manipulated via elementary
operations: Baer sum, push-forward and pull-back. A key technique is
a mixture of gluing and lifting, called “gluifting” ([1], section 5).

Theorem 6.13. Let d, r ≥ 1 be integers. Let ρr be a d-dimensional
wound Kummer, resp. a Kummer representation. In the Kummer case,
assume that Z/pr+1(1) = Z/pr+1. Then ρr lifts, to a wound Kummer,
resp. to a Kummer representation ρr+1.

Remark 6.14. Kummer representations provide a natural framework,
where one can lift certain Galois representations via the arrow

H1(Gal(Fs/F ),GLd(Z/pr+1)) −→ H1(Gal(Fs/F ),GLd(Z/pr)),
for d ≥ 1 and r ≥ 2. Results of this kind are very rare. Observe that,
for general F , this arrow is never surjective. Here is an example. Take
r = 2 if p is odd, or r = 3 if p = 2. Then, surjectivity fails already
for d = 1. Indeed, it is not hard to check, that it is equivalent to
surjectivity of

H1(Gal(Fs/F ),Z/p2) −→ H1(Gal(Fs/F ),Fp),

which does not hold in general, e.g. for F = Q. For fields containing
C, there should be counter-examples also for d = 2, but I do not have
any in mind.

Theorem 6.15. [[1], Corollary 7.22.]
Consider a representation

ρ1 : G −→ Ud(Fp).

Let r ≥ 2, and assume that Z/pr(1) = Z/pr. Then, the following hold.

(1) There exists a lift of ρ1, to a representation

ρr : G −→ Ud(Z/pr).
(2) Futhermore, ρr can be picked such that the natural map

H1(G, Vr) −→ H1(G, V1)
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is surjective.

Remark 6.16. For item (1) to hold, the condition Z/pr(1) = Z/pr is
necessary.

Remark 6.17. For absolute Galois groups of local fields, it follows from
results of [4], that item (1) holds with Bd in place of Ud, without
the assumption Z/pr(1) = Z/pr. However, by [1], Example 7.23, this
cannot be achieved using powers of the cyclotomic character for the
diagonal of ρr. In other terms, the d one-dimensional graded pieces of
Vr cannot in general be of the form Li,r := Z/pr(ni), for i = 1, . . . d.

Remark 6.18. It is not clear to me how to prove item (2) of Theorem
6.15, using the material of [4].

Remark 6.19. Item (2) can be thought of as “higher-dimensional Kum-
mer theory”, where the d-dimensional representation Vr replaces the
one-dimensional cyclotomic module Z/pr(1). Meanwhile, this analogy
is seriously limited: in general, there is no choice of ρr, such that

H1(H,Vr) −→ H1(H,V1)

is surjective for all open subgroups H ⊂ G.
Details are provided the last section of this paper.

7. There is no “naive” two-dimensional Kummer theory.

In the literature, the next result is new.

Proposition 7.1. Let p ≥ 5 be a prime, and let F be a field of charac-
teristic not p, containing all p2-th roots of unity. Set G := Gal(Fs/F ).
Assume that, for every open subgroup H ⊂ G, the cup-product pairing

H1(H,Fp)×H1(H,Fp) −→ H2(H,Fp)

is non-degenerate, meaning that its left kernel is trivial. [This is the
case if F is a local field. By Lemma 3.6 of [1], it is also the case if F
is infinite and finitely generated over its prime subfield.]
Consider a two-dimensional representation

ρ1 : G −→ GL2(Fp),

such that |Im(ρ1)| is divisible by p.
Then, there does not exist a lift of ρ1 to a representation

ρ2 : G −→ GL2(Z/p2),

such that, with notation of Definition 6.9, the natural map

H1(H,V2) −→ H1(H, V1)

is surjective for every open subgroup H ⊂ G.
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Proof. For the sake of contradiction, assume that such a ρ2 exists.
By assumption, there exists an open subgroup G′ ⊂ G, such that ρ1(G

′)
is cyclic of order p. Replacing G by G′, and replacing ρ by a conjugate
representation, one thus reduces to the case where ρ1 ̸= 1 takes values
onto U2(Fp) = Z/p. Set H := Ker(ρ1). If ρ2(H) = 1, then the matrix(

1 1
0 1

)
∈ GL2(Fp)

would lift (via ρ2) to an element ofGL2(Z/p2) of order p. This is impos-
sible because p ≥ 5 (classical check, left to the reader). Consequently,
it suffices to prove that ρ2(H) = 1. Since V2 is a free Z/p2-module, the
natural exact sequence of H-modules

0 −→ pV2 −→ V2 −→ V2/pV2 −→ 0

reads as

0 −→ V1 −→ V2 −→ V1 −→ 0,

i.e.

(E) : 0 −→ F2
p −→ V2

q−→ F2
p −→ 0.

By assumption, the arrow

q∗ : H
1(H,V2) −→ H1(H,F2

p)

is onto. Since µp2 ⊂ F , Kummer theory implies that the arrow

H1(H,Z/p2) −→ H1(H,Fp)

is onto. Define

V ′
2 := (Z/p2)2.

It is another (obvious) lift of the trivial representation H over Fp, to a
representation of H over Z/p2. There is a natural extension of (trivial)
H-modules

(E ′) : 0 −→ F2
p −→ V ′

2

q′−→ F2
p −→ 0,

and by Kummer theory recalled above,

q′∗ : H
1(H,V ′

2) −→ H1(H,F2
p)

is onto as well. Consider (E) and (E ′) as extensions of Z/p2-modules
(with an action of H). As such, form their Baer difference

(E)− (E ′) : 0 −→ F2
p −→ D

π−→ F2
p −→ 0,

and denote it by ∆. Since q∗ and q′∗ are onto, so is the arrow

π∗ : H
1(H,D) −→ H1(H,F2

p).

To check this, observe first that surjectivity of q∗ amounts to vanishing
of the connecting map associated to the extension (E), reading as

βE : H1(H,F2
p) −→ H2(H,F2

p).
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The same fact holds for q′∗. Using that the formation of Baer sum is
compatible to connecting maps, it follows that

β∆ : H1(H,F2
p) −→ H2(H,F2

p)

vanishes, whence the sought-for surjectivity. Next, since V2 and V ′
2

are both lifts of the Fp-vector space V1(= F2
p) to free Z/p2-modules, it

follows that D is in fact an Fp-vector space. The proof is elementary,
and left to the reader. [One may use the connecting arrow κ, introduced
in [3], section 3.5.] Consequently, the extension of (Fp, H)-modules ∆
is provided by a matrix (

D1,1 D1,2

D2,1 D2,2

)
,

where each Di,j is an extension of (Fp, H)-modules, of the shape

Di,j : 0 −→ Fp −→ Pi,j −→ Fp −→ 0.

Denote by
di,j = [Di,j] ∈ H1(H,Fp)

the cohomology class of Di,j. The connecting map

β∆ : H1(H,Fp)
2 −→ H2(H,Fp)

2

is thus given (up to sign) by the formula

(x1, x2) 7→ (x1 ∪ d1,1 + x2 ∪ d2,1 , x1 ∪ d1,2 + x2 ∪ d2,2).

By the above, this connecting map identically vanishes, which implies
that the four di,j’s lie in the kernel of the cup-product pairing

H1(H,Fp)×H1(H,Fp) −→ H2(H,Fp).

By the non-degeneracy assumption, the di,j’s vanish. Consequently,
the extension ∆ is trivial, which implies that V2 ≃ V ′

2 , as (Z/p2, H)-
modules. Equivalently, H acts trivially on V2, as was to be shown.
□

Remark 7.2. Assume that p = 2, and that F is a field of characteristic
not 2, containing µ4. Let ρ1 : G −→ GL2(F2) be a representation,

whose image is of order 2. Set K := Ker(ρ1). Then V1 ≃ FG/K
2 is a

permutation G-module. Define V2 := (Z/4)G/K . Then V2 lifts V1, and
by Kummer theory combined to Shapiro’s Lemma, the natural map

H1(H,V2) −→ H1(H,V1)

is surjective, for every open subgroup H ⊂ G. In that particular case,
we have just shown that a two-dimensional Kummer theory exists.

I think it is fairly doable to provide a full answer to the existence
problem, for two-dimensional Kummer theory as addressed above. One
would need to examine the cases p = 2 and p = 3 thoroughly, and also
the case p ≥ 5, with no assumption on roots of unity.
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