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Lifting low-dimensional local systems

Charles De Clercq1 and Mathieu Florence

Abstract. Let k be a field of characteristic p > 0. Denote by Wr(k) the ring of
truntacted Witt vectors of length r ≥ 2, built out of k. In this text, we consider
the following question, depending on a given profinite group G.

Q(G): Does every (continuous) representation G −→ GLd(k) lift to a representa-
tion G −→ GLd(Wr(k))?

We work in the class of cyclotomic pairs (Definition 4.3), first introduced in [DCF]
under the name “smooth profinite groups”. Using Grothendieck-Hilbert’ theorem
90, we show that the algebraic fundamental groups of the following schemes are
cyclotomic: spectra of semilocal rings over Z[ 1

p ], smooth curves over algebraically

closed fields, and affine schemes over Fp. In particular, absolute Galois groups
of fields fit into this class. We then give a positive partial answer to Q(G), for a
cyclotomic profinite group G: the answer is positive, when d = 2 and r = 2. When
d = 2 and r =∞, we show that any 2-dimensional representation of G stably lifts
to a representation over W(k): see Theorem 6.1.
When p = 2 and k = F2, we prove the same results, up to dimension d = 4.
We then give a concrete application to algebraic geometry: we prove that local
systems of low dimension lift Zariski-locally (Corollary 6.3).
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1. Introduction

Let k be a field of characteristic p and let G be a profinite group. This paper
deals with the deformation theory (more accurately, the liftability) of continuous
representations

ρ : G −→ GLd(k),

ultimately with coefficients in the ring of Witt vectors W(k). A fundamental
instance is given by Galois representations.
Existence of such lifts has been extensively investigated, in the case of absolute
Galois groups of local and global fields. In [K], Khare proves the existence of
lifts to W(k), for 2-dimensional reducible representations, in the case where G is
the absolute Galois group of a number field F , and when k is a finite field. As
noticed by Serre, the proof actually works for any field F . If G is the absolute
Galois group of Q, and under mild assumptions, such lifts exist more generally,
by the work of Ramakrishna [R]. Some time after the present text was released,
Khare and Larsen ([KL]) proved that the answer to Q(G) is positive, when G is
the absolute Galois group of a non-archimedean local field, or a global field, when
k = Fp for odd p, d ≤ 3 and r = 2.
A class of profinite groups, whose mod p representations are likely to lift mod
p2, was first introduced in [DCF] under the name smooth profinite groups. Due
to the recent progress made in the series of papers [DCF1], [F2] and [DCF3], it
is now clear that one should distinguish between the notions of smooth profinite
groups and of cyclotomic pairs. In the present paper, we focus on cyclotomic
pairs. Loosely speaking, a cyclotomic pair consists of a profinite group, equipped
with a so-called cyclotomic module, which will play the role of the cyclotomic
character in Galois cohomology- see Definition 4.3 . We say that a profinite group
is cyclotomic, if it fits into a cyclotomic pair.

The main contribution of this paper, is to give important examples of cyclotomic
profinite groups among algebraic fundamental groups, using Kummer and Artin-
Schreier theory.
More precisely, in Propositions 4.9, 4.10, 4.11 and 4.12, we show that the funda-
mental group π1(S, s), of a given scheme S at a geometric point s, is cyclotomic
in each of the following cases.

a) S is a semilocal Z[ 1
p ]-scheme;

b) S is an affine Fp-scheme;
c) S is a smooth curve, over an algebraically closed field.
d) More generally, S is a smooth projective variety over an algebraically

closed field, such that for every finite étale cover U/S, the Néron-Severi
group of U is torsion-free.

Note that, in all four cases, the cyclotomic module is taken to be the Tate module
of roots of unity Zp(1) when p is invertible on S, or the trivial module Zp when
p vanishes on S. In particular, absolute Galois groups of fields are cyclotomic
profinite groups.

Our next result is Theorem 6.1: continuous representations of dimension 2 of a
cyclotomic profinite group (e.g. of type a), b), c) or d) above), with values in
an arbitrary field k of characteristic p > 0 (possibly infinite), lift to p2-torsion
coefficients. They also stably lift to arbitrary torsion (see Definition 3.1 for the
notion of stable lifting).
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For p = 2 and k = F2, we prove the same results, for representations of di-
mension up to 4. After this paper was first drafted, the recent text [F2] was
released, in which it is proved that mod p representations of a cyclotomic profinite
group lift mod p2- in all dimensions d. The proof involves a delicate new tech-
nology. Our theorem 6.1 here is the particular case d = 2; it is much easier to read.

The paper is structured as follows. In section 2, we recall the machinery of Witt
vectors and of Yoneda extensions, which is a convenient computational tool in our
proofs. We give precise definitions of what is meant by “lifting” in section 3. In
section 4, we recall the notion of a cyclotomic pair. In the remaining sections, we
prove the lifting theorem and deal with its applications.

2. Modules over Witt vectors and Yoneda extensions

Fixing a field k of characteristic p > 0, we consider the ring W(k) of Witt vectors
built out of k. Recall that if k is perfect, W(k) is the unique complete discrete
valuation ring of characteristic 0 whose uniformizer is p and residue field is k. We
shall also consider the truncated Witt vectors of size r ≥ 1, defined by the quotient

Wr(k) := W(k)/Verr(W(k)),

where Ver : W(k) −→ W(k) denotes the Verschiebung endomorphism. We set
W∞(k) := W(k). Note that if k is perfect, we have Wr(k) = W(k)/prW(k).

Definition 2.1. Let r ∈ N∗ ∪ {∞}. Let M be a Wr(k)-module of finite type.
We endow it with the topology having the submodules Veri(W(k))M , i ∈ N, as a
basis for open neighborhoods of 0. This is simply the discrete topology if r <∞.
Note also that, if k is perfect, this defines the p-adic topology on M .

Definition 2.2. Let G be a profinite group, and let r ∈ N∗ ∪ {∞}.
A (Wr(k), G)-module is a Wr(k)-module of finite type, endowed with a continuous
Wr(k)-linear action of G.
In particular, for r = 1, a (k,G)-module is a finite-dimensional k-vector space
endowed with an action of G, that factors through an open subgroup of G.
If V is a (Wr(k), G)-module, we set

V ∨ := HomWr(k)(V,Wr(k)).

We refer to V ∨ as the Pontryagin dual of V .
If k is perfect, then Pontryagin duality is perfect, in the sense that the natural
arrow

V −→ V ∨∨

is an isomorphism.

If G is a profinite group and V is a G-module, we will denote by Hn(G,V ) the
n-th cohomology group of G, with values in V . If V is equipped with the discrete
topology, it is taken in the sense of [Se]. Otherwise (e.g. when V = Zp(n)), it
is in the sense of Tate’s continuous cohomology. In the context of the present
paper, laying too much stress on continuity issues would, we believe, be smoke
and mirrors.
The abelian categories M(Wr(k), G) (resp. M(k,G)) of (Wr(k), G)-modules
(resp. (k,G)-modules) are monoidal through the tensor product. For any pos-
itive integer n and A,B ∈ M(Wr(k), G), one can then define the notion of
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Yoneda n-extensions of B by A, as follows. First, define YExt0
(Wr(k),G)(B,A)

as Hom(Wr(k),G)(B,A).

A n-extension of B by A is an exact sequence of (Wr(k), G)-modules

E : 0 −→ A −→ A1 −→ . . . −→ An −→ B −→ 0.

Setting morphisms E1 −→ E2 between two n-extensions of B by A to be morphisms
of complexes for which the induced morphisms between A and B are the identity
maps, we get the category YExtn(Wr(k),G)(B,A) of Yoneda extensions, of B by A
and of size n. It is additive through the Baer sum.

Any morphism of (Wr(k), G)-modules f : A −→ A′ (resp. g : B′ −→ B) induces
a pushforward functor

f∗ : YExtn(Wr(k),G)(B,A) −→ YExtn(Wr(k),G)(B,A
′),

resp. a pullback functor

g∗ : YExtn(Wr(k),G)(B,A) −→ YExtn(Wr(k),G)(B
′, A).

Those functors commute, in the sense that f∗g
∗ and g∗f∗ are canonically isomor-

phic.

Let us say that two Yoneda extensions E1 and E2 in YExtn(Wr(k),G)(B,A) are

linked if there exists a third extension E ∈ YExtn(Wr(k),G)(B,A) and morphisms
of n-extensions

E1 ←− E −→ E2.
In our setting, this indeed defines an equivalence relation between elements of
YExtn(Wr(k),G)(B,A), compatible with Baer sum.

Definition 2.3. We denote by YExtn(Wr(k),G)(B,A) the Abelian group of equiva-

lence classes of Yoneda n-extensions, in the category YExtn(Wr(k),G)(B,A).

Proposition 2.4. Let r ∈ N∗ ∪ {∞}, and let V be a (Wr(k), G)-module. Then,
for any n ≥ 0, there is a canonical isomorphism

YExtn(Wr(k),G)(Wr(k), V ) ' Hn(G,V ).

Proof. Let us first deal with the case where G and r are finite.
The group Hn(G,V ) is the n-th derived functor of the functor

V 7→ V G = Hom(Wr(k),G)(Wr(k), V ).

Thus, it is nothing but the usual Ext group Extn(Wr(k),G)(Wr(k), V ), computed
using injective resolutions. But, for any Abelian category with enough injectives,
the derived Ext’s coincide with the Yoneda YExt’s ([Ve], Ch. III, Par. 3).
The general case follows from a classical limit argument, over the finite quotients
of G. �

Lemma 2.5. Let r ∈ N∗ ∪ {∞} and let A,B be two (Wr(k), G)-modules, B as-
sumed to be free as a Wr(k)-module. Then, for any n ≥ 0, there is a canonical
isomorphism

YExtn(Wr(k),G)(B,A)
∼−→ YExtn(Wr(k),G)(Wr(k),HomWr(k)(B,A)).

Proof. Considering the Pontryagin dual B∨ = HomWr(k)(B,Wr(k)), we have a
canonical isomorphism

B∨ ⊗A ∼−→ HomWr(k)(B,A).
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The exact functor B∨ ⊗ . yields a functor

T : YExtn(Wr(k),G)(B,A) −→ YExtn(Wr(k),G)(B
∨ ⊗B,B∨ ⊗A)

which maps a Yoneda n-extension

E : 0 −→ A −→ A1 −→ . . . −→ An −→ B −→ 0

to the Yoneda n-extension

B∨ ⊗ E : 0 −→ B∨ ⊗A −→ B∨ ⊗A1 −→ . . . −→ B∨ ⊗An −→ B∨ ⊗B −→ 0.

But the G-equivariant map

I : Wr(k) −→ B∨ ⊗B = EndWr(k)(B),

λ 7→ λId

gives a pullback functor

I∗ : YExtn(Wr(k),G)(B
∨ ⊗B,B∨ ⊗A) −→ YExtn(Wr(k),G)(Wr(k),HomWr(k)(B,A)),

and the composite

I∗ ◦ T : YExtn(Wr(k),G)(B,A) −→ YExtn(Wr(k),G)(Wr(k),HomWr(k)(B,A))

gives, by passing to isomorphism classes of objects, a group homomorphism

Φ : YExtn(Wr(k),G)(B,A) −→ YExtn(Wr(k),G)(Wr(k),HomWr(k)(B,A)),

which is the desired isomorphism. Its inverse can be constructed in a similar
fashion, as follows. Given a Yoneda n-extension of (Wr(k), G)-modules

F : 0 −→ B∨ ⊗A −→ F1 −→ . . . −→ Fn −→Wr(k) −→ 0,

form the tensor product

F ⊗B : 0 −→ B∨ ⊗B ⊗A −→ F1 ⊗B −→ . . . −→ Fn ⊗B −→ B −→ 0.

Applying pushforward w.r.t. the trace

B∨ ⊗B ⊗A −→ A,

φ⊗ b⊗ a 7→ φ(b)a,

we get an n-extension

E : 0 −→ A −→ A1 −→ . . . −→ An −→ B −→ 0.

Passing to isomorphism classes of extensions, we get an arrow

Ψ : YExtn(Wr(k),G)(Wr(k),HomWr(k)(B,A)) −→ YExtn(Wr(k),G)(B,A).

Checking that Φ and Ψ are mutual inverses is left as an exercise for the reader- in
the spirit of Morita equivalence. �
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3. Lifting and stable lifting

The purpose of this section is to give a precise meaning to “lifting representations”.
Here G is a profinite group, and k is any field of characteristic p.

Definition 3.1. (Lifting, stable lifting).
Let 1 ≤ r ≤ s be integers.

Let Vr be a (Wr(k), G)-module, free as a Wr(k)-module. We say that V lifts to
ps-torsion coefficients, if there exists a (Ws(k), G)-module Vs, free as a Ws(k)-
module, such that the (Wr(k), G)-modules Vr and Vs⊗Ws(k)Wr(k) are isomorphic.
We say that Vr stably lifts to ps-torsion coefficients, if there exists an open subgroup
G0 ⊂ G, of prime-to-p index, such that, as a (Wr(k), G0)-module, Vr lifts to ps-
torsion coefficients.

The terminology “stable” is motivated by the following Lemma.

Lemma 3.2. Let 1 ≤ r ≤ s be integers. Let Vr be a (Wr(k), G)-module, free as a
Wr(k)-module. Assume that Vr stably lifts to ps-torsion coefficients. Then, there
exists a (Wr(k), G)-module Wr, free as a Wr(k)-module, such that Vr ⊕Wr lifts
to ps-torsion coefficients.

Proof. Let G0 ⊂ G be an open subgroup, of prime-to-p index, such that the
(Wr(k), G0)-module Vr lifts to ps-torsion coefficients. Let Vs be a (Ws(k), G0)-
module, free as a Ws(k)-module, lifting Vr.

Denote by V
(G/G0)
r the product of copies of Vr, indexed by the finite set

G/G0. It is a (Wr(k), G)-module in a natural way, canonically isomorphic to

IndGG0
(ResGG0

(Vr)).
Consider the morphisms of (Wr(k), G)-modules

Vr
i−→ V (G/G0)

r
N−→ Vr,

where i is the diagonal embedding, and N is the norm

N : V
(G/G0)
r −→ Vr

(vc)c∈G/G0
7−→

∑
c∈G/G0

vc.

The composite N ◦ i is multiplication by the index of G0 in G, which is prime to p.

The (Wr(k), G)-module Vr is thus a direct summand of V
(G/G0)
r , with complement

Wr := Ker(N). But the (Wr(k), G)-module module V
(G/G0)
r admits the induced

module

IndGG0
Vs = Vs ⊗Ws(k)[G0] Ws(k)[G]

as a lift to ps-torsion coefficients. The claim follows. �

Remark 3.3. In the previous Lemma, once G0 is known, Wr is pretty much explicit.

Lifting from mod pr to mod pr+1 is an “abelian” question: there is no difference
between lifting and stable lifting, as illustrated by the following Lemma.

Lemma 3.4. Let 1 ≤ r be an integer. Let Vr be a (Wr(k), G)-module, free as a
Wr(k)-module. Assume that there is another (Wr(k), G)-module Wr, such that
Vr ⊕Wr lifts to pr+1-torsion coefficients.
Then, Vr itself lifts to pr+1-torsion coefficients.
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Proof. We give a constructive proof, avoiding the use of cohomological obstruc-
tions.
Denote by V1 (resp. W1) the reduction of Vr (resp. Wr) to a (k,G)-module. If M
is a W(k)-module, denote by

M (i) := M ⊗Frobi W(k)

its i-th Frobenius twist. By assumption, there is a free (Wr+1(k), G)-module Zr+1

and a short exact sequence of (Wr+1(k), G)-modules

E : 0 −→ V
(r)
1 ⊕W (r)

1 = Verr(Wr+1(k))Zr+1 −→ Zr+1 −→ Vr ⊕Wr −→ 0.

Denote by i : Vr −→ Vr ⊕Wr and π : W
(r)
1 ⊕ V (r)

1 −→ V
(r)
1 the natural inclusion

and projection. Form the extension of (Wr+1(k), G)-modules

π∗i∗(E) : 0 −→ V
(r)
1 −→ Vr+1 −→ Vr −→ 0,

which serves as the definition of Vr+1. Recall that the extensions π∗i∗(E) and
i∗π
∗(E) are canonically isomorphic, so that this construction does not depend on

the order in which the pullback and the pushforward are applied. We claim that
Vr+1 is a lift of Vr to pr+1-torsion coefficients. To see why, it suffices to justify
that Vr+1 is free, as a Wr+1(k)-module. We may thus dismiss the action of G.
Picking bases, we then get that Vr (resp. Wr, Zr+1) is isomorphic to Wr(k)m

(resp. Wr(k)n, Wr+1(k)m ⊕Wr+1(k)n), and that E is isomorphic to

0 −→ km ⊕ kn −→Wr+1(k)m ⊕Wr+1(k)n −→Wr(k)m ⊕Wr(k)n −→ 0,

which is the direct sum of the extensions

Fi := 0 −→ ki −→Wr+1(k)i −→Wr(k)i −→ 0,

for i = m,n. Applying i∗π
∗ to E yields Fm as a result. The claim is proved. �

4. Cyclotomic modules and cyclotomic profinite groups

From now on, we fix a field k of characteristic p and a profinite group G.

In this section, we recall the notion of cyclotomic pair from [DCF1], and provide
important examples.

Notation 4.1. Given two positive integers s ≤ r in N∗ ∪ {∞} and a (Wr(k), G)-
module Mr, we put

Ms := Mr ⊗Wr(k) Ws(k).

Definition 4.2. Let r ∈ N∗ ∪ {∞} and n ≥ 1 be an integer. Let

f : Mr −→ Nr

be a morphism of (Wr(k), G)-modules. We say that f is n-surjective if, for every
open subgroup H ⊂ G, the map

f∗ : Hn(H,Mr) −→ Hn(H,Nr)

is surjective.

Definition 4.3. Let n ≥ 1 be an integer and e ∈ N∗ ∪ {∞}. Let Te+1 be a
(We+1(k), G)-module, free of rank 1 as a We+1(k)-module.
Assume that the quotient

T
⊗n

We+1(k)

e+1 → T ⊗
n
k

1
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is n-surjective.
We then say that the pair (G, T ) is (n, e)-cyclotomic, and that the profinite group
G is (n, e)-cyclotomic (relatively to k).

Let Te+1 be a (n, e)-cyclotomic module. For i a non negative integer, we put

We+1(k)(i) := T
⊗i

We+1(k)

e+1

and

We+1(k)(−i) := We+1(k)(i)∨.

For a We+1(k)-module M , we put

M(i) = M ⊗We+1(k) We+1(k)(i).

A cyclotomic module of depth e is given by a continuous character

χ : G −→We+1(k)×,

and provides an analogue of the cyclotomic character in Galois theory. This allows
to freely to freely mimic Kummer theory, in the framework of cyclotomic pairs.

Remark 4.4. Let (G,We+1(k)(1)) be a cyclotomic pair. If H ⊂ G is a closed
subgroup, then (H,We+1(k)(1)) is a cyclotomic pair as well. This follows, by a
standard limit argument, from the (obvious) case where H ⊂ G is open.

Remark 4.5. For p odd, there is no non-trivial finite (1, 1)-cyclotomic p-group.
For p = 2, the only non-trivial (1, 1)-cyclotomic finite 2-group is Z/2Z. For each
e ∈ N∗ ∪ {∞}, it fits into the unique (1, e)-cyclotomic pair (Z/2Z,We+1(k)(1)),
where the non-trivial element of Z/2Z acts by multiplication by −1. This result
is a variation around Emil Artin’s theorem: the only non-trivial finite group that
occurs as an absolute Galois group is Z/2Z. See [DCF], Exercise 14.27, or [QW],
Proposition 6.1.

We now provide a supply of cyclotomic pairs (G, T ) arising from geometry, i.e.
where G is the algebraic fundamental group of a scheme. Note that, by [Se3,
Proposition 15], it is known that every finite group occurs as the algebraic fun-
damental group of a smooth complex variety. Using Remark 4.5, we see that not
every algebraic fundamental group is cyclotomic profinite.

Lemma 4.6. Let n ≥ 1 be an integer. Assume that the profinite group G is of
cohomological p-dimension at most 1. Let We+1(k)(1) be a (We+1(k), G)-module,
free of rank 1 as a We+1(k)-module. Then, the pair (G,We+1(k)(1)) is (n, e)-
cyclotomic.

Proof. Let c1 ∈ Hn(G,W1(k)(n)) be a cohomology class. Using the exact
sequence

0 −→We(k)(n) −→We+1(k)(n) −→W1(k)(n) −→ 0,

we see that the obstruction to lifting c1 to a class ce+1 ∈ Hn(G,We+1(k)(n)) lies in
Hn+1(G,We(k)(n)). This group vanishes since G is of cohomological p-dimension
at most 1. The claim is proved. �
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Proposition 4.7. Assume that (G,We+1(k)(1)) is an (n, e)-cyclotomic pair.
Then for any surjection π : M −→ N of We+1(k)-modules (with trivial G-action),
the induced morphism

π(n) : M(n) −→ N(n)

is n-surjective.

Proof. By a limit argument, we can assume that e is finite. We then proceed by
induction, on the lowest integer m ≥ 1 such that N is a Wm(k)-module. If m = 1,
then N is a k-vector space. Pick a k-basis B for N . Consider the natural surjection

F : We+1(k)(B) −→ k(B) ' N.

There exists a We+1(k)-linear map ρ : We+1(k)(B) −→ M, such that π ◦ ρ = F.
Since F (n) is n-surjective by definition of a cyclotomic module (combined to the
fact that taking cohomology commutes with direct sums), we indeed conclude that
π(n) is n-surjective as well.
In general, denote by M := Ver(We+1(k)) the maximal ideal of We+1(k). Con-
sider the composite

M
π−→ N

q−→ N/MN,

where q is the natural quotient. By what precedes, (q ◦ π)(n) is n-surjective. It
suffices to prove that π′(n) is n-surjective, where

π′ :MM −→MN

denotes the map induced by π, by a diagram chase over

0 //MM

π′

��

// M

π

��

// M/MM

��

// 0

0 //MN // N
q // N/MN // 0

But as MN is a Wm−1(k)-module, induction applies. �

Corollary 4.8. Let l/k be a field extension. Let n ≥ 0 be an integer, and let
e ∈ N∗ ∪ {∞}. Let (G,We+1(k)(1)) be an (n, e)-cyclotomic pair. Set

We+1(l)(1) := We+1(k)(1)⊗We+1(k) We+1(l).

Then, the pair (G,We+1(l)(1)) is (n, e)-cyclotomic, relatively to l.
In short: cyclotomic pairs are preserved under field extensions of k.

Proof. The (We+1(l), G)-module We+1(l)(1) is free of rank 1. As a morphism
of We+1(k)-modules, the map We+1(l) −→ l is surjective. It remains to apply
Proposition 4.7. �

Hilbert 90 theorem implies that the absolute Galois group G of a field F of char-
acteristic 6= p, together with its Tate module Zp(1), form a (1,∞)-cyclotomic pair.
This elementary fact was discussed in [DCF, Proposition 14.19], which also in-
cludes other examples of (not necessarily absolute) Galois groups.
We now provide more geometric examples of cyclotomic pairs.

Proposition 4.9. Let A be a semilocal Z[ 1
p ]-algebra. Denote by G the étale fun-

damental group of S := Spec(A) (at a given geometric point) and by Zp(1) its
usual Tate module. Then, the pair (G,Zp(1)) is (1,∞)-cyclotomic (over k = Fp).
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Proof. May assume that the semilocal ring A is connected. We work on the small
étale site over S.

An open subgroup of G corresponds to the fundamental group GU of a finite étale
cover U −→ S. Consider for s ≥ 1 the diagram of étale sheaves

0 // µp,U // µps+1,U
φ //

��

µps,U //

��

0

0 // µp,U // Gm,U
φ′
// Gm,U // 0

where φ and φ′ denote the p-power maps. As U is the spectrum of a semilocal ring,
its Picard group is trivial by Grothendieck-Hilbert’s theorem 90, and φ′ certainly(!)
induces a surjection

H1
ét(U,Gm) −→ H1

ét(U,Gm).

A simple diagram chase then implies that φ also induces a surjection

H1(GU ,Z/ps+1(1)) ' H1
ét(U, µps+1,U ) −→ H1

ét(U, µps,U ) ' H1(GU ,Z/ps(1)).

�

Proposition 4.10 ([Gi, Proposition 1.6]). Let A be a commutative ring of char-
acteristic p. Denote by G the étale fundamental group of S := Spec(A) (at a given
geometric point). Then G is of p-cohomological dimension ≤ 1. Thus Lemma 4.6
applies: for any n ≥ 1 and for any W(k)(1), the pair (G,W(k)(1)) is (n,∞)-
cyclotomic.

Proof. (sketch; see [Gi, Proposition 1.6] for details)
As before, we can assume that k is Fp, and we work in the small étale site over S.
Consider the Artin-Schreier sequence

0 −→ Z/pZ −→ Ga
Frob−Id−→ Ga −→ 0.

By Grothendieck-Hilbert 90 for Ga, combined with the vanishing of coherent co-
homology over an affine base, we know that H1

ét(S,Ga) = H2
ét(S,Ga) = 0. Consid-

ering the associated long sequence in étale cohomology, we get H2
ét(S,Z/pZ) = 0.

Using Leray’s spectral sequence, we conclude that H2(G,Z/pZ) = 0. Similarly,
H2(H,Z/pZ) = 0 for any open subgroup H of G. The group G is therefore of
cohomological p-dimension ≤ 1, and it remains to apply lemma 4.6. �

Proposition 4.11. Let S = C be a smooth curve over an algebraically closed
field F . Denote by G its fundamental group (at a given geometric point). Set
T := Zp(1), the usual Tate module if p 6= 0 ∈ F , or T := Zp, the trivial module if
p = 0 ∈ F . Then, the pair (G, T ) is (1,∞)-cyclotomic.

Proof. We may assume that C is connected. If F has characteristic p, one can
adapt the proof of Proposition 4.10. How to do it is obvious if C is affine. If C
is proper, note that one still has H2

ét(C,Ga) = 0, and that (Frob − Id) induces a
surjection on the finite-dimensional F -vector space H1

ét(C,Ga) (see [Bh, Lemma
0.5]). A similar proof then goes through.
We thus assume that F has characteristic not p, and work over the small étale site
over C. First assume that C is proper and consider a connected finite étale cover
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U −→ C, given by an open subgroup H of G. The curve U is then smooth and
proper, as well. Write the short exact sequence

0 −→ Pic0(U) −→ Pic(U)
deg−→ Z −→ 0.

The abelian group Pic0(U) consists of the F -rational points of the Jacobian
JacF (U). It is hence divisible, since F is algebraically closed.

Note that for any s ≥ 1, the natural map H1
ét(U, µps,U ) −→ H1

ét(U,Gm,U ) lands in

Pic0(U). Considering the same diagram as in the proof of Proposition 4.9, we see
that the image of any class of H1

ét(U, µps,U ) in H1
ét(U,Gm,U ) lies in the image of

the endomorphism of H1
ét(U,Gm,U ) induced by φ′ (which is multiplication by p).

The map

H1(H,Z/ps+1Z(1)) = H1
ét(U, µps+1,U ) −→ H1

ét(U, µps,U ) = H1(H,Z/psZ(1))

induced by φ is thus also surjective. Therefore, the group G is (1,∞)-cyclotomic,
with cyclotomic character the Tate module Zp(1).
We now deal with the case of a non-proper (i.e. affine) smooth connected curve

C over F . Denote by C̃ the smooth proper curve containing C, and by x a closed
point in C̃ \ C. Adjusting by multiples of [x] ∈ Pic(C̃), one easily sees that the

restriction morphism Pic0(C̃) −→ Pic(C) is surjective, hence that the abelian
group Pic(C) is divisible. The same holds for any étale cover of C, and we can
conclude as before. �

The previous result actually extends to higher dimensional varieties, as follows.

Proposition 4.12. Let S be a smooth projective variety, over an algebraically
closed field F , of characteristic 6= p. Denote by G the fundamental group of S, at
a given geometric point.
Assume that, for every finite étale cover U −→ S, the Néron-Severi group of U
has no p-torsion. Then, the pair (G,Zp(1)) is (1,∞)-cyclotomic.
More generally, let e ≥ 1 be an integer. Assume that, for every finite étale cover
U −→ S, the p-primary part of the Néron-Severi group of U is isomorphic to a
product

∏n
i=1 Z/priZ, with ri > e for i = 1, . . . , n.

Then, the pair (G,Z/p1+e(1)) is (1, e)-cyclotomic.

Proof. It suffices to prove the second statement. Consider the exact sequence (of
Abelian groups)

0 −→ Pic0(U) −→ Pic(U) −→ NS(U) −→ 0.

The group Pic0(U) is divisible (as the group of F -points of an Abelian variety).
From the hypothesis made on NS(U), we deduce that the map

Pic(U)[pr+1] −→ Pic(U)[p]
x 7→ prx

is onto, using an elementary diagram chase left to the reader. This holds for every
finite étale cover U/S. The rest of the proof is the same as in Proposition 4.11. �

Remark 4.13. Construction of new examples of surfaces satisfying hypothesis of
Proposition 4.12 is an interesting problem. A good starting point may be Kodaira
fibered surfaces.
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5. Lifting representations of cyclotomic profinite groups

The following is a reformulation of Definition 2.2, for free (Wr(k), G)-modules.

Definition 5.1. Let G be a profinite group, p be a prime, k be a field of charac-
teristic p and r ≥ 1 be an integer. A representation

G −→ GLd(Wr(k))

is continuous if its kernel is open in G.
A continuous representation

ρ∞ : G −→ GL∞(W(k))

is a compatible data, for all r ∈ N∗, of continuous representations

ρr : G −→ GLr(Wd(k)).

The compatiblity condition simply means that ρr+1 reduces to ρr, for all r.

We now prove Theorem 5.2, providing a sufficient condition for lifting continuous
representations of cyclotomic profinite groups.

Theorem 5.2. Let k be a field of characteristic p, and e ∈ N∗ ∪ {∞}. Let G be a
(1, e)-cyclotomic profinite group relatively to k, and let V1 be a (k,G)-module.
Assume that there is an open subgroup G0 ⊂ G, of prime-to-p index, two permu-
tation (k,G0)-modules A and B, and a short exact sequence of (k,G0)-modules

0 −→ A −→ V1 −→ B −→ 0.

Then, V1 stably lifts to pe+1-torsion coefficients.

Furthermore, V1 itself lifts to p2-torsion coefficients.

Proof. We show the first statement of the theorem. The second then follows from
Lemma 3.4. Let W1+e(1) be a (1, e)-cyclotomic module, relatively to k and G.
We may replace G0 by its intersection with the kernel of the character G −→ k×

giving the action of G on W1(k)(1), which has index prime-to-p as well. We can
thus assume that W1(k)(1) ' k has the trivial G0-action. The Yoneda extension

0 −→ A −→ V1 −→ B −→ 0,

corresponds to a cohomology class

E ∈ H1(G0,Hom(B,A)).

Fixing two respective G0-bases Y and X of A and B, we have a G0-equivariant
isomorphism

Hom(B,A) ' Hom(kX , kY ) ' kX×Y ,
through which the class E is given by an element of H1(G0, k

X×Y ). The G0-set
X × Y decomposes as a disjoint union

X × Y =
⊔
i∈I

G0/Gi

of G0-orbits, where all Gi’s are open in G0. Shapiro’s lemma yields an isomorphism

H1(G0, k
X×Y ) '

⊕
i∈I

H1(Gi, k)

Deciphering the definition of a (1, e)-cyclotomic pair and the comparison lemma
2.4, we get a surjection

H1(Gi,W1+e(1)) −→ H1(Gi, k);
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that is to say,

YExt1
(We+1(k),Gi)(We+1(k),W1+e(1)) −→ YExt1

(k,Gi)(k, k),

for all i ∈ I. Hence, the natural map

YExt1
(We+1(k),G0)(We+1(k)X ,W1+e(1)Y ) −→ YExt1

(k,G0)(k
X , kY )

is surjective. As a consequence, V1 fits into a commutative diagram of
(We+1(k), G0)-modules

0 //W1+e(1)Y //

��

Ve+1
//

��

We+1(k)X //

��

0

0 // kY // V1
// kX // 0,

(1)

which serves as the definition of Ve+1. Note that the vertical arrows are the natural
reductions.
The cyclotomic module W1+e(k)(1) is a free We+1(k)-module. Hence so is Ve+1-
yielding a stable lifting of V1, to pe+1-torsion coefficients. �

6. Applications to Galois representations and local systems

In this section we provide applications to Theorem 5.2 to lifting Galois represen-
tations and local systems.

Theorem 6.1. Let k be a field of characteristic p, e ∈ N∗ ∪ {∞}. Let G be a
(1, e)-cyclotomic profinite group. Let

ρ : G→ GL2(k)

be a continuous representation. Then, ρ lifts to p2-torsion coefficients.

Furthermore, ρ stably lifts to pe+1-torsion coefficients.

If k = F2, these results also hold for representations of G of dimension up to 4.

Proof. Let V1 be a 2-dimensional (k,G)-module. There is a line L1 ⊂ V1 fixed
by a pro-p-Sylow Gp of G [Se2, 8.3]. The stabilizer H = StabGp

(L1) is thus of
prime-to-p index in G, and we get a short exact sequence of (k,H)-modules

0 −→ L1 −→ V1 −→ V1/L1 −→ 0.

As in the previous proofs, we can consider an open subgroup G0 of G, of prime-
to-p index, for which the two characters giving the action on L1 and on V1/L1 are
trivial. We can now apply Theorem 5.2.

We now assume that k = F2 and that V1 is a 4-dimensional (F2, G)-module. Again,
there is a plane P1 ⊂ V1 stabilized by an open subgroup G0 of G, of odd index. The
continuous representation V1 fits into a short exact sequence of (F2, G0)-modules

0 −→ P1 −→ V1 −→ V1/P1 −→ 0.

Replacing G0 by an open subgroup of odd index, we can moreover assume that the
2-dimensional (F2, G0)-modules P1 and V1/P1 both admit an F2-basis permuted
by G0. It remains, once more, to invoke Theorem 5.2. �

Remark 6.2. Theorem 6.1 applies, in particular, to profinite groups of the types
a), b), c) and d) given in the Introduction. In particular, it applies to Galois
representations. To conclude, we offer another application below.
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Corollary 6.3 (Zariski-local lifting of local systems of low dimension). .
Let k be a field of characteristic p and let S be a scheme, defined either over Fp
or Z[ 1

p ]. Let L be a local system over S with coefficients in k, of dimension 2.

(Equivalently, L is given by a representation π1(S) −→ GL2(k))
Then, Zariski-locally on S, L lifts to a local system with coefficients in W2(k).
Furthermore, Zariski-locally on S, L stably lifts to a local system with coefficients
in W(k).

If k = F2, the same result holds, for local systems of dimension up to 4.

Proof. By Proposition 4.9, combined with Theorem 6.1, we know that, for each
point s ∈ S, the stalk of L at s (which is a local system over Spec(OS,s)) lifts as
stated. To conclude, use the fact that any finite étale cover of Spec(OS,s) extends
to an open U ⊂ S containing s. �

Remark 6.4. We did not attempt to make the assumptions on S optimal. For
instance, the result clearly extends to schemes S where p is nilpotent.
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