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La simplicité est la réussite
absolue. Après avoir joué une
grande quantité de notes, toujours
plus de notes, c’est la simplicité qui
émerge, comme une récompense
venant couronner l’art.

Frédéric Chopin.

Abstract. This work is motivated by the search for an ”explicit” proof of the
Bloch-Kato conjecture in Galois cohomology, proved by Voevodsky in [Vo]. Our
concern here is to lay the foundation for a theory that, we believe, will lead to
such a proof- and to further applications.
Let p be a prime number. Let k be a perfect field of characteristic p. Let m be a
positive integer. Our first goal is to provide a canonical process for ”lifting” a mod-
ule M , over the ring of Witt vectors Wm(k) (of length m), to a Wm+1(k)-module,
in a way that deeply respects Pontryagin duality. These are our big, medium and
small Omega powers (cf. Definitions 8.17 and 12), each of which naturally occurs
as a direct factor of the previous one. In the case where M is a k-vector space,
they come equipped with Verschiebung and Frobenius operations (cf. section 10).
If moreover the field k is finite, Omega powers are endowed with a striking extra
operation: the Transfer, to shifted Omega powers of finite-codimensional linear
subspaces (cf. section 13). To show how this formalism fits into Galois theory, we
first offer an axiomatized approach to Hilbert’s Theorem 90 (or more precisely, to
its consequence for cohomology with finite coefficients: Kummer theory). In the
context of profinite group cohomology, we thus define the notions a cyclotomic G-
module (Definition 14.9), and of a smooth profinite group (Definition 14.18). We
bear in mind that the fundamental example is that of an absolute Galois group,
together with the Tate module of roots of unity. We then define the notion of
exact sequences of G-modules of Kummer type- see Definition 14.30.
To finish, we give applications of this formalism. The first ones are the Stable Lift-
ing Theorems (Theorems 16.2 and 16.3), enabling the lifting to higher torsion in the
cohomology of smooth profinite groups, with p-primary coefficients. To illustrate
their meaning, we translate the second one in the concrete context of Galois co-
homology, with values in two-dimensional Galois representations (Corollary 16.4).
We finish by an application to p-adic deformations. We state and prove a (perhaps
unusual) general descent statement, for the quotient map Z/p2Z −→ Z/pZ. It is
Proposition 17.9.

1Florence was partially supported by the French National Agency
(Project GeoLie ANR-15-CE40-0012).
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1. Introduction.

The main goal of this paper is to define and study a very low level smoothness
notion. By ”low level”, we mean that most of our constructions just depend on a
given prime number p. In a subsequent paper, we plan to strenghten the Stable
Lifting Theorems for Galois cohomology that we present here, in order to achieve
an explicit proof of the Bloch-Kato conjecture. This was our starting motivation.
Let us simply say that, tough we did not achieve a full proof yet, we are confident
that the present approach will eventually be successful- when the foundations are
solid enough.

It is folklore that mod p cohomology often encodes subtle phenomena in higher p-
primary torsion. For instance, section 6.2 presents a mod p Hochschild 2-cocycle,
canonically attached to a mod p2 algebraic object. The general philosophy of
this paper is, whenever possible, to lift mod p algebraic data to higher p-primary
torsion in a natural way. This data may be a module, an algebra, a Hopf algebra,
a cohomology class, etc... We try to do so using, as a basic algebraic tool, divided
powers of finite modules over the ring of Witt vectors W(k). It is often enlightening
to think of these modules as the coefficients of some cohomology theory. Hence, in
practice, the field k will often be finite- a seemingly crucial requirement to define
the Transfers (see Section 11).

We now wish to share some ideas which motivated this work. In what follows, k
is a perfect field of characteristic p, and F is a field of characteristic not p. Let
Fsep/F be a separable closure of F . We put G := Gal(Fsep/F ). We denote by
d = ps a power of the prime p.

1.1. First idea. Let us start by giving a purely Galois-theoretic statement of
the Norm-Residue Isomorphism Theorem, proved by Rost, Suslin and Voevodsky.
Our point here is to make clear that this Theorem presents a deep connection with
the general notion of smoothness.
For each integer i ≥ 0, denote by Hi the Galois cohomology group Hi(F, µ⊗ip ).
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Then the cup-product operation, being Fp-multilinear, yields a homomorphism of
graded Fp-algebras

h :

∞⊕
i=0

T i(H1) −→
∞⊕
i=0

Hi,

where T i(H1) =
⊗i

Fp H
1 is the i-th fold tensor power of H1 (note that this map

actually factors through the exterior power ΛiFp(H1), if p is odd or if p = 2 and

(−1) is a square in F ). Then the Norm-Residue Isomorphism Theorem states that
h is surjective, and that its kernel is generated, in degree two, by all pure tensors

a⊗ b ∈ H1 ⊗Fp H1,

such that a ∪ b = 0 ∈ H2.

Indeed, pure tensors arising from Steinberg’s relation are a particular instance of
these, and it is not too hard to show directly that all pure quadratic tensors in
Ker(h) are combinations of pure tensors arising from Steinberg’s relation.

Now, let (A,Mx) be the local ring of variety X over Fp, at a smooth rational point
x ∈ X(Fp). Then the natural homomorphism of graded Fp-algebras

∞⊕
i=0

T i(Mx/M
2
x) −→

∞⊕
i=0

(M i
x/M

i+1
x ),

is surjective, with kernel generated by degree two tensors of the shape a⊗b−b⊗a.

It is clear that these two results present strong similarities- though the second one,
of commutative nature, is much easier to prove...
What is more, it is known to expert that the hard part of the Bloch-Kato conjecture
is to show that the natural map

Hi(F, µ⊗ips ) −→ Hi(F, µ⊗ip )

is surjective, for every i and every field F , of characteristic not p. Thinking
(abusively) of

Hi(F, µ⊗ips )

as points modulo ps of some algebraic object defined over Zp, the surjectivity in
question is, again, the definition of (formal) smoothness. Note that, for i = 1,
surjectivity is given by usual Kummer theory. Our Smoothness Conjecture 14.25
states, in particular, that surjectivity for i arbitrary should ”formally” follow from
the i = 1 case.

Let us now briefly explain how one can hope to apply general lifting results
in Galois cohomology, to prove the Bloch-Kato conjecture. For simplicity, we
concentrate on surjectivity part, in the i = 2 case (the Merkurjev-Suslin Theorem).

Let e be a class in H2(F, µ⊗2
p ). By a general fact from group cohomology, one can

find a finite discrete G-module V , which is an Fp-vector space, classes

a ∈ H1(F, V ⊗Fp µp) and b ∈ H1(F, V ∨ ⊗Fp µp),

such that

e = a ∪ b,
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where the cup-product is relative to the canonical pairing

(V ⊗Fp µp)× (V ∨ ⊗Fp µp) −→ µ⊗2
p .

(here V ∨ = HomFp(V,Fp)).
This may seem obscure at first. Assuming that µp = Fp for simplicity -which is
a harmless assumption- it becomes clear if we adopt the viewpoint of (Yoneda)
extensions. Indeed, a 2-extension in Ext2

(Fp,G)(Fp,Fp) (= H2(G,Fp)) can always
be seen as the cup-product of two 1-extensions.
If V = FNp was equipped with the trivial G-action, then e would be a sum of

N2 symbols, and the job would be done. More generally, imagine we can find a
surjective morphism of (Fp, G)-modules

f : W −→ V,

such that the following two conditions hold.

1) the induced map H1(G,W )→ H1(G,V ) is onto.
2) the (Fp, G)-module W is permutation, i.e. has an Fp-basis which is permuted
by G.

Using Shapiro’s Lemma, we see that the (projection) formula

f∗(c) ∪ b = c ∪ (f∨)∗(b),

valid for any c ∈ H1(G,W ), would then present e as a sum of corestrictions of
symbols. An input from Milnor K-theory (namely, the existence of the norm, and
its compatibility with the norm-residue homomorphism), shows that a corestriction
of a symbol (in Galois cohomology) is a sum of symbols, and we would be done.
A map f with the properties above does, as one may guess, not exist in general.
Meanwhile, our Stable Lifting Theorem 16.3 (for k = Fp) does a very similar job.
However, it applies only in higher p-primary torsion. Indeed, note that the module⊕

L∈P(V )

Ωn(L)(s)

is not a fearsome beast at all: it is a honest module which is induced from dimension
one (in the sense of Definition 2.6, with the Hi’s being the stabilizers of lines of V ).
For example, if n = 0 and G is a pro-p-group, it is a permutation (Fp, G)-module
in the sense of 2) above.
Note that the Stable Lifting Theorem can nonetheless apply to lift our cohomology
classes a and b, but only after pushing them by a power of the Verschiebung

Vern : V −→ Ωn(V ).

In Exercise 16.1, we explain why the Stable Lifting Theorems do not hold for
n = 0, using Manin’s R-equivalence (in the context of Galois cohomology).

1.2. Second idea. The theory of Witt vectors associates, to every perfect field
k of characteristic p, a discrete valuation ring W(k), whose basic properties we
shall recall in the next section. We develop here the theory of divided powers
for torsion modules over Witt vectors, whose purpose is, somehow, to categorify

Witt’s construction. To do so, we use the divided powers functors Γp
n

W(k), applied

to torsion W(k)-modules. We view them as representing polynomial laws (cf. [Ro],
or the nice and short paper [Fe]). Note that truncated Witt vectors themselves,
through a simple recursive process, can be defined just using ΓpZ, see Proposition
6.8.
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We try to proceed as functorially as possible. We eventually offer three ways of
lifting a Wm(k)-module to a Wm+n(k)-module: the big, medium and small Omega

powers (respectively, Ω
n
, Ωn and Ωn). The composition formula Ω

n+n′

= Ω
n ◦Ω

n′

only holds for big Omega powers. However, we prove (cf. Propositions 8.17 and
12.10) that medium (resp. small) Omega powers canonically embed, in a duality-
preserving way, in big (resp. medium) Omega powers. In the course of the proofs
of these two Propositions, mysterious p-adic constants appear- see Definition 8.14
and Lemma 12.4. We do not know understand their meaning. Do they have one?
Note that, in dimension one, small, medium and big Omega powers all coincide,
and are indeed a ”categorification” of the multiplicative Teichmüller section

τ : k× −→W(k)×.

In the recent preprints [K1] and [K2], related constructions are proposed, in a
different language. It would be interesting to explore the connections.
When the field k is finite, we introduce a W(k)-linear map ”in the wrong direc-
tion”: the Transfer, notably for small Omega powers. We believe that it presents
connections to the (algebraic) Steenrod algebra, as defined in [Sm]. Indeed, our
formula for the hyperplane Transfer (cf. Lemma 11.15), is very close to the
formula defining P (ξ)(l), in Smith’s paper.
In section 14, we spend some time to axiomatize Kummer theory- a consequence
of Hilbert’s Theorem 90 for (Galois) cohomology with values in roots of unity.
In the general context of profinite group cohomology, we define the notion of a
smooth profinite group G, of a cyclotomic G-module and of a Kummer-type exact
sequence. We state the Smoothness Conjecture 14.25, implying the Bloch-Kato
conjecture.
Combining our formalism with classical techniques from group cohomology (re-
striction, corestriction and Shapiro’s Lemma), we are finally able to prove very
general results for the cohomology of smooth profinite groups: the Stable Lifting
Theorems (Theorem 16.2 and Theorem 16.3). They are not yet sufficient to prove
the Smoothness Conjecture, but we strongly believe that they will- after some
improvement.

The formalism we develop here presents potential for applications to other topics.
We now venture to list five of these. On this matter, we deeply welcome comments,
(constructive) criticism, suggestions and collaborative work.

1) The first one is p-adic deformation theory. The descent statement that we
offer in Proposition 17.9 is most likely an explicit description of an abstract non
linear (degree p) descent statement for algebraic structures mod pn. It would be
interesting to identify it.
To illustrate what we mean by ”explicit”, we proceed with an analogy in the
classical context. This analogy is for sure well known to many experts- though the
explicit computations that make it precise are hard to find in the litterature.
Grothendieck’s faithfully flat descent theory for Modules (say, for simplicity, in the
affine case) has many concrete incarnations. For G-Galois algebras, it specializes to
Galois descent (this is Speiser’s Lemma, cf. [GS], Lemma 2.3.8). In characteristic
p, for purely inseparable field extensions of height one, it specializes to Cartier’s
descent (loc. cit., Theorem 9.3.6). If X = Spec(A) is an affine smooth variety over
any field k of chacteristic p, then the Frobenius morphism

Frob : A⊗frob k −→ A,
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x⊗ λ 7→ λxp

is finite and flat, and Cartier’s Frobenius descent is, again, an explicit geometric
description of faithfully flat descent.

2) The second one concerns the question of lifting (mod p) Galois representations to
mod p2 Galois representations- and perhaps even to higher torsion. This important
topic has already been investigated by many authors, notably in the context of
local or global fields. We already have some (new) results for arbitrary fields, and
plan to publish them in a dedicated paper.

3) We believe that Omega powers could perhaps be used in modular representation
theory- of finite groups, or of algebraic groups. For instance, if V is a finite-
dimensional k-vector space, the quotient

Ωn(V )/p

is a k-linear representation of the algebraic group GLk(V ) (in the sense of [J]). We
believe that it cannot, in general, be obtained as a subquotient of a tensor power
of V . In other words, divided powers over W(k) are required in its construction-
though, in the end, it is a mod p object.

4) It is likely that our ”gentle” machinery can help to say something about reso-
lution of singularities. A strong reason for this fact is the following. The W(k)-
module

ΓpW(k)(Wm(k))('Wm+1(k))

is an elementary algebraic blowup of Wm(k), that lifts (the exponent of) its torsion
by one. Forming Omega powers of Wm(k)-algebras (cf. section 9.2) is thus a
way of performing a vast amount of these small blowups. This point of view is
connected to the notion of Rees algebra of a module, as investigated in the recent
paper [St].

5) Last, but not least, let us remark that our approach here is purely local, at
a given prime p. Once polished, it could be fruitfully globalized, considering all
functors ΓnZ at once...

The paper is organized as follows. We first recall some classical facts about profi-
nite groups, representation theory and cohomology. We then explain, in section
3, a categorical formulation of the induction process from open subgroups and of
Shapiro’s Lemma. Though elementary, it plays an important role in this paper,
where most properties concerning a profinite group G (eg. n-surjectivity) involve
all open subgroups of G at once. We then emphasize the importance of Pontryagin
duality (in algebra). Though invisible, it is omnipresent in all cohomological the-
ories: the injective Abelian group Q/Z naturally occurs when building canonical
injective resolutions of sheaves. After that, it is (unfortunately...) often disre-
garded or forgotten. In section 4, we begin with recalling that Pontryagin duality
does not commute to the tensor product- even in the category of (Z/pnZ)-modules,
for n ≥ 2. Note that, if it did, the topological issue of tensor completions would
be much simpler. We make a short attempt to define the ”Tense Product”, a sym-
metric monoidal operation on the category of (Z/pnZ)-modules, that commutes
to Pontryagin duality. It behaves well with the Omega power functors, that we
define later on.

In section 5, we recall (mostly well-known) facts about divided powers. We see
them as representing homogeneous polynomial laws- as explained in [Ro]. We
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mainly concentrate on the case of modules over Witt vectors. Along the way, we
give a simple presentation of truncated Witt vectors themselves, as a quotient of
a divided power module over Z (cf. Proposition 6.8). In section 7, we introduce
the Frobenius and Verschiebung operators, for divided powers. In section 8.7,
we investigate the lack of commutation between Pontryagin duality and divided
powers- reminiscent of Section 4. We introduce (big and medium) Omega powers,
as the ”correct” quotients of divided powers, commuting to duality. We show
that medium Omega powers occur as a direct factor of big Omega powers. We
study their first functorial properties. In section 11, we define the Transfer, a
fundamental gadget to prove Lifting Theorems in cohomology, by induction on
the dimension of the coefficients. In section 12, we introduce small Omega powers.
We show that they are a direct factor of medium Omega powers. Small Omega
powers enjoy rich functorial properties (notably through the Transfer) which
we begin to investigate in Section 13. See, in particular, Proposition 13.7. We
prove the Integral Formulas for the Frobenius and the Verschiebung. They are,
perhaps, connected to motivic integration. In Section 14, we present a possible
axiomatization of Kummer theory. We define the notions of cyclotomic module,
of smooth profinite group and of Kummer-type extension. We bear in mind that
the fundamental example of a smooth profinite group is that of an absolute Galois
group, equipped with the Tate module of roots of unity. Section 15 is a short
digression, to stress the importance of Hilbert’s Theorem 90 in our approach-
perhaps the purest of all descent statements. In section 16, we prove two first
applications of our formalism to Galois theory: the Stable Lifting Theorems. We
present a concrete corollary of the second one (Corollary 16.4).
We conclude by an application of our point of view to deformations: Proposition
17.9, which is a descent statement for the quotient map Z/p2Z −→ Z/pZ.

This paper contains numerous remarks and exercises, the goal of which is to help
the reader getting familiar with our approach- especially for those wishing to read
it ”linearly”. Note that, though we decided to treat the case of an arbitrary perfect
field k of characteristic p when possible, the case k = Fp is the essential one.

2. Notation and basic facts.

Throughout this paper, p is a prime number. For obvious historical reasons,
we could have chosen to denote p by l: the prime ”p” here is the ”l” of l-adic
cohomology. A few months ago, we thus made an attempt to replace p by l
everywhere in the text. The resulting formulae were esthetically questionable (if
not ugly), and we decided to go back to the previous notation...

For any integer n, we denote by vp(n) the p-adic valuation of n. We denote by Sn
the symmetric group on n letters.

If M is an Abelian group and n ≥ 1 is an integer, we denote by M [n] the n-torsion
of M . Let A be a ring. If M is an A-module, we denote by

M∗ = Hom(M,A)

the A-dual of M . We denote by

SymA(M) =

∞⊕
i=0

Symi
A(M)
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the symmetric algebra of M . We denote by

ΛA(M) =

∞⊕
i=0

ΛiA(M)

the exterior algebra of M . We have pairings

ΛiA(M)× ΛiA(M∗) −→ A,

(x1 ∧ . . . ∧ xi, φ1 ∧ . . . ∧ φi) 7→ det(φb(xa))1≤a,b≤i,

and

ΛiA(M)× ΛjA(M) −→ Λi+jA (M),

(x, y) 7→ x ∧ y.
These are perfect if M is a finite locally free A-module of (constant) rank d, and
i+ j = d. In that case, we put

Det(M) := ΛdA(M);

it is an invertible A-module.
If the A-module M is locally free of finite rank, we denote by

AA(M) := Spec(SymA(M∗))

the affine space of M ; it is an affine variety over Spec(A). On the level of the
functor of points, we have

AA(M)(B) = M ⊗A B,

for every commutative A-algebra B.

Let k be a field. Let V be finite-dimensional k-vector space. We denote by δ(V )
the dimension of V . We denote by Pk(V ) the projective space of V , consisting of
lines L ⊂ V (when needed, these shall be identified with hyperplanes in V ∗). It
can, of course, be viewed as a k-variety. However, in this work (where in most
cases k and V will be finite), it will only be considered as a set. Note that, if V is a
linear representation of a group G, Pk(V ) is naturally endowed with an action of G.

2.1. Witt vectors. If k is a perfect field of characteristic p > 0, we denote by
W(k) the ring of Witt vectors built out from k. It is, up to isomorphism, the
unique complete discrete valuation ring whose maximal ideal is generated by p,
and with residue field k. Its construction is functorial in k. For any positive integer
n, we denote by

Wn(k) := W(k)/pn

the truncated Witt vectors of size n.
Note that a simple (and perhaps new) recursive formula, presenting Wn+1(k) as
a quotient of the p-th divided power of the Z-module Wn(k), shall be given later
on (Proposition 6.8).
We put

K := Frac(W(k)).

We shall often use the natural arrow

Wn(k) −→ K/W(k),

1 7→ 1

pn
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to identify the pn-torsion in K/W(k) with Wn(k). However, one has to be careful
in doing so- see for instance section 4.
For any W(k)-module M , we put

M∨ := HomW(k)(M,K/W(k));

it is the Pontryagin dual of M . Note that Pontryagin duality extends the linear
duality of k-vector spaces to all W(k)-modules. More precisely, if M is seen as a
Wn(k)-module, one has a canonical isomorphism

M∨ ' HomWn(k)(M,Wn(k)) = M∗.

The Frobenius morphism

k −→ k,

x 7→ xp

lifts to a ring homomorphism

frob : W(k) −→W(k).

For any W(k)-module M , and any integer i ≥ 0, we put

M (i) := M ⊗W(k) W(k);

where the tensor product is taken with respect to frobi.

2.2. Profinite groups and cohomology. Let G be a profinite group. By
definition, a G-set is a set X, equipped with a continuous action of G (i.e. such
that the stabilizer of every element of X is open in G).
Let M be a discrete G-module; that is, an Abelian group M , equipped with the
structure of a G-set, for which the action of G is Z-linear. We then denote by
Hn(G,M) the cohomology groups, defined by Serre in [Se]. At our disposal, we
have the restriction maps

Res : Hn(G,M) −→ Hn(G′,M),

for any closed subgroup G′ ⊂ G, and the corestriction maps

Cor : Hn(G′,M) −→ Hn(G,M),

for any open subgroup G′ ⊂ G.
If G′ ⊂ G is an open subgroup, of index n in G, then Cor◦Res equals multiplication
by n.

Remark 2.1. In the course of proving results involving a profinite group G,
we shall often reduce to the case where G is pro-p-group, using the standard
”restriction-corestriction” argument. More precisely, imagine that the discrete
G-module M is of p-primary torsion, and that we have to show that a class in
Hn(G,M) is zero. Then, it is enough to show that its restriction to Hn(Gp,M)
vanishes, where Gp is a pro-p-Sylow of G.
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2.3. Categories of representations. Let G be a profinite group. Let k be a
perfect field of characteristic p, often finite in our applications.

Definition 2.2. A (W(k), G)-module is a torsion W(k)-module M of finite-type,
endowed with a continuous W(k)-linear action of G (i.e. factoring through a
nontrivial open subgroup of G). A (k,G)-module is a (W(k), G)-module which is
a k-vector space.

Remark 2.3. Assume that k is finite, and that Fsep/F is a separable closure of a
field F . Then a (k,Gal(Fsep/F ))-module is nothing but a Galois representation
over the field k.

Remark 2.4. if G is a pro-p-group, we shall, in many places, use the following
classical facts.
(i) Every one-dimensional (k,G)-module is trivial, i.e. isomorphic to k, equipped
with the trivial action of G.
(ii) Let V be a nonzero (k,G)-module. Then, it admits a one-dimensional sub-
(k,G)-module. Equivalently, we have V G 6= {0}.

Definition 2.5. We denote by M(W(k), G) (resp. M(k,G)) the category of
(W(k), G)-modules (resp. of (k,G)-modules), with morphisms being W(k)-linear
maps respecting the action of G. These categories are Abelian. They come equipped
with a tensor product

⊗ = ⊗W(k).

They are, moreover, equipped with a perfect duality

M 7→M∨ = HomW(k)(M,K/W(k)).

Among (W(k), G)-modules, the simplest are those who come from an action of G
on a finite set- the permutation modules. Let us give a precise Definition.

Definition 2.6. Let M be a (W(k), G)-module. It is said to be induced from rank
one if it is isomorphic to a finite direct sum⊕

i

IndGHi(Li),

where Hi ⊂ G are open subgroups, and Li are (W(k), Hi)-modules, which are
(free) Wni(k)-module of rank one, for some positive integers ni.
If moreover all Li ’s are equipped with the trivial Hi-action, M is said to be a
permutation module.

Remark 2.7. If G is a p-group, all one-dimensional (k,G)-modules are trivial.
Hence, a (k,G)-module is induced from rank one if and only if it is permutation.
Through the usual ’restriction-corestriction’ argument, for G arbitrary, (k,G)-
modules which are induced from rank one may often be assumed to be permutation.

3. On induction from subgroups, and Shapiro’s Lemma.

Shapiro’s Lemma is a fundamental basic tool in group cohomology. We now briefly
explain how we can view it.

Definition 3.1. Let G be a profinite group. Let X be a finite G-set. A discrete
G-module over X is the data of

M = (Mx, φg,x),
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consisting of an Abelian group Mx, for each x ∈ X, and of additive maps

φg,x : Mx −→Mgx,

for each x ∈ X and g ∈ G, subject to the following conditions.
(i) For all x ∈ X, and all m ∈Mx, the map

G −→
⊔
g∈G

Mgx,

g 7→ φg,x(m),

is continuous (=locally constant).
ii) For all x ∈ X, we have

φe,x = Id.

(iii) For all x ∈ X and g, h ∈ G, we have

φg,hx ◦ φh,x = φgh,x.

Remark 3.2. In the particular case of a one-element set, it is clear that a discrete
G-module over {∗} is simply a discrete G-module.

Remark 3.3. Discrete G-modules over X form an Abelian category in the obvious
way. More precisely, a morphism

M = (Mx, φg,x) −→M′ = (M ′x, φ
′
g,x)

is the data of additive maps

fx : Mx −→M ′x,

one for each x ∈ X, such that

φ′g,x ◦ fx = fgx ◦ φg,x,
for all x ∈ X and all g ∈ G.

If M = (Mx, φg,x) is a discrete G-module over X, we can form the direct sum

N(M) :=
⊕
x∈X

Mx;

it is a G-module in an obvious way, given by applying the φg,x’s. The association

M 7→ N(M)

is a functor, from the category of discrete G-modules over X to that of discrete
G-modules. It plays the rôle of a trace map, and is a categorical formulation of
the usual induction process, from open subgroups of G. We now explain why.

Assume that

X = G/H,

for H ⊂ G a nontrivial open subgroup. Denote by x0 ∈ X the class of the neutral
element.
Then we have a functor

M = (Mx, φg,x) −→Mx0
,

from the category of discrete G-modules over X to that of discrete H-modules,
whereMx0

is considered as anH-module via the maps φh,x0
, for h ∈ H = Stab(x0).

It is not hard to see that this functor is an equivalence of categories. The proof is
left to the reader as an exercise.
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Remark 3.4. What precedes is a concrete example of the following philosophical
statement: if X = G/H, a G-equivariant structure over the base X is nothing but
an H-equivariant structure.

Now, let M = (Mx, φg,x) be a G-module over X. Put M := Mx0 , seen as a
discrete H-module. Then

N(M) =
⊕
x∈X

Mx

is canonically isomorphic to the induced module IndGH(M). Note that, since H
has finite index in G, this induced module can be defined either by the formula

IndGH(M) = M ⊗Z[H] Z[G],

or by

IndGH(M) = MapsH(G,M),

the group of H-equivariant maps from G to M (’induction=coinduction’ in this
case).
Now, recall Shapiro’s Lemma -which is elementary but of crucial importance in this
paper- asserting that the cohomology groups Hn(G, IndGH(M)) and Hn(H,M) are
canonically isomorphic. Putting what we just said together, we get the following
statement.

Proposition 3.5. Put

X = G/H,

for H ⊂ G a nontrivial open subgroup. Denote by x0 ∈ X the neutral class.
Let M = (Mx, φg,x) be a discrete G-module over X. Then Mx0 is canonically a
discrete H-module, and Shapiro’s lemma yields canonical isomorphisms

Hn(G,
⊕
x∈X

Mx)
∼−→ Hn(H,Mx0

),

for each n ≥ 0.

Remark 3.6. If X is an arbitrary finite G-set and M = (Mx, φg,x) is a discrete
G-module over X, we can adapt the preceding Proposition, yielding canonical
isomorphisms

Hn(G,
⊕
x∈X

Mx)
∼−→

m⊕
i=1

Hn(Gi,Mxi),

where the x′is form a system of representatives of G-orbits in X, and where Gi is
the stabilizer of xi.

To finish this section, let us give a typical example of how this Remark will be
applied.
Let k be a finite field of characteristic p. Let V be a (k,G)-module. Put

X := P(V );

it is obviously a finite G-set.
There is a ’tautological’ discrete G-module over X, which is M, defined by

ML := V/L,

for each line L ∈ X, and where the map

φg,L : V/L −→ V/g(L)
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is induced by the linear map v 7→ g.v. Shapiro’s Lemma then yields canonical
isomorphisms

Hn(G,N(M)) = Hn(G,
⊕

L∈P(V )

V/L)
∼−→

m⊕
i=1

Hn(Gi, V/Li),

like we just discussed in the Remark above. This fundamental fact will be crucial
in the proof the Stable Lifting Theorems.

4. The Tense product.

In this section, we elaborate on the lack of commutation between the (usual)
tensor product, and Pontryagin duality. This phenomenon is at the heart of our
approach. We thus chose to introduce some related notions (the valuation of a
module, its trace and its Chern character) that we find colorful- though they will
not be used in the rest of this paper.

Let k be a perfect field of characteristic p > 0. We denote by {Wn(k) −Mod}
the category of (arbitrary) Wn(k)-modules. In what follows, the symbol ⊗ means
⊗Wn(k).
Recall that, for any Wn(k)-module M , we have an ’equality’

M∨ = HomW(k)(M,K/W(k)) = HomWn(k)(M,Wn(k)).

We will now see that it strongly depends on n.
Let M and N be two Wn(k)-modules. Through the preceding identification, we
have a pairing

Φn,M,N : (M ⊗N)× (M∨ ⊗N∨) −→Wn(k),

((m⊗ n), (φ⊗ ψ)) 7→ φ(m)ψ(n).

It is perfect if (and only if) M or N is a finite and free Wn(k)-module. What
is more, it is somewhat badly behaved, in the sense that it strongly depends on
n: if m ≥ n is another integer, viewing M and N as Wm(k)-modules yields the
formula

Φm,M,N = pm−nΦn,M,N ,

as pairings with values in K/W(k). In particular, if M and N are actually k-
vector spaces, the pairing Φ2,M,N is zero!
Thinking further, we see that the category of Wn(k)-modules is actually equipped
with (at least) two tensor product structures: the usual one, and the one given by
the formula

M⊗̃N := (M∨ ⊗N∨)∨.

If n ≥ 2, there is no canonical isomorphism (of bifunctors) M⊗̃N 'M ⊗N . This
fact is a simple algebraic analogue of Grothendieck’s theory of tensor products of
topological vector spaces. Note that the Tense Product defined shortly will be
ubiquitous later, when we mod out the kernel of Pontryagin duality for divided
powers (see for instance Proposition 8.12).

Definition 4.1. (Tense Product.) Let M and N be two Wn(k)-modules. We put

M⊗nN := (M ⊗N)/Ker(Φn,M,N ),

where

Ker(Φn,M,N ) = {x ∈M ⊗N, Φn,M,N (x, y) = 0, ∀y ∈M∨ ⊗N∨}.
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It is a Wn(k)-module, called the Tense Product of the Wn(k)-modules M and
N . If the dependence in n is clear from the context, we shall denote it simply by
M⊗N .

Remark 4.2. Assume that M = Wa(k) and N = Wb(k), with 1 ≤ a, b ≤ n. We
then have

M ⊗Wn(k) N = Wmin(a,b)(k),

whereas
M⊗nN = Wa+b−n(k),

with the convention that Wi(k) = 0 for negative i.

Lemma 4.3. The category {Wn(k) −Mod}, equipped with the Tense Product, is
a symmetric monoidal category, with coherence axioms inherited from those of the
usual tensor product. The Tense Product commutes with Pontryagin duality of
finite modules: for two finite Wn(k)-modules, we have a canonical isomorphism

(M⊗N)∨ 'M∨⊗N∨.

Proof. This is routine check. Let us perhaps explain why the Tense Product
is (bi)functorial. Let f : M −→ N and f ′ : M ′ −→ N ′ be morphisms between
Wn(k)-modules. Then, for m ∈M , m′ ∈M ′, φ ∈ N∨ and φ′ ∈ N ′∨, one has

Φn,N,N ′(f(m)⊗ f ′(m′), φ⊗ φ′) = φ(f(m))φ′(f ′(m′))

= Φn,M,M ′(m⊗m, f∨(φ)⊗ f ′∨(φ′)).

This adjunction formula shows that

f ⊗ f ′ : M ⊗M ′ −→ N ⊗N ′

passes to the quotient by the kernel of the duality Φn, yielding a linear map

f⊗f ′ : M⊗M ′ −→ N⊗N ′.
�

We can now state the following definition.

Definition 4.4. We will denote by Wn the symmetric monoidal category of
Wn(k)-modules, with monoidal structure given by the Tense Product. It is equipped
with the perfect duality M 7→M∨, induced by Pontryagin duality.

As one may guess, reducing mop pn yields a (lax monoidal) functor from Wn+1 to
Wn.

Lemma 4.5. Let M and N be Wn+1(k) -modules. Then the natural map

(M/pn)⊗Wn(k) (N/pn) −→ (M ⊗Wn+1(k) N)/pn

induces by passing to the quotient a Wn(k)-linear map

(M/pn)⊗n(N/pn) −→ (M⊗n+1N)/pn.

Proof. To check this, one may assume that M = Wa(k) and N = Wb(k) are of
rank one, and use Remark 4.2.

�

Definition 4.6. The functor

Wn+1 −→Wn

M −→M/pn

will be denoted by Θ. Thanks to the previous Lemma, it is a lax monoidal functor.
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Definition 4.7. (Tense Algebra, Tense Symmetric Powers, Tense Exterior Pow-
ers.)

Let M be a Wn(k)-module. For every nonnegative integer i, we put

M⊗
i
n := M⊗nM⊗n . . .⊗nM︸ ︷︷ ︸

i times

.

We set

Tn(M) :=

∞⊕
i=0

M⊗
i
n ;

it is naturally a Wn(k)-algebra, the Tense Algebra of M . We define

Symn(M) :=

∞⊕
i=0

Sym
i

n(M)

to be the largest commutative quotient of Tn(M). As usual, it is obtained by
modding out the ideal spanned by the elements

x⊗ y − y ⊗ x,
for x, y ∈M . It is the Tense Symmetric Algebra of M . Similarly, we define

Λn(M) :=

∞⊕
i=0

Λ
i

n(M)

to be the quotient of Tn(M) obtained by modding out the ideal spanned by the
elements

x⊗ x,
for x ∈M . It is the Tense Exterior Algebra of M .

Definition 4.8. A tense algebra is an algebra in the categoryWn. In other words,
it is a Wn(k)-algebra, such that the multiplication map

µ : A⊗Wn(k) A −→ A

factors through the natural quotient map

A⊗Wn(k) A −→ A⊗nA.

Example 4.9. The tense symmetric (resp. exterior) algebra of an arbitrary Wn(k)-
module is of course a tense algebra.
If A is is a usual Wn(k)-algebra which is flat (=free) as a Wn(k)-module, it is
automatically tense.

Exercise 4.10. Let A ∈ Wn be a tense Wn(k)-algebra. Show that the unit 1 ∈ A
has (additive) order pn. In other words, it spans a free direct summand of rank
one of A, as a Wn(k)-module.

Definition 4.11. Let M be a (finite) Wn(k)-module. Consider the largest number

i ∈ {−n,−n+ 1, . . . ,−1, 0}
such that M/pn+i is a free Wn+i(k)-module.
We put

vn(M) = i.

It is the valuation of M .

Remark 4.12. The Wn(k)-module M has valuation 0 if and only if it is free. In
case it is not, its valuation is strictly negative, and can be though of as the highest
’pole’ of M .
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Lemma 4.13. Let M and N be (finite) Wn(k)-modules. Then we have

vn(M⊗nN) = vn(M) + vn(N),

and

vn(M ⊕N) = min(vn(M), vn(N))

with the convention that all integers ≤ −n are identified to −n.

Proof. Straightforward. �

Lemma 4.14. Let M be a (finite) Wn(k)-module. Then vn(M) is the largest
negative number i, such that the composite

M ⊗Wn(k) (M∨)
ev−→Wn(k) −→Wn+i

passes to the quotient by Ker(Φn,M,M∨).

Proof.

Assume first that M = Wa(k), where a is an integer, with 1 ≤ a ≤ n. Then the
evaluation arrow under consideration is

Wa(k) −→Wn(k),

1 7→ pn−a.

On the other hand, Ker(Φn,M,M∨) is generated by p2a−n, or is everything if a ≤ n
2 .

We then see that the composite under consideration factors through Ker(Φn,M,M∨)
if, and only if,

p2a−n+n−a = pa = 0 ∈Wn+i(k),

meaning that i ≤ a− n = vn(M). The general case follows.

�

Definition 4.15. Let M be a (finite) Wn(k)-module. By the preceding Lemma,
the composite

M ⊗Wn(k) M
∨ ev−→Wn(k) −→Wn+vn(M)(k)

induces an arrow

M⊗nM∨ −→Wn+vn(M)(k),

which we denote by trM . It is the trace of M .

We conclude this section by defining the Chern character of a finite Wn(k)-module,
and stating a first property.

Definition 4.16. Let M be a finite Wn(k)-module. We put

Chn(M) := an + an−1X
−1 + an−2X

−2 + . . .+ a1X
−n+1 ∈ Z[X−1].

Lemma 4.17. Let M and N be two finite Wn(k)-modules. Then

vn(M) = vX(Chn(M)).

Modulo X−nZ[X−n], we have

Chn(M⊗nN) = Chn(M)Chn(N).

Proof.

Follows from Remark 4.2. �
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Remark 4.18. We believe it could be interesting, in the future, to investigate the
behaviour of the Chern character of Omega powers of k-vector spaces (see section
8.7). For instance, if V is a finite-dimensional k-vector space, what can we say
about the map

n ∈ N 7→ Chn+1(Ωn(V ))?

We should, of course, also extend these considerations to modules over global rings.

5. Divided powers.

For a nice and short account on properties of divided powers, we refer the reader to
[Fe]. A more comprehensive study of divided powers can be found in [Ro], which
contains all the proofs of the Propositions which we state here without proof.

In this section, A is a commutative ring.

Definition 5.1. Let M be an A-module. We denote by ΓA(M) (or simply by
Γ(M) if the dependence in A is clear) the graded divided power algebra of M ,
defined as follows. It is generated by degree i symbols [x]i, for each i ∈ N and each
x ∈M , with relations:

i) [x]0 = 1,
ii)[x+ x′]n =

∑n
0 [x]i[x

′]n−i,
iii)[λx]n = λn[x]n,
iv) [x]n[x]m =

(
n+m
n

)
[x]n+m.

We define Γn(M) to be the homogeneous component of degree n of Γ(M). We put
Γ+(M) := ⊕n≥1Γn(M); it is an ideal of Γ(M).

Remark 5.2. As it is well-known, the symbol [x]n plays the rôle of 1
n!x

n. More pre-
cisely, if n! is invertible in A (which typically happens if A has prime characteristic
p and n = p− 1), the natural map

Symn
A(M) −→ ΓnA(M),

x1 ⊗ . . .⊗ xn 7→ [x1]1 . . . [xn]1

is an isomorphism, with inverse given by

ΓnA(M) −→ Symn
A(M),

[x]n 7→
1

n!
xn.

At this point, the reader may wonder whether the last formula makes any sense.
Why does it yield a well-defined A-linear map? This will become apparent in a
moment, using the viewpoint of polynomial laws.

Remark 5.3. Equality iv), applied several times, yields the formula

[x]n1 . . . [x]nr =

(
n1 + . . .+ nr
n1, . . . , nr

)
[x]n1+...+nr ,

where (
n1 + . . .+ nr
n1, . . . , nr

)
=

(n1 + . . .+ nr)!

n1! . . . nr!

is the usual multinomial coefficient.
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For each positive integer i, the ideal Γ+(M) is moreover equipped with an operator

γi : Γ+(M) −→ Γ+(M),

x 7→ γi(x),

playing the role of x 7→ xi/i!, which endows (Γ(M),Γ(M)+) with the structure of
an A-algebra with divided powers. Let us be more precise.

Proposition 5.4. Let M be an A-module. For each positive integer i ≥ 0, the
polynomial law

M −→ Γ+(M),

x 7→ [x]i,

uniquely extends to a polynomial law

γi : Γ+(M) −→ Γ+(M),

which is homogeneous of degree i, such that the following conditions hold.

1) The γi’s are functorial in A and M .
2) We have γ1 = Id.
3) We have

γi(x+ y) =
∑
a+b=i

γa(x)γb(y),

identically.
4) We have

γj ◦ γi =
(ij)!

j!(i!)j
γij .

Moreover, the four properties above uniquely determine the γi’s.

Proposition 5.5. Let M , N be A-modules. We have a canonical isomorphism

Γn(M ⊕N) ' ⊕ni=0(Γi(M)⊗A Γn−i(N)).

Remark 5.6. The previous Proposition says that divided power functors are strictly
polynomial, in the sense of [FFSS].

Proposition 5.7. Let M be an A-module, and let B be a commutative A-algebra.
We have a canonical isomorphism of graded rings

ΓA(M)⊗B ' ΓB(M ⊗A B).

5.1. Polynomial laws. Let A be a commutative ring.

Definition 5.8. If M is an A-module, we denote by M the functor

R 7→M ⊗A R,
from the category of commutative A-algebras to that of sets.

Definition 5.9. Let M,N be A-modules. A polynomial law from M to N is a
morphism of functors

F : M −→ N.

We shall say that F is homogeneous of degree n ≥ 0 if, for every commutative
A-algebra R and every t ∈ R and m ∈M ⊗A R, we have

F (tm) = tnF (m).

Remark 5.10. One can show that a degree 0 (resp. degree 1) polynomial law is
obtained from a constant (resp. A-linear) map M −→ N .
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Remark 5.11. Slightly abusing notation, we will sometimes denote a polynomial
law

F : M −→ N

simply by

F : M −→ N,

dropping the underscore. We shall do so only if there is no chance of confusing F
with a mere map.

Remark 5.12. Let M be an A-module. Let i, j be positive integers. The divided
power operation

γi : ΓjA(M) −→ ΓijA(M)

is a polynomial law, which is homogeneous, of degree i. It will often be considered
as such in the sequel.

Remark 5.13. If V and W are locally free A-modules of finite rank, then a poly-
nomial law from V to W is nothing but a morphism of affine A-schemes

AA(V ) −→ AA(W ).

The next Proposition is crucial. Its content is that the functor Γ represents the
functor of polynomial laws.

Proposition 5.14. Let M , N be A-modules. Then HomA(Γn(M), N) is canoni-
cally isomorphic to the group of polynomial laws from M to N , which are homo-
geneous of degree n.

The previous Proposition admits an obvious generalization, as follows.

Proposition 5.15. Let M1,M2, . . . ,Mr and N be A-modules. Let n1, . . . , nr be
positive integers. Then

HomA(Γn1(M1)⊗A Γn2(M2)⊗A . . .⊗A Γnr (Mr), N)

is canonically isomorphic to the (A-module of) polynomial laws

M1 ×M2 × . . .×Mr −→ N,

which are homogeneous of degree ni in Mi (for i = 1 . . . r).

For M an A-module, the association

M −→ (M⊗n)Sn ,

x 7→ x⊗n,

is obviously a polynomial law, which is homogeneous of degree n. It thus induces
an A-linear morphism

Fn(M) : ΓnA(M) −→ (M⊗n)Sn .

Proposition 5.16. If M is locally free of finite rank, the morphism Fn(M) above
is an isomorphism.

Remark 5.17. If M is locally free of finite rank, the A-dual of (M⊗n)Sn is nothing
but the symmetric power Symn

A(M∗). Thus, the formation of divided powers, for
finite locally free modules, is dual to that of symmetric powers.
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5.2. Divided powers and duality. Let us now mention a nice compatibility
of divided powers, with respect to duality.

Definition 5.18. Let M be an A-module. Let n ≥ 1 be an integer. The formula

(v, φ) 7→ φ(v)n

defines a polynomial law (of A-modules)

M ×M∗ −→ A,

which is bihomogeneous, of bidegree (n, n). By Proposition 5.15, this law corre-
sponds to a pairing

ΓnA(M)× ΓnA(M∗) −→ A.

We will denote this pairing by ∆n, or by ∆, or even by < ., . >, if the context is
clear enough. On the level of pure symbols, we have

< [φ]n, [v]n >= φ(v)n.

Lemma 5.19. Let M be an A-module. The following assertions are true.

1) For x1, . . . , xr ∈M , φ ∈M∗ and i1, . . . ir positive integers, we have

< [x1]i1 . . . [xr]ir , [φ]i1+...+ir >=

(
i1 + . . .+ ir
i1, . . . , ir

)
φ(x1)i1 . . . φ(xr)

ir

=

(
i1 + . . .+ ir
i1, . . . , ir

)
< [x1]i1 , [φ]i1 > . . . < [xr]ir , [φ]ir > .

2) Let m and n be positive integers. For X ∈ Γn(M) and φ ∈M∗ the formula

< γm(X), [φ]mn >=
(mn)!

(n!)mm!
< X, [φ]n >

m∈ A

holds (note that the integer coefficient appearing here is the number of partitions
of a set of cardinality mn in m subsets of cardinality n).

Proof. We can assume that M is an A-module of finite type.
If f : L −→ M is a surjective linear map between A-modules, then the Lemma
holds for M if it holds for L. Hence, we are reduced to the case where M = An

is free. Let g : B −→ A be a surjective homomorphism of commutative rings.
Let N be a B-module, for which the Lemma holds (over the ring B, of course).
Then the Lemma holds for M = N ⊗B A (use Proposition 5.7). Altogether, we
can assume that M is a free module and that A is a domain of characteristic zero.
But then, divided powers of M are free A-modules, and we can check everything
after extending scalars to the fraction field F of A. We are thus reduced to the
case where A = F is an algebraically closed field of characteristic zero, in which
case pure symbols additively span divided power modules. We can then identify
ΓnA(M) and Symn

A(M), through the symmetrizing operator ([x]n corresponds to
xn

n! ). Then the duality ∆ is given by the usual (reassuring, but awkward) formula

Symn
A(M)× Symn

A(M∗) −→ A,

(x1 ⊗ . . .⊗ xn, φ1 ⊗ . . .⊗ φn) 7→ n!
∑
σ∈Sn

φ1(xσ(1)) . . . φn(xσ(n)).
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Checking point 1) is then straightforward.
For 2), write

X =
∑
i

[xi]n.

We compute, using 1):

< γm(X), [φ]mn >=<
Xm

m!
, [φ]mn >=

1

m!
< (
∑
i

[xi]n)m, [φ]mn >

=
1

m!
<

∑
i1,...,im

[xi1 ]n . . . [xim ]n, [φ]mn >

=
1

m!

(
mn

n, n, . . . , n

) ∑
i1,...,im

φ(xi1)n . . . φ(xim)n

=
1

m!

(
mn

n, n, . . . , n

) ∑
i1,...,im

< [xi1 ]n, [φ]n > . . . < [xim ]n, [φ]n >

=
1

m!

(
mn

n, n, . . . , n

)
(< [xi1 ]n, [φ]n > + . . .+ < [xim ]n, [φ]n >)m

=
(mn)!

(n!)mm!
< X, [φ]n >

m

(here we write sums over all integers i1, . . . , im, repetitions allowed, to avoid multi-
nomial coefficients). The proof is over.

�

5.3. Divided powers versus symmetric powers. At this point, it seems le-
gitimate to compare symmetric powers and divided powers more closely. Victory
shall belong to the latter, and by far: they are much simpler, versatile and better
behaved- for many reasons. We mention two of them.

1) Let V and W be two A-modules. On the one hand, HomA(Symn
A(V ),W )

corresponds to symmetric n-multilinear forms

F : V n −→W.

Such a form is defined by an expression of the shape

(v1, . . . , vn) 7→ F (v1, . . . , vn).

It is a function of the n variables v1, . . . , vn.
On the other hand, HomA(Γn(V ),W ) corresponds to polynomial laws from V to
W , which are homogeneous of degree n. Such a law is defined by an expression of
the shape

v 7→ F (v).

Being a natural transformation between the functors V and W , the expression
F (v) has to functorially make sense for any commutative A-algebra R, and every
v ∈ V ⊗A R. However, it depends on a -single- variable v. In that sense, it is
much easier to define than a symmetric n-multilinear form.

2) Let m be positive integer. Symmetric powers (or tensor powers) of a module,
which is of m-torsion, will remain of m-torsion, regardless to the ring of coeffi-
cients. This is far from being so for divided powers- a major fact which is at the
heart of this paper. The underlying phenomena (in prime power torsion) will be
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studied extensively, starting from the next section. For instance, we shall see that,

if L is a free (Z/pnZ)-module of rank one, then Γp
s

Z (L) is a free (Z/pn+sZ)-module
of rank one.

6. The Teichmüller representative, as a polynomial law.

Among polynomial laws, there are fundamental ones, given by Teichmüller repre-
sentatives in truncated Witt vectors. Let us be more precise. We begin with a
standard but extremely important Lemma, at the heart of p-adic theory.

Lemma 6.1. Let A be a commutative ring.
The map

A −→ A/pn+mA,

x 7→ xp
n

,

factors through the quotient A −→ A/pmA. Since this hold functorially in A, we
get this way a polynomial law of Z-modules

Z/pmZ −→ Z/pm+nZ,

x 7→ xp
n

.

Proof. By induction, it is enough to check the claim for n = 1. In this case, for
any x, y ∈ A, we have the well-known congruence

(x+ pmy)p ≡ xp

modulo pm+1A, whence the claim.

�

Definition 6.2. The polynomial law (of Z/pm+nZ-modules)

Z/pmZ −→ Z/pm+nZ,

x 7→ xp
n

will be denoted by τn.

Remark 6.3. Note that, for any x ∈ k, we have

τn(x) = τ(xp
n

) ∈Wn+1(k),

where τ is the usual Teichmüller representative. Looking closely at this equality
reveals the following.
In the theory of Witt vectors over perfect fields of characteristic p, the expression
τ(x) ∈Wn+1(k) is well-defined because we can extract a (unique) pn-th root of
x in our base ring k. The expression τn(x) ∈ A, in contrast, makes sense for any
base ring A of characteristic pn+m, and any x ∈ A/pm.

We need a simple arithmetic Lemma.

Lemma 6.4. Let a1, . . . , ar be r nonnegative integers. Put n = a1 + . . .+ ar.
The following assertions are true.
i) The number of carryovers in the base-p addition

n = (. . . (a1 + a2) + a3) + . . .) + ar
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does not depend on the order of the ai’s. It is equal to the p-adic valuation of the
multinomial coefficient

(
n

a1,...,ar

)
.

ii) We have

vp(

(
pn

pa1, . . . , par

)
) = vp(

(
n

a1, . . . , ar

)
)

and

vp(

(
n

a1, . . . , ar

)
) ≥ maxi{vp(n)− vp(ai)}.

iii) In the particular case where r = 2 and a1 + a2 = ιpm, with m ≥ 0 and
1 ≤ ι ≤ p− 1, the inequality in ii) is an equality. In other words, we have

vp(

(
ιpm

a1, a2

)
) = m− vp(a1) = m− vp(a2).

Proof.

For i), we can reduce to the case r = 2 using the formula(
a1 + . . .+ ar
a1, . . . , ar

)
=

(
a1 + . . .+ ar

a1 + a2, a3, . . . , ar

)(
a1 + a2

a1, a2

)
.

The claim to prove is then a classical fact, which is also a nice elementary exercise
left to the reader.
Assertion ii) is an easy consequence of i).
Let us now prove iii). The case m = 0 is obvious; we thus assume that m ≥ 1. By
ii), we then note that

vp(

(
ιpm+1

pa1, pa2

)
) = vp(

(
ιpm

a1, a2

)
),

allowing us to reduce to the case where a1 and a2 are prime-to-p. Write

ai = bi + cip
m

for i = 1, 2, with bi prime-to-p, and bi ≤ pm − 1. The number b1 + b2 is divisible
by pm, hence equals pm. We thus have

1 + c1 + c2 = ι ≤ p− 1,

from which we infer that the number of carryovers in the base-p addition of a1

and a2 equals that of b1 and b2, which is obviously m. The claim is proved.

�

Remark 6.5. The formula

vp(

(
pa1 + . . .+ par
pa1, . . . , par

)
) = vp(

(
a1 + . . .+ ar
a1, . . . , ar

)
)

suggests that the function

(a1, . . . , ar) 7→ vp(

(
a1 + . . .+ ar
a1, . . . , ar

)
)

behaves like a height on the projective space Pr−1, locally at p. This is perhaps
worth investigating.

Lemma 6.6. Let V be an A-module, such that pmV = 0, for some m ≥ 0. Let n
be a positive integer. Then ΓnA(V ) is of pm+vp(n)-torsion.
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Proof. Note first the following two obvious facts.
i) Since V is annihilated by pm, ΓnA(V ) is annihilated by pmn. In particular, it is
a Zp-module.
ii) Let

n = a1 + . . .+ ar

be a decomposition of n into a sum of r nonnegative integers. For i = 1 . . . r, let
vi be an element of V . Then the (additive) order of

[v1]a1 . . . [vr]ar ∈ ΓnA(V )

is at most the minimum of the orders of the elements [vi]ai ∈ ΓaiA (V ).

We now show that

pm+vp(n)[v]n = 0 ∈ ΓnA(V ),

for each v ∈ V . Let

n = a0 + a1p+ . . . arp
r

be the base-p expansion of n. In the equality

[v]a0 [v]a1p . . . [v]arpr =

(
n

a0, a1p, . . . , arpr

)
[v]n ∈ ΓnA(V ),

the multinomial coefficient is prime-to-p, by Lemma 6.4. We can thus assume that
n = ιpr, with 1 ≤ ι ≤ p− 1. In the formula

[v]ιpr =

(
ιpr

pr, . . . , pr

)
[v]n,

the multinomial coefficient is prime-to-p, by Lemma 6.4 again. We thus reduce to
the case ι = 1, i.e. n = pr.

We then see that

[v]ppr−1 =

(
pr

pr−1, . . . , pr−1

)
[v]n,

and that the multinomial coefficient occuring in this formula has p-valuation one.
Induction on r yields the result, since V = Γ1

A(V ) is of pm-torsion by assumption.

�

6.1. Divided powers of torsion W(k)-modules. From now on, k is a perfect
field of characteristic p.
We will explain the first steps towards a canonical process for lifting torsion
W(k)-modules to modules of higher torsion. To do so, we use divided powers,
which are arguably the most efficient ”elementary” algebraic tool at disposal.

Before beginning, let us mention here the work of Kaledin- notably in the recent
papers [K1] and [K2]. His constructions are very close to what we produce here,
though expressed in a different language. We did not have time to explore the
connections so far and it would be interesting to do so in the future.

Recall that we denote by

τ : k −→W(k)
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the Teichmüller representative (we set τ(0) = 0). The map

τ|k× : k× −→W(k)×

is the unique multiplicative section of the quotient map

W(k)× −→ k×.

Let n,m be positive integers. Take A to be Wn+m(k), the truncated Witt vectors
of size n+m. By Lemma 6.1, the formula

τn : A/pmA −→ A/pn+mA = Wn+m(k),

x 7→ xp
n

,

defines a (multiplicative) polynomial law over Z, homogeneous of degree pn. It
thus induces a group homomorphism

Γp
n

Z (Wm(k)) −→Wn+m(k),

which we denote by T ′n. Since the Teichmüller representatives generate Wn+m(k)
additively, the map T ′n is surjective. But obviously, the polynomial law τn might
as well be considered as a polynomial law over W(k), hence giving rise to a W(k)-
linear homomorphism

Tn : Γp
n

W(k)(Wm(k)) −→Wn+m(k).

Lemma 6.7. The map Tn is an isomorphism.

Proof. It is clearly surjective. But Γp
n

W(k)(Wm(k)) is generated by [1]pn , as a

W(k)-module, and is killed by pn+m, by Lemma 6.6. It is thus a Wn+m(k)-
module, generated by one element. The claim follows. �

Thus, the map T ′n factors as

T ′n : Γp
n

Z (Wm(k)) −→ Γp
n

W(k)(Wm(k))
Tn−→Wn+m(k).

One can then infer a description of the kernel of T ′n, which in turn provides a
rather simple, seemingly new, natural recursive definition of Wm(k) by generators
and relations. It does not involve any intricate computation- assuming, of course,
some familiarity with the spirit of divided powers.

Proposition 6.8. Assume that n = 1 in what precedes.
Then the kernel of the natural surjection

T ′1 : ΓpZ(Wm(k)) −→Wm+1(k)

is generated, as an Abelian group, by elements of the form

[x]1[y]p−1 − [xyp−1]1[1]p−1,

with x, y ∈Wm(k).

Proof. We try to offer an algorithmic proof. The reader who is not familiar with
divided powers is advised to assume p = 2, to begin with.
First of all, it is not hard to see that these elements are in the kernel, since, on
’impure’ symbols, we have

T ′1([x]1[y]p−1) = p!XiY j ∈Wm+1(k),

for all x, y ∈ Wm(k), where X,Y ∈ Wm+1(k) are arbitrary lifts of x and y,
respectively. Denote by I ⊂ ΓpZ(Wm(k)) the Abelian group spanned the elements

[x]1[y]p−1 − [xyp−1]1[1]p−1.
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Pick an element X ∈ Ker(T ′1). A little computation shows that, modulo I, every
element of ΓpZ(Wm(k)) is congruent to an element of the shape

[a]p + [b]1[1]p−1,

with a, b ∈Wm(k). We can thus assume that

X = [a]p + [b]1[1]p−1.

Denote by A ∈Wm+1(k) and B ∈Wm+1(k) arbitrary lifts of A and B, respec-
tively. The relation T ′1(X) = 0 translates as

Ap + p!B = 0 ∈Wm+1(k),

which implies that a is divisible by p, say a = pa′, for a′ ∈Wm(k). From the fact
that, modulo I, we have

[a]p = pp[a′]p =
pp−1

(p− 1)!
[a′]1[a′]p−1 ≡

pp−1

(p− 1)!
[a′p]1[1]p−1 ∈ ΓpZ(Wm(k)),

we are thus reduced to case a = 0. But then pB = 0 ∈ Wm+1(k), implying
b = 0 ∈Wm(k). Hence, I indeed equals Ker(T ′1).

�

From now on, if M is a torsion W(k)-module, we shall put

Γn(M) := ΓnW(k)(M)

and
Symn(M) = Symn

W(k)(M).

Note that these are polynomial functors, in the category of torsion W(k)-modules.

Remark 6.9. The preceding discussion shows that Γp
n

(Wm(k)), as a W(k)-
module, is generated by [1]pn and is canonically isomorphic to Wm+n(k). We
are now going to make this statement (a bit) more precise.

Let n,m be positive integers.
Let L be a Wm(k)-module which is free of rank one. Seeing it as a W(k)-module,
we put

Wn+m(L) := Γp
n

(L);

it is is a free Wn+m(k)-module of rank one, whose construction is functorial in L.
It comes equipped with the Teichmüller-like map (which is in fact a polynomial
law)

τn : L −→Wn+m(L),

v 7→ [v]pn .

Note that, if m = 1 and L = k, then Wn+1(L) = Wn+1(k), and τn(x) = τ(xp
n

),
as noted before.

Lemma 6.10. Let i = pnj be a positive integer, with j prime to p. Then the
formula

L −→Wn+m(L⊗j),

v 7→ [v⊗j ]pn ,

defines a polynomial law, which is homogeneous, of degree i. The induced W(k)-
linear map

φ : Γi(L) −→Wn+m(L⊗j)

is an isomorphism.
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Proof. Only the fact that φ is an isomorphism has, perhaps, to be checked.
We may assume that L = Wm(k). By lemma 6.6, the W(k)-module Γn(Wm(k)),
which is obviously generated by [1]n, is of pm+n-torsion, hence a Wm+n(k)-module
generated by one element. The map φ is obviously surjective, with target a free
Wm+n(k)-module. It is thus an isomorphism.

�

Lemma 6.11. Let n,m be positive integers. Let M be a Wm(k)-module. Pick an
element x, of order pm. Then the symbol

[x]n ∈ Γn(M)

has order pvp(n)+m.

Proof. By Lemma 6.6, the symbol in question has order ≤ pvp(n)+m. Now, pick
a Wm(k)-linear map

f : M −→Wm(k),

sending v to 1. By functoriality, it induces a Wn+m(k)-linear map

F : Γn(M) −→ Γn(Wm(k)),

mapping [v]n to [1]n. By Lemma 6.10, and by the fact that 1 ∈ Wm+n(k) has
order pm+n, we know that [1]n has order pvp(n)+m. The claim follows. �

Lemma 6.12. Let V be a k-vector space. Let n be a positive integer, lesser or equal
to the cardinality of k. Then the symbols [v]n, for v ∈ V , generate Γn(V )/p (as a
k-vector space).

Proof. We can assume that V is finite-dimensional. By a straightforward induc-
tion on the dimension d ≥ 2 of V , it is enough to show that the natural map⊕

H∈P(V ∗)

Γn(H)/p −→ Γn(V )/p,

given by the sum of the inclusions Γn(H)/p −→ Γn(V )/p, for all hyperplanes
H ⊂ V , is surjective. Dually, letting W := V ∗, we have to show that the natural
map

Symn(W ) −→ ⊕L∈P(W )Symn(W/L),

given as the sum of the quotient maps, is injective. But, choosing a k-basis of
W , an element of Symn(W ) is just a homogeneous polynomial of degree n in d
variables. The fact that it dies in Symn(W/L) is equivalent to asking that it is
divisible by v, where v ∈ L is a nonzero vector. The statement now follows, since
P(W ) has cardinality at least |k|+1 ≥ n+1, and since a homogeneous polynomial
of degree n, which is divisible by n+ 1 two by two non proportional linear factors,
has to be zero.

�

Lemma 6.13. Let M be a torsion W(k)-module. Let n be a positive integer, lesser
or equal to the cardinality of k. Then the symbols [x]n, for x ∈M , generate Γn(M)
(as a W(k)-module).

Proof. We can assume that M is of finite type. Consider the filtration

Γn(M) ⊃ pΓn(M) ⊃ p2Γn(M) ⊃ . . . ⊃ {0},
and note that the successive quotients are all quotients of Γn(M)/p ' Γnk (M/p).
Apply induction, using Lemma 6.12, to get the result.
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�

We conclude this section by a concrete description of divided power modules, using
a basis. We first fix some useful notation.

Definition 6.14. (Weighted partitions.) Let n be a positive integer. A partition
of n is a decomposition

A : (a1 + . . .+ ad = n)

of n into a sum of d nonnegative integers. The partition A is said to be weighted,
if we are given the extra data of a d-tuple

w := (w1, . . . , wd)

of nonnegative integers, such that, for all i = 1 . . . , d, wi is zero if ai is zero.
The (weighted) partition (A,w) is said to be proper if all ai’s are ≤ n−1, or Dirac
otherwise.

Definition 6.15. Let M be a finite Wm(k)-module. Choose a decomposition

M =

d⊕
i=1

Wm−wi(k)ei,

where ei ∈ M has order pm−wi (the wi’s are ≤ m, and uniquely determined by
M). Put

w = (w1, . . . , wd).

Denote by

M∨ =

d⊕
i=1

Wm−wi(k)e∨i

the dual decomposition, with

< ei, e
∨
j >= pwiδi,j .

Let n be a positive integer. For each partition

A : (a1 + . . .+ ad = n),

put

W̃ (A,w) := max{vp(n)− vp(ai) + wi, i = 1 . . . d}

and

[e]A := [e1]a1 . . . [ed]ad ∈ Γn(M).

Proposition 6.16. Let M be a finite Wm(k)-module. Let n ≥ 0 be an integer.
We use the notation of Definition 6.15.

Then the order of [e]A in the Wm+vp(n)(k)-module Γn(M) is pm+vp(n)−W̃ (A,w),
and there exists a natural isomorphism of Wm+vp(n))(k)-modules⊕

A

Wm+vp(n)−W̃ (A,w)(k)
∼−→ Γn(M),

1A 7→ [e]A,

where the sum is taken over all partitions A of n, of size d.
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Proof. The first statement follows from Proposition 5.5 and Lemma 6.10, which
implies that

d⊗
i=1

Γai(Wm−wi(k))

is canonically isomorphic to Wm+vp(n)−ṽ(A,w)(k).

�

6.2. An alternate description of Γp for vector spaces. Here k = Fp.
Assume that V = M ⊗Z Fp, for M a free Z-module of finite rank. One readily
checks that the map

C : M ×M −→ Symp
Z(M),

(x, y) 7→ (x+ y)p − xp − yp

p
,

is a symmetric 2-cocycle, for the trivial action of M on Symp
Z(M). Indeed, this

can be checked after extending scalars to Q, where it is obvious: c is then a trivial
cocycle by definition! Reducing mod p, we obtain a symmetric cocycle

c : V × V −→ Symp
k(V ),

in fact given by

c(x, y) =

p−1∑
1

(−1)i−1

i
xiyp−i.

This cocycle defines an Abelian extension of V by Symp
k(V ). We leave it to the

reader, as an instructive exercise, to check that this extension is canonically iso-
morphic to Γp(V ).

7. The Frobenius and the Verschiebung.

Recall that k is a perfect field of characteristic p.
Let A be a commutative ring of characteristic p. Denote by

frobA : A −→ A,

x 7→ xp,

the Frobenius endomorphism of A. For any A-module M , put

M (1) := M ⊗A A,
where the tensor product is taken with respect to frobA. This notation is obviously
coherent with the one used before.
Moreover, if B/A is a commutative algebra, we have a canonical isomorphism

M (1) ⊗A B
∼−→ (M ⊗A B)(1).

In other words, forming the twist by Frobenius commutes with extensions of com-
mutative rings of characteristic p.
Now, let V be a k-vector space. By what precedes, the formula

V −→ V (1),

v 7→ v(1) := v ⊗ 1,

actually defines a polynomial law, homogeneous of degree p. We shall refer to this
law as the Frobenius law FrobV . It can be viewed as a morphism of affine k-spaces

Ak(V ) −→ Ak(V (1)).
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Note that the Frobenius law exists only for k-vector spaces. For n ≥ 2, an arbitrary
(say, finite free) Wn(k)-module does not come naturally equipped with such a law.

The next proposition contains the definition of the Frobenius and of the Ver-
schiebung, borrowed from the theory of commutative group schemes in character-
istic p.

Proposition 7.1. Let V be a finite-dimensional k-vector space and let n ≥ 1 be
an integer.

Then the formula
V −→ Γn(V (1)),

v 7→ [v(1)]n,

is a polynomial law of degree np, thus defining a W(k)-linear map

Frob : Γnp(V ) −→ Γn(V (1)),

the Frobenius homomorphism (for divided powers).
The polynomial law

V −→ Γnp(V ),

v 7→ p[v]pn

canonically factors through the Frobenius law V −→ V (1). The resulting polyno-
mial law

V (1) −→ Γnp(V )

is homogeneous of degree n, yielding a W(k)-linear map

Ver : Γn(V (1)) −→ Γnp(V ),

[v(1)]n −→ p[v]pn,

the Verschiebung homomorphism (for divided powers).

Proof.

The first statement (defining the Frobenius map for divided powers) follows from
the definition of the Frobenius law. For the second one, pick a basis e1, . . . , ed of
V . On the one hand, the Frobenius V −→ V (1) then becomes the law

kd −→ kd,

(X1, . . . , Xd) 7→ (Xp
1 , . . . , X

p
d ).

On the other hand, The polynomial law (of W(k)-modules)

V −→ Γnp(V ),

v 7→ p[v]pn

then becomes the law
kd −→ Γnp(kd),

(X1, . . . , Xd) 7→ p[X1e1 + . . .+Xded]pn

=
∑

a1+...+ad=pn

Xa1
1 . . . Xad

d p[e1]a1 . . . [ed]ad

=
∑

a1+...+ad=n

Xpa1
1 . . . Xpad

d p[e1]pa1 . . . [ed]pad ,

where the first (resp. second) sum is taken over all decompositions of pn (resp.
of n) into the sum of d nonnegative integers. Indeed, the symbols [ei]a, for a not
divisible by p, are of additive order p, hence all terms p[e1]a1 . . . [ed]ad vanish, as
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soon as one of the ai’s is not divisible by p. The second part of the lemma, yielding
the definition of the Verschiebung morphism for divided powers, is now obvious.

�

Lemma 7.2. Let V be a k-vector space. Let a1, . . . , ad, n be nonnegative integers,
satistying a1 + . . .+ ad = np. For v1, . . . , vd ∈ V , the Frobenius

Frob : Γnp(V ) −→ Γn(V (1))

satisfies
Frob([v1]a1 . . . [vd]ad) = 0,

if one of the ai’s is not divisible by p. If all ai’s are divisible by p, says ai = pbi,
then

Frob([v1]a1 . . . [vd]ad) = [v
(1)
1 ]b1 . . . [v

(1)
d ]bd .

Dually, the Verschiebung

Ver : Γn(V (1)) −→ Γnp(V )

satisfies

Ver([v
(1)
1 ]a1 . . . [v

(1)
d ]ad) = p[v1]pa1 . . . [vd]pad .

Proof. We work in the polynomial ring W(k)[X1, . . . Xd]. The relation

Frob([X1v1 + . . .+Xdvd]np) = [Xp
1 (v

(1)
1 ) + . . .+Xp

d (v
(1)
d )]n

holds by definition. But

[X1v1 + . . .+Xdvd]np = Σa1+...+ad=np(X
a1
1 . . . Xad

d [v1]a1 . . . [vd]ad)

and

[Xp
1 (v

(1)
1 ) + . . .+Xp

d (v
(1)
d )]n = Σb1+...+bd=n(Xpb1

1 . . . Xpbd
d [v

(1)
1 ]b1 . . . [v

(1)
d ]bd),

so that the first assertion follows by identifying the coefficients of the monomials
occuring in those expansions. The proof for the Verschiebung is similar.

�

Corollary 7.3. For any s ≥ 1, the kernel of

Frobs : Γnp
s

(V ) −→ Γn(V (s))

coincides with the ps-torsion of Γnp
s

(V ).

Proof. This follows from Proposition 6.16 and Lemma 7.2.

�

Proposition 7.4. Let V be a k-vector space. Let n, s ≥ 1 be integers. Then the
Frobenius

Frobs : Γnp
s

(V ) −→ Γn(V (s)),

[v]nps −→ [v(s)]n

is surjective. We have an exact sequence

0 −→ Γnp
s

(V )[ps] −→ Γnp
s

(V )
Frobs−→ Γn(V (s)) −→ 0.

The Verschiebung
Vers : Γn(V (s)) −→ Γnp

s

(V ),

[v(s)]n −→ ps[v]nps ,

is injective. We have an exact sequence

0 −→ Γn(V (s))
Vers−→ Γnp

s

(V ) −→ Γnp
s

(V )/ps −→ 0.
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Proof. We may assume that V is finite-dimensional, with basis e1, . . . , ed. Let
k′/k be a extension of perfect fields, with k′ infinite. Since the formation of
divided powers commutes to the (faithfully flat!) base-change W(k′)/W(k), we
can assume that k is infinite. In this case, Lemma 6.13 ensures that pure symbols
are additive generators of divided powers. The surjectivity of Frobs then directly
follows from the description given in Lemma 7.2. That its kernel is the ps-torsion
is the content of Corollary 7.3. By Lemma 7.2, it is clear that the image of Vers

is psΓnp
s

(V ). It follows from the same Lemma, combined with Proposition 6.16,
that Vers is injective.

�

Corollary 7.5. The Frobenius

Frob : Γ(V ) −→ Γ(V (1))

is a surjective homomorphism of W(k)-algebras, with kernel Γ+(V )[p].

Proof. This is now obvious. �

8. Divided powers and Pontryagin duality.

8.1. Duality. Recall that, for every k-vector space V , we have canonical isomor-
phisms

Γpk(V ) ' (V ⊗p)Sp ' Symp
k(V ∗)∗.

When working over a field of characteristic zero, it is common (though somewhat
misleading) to identify Symp

k(V ∗)∗ and Symp
k(V ), using what is called the ’sym-

metrizing operator’. Equivalently, in characteristic zero, the map

Γpk(V ) −→ Symp
k(V ),

[v]p 7→ vp,

is an isomorphism. It is of course far to be so in our context, where the perfect
field k has characteristic p. In other terms, the functor Γpk does not commute
with duality of vector spaces. However, we will see that, for any m ≥ 1, the
functor Γp = ΓpWm+1(k) does commute with duality for a free Wm(k)-module M ,

in the sense that Γp(M∨) and Γp(M)∨ are canonically isomorphic, as Wm+1(k)-
modules.
This phenomenon does unfortunately not extend to higher divided powers: the
functors Γp

n

, for n ≥ 2, behave very badly with duality- except in dimension two.
This is a rather subtle fact, linked to intricate computations of p-adic valuations
of scary multinomial coefficients. To bypass this difficulty, we can choose to apply
Γp n times in a row, instead of applying the functor Γp

n

just once. In doing so,
we lift the (p-adic valuation of the) torsion of the modules by one at each step.
In some sense, this choice is justified by the basic computational fact that, for an
ideal in a Zp-algebra, a divided power structure is uniquely determined by the
operation γp. Note that, for non free Wm(k)-modules, we will have to take a
quotient of the functor Γp anyway, in order to respect duality.
In what follows, we explore these two points of view: applying Γp

n

, or applying
Γp n times in a row. Forming their ’correct’ quotients (which commutes to
Pontryagin duality) will give rise to medium and big Omega powers, respectively.
Medium Omega powers will turn out to be a direct factor of big Omega powers.
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From now on, m fixed positive integer. The Pontryagin dual of a Wm(k)-module
M shall be viewed as

M∨ = HomWm(k)(M,Wm(k)).

Let M be a Wm(k)-module. Then the duality law

∆ : M ×M∨ −→Wm(k)

of Definition 5.18 canonically factors through the projection

π : Wm+1(k) −→Wm(k).

Explicitly, the pairing

∆̃p : M ×M∨ −→Wm+1(k)

(m,φ) 7→ τ1(φ(m))

is a polynomial law, bihomogeneous of bidegree (p, p), satisfying

∆p = π ◦ ∆̃p.

It strongly depends on m. The integer m being fixed in this section, we shall
abusively write ∆, or even < ., . > for ∆̃p. By the universal property of divided
powers, it corresponds to a pairing of Wm+1(k)-modules

ΓpWm+1(k)(M)× ΓpWm+1(k)(M
∨) −→Wm+1(k),

given, on the level of pure symbols, by the formula

< [φ]p, [v]p >= τ1(φ(v)) ∈Wm+1(k).

Similarly, for any nonnegative integer n ≥ 2, we get a pairing of Wm+n(k)-modules

Γp
n

Wm+n(k)(M)× Γp
n

Wm+n(k)(M
∨) −→Wm+n(k),

< [φ]pn , [v]pn >= τn(φ(v)) ∈Wm+n(k).

We shall denote this pairing by ∆̃pn , or again simply by ∆ if the context is clear.

Lemma 8.1. Let n be a nonnegative integer.
Let M be a finite Wm(k)-module. Using the notation of Definition 6.15, we have
a commutative diagram

Γp
n

(M)× Γp
n

(M∨)

o
��

<.,.> //Wm+n(k)

(
⊕

AWN(A)(k)[e]A)× (
⊕

BWN(B)(k)[e∨]B) //Wm+n(k),

where the vertical map on the left is the product of the isomorphisms given by
Lemma 6.16, and the lower horizontal map is the pairing given by

([e]A, [e
∨]B) 7→ p(

∑d
1 wiai)

(
pn

a1, a2, . . . , ad

)
∈Wm+n(k),

if A = B = (a1, . . . , ad), or by

([e]A, [e
∨]B) 7→ 0

if A 6= B.
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Proof. We work over the polynomial ring Wn+m(k)[Xi, Yi, i = 1 . . . d]. By
definition,

< [X1e1 + . . .+Xded]pn , [Y1e
∗
1 + . . .+ Yde

∗
d]pn >= (pw1X1Y1 + . . .+ pwdXdYd)

pn .

Developping the lefthand side, we get that the coefficient of Xa1
1 . . . Xad

d Y b11 . . . Y bdd
is < [e1]a1 . . . [ed]ad , [e

∗
1]b1 . . . [e

∗
d]bd >, whenever ai and bi are nonnegative integers

such that a1 + . . .+ ad = b1 + . . .+ bd = pn. Developping the righthand side, and
identifying the coefficients, yields the result.

�

Definition 8.2. let d be a positive integer. Pick a weighted partition (A,w) of
pn, of size d. Put

W ((A,w)) := min{m+ n, vp(

(
pn

A

)
) +

d∑
1

wiai}.

Remark 8.3. Note that

W ((A,w)) ≥ W̃ ((A,w)).

If n = 1 , then equality holds if, and only if, either w = 0, or wi is nonzero for a
single index i, for which ai = 1.
If d = 2 and w = 0, equality holds for any n. This holds because, in this case,

vp(
(
pn

a1,a2

)
) is precisely n− vp(a1) = n− vp(a2).

In the context of Lemma 6.16, we know that the order of [e]A ∈ Γp
n

(M) is

pm+n−W̃ ((A,w)). We will now show that the order of (the class of) [e]A in
Γp

n

(M)/Ker(∆) is pm+n−W ((A,w)).

Lemma 8.4. Let M be a finite Wm(k)-module. Let n be a nonnegative integer.
We use the notation of Definition 6.15.
We have a canonical isomorphism

Γp
n

(M)/Ker(∆)
∼−→
⊕
A

Wm+n−W (A,w)(k),

[e]A 7→ 1A,

where the direct sum is taken over all partitions A of pn, of size d.
It fits into a commutative diagram

Γp
n

(M) //

��

⊕
AWm+n−W̃ (A,w)(k)

��
Γp

n

(M)/Ker(∆) //⊕
AWm+n−W (A,w)(k)

Proof. Obvious from Lemma 8.1. �

It is natural to ask whether the pairing ∆ is non-degenerate; in other words, to
ask whether

∆ : Γp
n

(M) −→ Γp
n

(M∨)∨

is an isomorphism of Wm+n(k)-modules. We can now answer this question.

Proposition 8.5. Let M be a finite Wm(k)-module. The pairing

∆ : Γp(M)× Γp(M∨) −→Wm+1(k)
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is perfect if and only if M is a free Wm(k)-module.
If M is a free Wm(k)-module of rank at most two, then we have more: the pairing

∆ : Γp
n

(M)× Γp
n

(M∨) −→Wm+n(k)

is perfect, for any n ≥ 1.

Proof. We use Lemma 8.4. In the first case, we have to see that W̃ (A,w) =
W (A,w) for all A, if and only if w = 0. In the second case, we have to see that

W̃ (A, 0) = W (A, 0) if d = 2. This is clear, at the light of Remark 8.3.

�

8.2. Medium and big Omega powers. We now present a construction of crucial
importance in this paper: the so-called (big and medium) Omega powers. The
choice of the name ”Omega” is naturally inspired from topology: it is close to an
algebraic loop space.

Definition 8.6. Let M be a Wm(k)-module. Let n be a nonnegative integer. We
define a Wm+n(k)-module Γ(n)(M) by Γ(0)(M) = M , and by the recursive formula

Γ(n)(M) := Γp(Γ(n−1)(M)).

By Proposition 8.5, we now that Γ(1) commutes to Pontryagin duality, for free
Wm(k)-modules only. Note that, if M is a free Wm(k)-module, Γ(1)(M) is a free
Wm+1(k)-module if and only if M has rank one. The functor Γ(2) will thus never
commute with duality, except for free modules of rank lesser than one. To define
our Omega functor (medium and big), we are thus naturally led to mod out the
kernel of Pontryagin duality.

Definition 8.7. (medium and big Omega functors.) Let M be a (non necessarily
finite) Wm(k)-module. Let n be a positive integer. We put

Ωnm(M) := Γp
n

Wm+n(k)(M)/Ker(∆).

It is the n-th medium Omega power of the Wm(k)-module M . It is a Wm+n(k)-

module. We put Ω
0

m(M) = Ω0
m(M) = M .

We recursively define

Ω
n

m(M) := Ωm+n−1(Ω
n−1

m (M));

it is a Wm+n(k)-module as well. It is the n-th big Omega power of the Wm(k)-
module M .
We shall denote Ωnm(M) (resp. Ω

n

m(M)) simply by Ωn(M) (resp. Ω
n
(M)), if the

dependence in m is clear.
For x ∈M , if this creates no confusion, we denote by

(x)n ∈ Ωn(M)

the class of the pure symbol [x]pn ∈ Γp
n

Wm+n(k)(M).

Remark 8.8. We clearly have Ω
1

= Ω1. For n ≥ 2, we will see in a moment that
Ωn appears canonically as a direct factor of Ω

n
, in a duality-preserving way.

Remark 8.9. Let M be a Wm(k)-module. Let n be a nonnegative integer. We
have a canonical surjection

Γ(n)(M) −→ Ω
n
(M).
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Remark 8.10. If M = Wm(k) is a free Wm(k)-module of rank one, then Ω
n
(M) =

Ωn(M) = Γp
n

W(k)(M) is a free Wm+n(k)-module of rank one.

Remark 8.11. The associations

M 7→ Ω
n
(M)

and
M 7→ Ωn(M)

are functors, from the category of Wm(k)-modules to that of Wm+n(k)-modules.
For n = 1, they behave slightly like the p-th symmetric power functor Symp.
However, this analogy is quite bad, as we have seen in Section 5.3.

The functor Ω1 is polynomial, with respect to the Tense Product.

Proposition 8.12. Let M,N be Wm(k)-modules. Then, we have a canonical
isomorphism of Wm+1(k) -modules

Ω
1
(M

⊕
N) ' Ω

1
(M)

⊕
Ω

1
(N)

⊕⊕
i,j

(
Sym

i

m(M)
⊗

m
Sym

j

m(M)

)
,

where the direct sum is taken over all proper partitions i+ j = p.

Proof. By Proposition 6.16, we have a natural isomorphism

Γp(M
⊕

N) ' Γp(M)
⊕

Γp(N)
⊕⊕

i,j

(
Γi(M)

⊗
Γj(N)

)
,

where the direct sum is taken over all proper partitions i+ j = p. Let us write the
dual decomposition

Γp(M∨
⊕

N∨) ' Γp(M∨)
⊕

Γp(N∨)
⊕⊕

i,j

(
Γi(M∨)

⊗
Γj(N∨)

)
.

These are compatible with the duality pairing (with values in Wm+1(k)). Notably,
for x ∈M , y ∈ N , φ ∈M∨ and ψ ∈ N∨, we have

< [x]i ⊗ [y]j , [φ]i ⊗ [ψ]j >=

(
p

i, j

)
φ(x)iψ(y)j ∈Wm+1(k).

Since i and j are ≤ p − 1, the binomial coefficient in this formula has p-adic
valuation one, and the claim follows. �

8.3. Medium Omega powers as a direct factor of big Omega powers.
We now investigate the previously evoked link between medium and big Omega
powers.
Let M be a Wm(k)-module. Recall that, for each nonnegative integer n, we have,
at our disposal, the p-th divided power operation

γp : Γp
n

(M) −→ Γp
n+1

(M).

It is a polynomial law, homogeneous of degree p. It can thus be viewed as a
W(k)-linear map

Γp(Γp
n

(M)) −→ Γp
n+1

(M),

[X]p 7→ γp(X),

which we denote by γ̃p. In the reverse direction, the association

M −→ Γp(Γp
n

(M))

x 7→ [[x]pn ]p
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defines a polynomial law, homogeneous of degree pn+1. It thus yields a natural
W(k)-linear map

Γp
n+1

(M) −→ Γp(Γp
n

(M)),

[x]pn+1 −→ [[x]pn ]p.

We denote it by αp.

Definition 8.13. Let M be a Wm(k)-module. Let n be a positive integer. We
recursively define W(k)-linear maps

Fn : Γ(n)(M) −→ Γp
n

(M)

and
Gn : Γp

n

(M) −→ Γ(n)(M)

by setting
F1 = G1 = Id,

Fn+1 = γ̃p ◦ Γp(Fn)

and
Gn+1 = Γp(Gn) ◦ αp.

Definition 8.14. We put c1 = 1 and, for each integer i ≥ 2, we put

ci =
1

p!

(
pi

pi−1, pi−1, . . . , pi−1

)
∈ N.

It is an integer, which is a p-adic unit. For n ≥ 1, we put

Cn := cnc
p
n−1 . . . c

pn−2

2 .

It is an integer, which is a p-adic unit.

Lemma 8.15. We have
Fn ◦Gn = CnId.

Proof. The case n = 1 is obvious. The general case is by induction on n, using
the relation

γp ◦ γpn = cn+1γpn+1

(cf. Proposition 5.4).

�

Hence, Fn and Gn present Γp
n

(M) as a direct factor of Γ(n)(M), which is probably
well-known. What is perhaps less standard, is that Fn and Gn are adjoint, for
Pontryagin duality.

Lemma 8.16. Let M be a Wm(k)-module. Let n be a positive integer. For every
X ∈ Γp

n

(M) and every Φ ∈ Γ(n)(M∨), we have the formula

< X,Fn(Φ) >= Cn < Gn(X),Φ >∈Wm+n(k).

Proof. Induction on n. The case n = 1 is obvious. For the induction step, pick
x ∈M and Φ ∈ Γ(n)(M∨). We compute:

< [x]pn+1 , Fn+1([Φ]p) >=< [x]pn+1 , γ̃p(Γ
p(Fn)([Φ]p)) >

=< [x]pn+1 , γp(Fn(Φ)) >= cn+1τ1(< [x]pn , Fn(Φ) >),

where the last equality follows from point 2) of Lemma 5.19. On the other hand,
we have

< Gn+1([x]pn+1), [Φ]p >=< Γp(Gn)([[x]pn ]p), [Φ]p >
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=< [Gn([x]pn)]p, [Φ]p >= τ1(< Gn([x]pn),Φ >).

Comparing the two expressions yields the result (plugging in the formula at the
previous step).

�

Proposition 8.17. Let M be a Wm(k)-module. The linear map Gn induces, by
passing to the quotient, a canonical linear map

Ψn
M : Ωn(M) −→ Ω

n
(M),

compatible with the dualities on both sides. More precisely, we have

< Ψn
M (X),Ψn

M∨(Φ) >= <X,Φ >,

for all X ∈ Ωn(M) and all Φ ∈ Ωn(M∨).
In particular, we have a canonical decomposition

Ω
n
(M) = Ωn(M)

⊕
Ωn(M∨)⊥.

Proof. The existence of Ψn
M is a straightforward consequence of the adjunction

formula of Lemma 8.17. The second formula is easily checked on pure symbols.
The last assertion is a general fact. �

9. Functorial properties of Omega powers.

Let m be a fixed positive integer.

9.1. Multilinearity. Let M and N and L be three Wm(k)-modules. Let

B(., .) : M ×N −→ L

be a Wm(k)-bilinear pairing. Let n be a positive integer.

The pairing B induces a pairing

B1 : L∨ ×M −→ N∨,

(φ, x) 7→ φ(B(x, .)),

which gives rise to a Wm+n(k)-bilinear pairing

Γp
n

(B1) : Γp
n

(L∨)× Γp
n

(M) −→ Γp
n

(N∨),

([φ]pn , [x]pn) 7→ [B1(φ, x)]pn .

In a similar way, the pairing

B2 : L∨ ×N −→M∨,

(φ, y) 7→ φ(B(., y)),

produces a Wm+n(k)-bilinear pairing

Γp
n

(B2) : Γp
n

(L∨)× Γp
n

(N) −→ Γp
n

(M∨),

([φ]pn , [y]pn) 7→ [B1(φ, y)]pn .

For x ∈M , y ∈ N and φ ∈ L∨, it is straighforward to check that

< Γp
n

(B1)([φ]pn , [x]pn), [y]pn >=< [B1(φ, x)]pn , [y]pn >= τn(φ(B(x, y)))

=< [B(x, y)]pn , [φ]pn >=< Γp
n

(B)([x]pn , [y]pn), [φ]pn >

=< Γp
n

(B2)([φ]pn , [y]pn), [x]pn > .
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This shows that we actually have

< Γp
n

(B1)(Φ, X), Y >=< Γp
n

(B)(X,Y ),Φ >

=< Γp
n

(B2)(Φ, Y ), X >∈Wm+n(k),

for all X ∈ Γp
n

(M), Y ∈ Γp
n

(N) and Φ ∈ Γp
n

(L∨). Indeed, this can be checked
after extending scalars from k to any perfect field extension of k (by Proposition
5.7, for the base change W(k′)/W(k)). We can hence assume that k is infinite,
in which case pure symbols generate divided power modules by Proposition 6.13.
This adjunction formula show that the pairing Γp

n

(B) is compatible with the
duality. Consequently, it passes to the quotient by its kernel, yielding a pairing of
Wm+n(k)-modules

Ωn(B) : Ωn(M)× Ωn(N) −→ Ωn(L).

Note that the association
B −→ Ωn(B)

does unfortunately not send ”tense” pairings to tense pairings (in the sense of
Section 4).

9.2. Omega powers of Wm(k)-algebras. Let m,n be positive integers.
Let A be a (not necessarily finite-dimensional) Wm(k)-algebra. We would like to
canonically turn Ωn(A) into a Wm+n(k)-algebra, with unit (1)n, and multiplica-
tion given by

(x)n(y)n = (xy)n

on pure symbols. This is indeed possible: denoting by µ : A × A −→ A the
multiplication of A (viewed as a Wm(k)-bilinear pairing), the bilinear map Ωn(µ)
of the preceding paragraph does the job.

Proposition 9.1. Let A be a Wm(k)-algebra (in the usual sense), with multipli-
cation µ : A × A −→ A. Then the Wm+n(k)-module Ωn(A) can be canonically
turned, via Ωn(µ), into a Wm+n(k)-algebra, with unit (1)n, and multiplication
given by

(x)n(y)n = (xy)n

on pure symbols.

Proof. This is clear. �

Remark 9.2. If A is a Hopf algebra over Wm(k), we can wonder whether Ωn(A) is
naturally a Hopf algebra over Wm+n(k). With our current definition of Ωn, this
is not the case.

To begin with, we treat the instructive case of an étale algebra. Remember that
the category of étale k-algebras is equivalent to that of étale Wm(k)-algebras.

Lemma 9.3. Let E be an étale k-algebra, of degree d. Denote by l/k ”the” Galois
splitting field of E. Then the finite Wn+m(k)-algebra Ωn(Wm(E)) is isomorphic
to a finite product of local Wn+m(k)-algebras of the form Wni(ki), where 1 ≤
ni ≤ n+m is an integer, and l/ki/k is an intermediate field extension.

Proof. We first make the following elementary observation. Let R be a finite local
Wi(k)-algebra R, such that its maximal ideal is pR, and i minimal (i.e. pi−1 6= 0
in R). Then R is canonically isomorphic to Wi(l), where l = R/p is its residue
field. Using Lemma 9.9, we then see that the statement of the Lemma is invariant
under separable field extensions: we may thus assume that k = k is algebraically
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closed. But then E is isomorphic to the trivial étale algebra kd, and the statement
is straightforward (choose the basis of primitive idempotents). �

Now, the formula
Wm(E) −→Wn+m(E),

x 7→ τn(x)

clearly defines a polynomial law of Wn+m(k)-modules, which is homogeneous, of
degree pn. Since it is multiplicative, the resulting Wn+m(k)-linear map

ρ = ρE,n : Γp
n

Wn+m(k)(Wm(E)) −→Wn+m(E)

is actually a ring homomorphism.

Lemma 9.4. The homomorphism ρ vanishes on Ker(∆).

Proof. Base-changing to an algebraic closure of k, we can assume that k itself
is algebraically closed. Then, E ' ks, and Wn+m(E) ' Wn+m(k)s, as W(k)-
algebras. The map ρ is then just given by functoriality from the s canonical
projections πi : E −→ k, and the claim becomes obvious. �

Definition 9.5. The homomorphism ρE,n above induces, by passing to the quo-
tient, a homomorphism (of Wn+m(k)-algebras)

Ωn(Wm(E)) −→Wn+m(E),

(x)n 7→ τn(x)

which we still denote by ρE,n, or simply by ρ.

Remark 9.6. In the previous definition, τn(τ(x)) is nothing but τ(xp
n

), where
τ : E −→W(E) is the usual Teichmüller representative.

Remark 9.7. Note that Wn+m(E) is a free Wn+m(k)-module. Hence, by Lemma
9.3, the homomorphism ρ can be identified with the projection onto a direct factor
of the Wn+m(k)-algebra Ωn(Wm(E)). In other words, Spec(ρ) is an open-closed
immersion.

9.3. Behaviour of Omega powers under field extensions. Let k′/k be
an extension of perfect fields of characteristic p.
Denote by τ (resp. τ ′) the Teichmüller representative for k (resp. k′) and by K ′

the field of fractions of W(k′). Pontryagin duality HomW(k)(.,K/W(k)) (resp.

HomW(k′)(.,K
′/W(k′))) will be denoted by (.)∨ (resp. (.)∨

′
) .

Omega powers of Wm(k)-modules (resp of Wm(k′)-modules) will be denoted by
Ωn (resp. Ω′

n
).

9.3.1. Extension of scalars. Let us first recall two properties of scalars extension,
on the level of Witt vectors.

Lemma 9.8. Pontryagin duality commutes with scalars extension, from W(k) to
W(k′).
More precisely, let M be a W (k)-module. Put M ′ := M ⊗W(k) W(k′).
Then the canonical map

HomW(k)(M,K/W(k))⊗W(k) W(k′) −→ HomW(k′)(M
′,K ′/W(k′)),

f ⊗ x 7→ (m⊗ y 7→ xyf(m)),

is an isomorphism.
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Proof. This is clear. �

Omega powers behave very nicely with respect to the extension k′/k.

Lemma 9.9. The formation of (medium and big) Omega powers commutes to ex-
tending scalars from k to k′. In other words, let M be a (finite) Wm(k)-module.
Put

M ′ := M ⊗Wm(k) Wm(k′).

We then have canonical isomorphisms of Wm+n(k)-modules

Ωn(M)⊗Wm+n(k) Wm+n(k′) ' Ω′
n
(M ′)

and
Ω
n
(M)⊗Wm+n(k) Wm+n(k′) ' Ω

′n
(M ′).

Proof. We know that the formation of divided powers commutes to extension of
the base ring. Using Lemma 9.8, we see that the duality arrow

∆ : Γp
n

(M) −→ Γp
n

(M∨)∨

thus also commutes to extending scalars from k to k′, in the sense that ∆⊗W(k)

W(k′) is canonically isomorphic to ∆′. The claim follows. �

9.3.2. Restriction of scalars. Assume now that k′/k is finite, of degree s.
Let M be a Wm(k′)-module. We can also view it as a Wm(k)-module. Applying
the process of Section 9.1 to the Wm(k)-bilinear pairing

Wm(k′)×M ′ −→M ′

(λ, v′) 7→ λv′,

we can endow Ωn(M ′) with a canonical structure of a Ωn(Wm(k′))-module. On
pure symbols, we have the formula

(λ)n(v′)n = (λv′)′n.

Now, recall the homomorphism

ρ : Ωn(Wm(k′)) −→Wn+m(k′)

of Definition 9.5.

The natural quotient map

π : Ωn(M ′) −→ Ω′n(M ′),

(v′)n 7→ (v′)′n
is compatible with ρ: we have

π(a.x) = ρ(a)π(x),

for all a ∈ Ωn(Wm(k′)) and all x ∈ Ωn(M ′).
We thus have a canonical Wm+n(k′)-linear map

Ψ : Ωn(M ′)⊗ρ Wn+m(k′) −→ Ω′n(M ′).

Proposition 9.10. The map Ψ above is an isomorphism.

Proof.

Extending scalars to an algebraic closure of k, we can replace k′/k by the triv-
ial étale algebra ks/k. The data of M is now the data of s Wm(k)-modules
M1, . . . ,Ms, and both sides equal the direct sum of the s modules Ωn(Mi) . �
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10. Frobenius and Verschiebung, for Omega powers.

In the case m = 1, Omega powers naturally inherit Frobenius and Verschiebung
maps, from divided powers. We now explain how.
Let V be a k-vector space. Let n ≥ 1 be an integer. Note that the (surjective)
linear maps

FrobV : Γp
n+1

(V ) −→ Γp
n

(V (1))

and
FrobV ∗ : Γp

n+1

(V ∗) −→ Γp
n

(V ∗(1))

satisfy the formula

< FrobV ∗([φ]pn+1),FrobV ([v]pn+1) >=< [φ(1)]pn , [v
(1)]pn) >

= τn(φ(1)(v(1))) = τn(φ(v))p =< [φ]pn+1 , [v]pn+1 >,

modulo pn+m. Hence, they respect the duality ∆, and the following definition
makes sense.

Definition 10.1. The Frobenius map

Frob : Γp
n+1

(V ) −→ Γp
n

(V (1))

yields, by passing to the quotient, a W(k)-linear map

Ωn+1(V ) −→ Ωn(V (1)).

It is the Frobenius, for (medium) Omega powers. By perfect duality, the dual of
the Frobenius for V ∗ is a W(k)-linear map

Ωn(V (1)) −→ Ωn+1(V ).

It is the Verschiebung, for (medium) Omega powers.

As one can expect, we can define Frobenius and Verschiebung for big Omega
powers, in a way compatible with the natural embedding. Here is how.

Applying Γ(n−1) to the Frobenius map

Γ(1)(V ) −→ V (1),

[v]p 7→ v(1),

yields a surjective W(k)-linear map

Frob
(n)
V : Γ(n)(V ) −→ Γ(n−1)(V (1))

as Γp commutes to Frobenius twist.
Dually, we get a W(k)-linear map

Frob
(n)
V ∗ : Γ(n)(V ∗) −→ Γ(n−1)(V ∗(1)).

For X ∈ Γ(n)(V ) and Φ ∈ Γ(n)(V ∗), we check by induction on n that

p < X,Φ >=< Frob
(n)
V (X),Frob

(n)
V ∗ (Φ) >∈Wn+1(k).

Here the righthand side, a priori belonging to Wn(k), is viewed as an element of
Wn+1(k) via the inclusion (Verschiebung)

Wn(k)
17→p−→Wn+1(k).

We can also choose to write this equality as

< X,Φ >=< Frob
(n)
V (X),Frob

(n)
V ∗ (Φ) >∈Wn(k),
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where the lefthand side is taken modulo pn...

Hence, Frob(n) yields by passing to the quotient a W(k)-linear map

Ω
n
(V ) −→ Ω

n−1
(V (1)).

Definition 10.2. The Wn+1(k)-linear map

Ω
n
(V ) −→ Ω

n−1
(V (1))

that we have just defined is the Frobenius homomorphism, for big Omega powers.
It will simply be denoted by FrobV , or even by Frob, if the context is clear.
Using the duality between Ω

n
(V ) and Ω

n
(V ∗), we define the Verschiebung homo-

morphism

VerV : Ω
n−1

(V (1)) −→ Ω
n
(V )

to be dual to FrobV ∗ .

Remark 10.3. To be more precise, we can define the Verschiebung for big Omega
powers for a finite-dimensional V first, and then define it for V arbitrary using a
direct limit argument.

Lemma 10.4. The Frobenius and the Verschiebung for (medium or big) Omega
powers are adjoint operators, satisfying

Ver ◦ Frob = p

and

Frob ◦Ver = p.

They are compatible with the natural inclusion Ωn ⊂ Ω
n
.

Proof. We check the first part, for big Omega powers. That these operators are
adjoint is clear from the definition of the Verschiebung. For X ∈ Γ(n)(V ) and
Φ ∈ Γ(n)(V ∗), the computation

< Ver(Frob(X)),Φ >=< Frob(X),Frob(Φ) >= p < X,Φ >∈Wn+1(k)

ensures that Ver ◦Frob = p. Since Frob is surjective, the other equality follows. �

Proposition 10.5. Let V be a k-vector space, and let n be a positive integer. We
have exact sequences

KW1(V ) = KW1(V, n) : 0 −→ Ω
n−1

(V (1))
Ver−→ Ω

n
(V ) −→ Ω

n
(V )/p −→ 0

and

KW2(V ) = KW2(V, n) : 0 −→ Ω
n−1

(V )[p] −→ Ω
n
(V )

Frob−→ Ω
n−1

(V (1)) −→ 0.

We shall refer to them as the first and second Kummer-Witt exact sequences
for (big) Omega powers, respectively. They are dual constructions, in the sense
that, if V is finite-dimensional, KW1(V ∗) is canonically isomorphic to KW2(V )∨.

We define KW2(V, n) and KW2(V, n), for medium Omega powers, in the same
way.

Proof. Only the exactness of the sequences in question has perhaps to be checked.
Note that KW1(V ) is clearly exact on the right and in the middle. The injectivity
of Ver follows by duality from the surjectivity of Frob. �
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11. The Transfer.

In this section, k is a finite field, of cardinality q = pr. The goal of this section is
to define the Transfer, which is a polynomial law ”in the wrong direction”. More
precisely, if W −→ V is an inclusion of k-vector spaces, of finite codimension c,
we shall build a canonical polynomial law

TW,V : Ak(V ) −→ Ak(W ),

the Transfer, enjoying nice properties.
As always, the letter n denotes any positive integer. For every k-vector space V ,
we have a canonical k-linear isomorphism

V ' V (r),

which we shall tacitly use to identify these two k-vector spaces.
The r-th Frobenius polynomial law

V −→ V (r) = V,

v 7→ v(r)

will be denoted by FV , or simply by F if no confusion arises. It is homogeneous,
of degree pr.

Definition 11.1. Let V be a finite-dimensional k-vector space, of dimension d.
We put

Detn(V ) := Ωn(Det(V ));

it is a free Wn+1(k)-module of rank one.

11.1. Laws in one variable.

Definition 11.2. Let V be a finite-dimensional k-vector space, of dimension d.
Let

S = {s0 < s1 < . . . < sm−1} ⊂ {0, . . . , d}
be any subset, of cardinality m. The formula

Ak(V ) −→ Ak(Λm(V ))

v 7→ F s0(v) ∧ F s1(v) ∧ . . . ∧ F sm−1(v)

defines a polynomial law, which is homogenous, of degree

qs0 + qs1 + . . .+ qsm−1 .

It is the exterior power in one variable, with respect to V and S. We denote it by

λ
S

V , or simply by λ
S

, if the dependence in V is clear.

If S = {0, . . . ,m− 1}, we denote λ
S

by λ
m

.

The law λ
d

V will be denoted by det1
V . It is the determinant in one variable.

Remark 11.3. The locus where the law λ
m

vanishes is exactly the (finite) union
of all linear subvarieties of Ak(V ), which are of dimension stricly less than m.

The determinant in one variable det1
V is, in fact, the product of all nonzero k-linear

forms on V (up to scalar multiplication). Let us make this statement more precise.
We thank Ofer Gabber for an interesting discussion, which helped us clarify the
exposition.
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Definition 11.4. Let V be a finite-dimensional k-vector space, of dimension d ≥
2. For each k-rational hyperplane H ⊂ V , denote by

πH : V −→ V/H

the k-linear projection. Put

Det(V ) :=
⊗
H⊂V

(V/H),

where the tensor product is taken over all hyperplanes H ⊂ V . It is a one-
dimensional k-vector space.

Denote by det
1

the polynomial law

Ak(V ) −→ Ak(DetV ),

v 7→ ⊗H⊂V (πH(v)).

It is homogeneous, of degree 1 + q + . . .+ qd−1 = |Pk(V )|.

Proposition 11.5. Let V be a finite-dimensional k-vector space, of dimension
d ≥ 2. There exists a canonical isomorphism

θ : Det(V ) −→ Det(V )

of one-dimensional k-vector spaces, such that

θ ◦ det1 = det 1.

Proof. Choose coordinates V ' kd. Then det1 is given by a polynomial

P ∈ k[X1, . . . , Xd],

which is homogeneous, of degree 1+q+ . . .+qd−1 = |Pk(V )|. For each hyperplane
H ⊂ V , let

LH ∈ k[X1, . . . , Xd]

be a linear polynomial, with kernel H.
Let H ⊂ V be a k-rational hyperplane. It is clear that the composite

Ak(H)
can−→ Ak(V )

det1−→ Ak(Det(V ))

identically vanishes (indeed, Λdk(H) = 0). Thus, the polynomial P has to be
divisible by LH . Since these linear polynomials, for various H, are two by two
coprime, P has to be divisible by their product

Q := ΠH⊂V LH ,

which is a homogeneous polynomial of the same degree as P . Hence, P = Q up
to a nonzero scalar. The statement of the proposition is, obviously, the canonical
translation of this fact. �

Exercise 11.6. Let k′/k be a finite field extension, of degree n. Let V be a d-
dimensional k-vector space. Show that det1

V identically vanishes on k′-rational
points if and only if n < d.

Exercise 11.7. Let V be a finite-dimensional k-vector space, of dimension d. For
i = 1 . . . d, denote by

Fi : Ak(V ) −→ Ak(Det(V ))

the polynomial law λd{0,1,...,̂i,...d}, where the symbol î means that i is omitted. Then

the morphism of affine k-varieties

F : Ak(V ) −→ Ak(Det(V ))d



47

v 7→ (F1(v), . . . , Fd(v))

is étale exactly outside the (finite) union of all k-rational hyperplanes of V .

11.2. The Transfer, as a polynomial law. We now proceed one step further
towards the definition of the Transfer. In the exterior algebra, it is easy to define
such an operation, in a k-linear way. We apologize for the choice of the terminology
”exterior transfer” in what follows- it is a bit pompous...

Definition 11.8. Let V be a finite-dimensional k-vector space, of dimension d.
Let W ⊂ V be a k-linear subspace, of codimension c. Consider the exact sequence

0 −→W −→ V −→ V/W −→ 0

and its k-dual sequence

0 −→ (V/W )∗ = W⊥ −→ V ∗ −→W ∗ −→ 0.

Pick an integer m ≥ c. Then the wedge product

Λc(W⊥)⊗k Λm−c(V ∗) −→ Λm(V ∗),

(x, y) 7→ x ∧ y
passes to the quotient by the arrow V ∗ −→W ∗, yielding an injective k-linear map

Det(W⊥)⊗k Λm−c(W ∗) −→ Λm(V ∗).

Its k-dual is a surjective map

Λm(V ) −→ Det(V/W )⊗ Λm−c(W ),

which we denote by λTmW,V .
It is the exterior transfer, from V to W .

Remark 11.9. The linear map λTmW,V is explicitly given by the formula

v1 ∧ . . . ∧ vm 7→
∑

I={i1<...<ic}

ε(I)(π(vi1) ∧ . . . ∧ π(vic))⊗ (ρ(vj1) ∧ . . . ∧ ρ(vjm−c)),

where π : V −→ V/W is the quotient map, ρ : V −→W is -any- k-linear retraction
of the inclusion W −→ V , and the sum ranges over all subsets

I = {i1 < . . . < ic} ⊂ {1, . . . ,m},

with complement Ic = {j1 < . . . < jm−c}.
The number ε(I) ∈ {1,−1} is a sign, which is not hard to compute.

Lemma 11.10. Let

Z ⊂W ⊂ V
be three finite-dimensional k-vector spaces. Denote by c (resp c′) the codimension
of W in V (resp. of Z in W ). Let m ≥ c+c′ be an integer. Through the canonical
isomorphism

Det(V/Z) ' Det(V/W )⊗k Det(W/Z),

the exterior transfers satisfy the ’cocycle’ condition

λTm−cZ,W ◦ λT
m
W,V = λTmZ,V ,

as linear maps

Λm(V ) −→ Det(V/Z)⊗ Λm−c−c
′
(Z).
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Proof. Looking at the definition of the exterior transfer, the k-dual statement of
this Lemma boils down to the associativity of the wedge product.

�

We can now define the Transfer, as a polynomial law.

Proposition 11.11. Let V be a (finite-dimensional) k-vector space. Let W ⊂ V
be a k-linear subspace, of codimension c. Denote by

π : V −→ V/W

the projection .
Then, there exists a unique polynomial law

TW,V : Ak(V ) −→ Ak(W ),

such that
λT c+1

W,V ◦ λ
c+1

V = (det 1
V/W ◦ π)⊗ TW,V ,

as polynomial laws

Ak(V ) −→ Ak(Λc+1
k (V )) −→ Ak(Det(V/W )⊗k W ).

It is homogeneous, of degree qc.

Proof. Uniqueness is clear: we simply have to see that (det 1
V/W ◦ π) divides

λT c+1
W,V ◦ λ

c+1

V (as polynomial laws). At the light of Proposition 11.5, it suffices to

show that the law λT c+1
W,V ◦ λ

c+1

V identically vanishes on all k-rational hyperplanes
of V , which contain W . Let H ⊂ V be such a hyperplane. Then the composite

Ak(H) −→ Ak(V )
λ
c+1
V−→ Ak(Λc+1(V ))

takes values in Ak(Λc+1(H)). But λc+1
W,V vanishes on Ak(Λc+1(H)). To see this,

first use Lemma 11.10 to reduce to the case W = H. It then becomes obvious, by
definition of λT c+1

W,V . �

Definition 11.12. Let V be a (finite-dimensional) k-vector space. Let W ⊂ V be
a k-linear subspace, of codimension c. The polynomial law

TW,V : Ak(V ) −→ Ak(W )

constructed in the previous Proposition is the Transfer, from V to W . It is homo-
geneous, of degree qc.

Remark 11.13. Naively speaking, the TW,V can be interpreted as ’the extension
by zero’ of the inclusion W −→ V , to the whole V . Proposition 11.17 makes this
statement precise.

Lemma 11.14. Let
Z ⊂W ⊂ V

be three finite-dimensional k-vector spaces. Then the Transfers satisfy the ’cocycle’
condition

TZ,W ◦ TW,V = TZ,V ,

as polynomial laws
Ak(V ) −→ Ak(Z).

Proof. This is clear, from the definition of the Transfer, together with Lemma
11.10 and Proposition 11.5. �

In codimension one, the Transfer is given by a very simple formula.
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Lemma 11.15. Let H ⊂ V be a hyperplane inclusion, with V a finite-dimensional
k-vector space. Let π : V −→ k be a nonzero linear form with kernel H. Then the
Transfer

TH,V : Ak(V ) −→ Ak(H)

is given by the formula
v 7→ F (v)− π(v)q−1v.

Proof. We identify V/H and k, through π.
The composite of the exterior power in one variable

λ2 : Ak(V ) −→ Ak(Λ2
k(V ))

v 7→ v ∧ F (v)

with the exterior transfer

Ak(Λ2
k(V )) −→ Ak(H),

v ∧ w 7→ π(v)w − π(w)v

is easily computed to be

v 7→ π(v)F (v)− π(v)qv.

Indeed, π is defined over k, hence commutes with F = Frobr. By definition of the
Transfer, dividing by π(v) yields the result.

�

Definition 11.16. Let V be a (finite-dimensional) k-vector space, of dimension
d. Let c be a positive integer, with c ≤ d− 1. The law

T c = T cV : Ak(V ) −→ Ak(
⊕
W⊂V

W )

v 7→ (TW,V (v))W⊂V ,

where the direct sum is taken over all c-codimensional k-linear subspaces W ⊂ V ,
will be call the Total Transfer for V , in codimension c.

Proposition 11.17. Let V be a (finite-dimensional) k-vector space. Let W ⊂ V
be a k-linear subspace, of codimension c ≥ 1.
Then the composite

Ak(W )
can−→ Ak(V )

TW,V−→ Ak(W )

equals F c = Frobrc.

Proof. From Lemma 11.14, we can assume c = 1 by induction. The formula then
clearly follows from the formula given in Lemma 11.15. �

The next Proposition is much more remarkable.

Proposition 11.18. (Frobenius Integral Formula.)

Let V be a finite-dimensional k-vector space, of dimension d ≥ 2. Let c be an
integer, with 1 ≤ c ≤ d− 1.
Then the composite

Φ := Ak(V )
T cV−→ Ak(

⊕
W

W ) −→ Ak(V )

equals F c = Frobrc, where the second map is given by the (finite!) sum of the
inclusions W −→ V .
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Proof. Induction on c. Let us first deal with the case c = 1. For a k-rational
hyperplane H ⊂ V, the Transfer TH,V is a polynomial law of degree q. By the
universal property of divided powers, together with Lemma 11.15, it is given by
the k-linear map

Γqk(V ) −→ H,

[v]q 7→ F (v)− πH(v)q−1v.

Pick a (k-rational) v ∈ V . Then F (v) = v, and TH,V (v) equals 0 if v /∈ H (in
which case πH(v)q−1 = 1), or equals v if v ∈ H (in which case πH(v)q−1 = 0).
Since the number of hyperplanes H containing v is congruent to 1 modulo p,
summing over all H shows that Φ(v) = v = F (v). Now, F = Frobr and Φ are
both polynomial laws of the same degree q. Since we know, by Lemma 6.13, that
k-rational symbols [v]q generate Γqk(V ), we can indeed conclude that Φ = F.

For the induction step, look at the composite

Ak(V )
T 1
V−→ Ak(

⊕
H⊂V

H)
∑
TW,H−→ Ak(

⊕
W⊂H⊂V

W ) −→ Ak(
⊕
H⊂V

H) −→ Ak(V ),

where the direct sums are taken over all hyperplanes H ⊂ V , and all inclusions
W ⊂ H ⊂ V of a c-codimensional W into an hyperplane H, respectively (and
where the last two arrows on the right are the canonical linear surjections).
On the one hand, using Lemma 11.14, together with the fact that the cardinality
of a projective space over a finite field is congruent to 1 modulo p, we see that this
composite equals Φ. On the other hand, the composite of the two middle arrows
equal F c−1 by induction, so that, using the case c = 1, the composite of all four
arrows equals F ◦ F c−1 = F c (note that T 1

V obviously commutes with F ). The
proof is complete.

�

Definition 11.19. Let V be a (finite-dimensional) k-vector space. Let W ⊂ V
be a k-linear subspace, of codimension c ≥ 1. By the universal property of divided
powers, there exists a unique W(k)-linear map

Γp
n+rc

(V ) −→ Γp
n

(W ),

[v]pn+rc 7→ [TW,V (v)]pn .

We shall denote it by ΓTnW,V . It is the Transfer, for divided powers.

Let H ⊂ V be a k-rational hyperplane.
In view of the preceding definition, it is natural to wonder whether we can define,
by passing to the quotient, a descending transfer

Ωi+r(V ) −→ Ωi(H),

for i ≥ 0. It is doable for i ≤ 1. After a few unsuccessful attempts to do so
for i ≥ 2, we noticed that the difficulty can be bypassed, by considering only the
submodule of Ωn(V ) generated by pure symbols. Since k is finite, this submodule,
for n large, is much smaller that Ωn(V ). In particular, its rank (as a W(k)-module)
is bounded by the cardinality of the finite projective space Pk(V ), whereas that of
the whole space Ωn(V ) grows (a priori doubly exponentially!) to infinity with n.
At the present moment, we do believe that the submodule of Ωn(V ) generated by
pure k-rational symbols is the right object, for applications to Galois cohomology-
and perhaps to other areas. It is the small Omega power functor. We elaborate
on this new object in the next section.
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12. Small Omega powers.

In this section, k is a finite field, of cardinality q = pr. We denote by m a positive
integer.

Definition 12.1. (Small Omega powers.) Let M be a Wm(k)-module. Let n be
a positive integer.
We define

Ωnm(V ) ⊂ Ωnm(V )

to be the Wn+m(k)-submodule spanned by all pure symbols (x)n, with x ∈M .
It is the n-th Small Omega power of M . We will simply denote it by Ωn(M), if
the dependence in m is understood.

Remark 12.2. The small Omega power Ωn is a functor, from the category of
Wm(k)-modules to that of Wn+m(k)-modules. Contrary to medium and big
Omega powers, it is clear from the definition that small Omega powers do not
commute to extending scalars to a larger finite field.

We will now show that small Omega powers naturally occur as a direct summand of
medium Omega powers. This can be compared to the occurence of medium Omega
powers as a direct summand of big Omega powers. We will need a computation
in finite fields, which presents similarities with Gauss sums.

12.1. Small Omega powers as a direct factor of medium Omega pow-
ers. Let k′/k be ’the’ finite field extension, of degree s. The field k′ has qs

elements.

Definition 12.3. We put

κ′ := Homk′(k
′, k).

It is the k-linear dual of k′, viewed as a k-vector space.

Denote by τ : k′ −→W(k′) the Teichmüller representative of k′. Its restriction to
k is the Teichmüller representative τ of k.

12.1.1. A funny computation in finite fields. Denote by τ : k′ −→W(k′) the Te-
ichmüller representative of k′. Its restriction to k is the Teichmüller representative
of k. Denote by

tr : k′ −→ k

the trace map. We know that the Galois group of the extension k′/k is cyclic of
order s, generated by the Frobenius x 7→ xq. Hence, for z ∈ k′∗, we have

tr(z) =

s−1∑
i=0

zq
i

.

Lemma 12.4. Put

C = C(k, k′) :=
∑
z∈k′∗

τ(z)−1τ(tr(z)) ∈W(k′).

Then C belongs to Zp, and C is congruent to −1 modulo p.
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Proof. The fact that C belongs to Zp is clear: C ∈ W(k′) is invariant by the
Frobenius of W(k′)/Zp .
Modulo p, we have

C ≡
∑
z∈k′∗

z−1

(
s−1∑
i=0

zq
i

)
= −1 ∈W(k′)/p = k′.

Indeed, for any integer N , the quantity∑
y∈k′∗

yN

vanishes, except when (qs − 1) divides N , in which case its value is −1.

�

Definition 12.5. The number C = C(k, k′) ∈ Z×p of the previous Lemma will be
called the conductor of the extension k′/k.
For each linear form f ∈ κ′, denote by y ∈ k′ the unique element such that

f(.) = tr(y.).

We put

C(f) :=
1

C
τ(y).

Proposition 12.6. Let C be the conductor of k′/k.

For every x ∈ k′∗, we have the formula

τ(x) =
1

C

∑
y∈k′∗

τ(y)−1τ(tr(xy)) ∈W(k′).

Proof. This is clear from the previous Lemma, setting z = xy. �

Corollary 12.7. For every x ∈ k′∗, we have the formula

τ(x) =
∑
f∈κ′

C(f)τ(f(x)) ∈W(k′).

Remark 12.8. The authors are grateful to Pierre Colmez for helping us to clarify
the exposition of the previous formula.

12.1.2. Perfect duality for small Omega powers. We first need a reformulation of
Lemma 12.7. We use freely the notation of the preceding subsection.

Lemma 12.9. Let V be a (finite-dimensional) k-vector space. Let n be a positive
integer. Let k′/k be a finite field extension, of degree s. Put V ′ := V ⊗k k′.
Pick an element φ′ ∈ V ′∗′(= V ∗ ⊗k k′). For each k-linear form f ∈ κ′, denote by
f(φ′) ∈ V ∗ the composite

V
x7→x⊗1−→ V ′

φ′−→ k′
f−→ k.

We then have the relation

< X, (φ′)n >=
∑
f∈κ′

C(f) < X, (f ◦ φ′)n >∈Wn+1(k′),

for all X ∈ Ωn(V ).



53

Proof.

It is enough to check this when X is a pure symbol (v)n, for v ∈ V . The formula
follows from Lemma 12.7, applied (modulo pn+1) to x := φ′(v)p

n ∈ k′. �

The next Proposition is a key.

Proposition 12.10. Let M be a (finite) Wm(k)-module. Let n be a positive
integer.

Consider the natural embeddings

Ωn(M) −→ Ωn(M)

and

Ωn(M∨) −→ Ωn(M∨).

The perfect duality

Ωn(M)× Ωn(M∨) −→Wm+n(k)

yields by restriction a duality

Ωn(M)× Ωn(M∨) −→Wm+n(k).

This duality is perfect.

Proof. We reduce to the case m = 1, by induction. We have to show the following.
Let X ∈ Ωn(M) be orthogonal to Ωn(M∨). Then X is orthogonal to the whole of
Ωn(M∨) (and hence vanishes). To do so, let k′/k be a finite field extension, such
that k′ has cardinality greater than pn. Put M ′ := M ⊗W(k) W(k′). Denote by
Ω′ the (small or medium) Omega powers of W(k′)-modules. By Lemma 6.12, the
inclusion Ω′n(M ′) ⊂ Ω′n(M ′) is an equality. Since we now that the formation of
medium Omega powers commutes to base change, it is enough to show that, for
every φ′ ∈ (M ′)∨, we have

< X, (φ′)n >= 0 ∈Wn+1(k′).

This follows from the preceding Lemma, since X is orthogonal to Ωn(M∨).

�

Remark 12.11. Note that the perfect duality

Ωn(M)× Ωn(M∨) −→Wm+n(k)

of the previous Proposition is given on pure symbols by

< (x)n, (φ)n >= τn(φ(x)).

Corollary 12.12. With the notation of the preceding Proposition, we have a
natural direct sum decomposition

Ωn(M) = Ωn(M)
⊕

Ωn(M∨)⊥.

Proof. Clear. �

The next Lemma is helpful for defining the Transfer for small Omega powers, in
the next section.
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Lemma 12.13. Let M be a Wm(k)-module. Let n be a positive integer. Then the
canonical map

Ωn(M) −→
⊕
L

Ωn(L)

is injective, where the direct sum is taken over all split surjective linear maps

M −→ L

of M onto a (not necessarily free) Wm(k)-module of rank one.

Proof. We can assume that M is a Wm(k)-module of finite-type. By perfect
duality (Proposition 12.10), it is then equivalent to show that the canonical map⊕

L∨

Ωn(L∨) −→ Ωn(M∨)

is surjective, where the direct sum is taken over all split injections L∨ ⊂M∨. This
holds (almost) by definition: small Omega powers are generated by pure symbols.
�

13. The Transfer, for small Omega Powers.

In this section, we study the -examplary- compatibility of the Transfer with small
Omega powers.
Here k is a finite field, of cardinality q = pr.

Proposition 13.1. Let V be a (finite-dimensional) k-vector space. Let W ⊂ V
be a k-linear subspace, of codimension c ≥ 1. Let n be a positive integer. Then the
Transfer

ΓTnW,V : Γp
rc+n

(V ) −→ Γp
n

(W )

is compatible with the formation of small Omega powers. It thus induces a W(k)-
linear map

Ωrc+n(V ) −→ Ωn(W ).

Proof. By induction (see Lemma 11.14), we can assume that c = 1. The statement

is clear if V is two-dimensional: we know that the duality ∆ on Γp
r+n

(V ) is perfect
in this case. In general, let H ⊂ W be a k-rational hyperplane. Then H is of
codimension two in V . We have a commutative diagram

Γp
r+i

(V )
ΓTW,V //

��

W

��
Γp

r+i

(V/H)
ΓT iW/H,V/H// Γp

i

(W/H),

where the vertical maps are induced by the canonical surjections. Forming the
direct sum

Γp
r+i

(V )
ΓT iW,V //

��

Γp
i

(W )

��⊕
H Γp

r+i

(V/H)
⊕ΓT iW/H,V/H//⊕

H Γp
i

(W/H),

over all hyperplanes H, yields the result. Indeed, the composite arrows vanish on
Ker(∆) by the two-dimensional case, and we can apply Lemma 12.13 (the vertical
arrow on the right induces an injection on small Omega powers) .
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�

The following Definition thus makes sense.

Definition 13.2. (Ascending and Descending Transfer for small Omega powers.)
Let V be a (finite-dimensional) k-vector space. Let n be a positive integer.
Let W ⊂ V be a k-linear subspace, of codimension c ≥ 1. The W(k)-linear map

Ωrc+n(V ) −→ Ωn(W )

of the preceding Proposition is the Descending Transfer, from V to W , for small
Omega powers. We denote it by DTnW,V .

Dually, let

π : V −→W

be a surjection between (finite-dimensional) k-vector spaces, such that Ker(π) has
dimension c. Using Pontryagin duality, the dual of DTnW∗,V ∗ is a W(k)-linear
map

Ωn(W ) −→ Ωn+rc(V ).

It is the Ascending Transfer, from W to V , for small Omega powers. We denote
it by ATnV,W .

Remark 13.3. For v ∈ V , we have

DTW,V ((v)n+rc) = (v)n

if v ∈W , and

DTW,V ((v)n+rc) = 0

if v /∈W . The surprising fact is that this simple formula on symbols indeed defines
a W(k)-linear map!

The next Proposition gives a simple formula for the ascending transfer.

Proposition 13.4. Let

π : V −→W

be a surjection between k-vector spaces, such that Ker(π) has dimension c.
Let n be a positive integer. Put

Xπ :=
∑

w∈Ker(π)

(w)n+cr ∈ Ωn+cr(V ).

(Note that Xπ = 0 if k has at least 3 elements.)
Pick an element w ∈W . Then we have the formula

ATV,W ((w)n) = −XW +
∑

v∈π−1(w)

(v)n+cr.

Proof.

Denote by

τ : k −→W(k)

the Teichmüller representative, and by

π∗ : W ∗ ⊂ V ∗
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the inclusion of the c-codimensional subspace which is dual toW . Pick an arbitrary
linear form φ ∈ V ∗. By definition of the ascending transfer, we have

< ATV,W ((x)n), (φ)n+cr >= prc < (x)n, DTW∗,V ∗((φ)n+cr) >∈Wn+rc+1(k).

Denote this quantity by a.
Note that we used here the natural injection (Verschiebung)

Wn+1(k)
17→prc−→ Wn+rc+1(k).

Put

a′ :=< −Xπ +
∑

v∈π−1(w)

(v)n+cr, (φ)n+cr >∈Wn+rc+1(k).

By perfect duality, it suffices to show that a = a′: indeed, the symbols (φ)n+cr

span the W(k)-module Ωn+cr(V ∗).

We distinguish two cases.
Case i): The linear form does not belong to W ∗.
Case ii) The linear form φ belongs to W ∗.
By Remark 13.3, DTW∗,V ∗((φ)n+cr) is equal to zero in Case i), and to (φ)n in
Case ii). Hence, a = 0 in Case i), and

a = prcτ(φ(x))p
n

∈Wn+rc+1(k)

in Case ii). Clearly, we have

a′ = (−
∑

v∈Ker(π)

τ(φ(v))p
n+rc

+
∑

v∈π−1(w)

τ(φ(v))p
n+rc

)

= (−
∑

v∈Ker(π)

τ(φ(v))p
n

+
∑

v∈π−1(w)

τ(φ(v))p
n

)

(remember that xq = x for every x ∈ k). Assume that we are in Case i), i.e. that
φ does not vanish on Ker(π). Then

φ|π−1(w) : π−1(w) −→ k

and

φ|Ker(π) : Ker(π) −→ k

are both surjective maps, between k-affine spaces. Hence, the cardinality of the
fiber of any element of k by these two maps is the same, from which we get a′ = 0.
Assume now that we are in case ii). Then φ vanishes on Ker(π), and the prc

other terms occuring in the sum defining a′ are all equal to τ(φ(w))p
n

. Again, we
conclude that a = a′ and the Proposition is proved.

�

13.1. The Transfer, as a contravariant functor.

Definition 13.5. Let n be a positive integer. Let

f : V −→W

be a linear map between finite-dimensional k-vector spaces. Then f factors canon-
ically as the composite

V � V/Ker(f) = Im(f) ↪→W.

Denote by ρ := δ(Im(f)) the rank of f .
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We denote by Tn(f) (or simply by T (f)) the composite

Ωn+rδ(W )(W )
DT Im(f),W−→ Ωn+rρ(Im(f)) = Ωn+rρ(V/Ker(f))

ATV,V/Ker(f)−→ Ωn+rδ(V )(V ).

It is the Transfer, for small Omega powers.

Proposition 13.6. Let n be a positive integer. Let

f : V −→W

be a linear map between finite-dimensional k-vector spaces. Put

Xf :=
∑

v∈Ker(f)

(v)n+rδ(V ) ∈ Ωn+rδ(V )(V ).

Note that we always have Xf = 0 if k has at least 3 elements.
Then

T (f) : Ωn+rδ(W )(W ) −→ Ωn+rδ(V )(V )

is given, on pure symbols, by the formula

(w)n+rδ(W ) 7→ −Xf +
∑

v∈f−1({w})

(v)n+rδ(V ).

Proof. It is easy to check that, if g : W −→ Z is another linear map between
finite-dimensional k-vector spaces, then the formula of the Proposition is true for
g ◦ f : V −→ Z, if it is true for both f and g. Hence, it suffices to check the
formula if f is injective or surjective.
The formula is obviously true if f is injective, by the very definition of the de-
scending transfer (Remark 13.3). That the formula is true if f is surjective is the
content of Proposition 13.4. �

Proposition 13.7. Let n be a positive integer. The association

V 7→ Ωn+rδ(V )(V ),

f 7→ T (f)

is a contravariant functor, from the category of finite-dimensional k-vector spaces
to that of W(k)-modules.

Proof. This follows from the expression of T (f) given in Proposition 13.6. �

Proposition 13.8. Let

f : V −→W

be a linear map between finite-dimensional k-vector spaces. Then the following is
true.

i) If f is injective, then the composite

Ωn+rδ(W )(V )
Ω(f)−→ Ωn+rδ(W )(W )

T (f)−→ Ωn+rδ(V )(V )

equals Frobr(δ(W )−δ(V )).

ii) If f is surjective, then the composite

Ωn+rδ(W )(W )
T (f)−→ Ωn+rδ(V )(V )

Ω(f)−→ Ωn+rδ(V )(W )

equals Verr(δ(V )−δ(W )).

Proof. Computation, using Proposition 13.6. �
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Proposition 13.9. Let n be a nonnegative integer. Let

V
f2 //

f1

��

W1

g2

��
W2

g1 // Z

be a cartesian diagram in the category of finite-dimensional k-vector spaces. Then
we have

Ω(f2) ◦ T (f1) = T (g2) ◦ Ω(g1),

as W(k)-linear maps Ωn+rδ(W2)(W2) −→ Ωn+rδ(V )(W1)

Proof. Using Proposition 13.6, we compute that both composites are given, on
symbols, by the formula

(x). 7→
∑

y∈W1,g2(y)=g1(x)

(y).,

and the claim is proved. �

We conclude this section with an important Proposition. Is content is that the
modules Ωn(V )/pm are induced from dimension one, if n−m is large enough.

Proposition 13.10. Let V be a finite-dimensional k-vector space, of dimension
≥ 2. Let n,m be positive integers, satisfying

n−m ≥ r(δ(V )− 1)− 1.

For each line L ⊂ V , functoriality of small Omega powers yields a canonical map

Ωn(L)/pm
fL−→ Ωn(V )/pm.

Then the map

f :
⊕

L∈Pk(V )

Ωn(L)/pm
∑
fL−→ Ωn(V )/pm

is an isomorphism of free Wm(k)-modules.

Proof. The map f is obviously surjective: Ωn(V ) is generated by symbols (v)n,
for v ranging through the nonzero vectors of V , and such a v belongs to a unique
L! For each line L ↪→ V , we have the transfer

DTL,V : Ωn(V ) −→ Ωn−r(δ(V )−1)(L).

But Ωn−r(δ(V )−1)(L) is a free Wpn−r(δ(V )−1)+1(k)-module of rank one. Under our

assumption on m, the quotient Ωn−r(δ(V )−1)(L)/pm is then a free Wm(k)-module
of rank one. Using the canonical isomorphism L ' L(r), we see (via the Frobenius)
that there is a canonical isomorphism

Ωn−r(δ(V )−1)(L)/pm ' Ωn(L)/pm,

through which the transfer can be seen, modulo pm, as a W(k)/pm-linear map

gL : Ωn(V )/pm −→ Ωn(L)/pm,

sending a symbol (v)n to zero if v /∈ L, or to (v)n if v ∈ L.
The sum of the gL’s is a W(k)/pm-linear map

g : Ωn(V )/pm −→
⊕

L∈P(V )

Ωn(L)/pm,
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which is seen to the inverse of f (check this on pure symbols).

�

13.2. The Integral Formulas for the Frobenius and the Verschiebung.
The purpose of this section is to state and prove Integral Formulas for the Frobe-
nius and the Verschiebung, for small Omega powers. These formulas say that
averaging all descending (resp. ascending) transfers over all linear subspaces of a
given dimension yields the Frobenius (resp. the Verschiebung). These formulas
are reminiscent of motivic integration.

Recall that Grk(m,n), the Grassmannian of m dimensional subspaces of kn, has
cardinality

|Grk(m,n)| = (qn − 1)(qn−1 − 1) . . . (qn−m+1 − 1)

(qm − 1)(qm−1 − 1) . . . (q − 1)
.

In particular, all these numbers are congruent to 1 modulo p.

Proposition 13.11. (Frobenius Integral Formula.) Let n be a positive integer.
Let V be a nonzero finite-dimensional k-vector space. Let 1 ≤ m ≤ δ(V )− 1 be an
integer. For each linear subspace W ∈ Gr(δ(V )−m,V ), denote by

iW : W ↪→ V

the canonical inclusion. We have the formula

1

|Grk(m, δ(V )− 1)|
∑

W∈Gr(m,V )

Ω(iW ) ◦ T (iW ) = Frobmr,

as W(k)-linear maps

Ωn+mr(V ) −→ Ωn(V ).

Proof. This is an easy computation, using the formula for the transfer given by
Proposition 13.6. Pick a nonzero vector v ∈ V . For W ∈ Gr(δ(V ) −m,V ), the
quantity Ω(iW ) ◦ T (iW )((v)n+rm) equals zero if v /∈ W , or (v)n otherwise. It is
clear that the set of subspaces W ∈ Gr(δ(V ) −m,V ) containing v is in bijection
with Gr(δ(V )−m− 1, V/ < v >), hence has cardinality |Grk(m, δ(V )− 1)|. The
formula follows.

�

Proposition 13.12. (Verschiebung Integral Formula.) Let n be a positive integer.
Let V be a nonzero finite-dimensional k-vector space. Let 1 ≤ m ≤ δ(V )− 1 be an
integer. For each linear subspace W ∈ Gr(m,V ), denote by

πW : V � V/W

the quotient map. We have the formula

1

|Grk(m− 1, δ(V )− 1)|
∑

W∈Gr(m,V )

T (πW ) ◦ Ω(πW ) = Vermr,

as W(k)-linear maps

Ωn(V ) −→ Ωn+mr(V ).

Proof. This follows, by Pontryagin duality, from the Frobenius Integral Formula
for V ∗.

�
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14. Axiomatizing Hilbert’s Theorem 90.

In this section, we explain a possible way to axiomatize the consequences of
Hilbert’s Theorem 90 (Kummer theory) for the cohomology of profinite groups.
The key notion here is that of cyclotomic modules, and smooth profinite groups.

14.1. The notion of n-surjectivity. In this section, k is a perfect field of
characteristic p, and G is a profinite group.

Definition 14.1. Let n ≥ 1 be an integer. Let

f : M −→ N

be a morphism of (W(k), G)-modules. We say that f is n-surjective (resp. n-
injective) if the following holds. For every open subgroup G′ ⊂ G, the map

f∗ : Hn(G′,M) −→ Hn(G′, N)

is surjective (resp. injective).

Remark 14.2. Let n ≥ 0 be an integer. Let

E : 0 −→ A
i−→ B

π−→ C −→ 0

be an exact sequence of (W(k), G)-modules.
Then π is n-surjective if and only if i is (n + 1)-injective. Indeed, using the
associated long exact sequences in cohomology, both conditions are equivalent to
the vanishing of the connecting homomorphism (Bockstein)

Hn(G′, C) −→ Hn+1(G′, A),

for every open subgroup G′ ⊂ G.

The next Lemma states that n-surjectivity is preserved by pullback and pushfor-
ward of exact sequences.

Lemma 14.3. Let n ≥ 0 be an integer. Let

E : 0 −→ A
i−→ B

π−→ C −→ 0

be an exact sequence of (W(k), G)-modules. Let

f : A −→ A′

and

g : C ′ −→ C

be morphisms of (W(k), G)-modules. Denote by

E ′ : 0 −→ A′
i′−→ B′

π′−→ C ′ −→ 0

the exact sequence f∗(g
∗(E)). If π is n-surjective, then so is π′.

Proof. Easy diagram chase. �

Exercise 14.4. Prove the preceding Lemma without using the connecting map, i.e.
without invoking cohomology groups in degree n+ 1.
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Remark 14.5. (0-surjectivity). Let

E : 0 −→ A
i−→ B

π−→ C −→ 0

be an exact sequence of (W(k), G)-modules. Then π is 0-surjective if and only
if it possesses a G-equivariant -set-theoretic- section. This situation appears in
the study of rationality questions for algebraic tori, through the use of (co)flasque
resolutions of their character lattice. We refer here to the work of Endo and Miyata
[EM], of Colliot-Thélène and Sansuc [CTS], and of Voskresenskii [Vos].

Exercise 14.6. It is clear that a split surjection is n-surjective for every n. In
this exercise, we show that the converse implication is false in general. This
exercise, though by no means easy, provides good pratice for understanding the
ideas developped in this paper.
For simplicity, we assume here that k = Fp.
Let X be a finite G-set. Let

V ⊂ FXp
be a sub-(Fp, G)-module. Put

W := FXp /V.

Let M be a (Z/p2Z, G)-module, which is free of rank one as a Z/p2Z-module,
together with an isomorphism of (Fp, G)-modules

M/p ' Fp.

The exact sequence

0 −→ (pM)X −→MX −→ (M/pM)X −→ 0

can thus be viewed as an exact sequence

0 −→ FXp −→MX −→ FXp −→ 0.

Pulling it back by the inclusion V −→ FXp and pushing it forward by the surjection

FXp −→W yields an extension

E : 0 −→W −→ E
π−→ V −→ 0.

i) Show that E is an exact sequence of (Fp, G)-modules.
ii) Show that E depends neither on M nor on the choice of the isomorphism
M/p ' Fp (up to isomorphism of short exact sequences of (Fp, G)-modules).
iii) Show that π is 0-surjective.

From now on, we assume that G is ”the” absolute Galois group of a field F of
characteristic not p, containing the p-th roots of unity for simplicity. We make no
extra assumption on X.

iv) Using Kummer theory, show that π is 1-surjective. Hint: choose M = µp2 .
v) Using the Bloch-Kato conjecture, show that π is n-surjective, for every n ≥ 1.
vi) Give an example (of F and X) where E is not split.
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14.2. Cyclotomic modules and smoothness.

Definition 14.7. We put

N := N≥1 ∪ {∞},
and W∞(k) = W(k).

Definition 14.8. Pick an element d ∈ N. Let T be a free Wd+1(k)-module of
rank one.
For i a non negative integer, we put

T (i) = T ⊗
i
Wd+1(k) .

For negative i, we put

T (i) = HomWd+1(k)(T (−i),Wd+1(k)).

For any (Wd+1(k), G)-module M , we put

M(i) = T (i)⊗Wd+1(k) M,

the dependence in T being implicit.

Definition 14.9. (Cyclotomic module.) Let n ≥ 0 and d ∈ N be integers. Let T
be a free Wd+1(k)-module of rank one, endowed with a continuous Wd+1(k)-linear
action of G.
The module T is said to be n-cyclotomic (relative to k and G) if the following
condition holds.

For every integer s ≥ 1, the quotient map

T /ps+1 −→ T /p

is n-surjective.
If T (n) is n-cyclotomic for every n ≥ 1, we shall say that T is cyclotomic (relative
to k and G).
The integer d is the depth of T . It will be denoted by δ(T ).

Remark 14.10. If T has finite depth, it suffices of course to require n-surjectivity
for s = δ(T ) in the previous Definition.

Remark 14.11. The preceding Definition has an interest only if n ≥ 1.

Remark 14.12. A cyclotomic G-module is given by a continuous character

χ : G −→Wδ(T )+1(k)×,

which shall, in our theory, play the rôle of the cyclotomic character in Galois
theory. Indeed, we will see in a moment that Kummer theory (a consequence
of Hilbert’s Theorem 90) implies that the cyclotomic character at p of a field of
characteristic not p is 1-cyclotomic, in our sense. That it is in fact cyclotomic
is the main content of the norm-residue isomorphism theorem (the Bloch-Kato
conjecture).

Exercise 14.13. Let T be an n-cyclotomic G-module. Show that the quotient map

T /ps+1 −→ T /ps

is n-surjective, for every s ≥ 1.
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Lemma 14.14. Let n ≥ 0 be an integer. Let k′/k be a field extension.
Let T be a n-cyclotomic G-module over k. Put

T ′ := T ⊗W(k) W(k′).

Then T ′ is n-cyclotomic over k’.

Proof. This is clear, since W(k′) is a free W(k)-module. �

Remark 14.15. In the Definition of a cyclotomic module, it might be worth allowing
the case where T is free of rank ≥ 2: this would enable restriction of scalars for
finite field extensions k′/k. We shall not consider this possibility here.

Lemma 14.16. Let k′/k be an (arbitrary) field extension. Let n be a positive
integer.
Assume that G is a pro-p-group, and that there exists an n-cyclotomic G-module
over k′, of depth 1. Then, there exists an n-cyclotomic G-module over k, of depth
1.

Proof.

Let T ′ be an n-cyclotomic G-module over k′, of depth 1; in particular, T ′ is a free
W2(k′)-module of rank one. Consider the exact sequence

0 −→ T ′/p ' pT ′ −→ T ′ −→ T ′/p −→ 0.

Since G is a pro-p-group, it acts trivially on the one-dimensional k′-vector space
T ′/p. As an exact sequence of (W(k′), G) modules, the preceding sequence can
thus be rewritten as

E ′ : 0 −→ k′ −→ T ′ −→ k′ −→ 0.

Choose a linear form φ ∈ Homk(k′, k), such that φ(1) = 1. Denote by i : k −→ k′

the canonical inclusion. Then φ∗(i
∗(E)) is an sequence of (W(k), G) modules of

the shape

E : 0 −→ k −→ T −→ k −→ 0,

where T is a free W2(k′)-module of rank one, equipped with an action of G. From
Lemma 14.3, it follows that T is n-cyclotomic, qed. �

Remark 14.17. The preceding Lemma can probably be generalized to cyclotomic
modules of arbitrary depth.

Definition 14.18. (Smooth profinite group.) Let n and d be positive integers.
The group G is said to be (d, n)-smooth (resp. d-smooth) relative to k, if there
exists an n-cyclotomic (resp. cyclotomic) G-module over k, of depth d.
The group G is said to be n-smooth (resp. smooth) relative to k, if there exists an
n-cyclotomic (resp. cyclotomic) G-module over k, of infinite depth.

The fundamental example of 1-smoothness is that of absolute Galois groups. It
can be extended to a broader class of Galois groups, as follows.

Proposition 14.19. Let E/F be an extension of fields of characteristic not p.

Assume that the multiplicative group E× is p-divisible (i.e. the map E×
x 7→xp−→ E×

is onto), and contains all p-th roots of unity (hence also all roots of unity of order
a power of p). Put

G := Gal(E/F )
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and

µ = lim←−
n

µpn(E).

Then µ is a cyclotomic G-module (relative to k = Fp).

Proof.

By our assumptions on E, we have a diagram

1 // µp(E) // µps+1(E)

��

x 7→xp // µps(E) //

��

1

1 // µp(E) // E×
x 7→xp // E× // 1,

given by classical Kummer theory. The surjection in the lower line is obviously
1-surjective by Hilbert’s Theorem 90 for Gm. By Lemma 14.3, the surjection in
the upper line is 1-surjective as well, yielding the result. �

Is is natural ask whether all 1-cyclotomic modules occur this way. We did not
investigate this question, but we expect a positive answer- possibly given by a
simple construction. We now formulate it precisely.

Problem 14.20. Let G be a profinite group. Let M be a 1-cyclotomic G-module of
infinite depth, for k = Fp. Let l be zero or a prime number distinct from p. Find
an extension E/F of fields of characteristic l, such that the multiplicative group
E× is p-divisible, contains all p-th roots of unity, and such that the following holds.

There is an isomorphism

φ : G −→ Gal(E/F )

of profinite groups, and an isomorphism

ψ : M −→ lim←−
n

µpn(E)

of Zp-modules, such that

ψ(g.m) = φ(g).ψ(m),

for all g ∈ G and m ∈M .

14.3. The Smoothness Conjecture. Recall that G is a profinite group.

Definition 14.21. Let n ≥ 1 be an integer. Let L be a one-dimensional (k,G)-
module.
Cohomology classes in the image of the natural cup-product map

H1(G,L)n −→ Hn(G,L⊗n)

are called symbols (relative to L).
If H ⊂ G is an open subgroup , the image of a symbol in Hn(H,L⊗n) by the
corestriction (norm)

Cor : Hn(H,L⊗n) −→ Hn(G,L⊗n)

is called an H-quasi-symbol (relative to L).
A class which can be written as a sum a1 + . . . + aN , where the Hi’s are open
subgroups of G, and ai is an Hi-quasi-symbol, will be called a quasi-symbol (relative
to L).
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Remark 14.22. Assume that T is a 1-cyclotomic G-module (of any depth). Let n
and s be positive integers. It is straightforward that any symbol (and hence any
quasi-symbol) in Hn(G, T (n)/p) can be lifted to a class in Hn(G, T (n)/ps).

Definition 14.23. We say that G has the weak Bloch-Kato property (at p) if the
following holds. For every integer n ≥ 1 and for every open subgroup H ⊂ G,
every class in Hn(H, k) is a quasi-symbol (relative to L = k).

The following Remark is elementary, but important.

Remark 14.24. Let Gp be a pro-p-Sylow of G. By the standard restriction-
corestriction argument, it is straightforward to prove the following two assertions.
i) The group G has the weak Bloch-Kato property at p if and only if Gp has it.
ii) In the preceding definition, we may replace the trivial (k,G)-module L = k by
-any- one-dimensional (k,G)-module L.

We now state the Smoothness Conjecture, which we plan to prove in a future work.

Conjecture. 14.25. Let G be a profinite group. If G is 1-smooth, then it has the
weak Bloch-Kato property. In particular, it is smooth.

Remark 14.26. The Smoothness Conjecture implies the (surjectivity part of the)
Bloch-Kato conjecture, using a classical input from Milnor K-theory: the Lemma
of Rosset and Tate. It implies that a quasi-symbol in Hn(Gal(Fsep/F ), µ⊗np ) is in
fact a sum of symbols. Note that this Lemma, whose proof uses Euclidean division
for polynomials, is of highly effective nature.

We conclude this section with an instructive exercise.

Exercise 14.27. Let k be an arbitrary perfect field of characteristic p.
Let G be a finite p-group.
i) Assume that |G| ≥ 3. Show that G is not smooth.
ii) Assume that p = 2 and G = Z/2Z. Show that G is 1-smooth. What are the
possible cyclotomic modules for G?

14.4. Exact sequences of Kummer type.

Definition 14.28. Let a and b be positive integers.
The extension (of (W(k), G)-modules with trivial G-action)

0 −→Wb(k)
17→pa−→ Wa+b(k) −→Wa(k) −→ 0

will be called the elementary Kummer extension, of type (a, b). We shall denote it
by Ka,b. The integer a+ b− 1 is called the depth of Ka,b.
We denote Kd,1 simply by Kd. It is the elementary Kummer extension, of depth
d.

Remark 14.29. Let a and b be positive integers.
Then Pontryagin duality exchanges Ka,b and Kb,a.
The diagram

0 //Wb(k) //Wa+b(k) //

1 7→p
��

Wa(k) //

17→p
��

0

0 //Wb(k) //Wa+b+1(k) //Wa+1(k) // 0
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is clearly a pullback diagram. This shows that Ka,b is a pullback of Ka+1,b. Dually,
Ka,b is a pushforward of Ka,b+1.

Definition 14.30. Let d be a positive integer.
We denote by Kd(G) the smallest class of extensions

0 −→ A −→ B −→ C −→ 0

of (W(k), G)-modules, containing the extension

0 −→ k −→Wd+1(k) −→Wd(k) −→ 0,

and stable by the following operations.

i) Arbitrary finite direct sums, pullbacks and pushforwards (of extensions of
(W(k), G)-modules).
ii) Induction from open subgroups: if H ⊂ G is an open subgroup, and if

0 −→ A −→ B −→ C −→ 0

belongs to Kd(H), then

0 −→ IndGH(A) −→ IndGH(B) −→ IndGH(C) −→ 0

belongs to Kd(G).
iii) Composition (on the right): if f : A −→ B −→ 0 and g : B −→ C −→ 0 are
the epimorphisms of extensions belonging to Kd(G), then

0 −→ Ker(f ◦ g) −→ A
f◦g−→ C −→ 0

belongs to Kd(G).

Extensions belonging to Kd(G) are said to be of Kummer type, of depth ≤ d.

We put

K(G) =
⋃
d≥1

Kd(G).

Extensions belonging to K(G) are said to be of Kummer type.
Epimorphisms or monomorphisms fitting into an exact sequence of Kummer type,
will also be called of Kummer type.

Remark 14.31. Using Remark 14.29 and property iii) of the previous Definition,
we see that the Kummer extension of type (a, b) belongs to Ka+b−1(G), for every
positive integers a and b.

Lemma 14.32. Let d be a positive integer. The following assertions are true.

a) The class Kd(G) is stable by composition on the left. In other words, if f :
0 −→ A −→ B and g : 0 −→ B −→ C are the monomorphisms of extensions
belonging to Kd(G), then

0 −→ A
f◦g−→ C

h−→ Cokerf ◦ g −→ 0

belongs to Kd(G) as well.
b) The class Kd(G) is stable under Pontryagin duality.
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Proof. Point a) is obviously Pontryagin dual to point iii) of the definition of
Kd(G), whereas point i) and ii) are self dual (Pontryagin duality exchanges pull-
backs and pushforwards, and Pontryagin duality commutes to induction from open
subgroups). By Remarks 14.29 and 14.31, we thus see that b) follows from a). We
now prove a).
Forming the pullback of

0 −→ B
g−→ C −→ C/B −→ 0

by the natural quotient map

C/A −→ C/B

yields the diagram

0 // B // C
⊕
B/A

can //

��

C/A //

��

0

0 // B // C // C/B // 0,

where can is the sum of the canonical inclusion and of the canonical surjection.
By point i) of the definition of Kd(G) (for pullbacks), the upper row is of Kummer
type. By assumption on f , and by point i) again (but for direct sums), the natural
surjection

C
⊕

B −→ C
⊕

B/A

belongs to Kd(G) as well. By point iii), we see that the composite surjection

C
⊕

B −→ C
⊕

B/A −→ C/A

belongs to Kd(G). Noting that it equals the composite

C
⊕

B
Σ−→ C

h−→ C/A,

we finally conclude (using point i), for pushforwards this time) that h belongs to
Kd(G). �

Remark 14.33. A surjection of Kummer type can be intuitively thought of as ’a
surjection through which cohomology classes can be lifted’, in the spirit of model
categories. This is made precise in the Proposition below.

Proposition 14.34. Let n and d be positive integers. Assume that G is (d, n)-
smooth. Let T be an n-cyclotomic G-module, of depth d. Let

0 −→ A −→ B
f−→ C −→ 0

be a exact sequence of Kummer type, of depth ≤ d. Then the sequence

0 −→ A(n) −→ B(n)
f(n)−→ C(n) −→ 0

is n-surjective.

Proof. This property holds, by the definition of an n-cyclotomic G-module of
depth d, for the exact sequence Kd. It remains to be checked that it is stable under
the operations i), ii), iii) of the definition of an exact sequence of Kummer type.
For point i), use Lemma 14.3. For point ii), use the definition of n-surjectivity.
For point iii), there is almost nothing to do. �
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Lemma 14.35. (The Cross Lemma.)
Let

0

��

0

��

0

��
0 // A1

//

��

B1
h //

��

C1
//

��

0

0 // A2
//

f

��

B2
//

g

��

C2
//

��

0

0 // A3
//

��

B3
//

��

C3
//

��

0

0 0 0

be a commutative diagram of (W(k), G)-modules, with exact rows and columns.
Assume that g and h are of Kummer type, of depth ≤ d. Then so is f .

Proof. Exercise in homological algebra for the reader. �

15. About Hilbert’s Theorem 90.

The authors now want make a brief digression, to stress the importance of Hilbert’s
Theorem 90. It is, by the way, the favorite Theorem of the second author of
this paper, who is a big fan of descent statements. The theory developped here
shows that this Theorem, contrary to what one could expect, is perhaps -the-
key ingredient to a ’short’ proof of the Bloch-Kato conjecture, over a field F
of characteristic not p. Indeed, the Stable Lifting Theorem in the next section,
is the starting point of a machinery that applies Hilbert’s Theorem 90 for Gm
ceaselessly, not only to the base field F itself, but also to a vast amount of finite
extensions of F . Furthermore, we are tempted to make the following analogy.
Adopting the point of view of Grothendieck’s descent theory, the main content
of (the classical version of) Hilbert’s Theorem 90 for GLn is to convert into
cohomological information (H1(F,GLn) = 1) the highly non canonical fact that,
over a field, every vector space possesses a basis. This is perfectly in the spirit of
this paper: studying intrinsic properties of divided powers for modules over Witt
vectors. Choosing a basis for these is often misleading- except, perhaps, in some
proofs.

Since Hilbert’s Theorem 90 is central in this paper, we decided to discuss, in this
section, some of its most significant algebraic incarnations. They are probably
folklore for some mathematicians. They make precise the following philosophical
statement: two finite linear data over a local ring A, which become isomorphic
after a faithfully flat extension of A, are already isomorphic over A. Before
proceeding any further, we wish to remind the reader that Hilbert’s Theorem
90 (for Gm) is actually due to Kummer for cyclic field extensions, and that its
generalization to arbitrary Galois extensions is due to Noether.

We begin by an elementary correspondence, which is the set-theoretic version of
the equivalence between line bundles and Gm-torsors.



69

Lemma 15.1. Let S be a (not necessarily commutative, unital) ring. Then there
is an equivalence between (left) S-modules L which are free of rank one, and sets
X equipped with a (left) simply transitive action of the multiplicative group S×.
In one direction, it is given by associating to L its set of generators:

L 7→ X := {x ∈ L,L = Sx}.

In the other direction, it is given by

X 7→ (S ×X)/S×,

where we mod out the free action of S× given by

λ.(s, x) = (sλ−1, λ.x).

Proof. This is clear. �

Lemma 15.2. Let A be a Noetherian local ring. Let A′/A be a faitfully flat exten-
sion of commutative rings, and let S be a A-algebra, which is finite as an A-module.
Let M be an S-module. Put S′ := S ⊗A A′ and M ′ := M ⊗A A′. If M ′ is a free
S′-module of rank one, then M is a free S-module of rank one.

Proof. Let κ be the residue field of A. Put M := M ⊗A κ, S := S ⊗A κ. Assume
that M is a free S-module of rank one. Then, by Nakayama’s Lemma, the lift of a
generator of M (as an S-module) to M will be a generator of M (as an S-module).
Hence, we are reduced to the case where A is a field. Another similar application
of Nakayama’s Lemma shows that we may mod out the Jacobson radical of S, and
assume that S is a semi-simple algebra. Hence, S is isomorphic direct product
of matrix rings of the form Mni(Di), where Di are division A-algebras. We may
thus assume that S = Mn(D) for D a division A-algebra. But then, by Morita
equivalence, M is isomorphic to a sum of r copies of the simple module Dn. Since
M ⊗A A′ is free of rank one as an S′-module, we must have r = n by dimension
count, and M is free of rank one.

�

Remark 15.3. Assume, in what precedes, that S is finite and locally free as
an A-module. Then, the group of invertible elements in S is representable by
the affine A-group scheme GL1(S) (which is an open subscheme of AA(S)), and
Grothendieck’s descent theory asserts that GL1(S)-torsors over Spec(A), for the
fppf topology, correspond to S-modules M as in the previous Lemma. We thus
get

H1(Spec(A), GL1(S)) = {∗},

where cohomology is taken with respect to the fppf topology. This statement is
known as Grothendieck-Hilbert’s Theorem 90.

Proposition 15.4. Let A be a Noetherian local ring. Let A′/A be a faitfully
flat extension of commutative rings, and let R be an A-algebra. Let N be an
R-module, which is finite as an A-module. Let M1, M2 be two R-submodules of
N . Put R′ = R ⊗A A′, N ′ = N ⊗A A′, M ′1 = M1 ⊗A A′ and M ′2 = M2 ⊗A A′.
Assume there exists f ′ ∈ GLR′(N

′) such that f ′(M ′1) = M ′2. Then there exists
f ∈ GLR(N) such that f(M1) = M2.
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Proof.

Put
S := {f ∈ EndR(N), f(M1) ⊂M1};

it is an A-algebra. It is a subalgebra of EndA(N). Writing N as a quotient of a
free module An, EndA(N) then occurs as a sub-A-module of Nn, which is finite by
assumption. Hence, S itself is a finite A-module. Put S′ := S ⊗A A′. By faithful
flatness, we get that the canonical morphism

S′ −→ {f ′ ∈ EndR′(N
′), f ′(M ′1) ⊂M ′1}

is an isomorphism. The set

X := {f ′ ∈ GLR′(N
′), f ′(M ′1) = M ′2}

is endowed with a simply transitive action of the multiplicative group S′×. As
such (see Lemma 15.1), it canonically corresponds to a free S′-module of rank one
M ′, given by the set-theoretical formula

M ′ = (X × S′)/S′×.
But the S′-module M ′, viewed as an A′-module, is endowed with a canonical
descent data for the faithfully flat morphism A′/A. By descent, we get an A-
module M , which is in fact a locally free S-module of rank one. To prove the
Proposition is equivalent to proving that M is actually a free S-module of rank
one (to give a generator of the S-module M is equivalent to giving f ∈ GLR(N)
such that f(M1) = M2). We conclude by applying Lemma 15.2.

�

Corollary 15.5. Let A be a Noetherian local ring. Let A′/A be a faitfully flat
extension of commutative rings, and let R be an A-algebra. Put R′ := R ⊗A A′.
Let N,M be two R-modules, one of which is finite as an A-module. Assume
that M ⊗A A′ and N ⊗A A′ are isomorphic as R′-modules. Then M and N are
isomorphic as R-modules.

Proof. To see this, just apply the Proposition to M and N , viewed as R-
submodules of M

⊕
N . �

Remark 15.6. Specializing to linear representations, we get the following state-
ment. Two finite-dimensional linear representations of an abstract group G over a
field F , which become isomorphic over an extension E/F , are already isomorphic
over F . Note that this holds, in particular, in the modular case (i.e. where F has
characteristic p and G is a finite p-group).

Remark 15.7. In all what precedes, the Noetherian assumptions may probably be
dropped. They are here to simplify the proofs.

16. The Stable Lifting Theorems.

In this section, k is a finite field of cardinality q = pr and G is a profinite group.
We use small Omega powers here: we believe they are better behaved than
medium (or big) Omega powers, for applications in Galois theory.

Let us explain how we intend to apply small Omega powers to prove Lifting The-
orems in Galois cohomology- with an explicit proof of the Bloch-Kato conjecture
as a main motivation.
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Assume that G is s-smooth, and denote by T a fixed s-cyclotomic G-module, of
infinite depth.

Let V be a (k,G)-module, and let n be a nonnegative integer. Almost by definition
of smoothness, we have that the (twist of) Frobenius

Frob(s) : Ωn+1(V )(s) −→ Ωn(V (1))(s)

is s-surjective, if V is one-dimensional. Indeed, we can reduce to the case where
G is a pro-p-group. For such a G, any one-dimensional V is isomorphic to the
trivial (k,G)-module k, and the statement becomes nothing but the definition
of s-surjectivity. It is then legitimate to wonder whether the same holds for an
arbitrary (k,G)-module V . The next exercise shows that it is not the case in
general. This is deeply related to the notion of R-equivalence, due to Manin.

Exercise 16.1. Let F be an infinite field of characteristic not p, with separable
closure Fsep/F . Assume for simplicity that F contains the p2-th roots of unity.
We denote by H1

et(., .) the first étale cohomology groups.
In this exercise and in this exercise only, s = 1, G := Gal(Fsep/F ) and

T := Z/p2Z.

By Proposition 14.19, we know that T is a 1-cyclotomic G-module.
In view of the assumptions, we can remove all twists (by Frobenius, and by roots
of unity).
Let V be a finite commutative algebraic F -group of multiplicative type, killed by
p. We shall identify V with the (Fp, G)-module V (Fsep).

A cohomology class c ∈ H1
et(Spec(F ), V ) = H1(G,V ) is said to be (elementar-

ily) R-trivial if the following holds. There exists an open subvariety U ⊂ A1
F ,

containing 0 and 1, and a class

C ∈ H1
et(U, V ),

whose specialization at 0 (resp at 1) is trivial (resp. equals c).

1) Assume that V has dimension one. Show that every class in c ∈ H1(G,V ) is
R-trivial.
Hint: reduce to the case V = µp, and use Kummer theory.
2) Assume that the map

Frob : Ω1(V ) −→ V

is 1-surjective, for every V as above. Show that every element in H1(G,V ) would
then be R-trivial.
Hint: induction on the dimension of V , using the Frobenius Integral formula 11.18,
and Shapiro’s Lemma.
3) Using the work of Colliot-Thélène and Sansuc ([CTS]), give an example of a
field F and of a V as above, such that not every class in H1

et(Spec(F ), V ) is R-
trivial. Conclude.
4) Let c ∈ H1(G,V ) be a Galois cohomology class, which is R-trivial. It is true
that c is in the image of

Frob∗ : H1(G,Ω1(V )) −→ H1(G,V ) ?

Hint: we don’t know the answer...
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The following Lifting Theorem brings hope that our approach will shortly lead to
an ’elementary’ proof of the Bloch-Kato conjecture. Note that, if this Theorem
was true for n = 0 and V arbitrary, Galois cohomology would be much simpler,
and the Bloch-Kato conjecture would follow quite easily.

Theorem 16.2. (First Stable Lifting Theorem.)

Let V be a d-dimensional (k,G)-module. Let n be a positive integer, with

n ≥ r(d− 1)− 1.

Let t be an arbitrary positive integer.
The following assertions are true.

1) The Frobenius homomorphism

Frobt : Ωn+t(V ) −→ Ωn(V (t))

is of Kummer type, of depth ≤ n+ t.
2) If T is an s-cyclotomic G-module of depth n+ t, then the twist

Frob(s) : Ωn+t(V )(s) −→ Ωn(V (t))(s)

is s-surjective.

Proof. We prove part 1); part 2) will follow by Proposition 14.34.

The assertions are clear if V is one-dimensional, by the very definition of surjections
of Kummer type. We can thus assume that d ≥ 2.
Now, consider the commutative diagram

0 // Ωn+t(V )[pt]

g

��

// Ωn+t(V )
Frobt //

��

Ωn(V (t))

��

// 0

0 //⊕
H Ωn+t(V/H)[pt] //⊕

H Ωn+t(V/H)
⊕FrobV/H//⊕

H Ωn((V/H)(t)) // 0,

where the direct sums are taken over all k-rational hyperplanes H ⊂ V , and the
vertical arrows are obtained by functoriality from the quotient maps V −→ V/H.
The Pontryagin dual of the map g is the map f of Proposition 13.10 (applied to
V ∗, n + t and m = t). Since n ≥ r(d − 1) − 1, the same Proposition asserts that
f , hence g, is an isomorphism.
Point 1) now follows, from the definition of a surjection of Kummer type: the
lower row is induced from dimension one (the open subgroups involved are the
stabilizers of hyperplanes of V ). �

The next Theorem is more precise: it asserts that the cohomology of a smooth
profinite group, with values in a (twist of a) G-module of the type Ωn(V ), is
induced from dimension one, if n is large enough.

Theorem 16.3. (Second Stable Lifting Theorem.) Let V be a d-dimensional
(k,G)-module, with d ≥ 2.
Let n be a positive integer, with

n ≥ r(d− 1)− 1.

For each line L ∈ P(V ), functoriality of Omega powers yields a canonical injection

Ωn(L) −→ Ωn(V ).
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Then the following assertions are true.

1) The (surjective) G-equivariant map⊕
L∈P(V )

Ωn(L) −→ Ωn(V )

is of Kummer type (of depth ≤ n+ r(d− 1)).
2) If T is an s-cyclotomic G-module of depth n + r(d − 1), then the twisted G-
equivariant map ⊕

L∈P(V )

Ωn(L)(s) −→ Ωn(V )(s)

is s-surjective.

Proof. We prove part 1); part 2) will follow by Proposition 14.34.
By the previous Theorem, for t = r(d− 1), we see that the map

Frobr(d−1) : Ωn+r(d−1)(V ) −→ Ωn(V )

is of Kummer type, of depth ≤ n + r(d − 1). By the Frobenius Integral formula
13.11, this map factors as

Ωn+r(d−1)(V ) −→
⊕
L⊂V

Ωn(L) −→ Ωn(V ),

where the direct sum is taken over all lines L ⊂ V , and the first map is the sum
of the Transfers, for all inclusions L ⊂ V . The claim follows, by the definition of
a surjection of Kummer type. �

The preceding Theorem has a very concrete consequence, for cohomology classes
with values in two-dimensional Galois representations, over Fp.

Corollary 16.4. Let F be a field of characteristic not p. Denote by Fsep/F
a separable closure of F . Let V be a two-dimensional Galois representation of
G := Gal(Fsep/F ) over Fp. For each v ∈ V , denote by Gv ⊂ G the stabilizer of v.
Denote by φv the composite

H1(Gs,Fp) −→ H1(Gs, V )
CorGGs−→ H1(G,V ),

where the first map is induced by functoriality from the Gs-equivariant map

Fp
17→v−→ V.

Then the map ⊕
v∈V

H1(Gs,Fp)
⊕φv−→ H1(G,V )

is surjective.
In other words, classes in H1(G,V ) are ’induced from dimension one’.

Proof.

The statement is the concrete form of Theorem 16.3, for T = µp2 (which is 1-
smooth by Kummer theory), s = 1, r = 1, d = 2 and n = 0. �

Exercise 16.5. Show that, for p = 2, the preceding Corollary is true for any
profinite group G, and any two-dimensional (F2, G)-module.
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17. An application to p-adic deformation theory.

We finish this paper with an application of our point of view to p-adic deformation
theory. It uses very few of the theory of Omega powers that we have explained
before. In truth, it uses only the divided power functor ΓpZ, for Z-modules of p-
primary torsion.
Recall that we have seen that p-typical Witt vectors of level n may be defined,
in a pretty elementary way, as a quotient of a divided power module over Z (cf.
Proposition 6.8).
In this section, we give another elementary application of this point of view, to
the problem of lifting Fp-algebras to flat (Z/p2Z)-algebras.

17.1. The case of perfect Fp-algebras.

Definition 17.1. A p-nice ring is a commutative ring R, satisfying the following
three conditions.

i) The ring R is p-adically complete (i.e. complete with respect to the ideal pR ⊂
R).
ii) p is not a zero-divisor in R, i.e. R is torsion-free.
iii) The Fp-algebra R/p is perfect, i.e. its Frobenius

Frob : R/p −→ R/p

x 7→ xp

is an isomorphism.

Recall the following result in p-adic deformation theory, well-known to experts.

Proposition 17.2. The reduction functor

Φ : {p− nice rings} −→ {perfect Fp − algebras},
A 7→ A/p

is an equivalence of categories (morphisms being ring homomorphisms on both
sides).

Proof. The usual proof of this Proposition is through Illusie’s cotangent complex,
as explained in the work of Scholze ([S], Theorem 5.11 and Theorem 5.12). �

It is possible to give a direct elementary proof of the preceding Proposition, using
merely the functor ΓpZ. Rather than giving more details, we prefer to state and
prove a statement which is much more general- but, for the time being, for mod
p2 liftings only.

17.2. Descent for the arrow Z/p2Z −→ Z/pZ. In Proposition 17.2, the cru-
cial assumption is that the Frobenius map of R/p is surjective. The fact that
it is injective (i.e. that R/p is reduced) is secondary. The authors believe that
it is important to adapt this Proposition to the case of (possibly non reduced)
Fp-algebras whose Frobenius map is surjective. In a naive sense, these algebras
are ’Frobenius-smooth’ objects (existence of lifts by Frobenius), whereas perfect
Fp-algebras are ”Frobenius-étale” objects (existence and uniqueness of lifts by
Frobenius). To tackle this question, today’s trend is to use Scholze’s theory of
perfectoid spaces, in which these algebras typically occur. We here suggest a first
step towards an alternate approach, in the spirit of our paper: Proposition 17.9.
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Its content is that deforming an Fp-algebra A, whose Frobenius is surjective, to a
flat (Z/p2Z) -algebra A, is equivalent to endowing the kernel of the Frobenius of
A with a partial (level p) divided power operation γp : I −→ A. Moreover, the
Frobenius of A lifts to A if, and only if, γp takes values in I.

Definition 17.3. Let R be a commutative ring in which (p−1)! is invertible. For
any integer i with 0 ≤ i ≤ p− 1 and x ∈ R, we set

γi(x) :=
1

i!
xi.

Definition 17.4. A 2-wrinkled ring (relative to p) is the data of a pair (A, γp),
consisting of an Fp-algebra A, whose Frobenius is surjective, and a map

γp : Ker(FrobA) −→ A,

such that the relations

γp(ax) = apγ(x)

and

γp(x+ x′) =
∑
i+i′=p

γi(x)γi′(x
′),

hold for all a ∈ A and all x, x′ in Ker(Frob).

2-wrinkled rings obviously form a category: a morphism (A, γp) −→ (A′, γ′p) is a
ring homomorphism φ : A −→ A′, such that γ′p ◦ φ = φ ◦ γp.

Remark 17.5. Let (A, γp) be a 2-wrinkled ring. Put I := Ker(FrobA).
It is not hard to see that γp vanishes on I2, and that it is in fact given by a unique
polynomial law of A-modules, which is homogeneous of degree p, from I/I2 to A.

Definition 17.6. Denote by F2 the forgetful functor, from the category of 2-
wrinkled rings to that of Fp-algebras.
A 2-liftable ring (relative to p) is an Fp-algebra A, which lies in the essential image
of F2.

Remark 17.7. Note that a non-reduced (i.e. non-perfect) 2-liftable ring is not
Noetherian (a surjective endomorphism of a Noetherian ring is an isomorphism...).

Definition 17.8. A 2-flat ring (relative to p) is a commutative (Z/p2Z)-algebra
R, satisfying the following conditions.

i) R is a flat (i.e. free) Z/p2Z-module.
ii) The Frobenius map of R/p is surjective.
The 2-flat rings form a category, with morphisms been ring homomorphisms.

Let A be a 2-flat ring. Put

A := A/p.

We shall now see that A can be given the structure of a 2-wrinkled ring in a
canonical way.

Put

I := Ker(FrobA).
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Let x be an element of the ideal I. Let X ∈ A be any lift of x. The quantity
Xp ∈ A does not depend on the choice of X (cf. Lemma 6.1). By assumption,
there exists Y ∈ A such that

Xp = pY.

Denote by y ∈ A the reduction of Y . Since A is a free (Z/p2Z)-module, y does
not depend on the choice of y. We then put

γp(x) :=
1

(p− 1)!
y = −y ∈ A.

It is not hard to see that (A, γp) is a 2-wrinkled ring.

We have in fact built a functor

Ψ2 : {2− flat rings} −→ {2− wrinkled rings},
by the formula

Ψ2(A) := (A, γp).

We can then prove the following result, which is a descent statement for the quo-
tient map

Z/p2Z −→ Z/pZ.
It generalizes Proposition 17.2 (for mod p2 deformations). Note that this Propo-
sition may seem strange at first glance: the quotient map Z/p2Z −→ Z/pZ is not
quite flat, and descent statements in algebraic geometry are often the privilege of
faithfully flat morphisms. However, the categorical data that allows descent here
is not at all the usual one (it is non-linear).

Proposition 17.9. The functor Ψ2 is an equivalence of categories.
In particular, every 2-wrinkled ring admits a unique lift to a 2-flat ring.

Proof.

Let A be a 2-flat ring. Put A = A/p. Denote by

γp : Ker(FrobA) −→ A

the p-th divided power operation constructed above.
We know, by Lemma 6.1, that the polynomial law of Z-modules

A −→ A,

X 7→ Xp

factors through the quotient map π : A −→ A, yielding by the universal property
of divided powers a group homomorphism

F : ΓpZ(A) −→ A,

[π(X)]p 7→ Xp.

Note that pure symbols generate ΓpZ(A) = ΓpZ/p2Z(A), by Lemma 6.13. The group

ΓpZ(A) bears a natural ring structure (formula on pure symbols: [x]p[y]p = [xy]p),
for which F is a ring homomorphism. Since the Frobenius of A is surjective, it is
easily checked that F is onto. Let X1, . . . , Xm be elements of A, with reductions
x1, . . . , xm in A. One has

[x1]p + . . .+ [xm]p ∈ Ker(F )

if and only if

Xp
1 + . . .+Xp

m = 0 ∈ A.
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Rewrite this equality as

(X1 + . . .+Xm)p = p
∑

a1,...,am

Ca1,...,amX
a1
1 . . . Xam

m ∈ A,

where the sum ranges over all proper partitions of p, i.e. partitions

p = a1 + . . .+ am,

with 0 ≤ ai ≤ p− 1 for all i, and where

Ca1,...,am :=
1

p

(
p

a1, . . . , am

)
∈ N.

By the very definition of γp, this is equivalent to the combination of the two
equalities

x1 + . . .+ xm ∈ Ker(FrobA)

and

−γp(x1 + . . .+ xm) =
∑

a1,...,am

Ca1,...,amx
a1
1 . . . xamm ∈ A.

The isomorphism ΓpZ(A)/Ker(F ) ' A thus yields a canonical presentation of A,
depending only on A and γp. We infer that Ψ2 is fully faithful.
It remains to be shown that it is essentially surjective. To prove this, we first reset
notation. Let (A, γp) be an arbitrary 2-wrinkled ring. We denote by

I ⊂ ΓpZ(A)

the subset consisting of elements X which can be written as

X = [x1]p + . . .+ [xm]p,

where x1, . . . , xm ∈ A are such that

x1 + . . .+ xm ∈ Ker(FrobA)

and

−γp(x1 + . . .+ xm) =
∑

a1,...,am

Ca1,...,amx
a1
1 . . . xamm ∈ A,

where the sum ranges over all proper partitions of p. From the equality

γp(x+ x′) =
∑
i+i′=p

γi(x)γi′(x
′),

which holds for all x, x′ ∈ Ker(FrobA), we see that I is in fact a subgroup of
ΓpZ(A). It is thus an ideal of I. We put

A := ΓpZ(A)/I.

The surjection of rings

f : ΓpZ(A) −→ A,

[x]p 7→ xp,

clearly factors through I, yielding a surjective ring homomorphism

π : A −→ A.

Pick an element X ∈ Ker(π). Write it as

X = [x1]p + . . .+ [xm]p,

where x1, . . . , xm ∈ A. We have

x1 + . . .+ xm ∈ Ker(FrobA).
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Choose xm+1 ∈ A such that

xpm+1 = γp(x1 + . . .+ xm) ∈ A.
Then one has

[x1]p + . . .+ [xm]p + p[xm+1]p ∈ I
(verification left to the reader). We conclude that X ∈ pA. Therefore, we have

Ker(π) = pA.
Now, pick an element Y ∈ A[p]. Write it as

Y = [y1]p + . . .+ [ym]p,

where y1, . . . , ym ∈ A. From the equality

p[y1]p + . . .+ p[ym]p ∈ I,
we see (by definition of I) that

yp1 + . . .+ ypm = 0 ∈ A.
Hence Y belongs to Ker(π) = pA. Altogether, we see that

A[p] = pA,
i.e. that A is a free (Z/p2Z)-module. The ring A is thus a 2-flat ring, with a
canonical isomorphism A/p ' A. From the definition of I, it is straightforward to
check that

Ψ(A) = (A, γp),

which finishes the proof.

�

Remark 17.10. The descent statement of the previous Proposition has a clear
analogue in the classical context of (quasiprojective) complex varieties, as follows.
It is standard that a complex variety may be view as a real variety, of double
dimension. This is a simple form of Weil’s restriction of scalars. It is also standard
that the data of an anti-involution on a complex variety Y is equivalent to giving
a real variety X and an isomorphism Y ' X ×R C of complex varieties. This is a
simple (linear) descent statement.
Let us now switch to the p-adic setting. Then Greenberg’s functor allows to
consider a scheme over Z/p2Z as a scheme over Fp, of double dimension. This is,
in some sense, a non-linear analogue of Weil’s scalar restriction, in which Z/p2Z
(resp. Fp) plays the rôle of C (resp. R).
Proposition 17.9 is then an analogue of the simple descent statement above, for
the morphism Z/p2Z −→ Z/pZ. But roles are exchanged in this second analogy:
Z/p2Z now plays that of R, whereas Fp plays that of C! In a daring poetic sense,
Proposition 17.9 is both a descent result and a lifting result: it just depends in
which direction you choose to look...

We are grateful to Luc Illusie for his remarks, which led to the following improve-
ment.

Proposition 17.11. Let A be a 2-flat ring, corresponding to the 2-wrinkled ring
(A, γp) (cf. Proposition 17.9).
Denote by I ⊂ A the kernel of the Frobenius homomorphism. Then the following
conditions are equivalent.
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i) The Frobenius of A admits a (unique) lift to a (surjective) endomorphism of
the ring A.
ii) The divided power operation γp : I −→ A takes values in I.

If these conditions are fulfilled, then there exists a unique structure of PD-ideal
on I, with γp as p-th divided power operation.

Proof. By the preceding Proposition, i) holds if and only if the Frobenius of A
commutes with γp. This is obviously equivalent to γp taking its values in I, qed.
The last assertion follows from the fact that a divided power structure on an ideal,
in our context, is uniquely determined by the data of γp, see for instance Stacks
Project, Tag 07H4, Lemma 23.5.3. �

Exercise 17.12. Let A be a 2-liftable ring. Put

I := Ker(FrobA).

1) Show that the set of maps
γp : I −→ A

such that (A, γp) is a 2-wrinkled ring is a principal homogeneous space of
HomFrob(I/I2, A).
2) How is 1) connected to Illusie’s theory of the cotangent complex?

Assume now that I = I2, and that (A, γp) is a 2-wrinkled ring.

3) Show that γp = 0.
4) Deduce that Ip = 0, hence that A is a perfect Fp-algebra.

The generalisation of Proposition 17.9 to higher level descent statements is left to
future considerations.
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