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Abstract. In this series of three articles, we study structural properties of
smooth profinite groups, a class designed to extend classical Kummer theory for
fields, with coefficients in p-primary roots of unity. Enhancing coefficients to arbi-
trary G-linearized line bundles in Witt vectors, smooth profinite groups provide a
powerful formalism which sheds light on several conjectures in Galois cohomology,
Galois representations and local systems.

In this first article, we introduce our main protagonists: cyclotomic pairs, smooth
profinite groups, Witt-Frobenius modules and (G,S)-cohomology. With this
robust axiomatic, we prove a first lifting theorem for G-linearized torsors under
line bundles (Theorem A). It leads, in the second article, to the proof of the
existence of mod p2 liftings of mod p Galois representations, of all fields and of
all dimensions (Theorem B). With this in hand, we prove in the third article
Theorem D, the smoothness theorem, stating that mod p cohomology of a smooth
profinite group lifts mod p2, in all cohomological degrees. In the particular case
of Galois cohomology, we obtain a new proof of the Norm Residue Isomorphism
Theorem.
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1. Introduction.

Let m be a positive integer and let F be a field, of characteristic prime to m. Fix
a separable closure Fs/F and denote by µm the Galois module of m-th roots of
unity in Fs. Kummer theory, in its most elementary and purest form, states the
following. Consider the Kummer exact sequence

1 −→ µm −→ F×
s

(·)m

−→ F×
s −→ 1.

Then, the Bockstein homomorphism, i.e. the associated boundary map

δ1F,m : F× −→ H1(F, µm),

is surjective by Hilbert’s Theorem 90, with kernel F×m.

For cohomology groups Hn(F, µ⊗n
m ) of degree n > 1, producing a description of

this kind, through tensor products of copies of F× with appropriate relations, is a
much more difficult problem. For this purpose, inspired by the Steinberg relations
appearing in Matsumoto’s description of the K2 of fields, Milnor introduces in the
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sixties his K-groups, denoted by KM
n (F ). Milnor, Bass and Tate then extend the

Bockstein δ1F,m above to morphisms

hnF,m : KM
n (F ) −→ Hn(F, µ⊗n

m )

called Galois symbol (or norm residue map). Without stipulating it explicitly,
they then question whether these could yield isomorphisms

KM
n (F )/m

∼
−→ Hn(F, µ⊗n

m )

for any field F of characteristic prime to m, a statement later known as the Bloch-
Kato conjecture.

A major breakthrough towards this conjecture was achieved in 1982 by Merkurjev
and Suslin, who solved it for n = 2 [23]. In 1996, Voevodsky proved the case where
m is a power of 2. He was awarded the Fields Medal in 2002 for this achievement.
After tremendous efforts, a proof of the whole conjecture, then known as the Norm
Residue Isomorphism Theorem, was completed in 2008 by Rost, Suslin, Voevodsky,
and Weibel [18].

In this series of three articles, we are interested in studying structural properties
of smooth profinite groups, leading notably to a proof of the following statement,
known to be equivalent to the Norm Residue Isomorphism Theorem (see [15], [22]).

Bloch-Kato conjecture, an equivalent formulation.

Let F be a field and let p be a prime, invertible in F . Then, the Bockstein

Hn(F, µ⊗n
p ) −→ Hn+1(F, µ⊗n

p )

associated with the exact sequence

1 −→ µ⊗n
p −→ µ⊗n

p2 −→ µ⊗n
p −→ 1

is trivial, for any positive integer n.
Equivalently, the induced map

Hn(Gal(Fs/F ), µ
⊗n
p2 ) −→ Hn(Gal(Fs/F ), µ

⊗n
p )

is surjective.

A sleek aspect of this statement is that it only involves Galois cohomology: for-
getting K-theoretic considerations, the only characters on stage are the profinite
group Gal(Fs/F ), together with its module µp2 . Moreover, the statement holds
for finite separable extensions E/F as well– replacing Gal(Fs/F ) by the open sub-
group Gal(Fs/E) ⊂ Gal(Fs/F ). This fact is the initial motivation for introducing
the notion of a cyclotomic pair, that we now discuss.

Let n, e be positive integers and let G be a profinite group. Given a free Z/pe+1
Z-

module T of rank 1, endowed with a continuous action of G, we say that the pair
(G, T ) is (n, e)-cyclotomic if for any open subgroup H ⊂ G, the natural morphism

Hn(H, T ⊗n) −→ Hn(H, (T /p)⊗n)

is surjective (Definition 6.2).

The analogy with the discussion above is quite direct: Kummer theory readily
implies that, taking

T := lim
←−
r

µpr

to be the usual Tate module, the pair (Gal(Fs/F ), T ) is (1,∞)-cyclotomic.
Thenceforward, the above formulation of the Bloch-Kato conjecture can be
rephrased, for cyclotomic pairs, as
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(∗) “ If (G, T ) is a (1,∞)-cyclotomic pair, then it is (n, 1)-cyclotomic.”

This statement fleshes out the common belief that the keystone of the Norm
Residue Isomorphism Theorem is Hilbert Theorem 90 for fields.

In this work, we prove statement (∗) (Theorem D below), thus settling a new proof
of the Norm Residue Isomorphism Theorem. Not only does this result flesh out the
belief that the Norm Residue Isomorphism Theorem follows from Kummer theory,
but also, Theorem D applies to a much broader context than Galois cohomology.
Indeed, étale fundamental groups of smooth curves over algebraically closed fields
and of semilocal rings also give rise to (1,∞)-cyclotomic pairs [5, §4].

1.1. Our pathway. In this series of three articles, we provide a self contained
proof of the Norm Residue Isomorphism Theorem by raising a bridge between it
and the conjectural existence of mod p2-liftings of mod p Galois representations.
More precisely, let F be a field, with separable closure Fs. Let

ρ1 : Gal(Fs/F ) −→ GLd(Fp)

be a Galois representation. One can ask wether ρ1 lifts to p2-torsion, that is to
say, whether there is a mod p2 Galois representation ρ2 such that the diagram

Gal(Fs/F )
ρ2 //

ρ1 ((◗◗
◗◗

◗◗
◗◗

◗◗
GLd(Z/p

2
Z)

��
GLd(Fp)

commutes, the vertical arrow being induced by the usual reduction.

This problem also fits very well in the framework of cyclotomic pairs. In the
second article of this series, we prove a very general lifting statement, our so-called
Uplifting Theorem. It implies that, if (G, T ) is a (1, 1)-cyclotomic pair, then all
continuous mod p semi-linear representations of G lift, to their mod p2 analogue.
This is a decisive step towards (∗). The Uplifting Theorem not only applies
to mod p Galois representations as above, but also to mod p representations
of algebraic fundamental groups of many schemes of interest- including smooth
curves, proper or not, over algebraically closed fields.

For the sake of proving our lifting results, a crucial point is, as often, to allow
more flexible objects. Indeed, as stated above, Kummer theory has an obvious
weakness: whereas it holds for any field F (and actually over a much larger class
of base schemes), its coefficients are forever fixed: for m = pr, they are µpr ,
merely an étale sheaf of one-dimensional free Z/pr-modules. A way to have it
gain robustness and versatility, is to extend these coefficients to a G-linearized line
bundle in p-typical Witt vectors of length r, on a G-scheme S of characteristic p.
This should be done in such a way that, replacing µp by a G-linearized line bundle
L, the analogue of µpr should be the Teichmüller lift Wr(L) (up to a twist). The
concepts of Witt vector bundles and of their extensions, whose systematic study
was initiated in [8], will thus play a key role in our approach.

In this first article, we state and prove a lifting theorem, which is thought of as
a generalization of classical Kummer theory– µp being replaced by an arbitrary
G-line bundle, over a G-scheme S of characteristic p. For simplicity, we formulate
it here in the particular case, where S is affine and perfect.



5

Theorem A (§9). Let (G,Z/p1+e(1)) be a (n, e)-cyclotomic pair, for numbers
n ∈ N

∗ and e ∈ N
∗ ∪ {∞}.

Pick an integer 1 ≤ r ≤ e. Let S be a perfect affine (G,Fp)-scheme and let L be a
G-linearized line bundle over S. Then, the natural arrow

Hn((G,S),W1+e(L)(n)) −→ Hn((G,S),Wr(L)(n))

is onto. Therefore, G is (n, e)-smooth.

A word of explanation is needed, concerning the new notion of a (n, e)-smooth
profinite group G, given in Definition 6.8. At its core lies even more flexibility.
We say that G is (n, e)-smooth if the following holds. Let L1 be a G-linearized
line bundle, over a perfect affine (G,Fp)-scheme S. Let

c1 ∈ H
n((G,S), L1)

be a cohomology class. Then, it lifts to a class

ce+1 ∈ H
n((G,S), Le+1[c1]),

for some G-linearized invertible We+1(A)-module Le+1[c1], depending on c1.
This notion thus dismisses the cyclotomic module Z/p1+e(1): it is intrinsic to G.

If (G,Z/p1+e(1)) is a (n, e)-cyclotomic pair, Theorem A thus shows that G is
(n, e)-smooth. Indeed, assuming for simplicity that Fp(1) = Fp has the trivial
action of G, we can then take

Le+1[c1] := W1+e(L1)(n),

which is the same for all c1’s.
In particular, if p is invertible in the field F , then G = Gal(Fs/F ) is (1,∞)-smooth
and the following lifting result, proved in the second article, implies that mod p
Galois representations of F lift to p2-torsion.

Theorem B ([12, §14]). Let G be a (1, 1)-smooth profinite group, A be a perfect
(Fp, G)-algebra and d ≥ 1 be an integer. Denote by Bd ⊂ GLd the Borel subgroup
of upper triangular matrices.
Then, the natural arrow

H1(G,Bd(W2(A))) −→ H1(G,Bd(A)),

given by reduction, is surjective.
Moreover, liftings of triangular semi-linear representations of G can be constructed
step-by-step.

In the third article, we derive from Theorem B the following general lifting theo-
rem, for filtered exact sequences of G-linearized vector bundles.

Theorem C ([7, §4]). Let G be a (1, 1)-smooth profinite group and let A be a
perfect (Fp, G)-algebra. Let n ≥ 1 be an integer, and let

E : 0 −→ E0 −→ E1 −→ . . . −→ En −→ En+1 −→ 0

be a filtered exact sequence of G-linearized vector bundles over A.
Then, E admits a lift to a filtered exact sequence of (G,W2)-bundles over A.

Casting Theorem C and considering the interplay between (G,S)-cohomology and
Yoneda extensions of G-linearized Witt vector bundles, we can then settle our
smoothness theorem, from which we derive a new proof of the Norm Residue
Isomorphism Theorem.
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Theorem D ([7, §5]). Let n ≥ 1 be an integer.

Let G be a (1, 1)-smooth profinite group. Then, G is (n, 1)-smooth.

Let (G,Zp(1)) be a (1,∞)-cyclotomic pair. Then it is (n, 1)-cyclotomic.

We give a Leitfaden, connecting significant results of our three papers. For simplic-
ity, we stick to Galois cohomology. Note that the same diagram holds, replacing
absolute Galois groups (resp. Galois representations) by π1(X), where X is a
smooth curve over an algebraically closed field, or a semilocal scheme (resp. étale
local systems on X).

Theorem A +3 Absolute Galois groups
are (1,∞)-smooth

Theorem B

��

+3 Theorem C +3 Theorem D

��

mod p Galois reps
lift to p2-torsion

Norm residue
isomorphism Theorem

In this first article, we introduce the main protagonists of our work and prove
Theorem A. Sections 1 to 5 provide the needed geometrization of the flagbearers
of classical Kummer theory, introducing G-Witt-Frobenius modules and (G,S)-
cohomology, using (G,S)-affine spaces and Yoneda extensions. Smooth profinite
groups, cyclotomic pairs and their Laurent extensions are defined and studied in
Sections 6 and 7. Theorem A is proved in section 9. Among other results of
independent interest, the last sections provide material required for Theorem B,
proved in the second article of this work. Our smoothness theorem (Theorem D)
is proved in the third article.

To ensure a pleasant reading, we took care to add at the end of the third article
an index, which tables the notions introduced in this work.

2. G-equivariant constructions.

2.1. General setting. Let X be an object of a category C, and G be a profinite
group. In this text, a naive action of G on X is an action of the abstract group
G on X, whose kernel G0 is an open subgroup of G. We denote by G − C the
category whose objects are objects of C, equipped with a naive action of G, and
whose morphisms are the same as in C. In G− C, Hom-sets are actually enriched
with the structure of G-sets. Thus, G-equivariant morphisms X −→ Y , between
objects of G− C, are fixed elements of the G-set Hom(X,Y ). In short:

HomG−equ(X,Y ) = H0(G,Hom(X,Y )).

An object of G− C will be called a G-object of C.

Remark 2.1. In the sequel, unless specified otherwise, we shall write “action” for
“naive action”.
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2.2. G-linearized modules over G-schemes. In this work, all schemes are
assumed to be quasi-compact. By a sheaf over a scheme, we mean a sheaf for the
Zariski topology. We will restrict to “topologically well-behaved” G-actions, in the
sense of Definition below.

Definition 2.2. A G-scheme (or scheme with a G-action) is the data of a scheme
S, equipped with a naive action of G, satisfying the property:

(∗) S is covered by affine G-invariant open subschemes.

The collection of all G-schemes form a category G − Sch, with morphisms being
usual morphisms of schemes.
A (G,Fp)-scheme is a G-scheme of characteristic p.
If S is a given G-scheme, a (G,S)-scheme is a G-equivariant morphism

T −→ S,

in G− Sch.

Remark 2.3. In general, G may act on a scheme S, in such a way that S is not
covered by affine G-invariant open subschemes. See, however, the next Exercise
(a classical result).

Exercise 2.4. Let S be a scheme, separated over Z, such that every finite set
of points of S is contained in an open affine subscheme of S. Show that S has
property (∗), for any naive action of G on S.

It is clear that a closed subscheme of a G-scheme, given by a G-invariant Ideal,
is a G-scheme as well. It is perhaps less obvious that this also holds for open
subschemes.

Lemma 2.5. Let S be a G-scheme. Let U ⊂ G be a G-invariant open subscheme.
Then, U is a G-scheme as well.

Proof. We can assume that S = Spec(A) is affine, and G finite. The complement
of U in S is given by a G-invariant ideal I ⊂ A. Pick a point u ∈ U . Denote by
P1, . . . , Pn the distinct prime ideals of A corresponding to the G-orbit of u. For
each i = 1 . . . n, there exists an element ai ∈ I, not belonging to Pi but belonging
to all other Pj ’s. Put a :=

∑n
1 ai. Then, the principal open set D(a) is contained

in U , and contains the G-orbit of u. Denoting by

f :=
∏

g∈G

g · a

the norm of a, we see that D(f) ⊂ U is an affine G-invariant open, containing u.
Thus, U can be covered by affine G-invariant open subschemes. �

Conceptually, the next definition is down-to-earth; however, it is sufficient for our
purposes.

Definition 2.6. Let S be a G-scheme. A G-presheaf on S, with values in a
category D, is a contravariant functor, from the category of G-invariant open
subsets of S (where morphisms are inclusions), to D. A G-sheaf is a G-presheaf,
satisfying the usal sheaf axiom.
In most applications, D will actually be G− C, where C is a category.
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Definition 2.7. Let S be a G-scheme. A G-linearized OS-Module is the data of
a quasi-coherent OS-Module M , equipped with a continuous semilinear action of
G. In concrete terms, such an action is given by isomorphisms of OS-Modules

φg :M −→ (g.)∗(M),

one for each g ∈ G, such that the following conditions hold :
i) The mapping g 7→ φg is locally constant on G, i.e. factors through a quotient
G −→ G/G0, by a normal open subgroup.
ii) We have

φgh = (h.)∗(φg) ◦ φh,

for each g, h ∈ G.
We will often say (G,OS)-Module, or (G,S)-Module, instead of G-linearized OS-
Module.
The collection of all (G,OS)-Modules form an Abelian category, monoidal through
the tensor product ⊗ = ⊗OS

. We denote it by (G,OS)−Mod.
If M and N are two (G,OS)-Modules, the internal Hom of OS-modules
HomOS

(M,N) is naturally a (G,OS)-Module, which we denote simply by
Hom(M,N). We put

M∨ := Hom(M,OS).

A locally free (G,OS)-Module of finite constant rank as an OS-module, will be
called a G-vector bundle on S.

Remark 2.8. In the previous Definition, the largest open subgroup through which
g 7→ φg factors may be much smaller than the kernel of the action of G on S.

Remark 2.9. In short, a (G,OS)-Module is the data of a quasi-coherent OS-
Module, equipped with a semilinear (naive) action of G.
For G finite, a G-line bundle is a G-linearized line bundle over S, in the sense of
Mumford’s Geometric Invariant Theory.

Remark 2.10. Assume that X = Spec(A) is an affine G-scheme. In other words,
A is a commutative ring, endowed with a naive action of G. We then use the
denomination (G,A)-module (resp. (G,A)-bundle) for a (G,OS)-module (resp. a
(G,OS)-bundle). A (G,A)-module is the data of an A-module M , equipped with
a semilinear (naive) action of G. Formula for the “semi” part of linearity:

g.(am) = g(a).g(m),

for all g ∈ G, a ∈ A and m ∈M .
In particular, if G is “the” absolute Galois group of a field F , and if A = Fp, a
(G,A)-Module is then a Galois representation of the field F , with Fp coefficients.

Remark 2.11. Assume that G is a finite group, acting on the commutative ring A.
There are two extreme cases.

• The group G acts trivially on A. Then, a (G,A)-Module M , such that
M = Ad as an A-module, is a representation

ρ : G −→ GLd(A),

in the usual sense.
• The group G acts freely on Spec(A). Set B := H0(G,A). Then, B/A
is a G-Galois algebra, and by Speiser’s Lemma, the category of (G,A)-
modules is equivalent to that of B-modules, via the assignment
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{B −Mod} −→ {(G,A)−Mod},

N 7→ A⊗B N,

with quasi-inverse

{(G,A)−Mod} −→ {B −Mod},

M 7→ H0(G,M).

When trying to prove a “natural” property of (G,A)-modules, for an arbitrary
G-action on A, it is advisable to check first, if it holds true in these two extreme
cases. If it does, it is then likely to hold true in general.

Remark 2.12. Let S be a G-scheme, and let M be a quasi-coherent OS-Module.
A necessary condition for G-linearizing M (that is to say, for the existence of a
structure of (G,OS)-Module on M) is that M be G-invariant. In other words,
M is isomorphic to g∗(M), for all g ∈ G. Note that G-invariant Modules are
not systematically G-linearizable– except, for instance, when G is a free profinite
group.

3. Recollections on Witt vectors and Witt-Frobenius modules.

Let A be a ring of characteristic p. We denote by W(A) the ring of p-typical Witt
vectors built out of A. Set-wise, W(A) is simply AN, and the ring structure on
W(A) is derived from the universal Witt polynomials (see [28]). For a thorough
exposition of Witt-Frobenius modules and Witt vector bundles, see [8], where
an alternative construction of Witt vectors is provided, using divided powers of
abelian groups.

The ring of Witt vectors W(A) is endowed with a Verschiebung (additive) mor-
phism

Ver : W(A) −→ W(A)
(a0, a1, a2, ...) 7−→ (0, a0, a1, a2, ...)

and the Frobenius morphism Frob : (a0, a1, ...) 7→ (ap0, a
p
1, ...).

For any r ≥ 1, denote by Wr(A) the ring of truncated Witt vectors of length r.
We have W1(A) = A, and the ring W(A) is the projective limit of the Wr(A)
through the quotient maps

πr+1,r : Wr+1(A) −→ Wr(A)
(a0, ..., ar+1) 7−→ (a0, ..., ar)

More generally, for any two integers r ≤ s, we denote by πs,r the quotient map

Ws(A) −→Wr(A).

We will often use the following fundamental property: the quotient

W(A) −→W1(A) = A

has a multiplicative section given by the Teichmüller representative

τ : a 7→ (a, 0, ...),

refered to as the multiplicative (or Teichmüller) section.

Consider now a scheme S of characteristic p, covered by affine open subschemes
Spec(Ai). We denote by Wr(S) the scheme of Witt vectors of S of length n. It is
defined by gluing the affine schemes Spec(Wr(Ai)) and is a universal thickening
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of S of order n, through the nilpotent closed immersions Wr(S) −→ Wr+1(S).
In particular, the underlying topological space of Wr(S) agrees with that of S.

The following definition is classical (see [29]).

Definition 3.1. Let r ≥ 1 be an integer. The association

U 7→Wr(OS(U))

defines a sheaf of (commutative) rings on S, denoted by Wr(OS).

By definition, W1(OS) is simply the structure sheaf OS of S and following the
previous notations, for s ≥ r, we denote by

πs,r : Ws(OS) −→Wr(OS)

the natural transformation defined by the

πs,r(U) : Ws(OS(U)) −→Wr(OS(U))

defined above.

Witt-Frobenius modules mimic quasi-coherent OS-modules, in higher p-primary
torsion.

Definition 3.2. Assume that S = Spec(A) is affine. Let r ≥ 1 be a positive
integer. Let M be a Wr(A)-module. The formula

U 7→M ⊗Wr(A) Wr(OS(U))

defines a presheaf (for the Zariski topology) on S. We denote by M̃ the associated
sheaf. It is a sheaf of Wr(OS)-modules.

Definition 3.3 (Witt-Frobenius Modules).
A Witt-Frobenius Module of height r ≥ 1 over S is a sheaf of Wr(OS)-modules,

which is locally isomorphic to a sheaf of the shape M̃ (cf. Definition 3.2).
When no reference to its height is necessary, a Witt-Frobenius Module will simply
be referred to as a WtF-Module.
A WtF-module over S locally isomorphic to Wr(OS)

d for some d ≥ 0 is called a
Wr-bundle of rank d.

3.1. Reduction. Let 0 ≤ r ≤ s be integers. Let F be a sheaf ofWs(OS)-modules
over S.
The reduction of F to pr-torsion is the sheaf of Wr(OS)-modules associated to
the presheaf

U 7→ F(U)⊗Ws(OS(U)) Wr(OS(U)),

which we denote by F ⊗Ws
Wr, or simply F/pr.

3.2. Frobenius. The absolute Frobenius morphism

Frob : S −→ S

lifts by functoriality to an endomorphism of Wr(S), the Frobenius endomorphism
of Wr(S), which we still denote by Frob. If F is a Wr-module over S, and if m
is a positive integer, we put

F (m) := (Frobm)∗(F);

is a Wr-module over S. If F is a Wr-bundle, then F
(m) is a Wr-bundle as well,

of the same rank as F . Note that, throughout this paper, the Frobenius pullback
of a WtF-module is always taken with respect to the Frobenius of the base where
the module is defined, thus avoiding confusion.
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4. (G,M)-torsors and Yoneda extensions.

Let G be a profinite group G. Let A be a G-group, i.e. a group equipped with
a (naive) action of G. Then, there is a well-known bijection between the set
H1(G,A), and isomorphism classes of G-equivariant principal homogeneous spaces
(torsors) of A. In this section, we provide needed extensions of this fact, especially
to the context of G-equivariant torsors under (G,OS)-modules. Our basic tool
(see Proposition 4.20) is Yoneda’s smart interpretation of torsors, as equivalence
classes of extensions [32].

4.1. Yoneda extensions and operations on them. Let S be a G-scheme, let
n ∈ N

∗ be an integer and let A,B be (G,OS)-Modules over S. As in any Abelian
category, we can consider the notion of a Yoneda n-extension of A by B, which we
now recall (see [5, §2]). One could use the langage of derived categories instead,
but we chose to stick to Yoneda extensions: they are concrete, and easy to learn.

As usual, we set

YExt0(G,OS)−Mod(A,B) := Hom(G,OS)−Mod(A,B).

For n ≥ 1, an n-extension of A by B is an exact sequence of (G,OS)-Modules

E : 0 −→ B −→ A1 −→ . . . −→ An −→ A −→ 0.

4.2. Morphisms. A morphism

E1 −→ E2,

between two n-extensions of A by B, is a morphism of complexes which is the
identity on both A and B. The n-extensions of A by B then form a category
YExtn(G,OS)−Mod(A,B).

4.3. Pushforwards and pullbacks. A morphism f : B −→ B′ induces a push-
forward functor

f∗ : YExtn(G,OS)−Mod(A,B) −→ YExtn(G,OS)−Mod(A,B
′).

Likewise, a morphism g : A′ −→ A induces a pullback functor

g∗ : YExtn(G,OS)−Mod(A,B) −→ YExtn(G,OS)−Mod(A
′, B).

The two composite functors

f∗g
∗ : YExtn(G,OS)−Mod(A,B) −→ YExtn(G,OS)−Mod(A

′, B′)

and

g∗f∗ : YExtn(G,OS)−Mod(A,B) −→ YExtn(G,OS)−Mod(A
′, B′)

are canonically isomorphic.
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4.4. Baer sum. One can add two n-extensions

E1, E2 ∈ YExtn(G,OS)−Mod(A,B),

using the Baer sum.
Denoting by

δ : A −→ A⊕A
a 7−→ (a, a)

the diagonal, and by
α : B ⊕B −→ B

(b1, b2) 7−→ b1 + b2

the addition, our formula is

E1 + E2 := α∗(δ
∗(E1 ⊕ E2)).

For this operation, the trivial 1-extension is the direct sum

0 −→ B −→ B ⊕A −→ A −→ 0.

If n ≥ 2, the trivial n-extension is

0 −→ B
Id
−→ B −→ 0 −→ . . . −→ 0 −→ A

Id
−→ A −→ 0.

Baer sum is OS-linear, in the natural fashion.

4.5. Change of the base. Let

h : T −→ S

be a G-equivariant morphism of G-schemes. Let

E : 0 −→ B −→ A1 −→ . . . −→ An −→ A −→ 0

be an n-extension, in YExtn(G,OS)−Mod(A,B). We would like to define

h∗(E) ∈ YExtn(G,OT )−Mod(h
∗(A), h∗(B)).

This can be done in a natural way, in each of the following items.

(1) The morphism h is flat.
(2) When decomposing E as the cup-product of short exact sequences (indexed

by i = 1, . . . , n)

Ei : 0 −→ Ei −→ Ai −→ Ei+1 −→ 0,

all Ei’s are Zariski locally split on S, as exact sequences of OS-modules.
Then, applying usual change of the base indeed yields an exact sequence
of (G,OT )-modules

h∗(E) : 0 −→ h∗(B) −→ h∗(A1) −→ . . . −→ h∗(An) −→ h∗(A) −→ 0.

Note that, in many applications, it happens that A, B and the Ai’s are vec-
tor bundles, so that the Ei’s are also vector bundles, and the assumption
above is fulfilled.

(3) In this last item, we assume there is a morphism of (G,Fp)-schemes

h1 : T1 −→ S1,

and an integer r ≥ 1, such that h is the morphism

h = Wr(h1) : T = Wr(T1) −→ S = Wr(S1)

induced on Witt vectors.
We further assume that “E is schematic, w.r.t. the ring scheme Wr”.
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Precisely, this means we are given n+ 2 flat, affine and G-linearized com-
mutative S1-group schemes

B,Ai,A −→ S1,

enjoying the following properties.
• Let V be one of these group schemes. Forgetting the action of G,
there exists an integer s ∈ [1, . . . , r], and d ∈ N, such that V is,
Zariski locally over S1, isomorphic to the group scheme Wd

s . Here s
and d depend on V.

• Each of these V’s is endowed with the extra structure of a scheme in
(G,Wr)-modules over S1. Considering Wr as a scheme of commu-
tative rings over S1, this means we are given a morphism of (G,S1)-
schemes

Wr ×S1
V −→ V,

satisfying the axioms which are usual for modules over rings.
• The n-extension of (G,OS)-modules E arises from an exact sequence

of schemes of (G,Wr)-modules over S1,

E : 0 −→ B −→ A1 −→ . . . −→ An −→ A −→ 0.

This means that E is an exact sequence of commutative group
schemes over S1 (for the fppf topology), in which all arrows respect
the structures of schemes of (G,Wr)-modules. Using that each of
these group schemes is locally isomorphic to a Wd

s , and the triviality
of Ws-torsors over an affine base, we get, for every affine G-invariant
open U ⊂ S1, that sections of E over U , reading as

E(U) : 0 −→ B(U) −→ A1(U) −→ . . . −→ An(U) −→ A(U) −→ 0,

are still exact sequences. Remembering that S = Wr(S1), they thus
define an n-extension of (G,OS)-modules, which we require to be
isomorphic to E .

If E comes from an E as above, we can form

h∗1(E) : 0 −→ h∗1(B) −→ h∗1(A1) −→ . . . −→ h∗1(An) −→ h∗1(A) −→ 0;

an exact sequence of schemes of (G,Wr)-modules over T1. We then define
h∗(E) as the n-extension of (G,OT )-modules arising from h∗1(E) (through
the process explained above). Of course, h∗(E) a priori depends on the
choice of E. In applications, this choice will be clear: there will be no
ambiguity, as to which E is used.

Most changes of the base will be performed through the process described in item
(2) above. Note that item (1) is not really suitable for our purposes: our arrows h,
often arising as in item (3), will almost never be flat! Actually, all changes of the
base made in this series of three papers, can be performed following the process
of item (3).

4.6. Morphisms of 1-extensions. Morphisms in YExt1(G,OS)−Mod(A,B) are
isomorphisms. Automorphisms of 1-extensions are easily described, as follows.

Lemma 4.1. Let

E : 0 −→ B
i
−→ E

π
−→ A −→ 0

be an exact sequence of (G,OS)-Modules. Then, the assignment

Hom(G,OS)−Mod(A,B) −→ AutYExt1
(G,OS)−Mod

(A,B)(E),
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f 7→ (x ∈ E 7→ x+ i(f(π(x))))

is an isomorphism of abelian groups.

Proof. Exercise, working for 1-extensions in any Abelian category. �

4.7. Equivalence classes of Yoneda extensions. Let us say that two n-
extensions E1 and E2 are linked, if there exists an n-extension E3, together with
morphisms

E1

$$❏
❏❏

❏❏
E2

zztt
tt
t

E3.

Being linked is an equivalence relation (see [24], end of Section 2), compatible with
Baer sum, pullbacks, pushforwards and change of the base.

Definition 4.2. We denote by YExtn(G,OS)−Mod(A,B) the Abelian group
of equivalence classes of linked Yoneda n-extensions, in the category
YExtn(G,OS)−Mod(A,B).

Lemma 4.3. Assume that A is a G-vector bundle on S. Then, there is a canonical
isomorphism

YExtn(G,OS)−Mod(A,B)
∼
−→ YExtn(G,OS)−Mod(OS ,Hom(A,B)).

Proof. Same proof as [5, Lemma 2.5]. �

4.8. G-affine spaces. In this text, we’d like to lay emphasis on the notion of an
“affine space”. We first define it as a set, equipped with barycentric operations,
with coefficients in a commutative ring R. This terminology unfortunately collides
with the “affine R-scheme” A

n
R, but we try our best to avoid ambiguities. Note

that an “affine space”, whose R-module of translations is free of rank n, is
isomorphic to an “affine scheme” A

n
R, over R. We decided to allow the empty set

to qualify as an affine space. Our motivation to do so is simple: the intersection
of affine subspaces is then always an affine subspace.
Following tradition, we use the word “torsor” (under a group M) to denote
a nonempty set X, equipped with a simply transitive action of M . Thus, a
nonempty affine space is a torsor under the (abelian) group of its translations.
Conversely, a torsor over an abelian group is canonically endowed with the
structure of a (nonempty) affine space over Z.
We now discuss details. They are routine exercises, taking into account (naive) ac-
tions of a given profinite group G, and transposing the set-theoretic notions above
to algebraic geometry. We hope the interested reader will enjoy reading these lines.

Definition 4.4. Let M be a (not necessarily abelian) G-group.
A (G,M)-torsor is a nonempty left G-set X, equipped with a right action of M ,
subject to the following conditions :

i) The action of M on X is simply transitive, i.e. the arrow

X ×M −→ X ×X,

(x,m) 7→ (x, x.m)

is bijective.
ii) We have

g(x.m) = g(x).g(m),
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for all g ∈ G, x ∈ X and m ∈M .

Let S = Spec(A) be an affine G-scheme, i.e. the ring A is endowed with an action
of G.

Definition 4.5. Let n ≥ 1 be an integer. We denote by

∆n(A) := {(α1, . . . , αn) ∈ A
n/

n
∑

i=1

αi = 1}

the usal simplex; it is a G-set.

Definition 4.6. A G-affine space over A is the data of a G-set X, equipped with
G-equivariant barycentric operations, with coefficients in A.
Concretely, this means that X is given with G-equivariant functions, one for each
n ≥ 2,

Bn : ∆n(A)×X
n −→ X,

simply denoted by

((α1, . . . , αn), (x1, . . . , xn)) 7→
∑

αixi,

satisfying the usual associativity relations, together with B1 = IdX .
If G is trivial, we just say “affine space over A” for “G-affine space over A”.
We denote by XG ⊂ X the subset consisting of G-fixed points. It is an affine space
over AG.

An affine map X
f
−→ X ′, between G-affine spaces over A, is the data of a map

f : X −→ X ′,

compatible with the barycentric operations of X and X ′.
We write Hom(X,X ′) for the set of such morphisms. It is a G-affine space, in a
natural way.
We put

HomG(X,X
′) := H0(G,Hom(X,X ′)).

The set HomG(X,X
′) thus consists of G-equivariant affine maps X −→ X ′, also

called affine G-maps.
The collection of G-affine spaces over A form a category, having the G-sets
Hom(·, ·) as morphisms.

Example 4.7. It is clear that (G,A)-modules are G-affine spaces over A, in a
natural way. The G-invariant subset ∆n(A) ⊂ An is stable under barycentric
operations in the free G-module An; it is thus also a G-affine space over A.

Exercise 4.8. Let X be a G-affine space over A.
1) Show that all barycentric operations on X can be recovered from the data of

T : X ×X ×X −→ X
(x, y, z) 7−→ x+ y − z

together with the operations

tα : X ×X −→ X
(x, y) 7−→ αx+ (1− α)y

,

for all α ∈ A.
2) Assume that there exists an element α0 ∈ A, such that α0 and 1− α0 are both
invertible. Show that T can be recovered from the tα’s, for well-chosen α’s.
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Definition 4.9. Let X be a nonempty G-affine space. An affine automorphism
of the shape

X −→ X
x 7−→ x+ y − z

for some y, z ∈ X, will be called a translation, and simply denoted by “ y − z”.

We denote by
−→
X ⊂ Aut(X) the (abelian) subgroup of translations. It comes natu-

rally equipped with the structure of a (G,A)-module.

Remark 4.10. We have y − z = y′ − z′ ∈
−→
X iff y − z + z′ = y′ ∈ X.

Lemma 4.11. Let X be an nonempty G-affine space over A. Then X is naturally

endowed with the structure of a (G,
−→
X )-torsor.

Conversely, let M be a (G,A)-module, and let X be a (G,M)-torsor. Then, X
is naturally endowed with the structure of a (nonempty) G-affine space over A,

having
−→
X =M .

Proof. This is clear. �

The next Lemma is an adaptation of the usual construction, in classical real affine
geometry, which provides a canonical embedding of an n-dimensional affine space,
as an affine hyperplane inside an (n+ 1)-dimensional vector space.

Lemma 4.12 (“Modulification” of a nonempty affine space).
Let

E : 0 −→M −→ N
π
−→ A −→ 0

be an exact sequence of (G,A)-modules. Then

X := π−1(1)

is a nonempty G-affine space over A, with
−→
X =M .

Conversely, given a nonempty G-affine space X over A, there exists a canonical
exact sequence of (G,A)-modules

E(X) : 0 −→
−→
X −→ E(X)

π
−→ A −→ 0,

together with a canonical isomorphism of G-affine spaces

X ≃ π−1(1).

Proof. The first assertion is clear. The second one is less obvious. We put

E(X) := (X ×A×
−→
X )/ ∼,

where the equivalence relation ∼ is given by

(x, α, y − z) ∼ (x′, α′, y′ − z′)

if and only if α = α′ and

αx− αx′ + y = y′ − z′ + z ∈ X.

The (class of the) element (x, α, y−z) is then understood as “αx+y−z ∈ E(X)”.
Addition is defined by

(x, α, y − z) + (x′, α′, y′ − z′) = (x, α+ α′, α′(x′ − x) + y + y′ − z − z′).

Muliplication by scalars is given by

β.(x, α, y − z) := (x, βα, β(y − z)).

The G-action is defined in the obvious way- as well as the extension E(X). �
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Definition 4.13 (Restriction and Extension of scalars, for affine spaces).
Let S′ = Spec(A′) be another affine G-scheme and F : A −→ A′ a G-equivariant
morphisms of rings.

i) Let X ′ be a G-affine space over A′. We denote by (X ′)|f the G-affine space
over A obtained from X ′, using F to restrict scalars.

ii) Let X be a non-empty G-affine space over A. We denote by

X ⊗A A
′ := (π ⊗ IdA′)−1(1)

the G-affine space over A′ associated to the exact sequence

E(X)⊗A A
′ : 0 −→

−→
X ⊗A A

′ −→ E(X)⊗A A
′ π
−→ A′ −→ 0.

We thus have
−−−−−−→
X ⊗A A′ =

−→
X ⊗A A′. If X = ∅, we set X ⊗A A′ = ∅.

Remark 4.14. Extension of scalars is left adjoint to restriction of scalars, for affine
maps.

The previous Definitions can clearly be sheafified, in the usual fashion. We briefly
explain how.

Definition 4.15. Let S = Spec(A) be an affine G-scheme. Let X be a G-affine

space over A. We denote by X̃ the G-sheaf on S

U 7→ X ⊗A OS(U).

For each G-invariant open U ⊂ X, X̃(U) is thus a G-affine space over OS(U).

Definition 4.16. Let S be a G-scheme.
A G-affine space over S is the data of a G-sheaf

X : U 7→ X (U),

with values in the category of G-affine spaces, such that the following holds.

i) For all G-invariant open U ⊂ S, X (U) is a G-affine space over OS(U).

ii) For all G-invariant opens V ⊂ U ⊂ S, the morphism

X (ρV,U ) : X (U) −→ X (V )

is a G-equivariant affine morphism, where X (V ) is considered as a G-affine space,
via change of rings through the restriction ρV,U : OS(U) −→ OS(V ).

iii) Each s ∈ S has an open affine G-invariant neighborhood U = Spec(A), such

that X|U is isomorphic to X̃, for some G-affine space X over A.

The G-affine space X over S is said to be everywhere nonempty, if each point
s ∈ S has a G-invariant open neighborhood U , with X (U) 6= ∅. In this case, there

exists a unique (G,OS)-Module M , such that M(U) =
−−−→
X (U), for all G-invariant

open subsets U ⊂ S. We denote this M by
−→
X .

Definition 4.17. Let S be a G-scheme, and let M be a (G,OS)-Module over S.
A (G,M)-torsor (over S) is a G-affine space X over S, everywhere nonempty,

together with an isomorphism of (G,OS)-Modules
−→
X

∼
−→M.
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4.9. Twisting 1-extensions. Recall that S denotes a G-scheme.

Definition 4.18. Let E and M be (G,OS)-Modules. A (left) action of M on E
is a G-equivariant morphism

M −→ AutOS
(E),

between G-sheaves with values in G−Grp.

Example 4.19. Let M be a (G,OS)-Module over S. Then, M acts on

E :=M
⊕

OS ,

by the formula (on functors of points)

x.(y, λ) = (y + λx, λ),

for all x, y ∈M, and all λ ∈ OS .
This example deserves to be compared to “an exponential series, truncated in
degree 2”, thinking of 1 + x as ex.

Let m ≥ 1 be an integer. Let E and M be (G,OS)-Modules over S. Assume
given an action of M on E. Let P be a (G,M)-torsor over S. Then, one can form
the twisted (G,OS)-Module EP , through the “usual twisting process”. We briefly
explain how.
Assume first that S = Spec(A) is affine. View M and E as A-modules, equipped
with a semilinear action of G. We put

EP := (P × E)/M.

Here, the quotient is taken with respect to the natural diagonal action of M ,
identifying (x.m, e) and (x,m.e), for all e ∈ E, m ∈ M and x ∈ P . It is a set,
equipped with an action of G, inherited from the diagonal action of G on P × E.
Temporarily forgetting the action of G, it is easily shown that there is a unique
structure of an A-module on EP such that, for any b ∈ P , the map

E −→ EP

e 7−→ (b, e)

is an isomorphism of A-modules.
We then see that the natural action of G on EP occurs through semilinear au-
tomorphisms. The case S arbitrary follows by gluing, using the fact that affine
G-invariant opens of S form a basis of the G-topology of S.

Twisting is functorial. More precisely, let

f : E −→ E′

be an M -equivariant homomorphism between (G,OS)-Modules, equipped with an
action of M .
Twisting by the (G,M)-torsor P then yields a morphism of (G,OS)-Modules

fP : EP −→ E′P .

The twist EP is canonically isomorphic to E, in each of the following cases.

i) The (G,M)-torsor P is equal to M , the trivial torsor.

ii) The action of M on E is trivial.

We can now precisely formulate an equivalence of categories, linking 1-extensions
of OS by M to (G,M)-torsors. It is a “sheafification” of Lemma 4.12.
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Proposition 4.20. Let S be a G-scheme. Let M be a (G,OS)-Module over S.
Let

E : 0 −→M −→ E
π
−→ OS −→ 0

be an exact sequence of (G,OS)-Modules. Then, the assignment

U 7→ π−1(1) ⊂ H0(U,E),

for every G-invariant open U ⊂ S, defines a (G,M)-torsor over S. We denote it
by X(E).
Conversely, let P be a (G,M)-torsor over S. Consider the trivial extension

E0 : 0 −→M
i
−→M

⊕

OS
π
−→ OS −→ 0.

Equip M and OS with the trivial action of M , and M
⊕

OS with the action of
M given in Example 4.19. The arrows i and π are then M -equivariant, and we
denote by E(P ) the twisted extension

EP0 : 0 −→M
iP
−→ E(P ) := (M

⊕

OS)
P πP

−→ OS −→ 0.

The assignments

E 7→ X(E)

and

P 7→ E(P )

are mutually inverse equivalences of categories, from YExt1(G,OS)−Mod(OS ,M) to

the category of (G,M)-torsors over S.

Proof. This is done in Lemma 4.12 if S is affine. The general case follows by
glueing. �

4.10. Representability of torsors under G-vector bundles.

Definition 4.21. Let V be a vector bundle over a scheme S. We set

A(V ) := Spec(SymOS
(V ∨)) −→ S.

It is the affine space associated to V . It represents the functor of points of V : for
each morphism of schemes T −→ S, we have

A(V )(T ) = H0(T, V ⊗OS
OT ).

Definition 4.22. Let

E : 0 −→ V
i
−→ E

π
−→ OS −→ 0

be an extension of vector bundles, over a scheme S.
We denote its dual extension by

E∨ : 0 −→ OS
π∨

−→ E∨ i∨
−→ V ∨ −→ 0.

For n ≥ 1, we then define the n-th symmetric power of E∨ as

Symn(E∨) : 0 −→ Symn−1(E∨)
×π∨

−→ Symn(E∨)
Symn(i∨)
−→ Symn(V ∨) −→ 0.
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Remark 4.23. The extension Symn(E∨) as above, is the global version of the follow-
ing local construction. For a commutative ring A, denote by A[X0, X1, . . . , Xd]n
the space of polynomials with coefficients in A, in d+1 variables, homogeneous of
degree n. Then, we have an exact sequence of free A-modules

0 −→ A[X0, X1, . . . , Xd]n−1
×X0−→ A[X0, X1, . . . , Xd]n

X0=0
−→ A[X1, . . . , Xd]n −→ 0.

Indeed, this is the particular case where S = Spec(A), E = Od+1
S , and π is the

projection on the first factor.

The next Lemma will create no big surprise, but is very important: a key tool,
in the proof of Theorem B, indeed consists in performing changes of the base, to
appropriate G-affine spaces– splitting schemes of extensions of G-vector bundles.

Proposition 4.24. Let V be a G-vector bundle over a G-scheme S. Let X be a
(G,V )-torsor over S. Then, X is represented by a G-scheme, affine over S.
Slightly abusing notation, we still denote this G-scheme by X −→ S.

If X corresponds to an extension (of G-vector bundles over S)

E : 0 −→ V
i
−→ E

π
−→ OS −→ 0,

then this (G,S)-scheme is the scheme of sections of π.
It is an affine subspace of A(E), having A(V ) as its space of translations. As such,
it is the Spec of the filtered (G,OS)-Algebra

lim
−→

(Symn(E∨)),

where the limit is taken with respect to the injections of the natural exact sequences

Symn(E∨) : 0 −→ Symn−1(E∨)
×π∨

−→ Symn(E∨)
Symn(i∨)
−→ Symn+1(V ∨) −→ 0.

Proof. This follow from the observation that

X ⊂ A(E)

is the closed subscheme given by the single affine equation

π∨ = 1.

�

5. Recollections on G-WtF Modules, (G,Wr)-affine spaces and

(G,S)-cohomology.

We shall need the G-equivariant version of the notions of WtF-Modules and,
especially, of Witt vector bundles, as introduced in [8]. Teichmüller lifts of line
bundles will play a decisive rôle. For the convenience of the reader, we recall
these notions below. They give rise to a bunch of algebro-geometric structures,
over Witt vectors Wr. We mainly focus in finite depth r <∞– actually, r = 2 is
sufficient for our purposes. Most structures, in depth r =∞ (i.e. over W∞ = W),
are simply “compatible structures over Wr, for all r ≥ 1”, through the following
general construction.

For each integer r ≥ 1, let Sr be a category, consisting of algebro-geometric struc-
tures over Wr. For intance, Sr may be (G,Wr)-affine spaces over a given (G,Fp)-
scheme S, or Yoneda n-extensions of (G,Wr)-bundles over S. Assume that there
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are natural reduction arrows (functors) ρr : Sr −→ Sr−1. This is the case in the
previous examples. Then, we define a category

S∞ = lim
←−
Sr

as follows. An object of S∞ is, by definition, the data of an object Xr ∈ Sr for all
r ≥ 1, together with compatibility isomorphisms

φr : ρr(Xr)
∼
−→ Xr−1,

for all r ≥ 2. An arrow

(Xr, φr) −→ (X ′
r, φ

′
r)

is a collection of arrows fr : Xr −→ X ′
r, with the obvious commutation conditions.

A concrete instance of this general construction appears in Definition 5.3, with

Sr = {(G,Wr)− bundles over S},

where S is a (G,Fp)-scheme S.

Keeping in mind that focusing on finite depth is sufficient for our proof of the
Smoothness Theorem provided in [7], we move on to the main definitions.

Definition 5.1 ((G,Wr)-Module, (G,Wr)-bundle, (G,Wr)-affine space and
(G,M)-torsor over S).
Let S be a (G,Fp)-scheme. Pick r ∈ N∗∪{∞}. Recall that Wr(S) is a G-scheme,
equipped with its Frobenius

Frob : Wr(S) −→Wr(S),

lifting the (absolute) Frobenius of S.
A (G,Wr)-Module M over S is a Wr(OS)-module, equipped with a semi-linear
action of G.
If M is locally free of finite rank as a Wr-bundle, we shall say that M is a
(G,Wr)- bundle over S.

In case mentionning r is superfluous, a (G,Wr)-Module over S is simply referred
to as a G-Witt-Frobenius (or G-WtF) Module over S.

Similarly, a (G,Wr)-affine space over S is, by definition, a G-affine space over
Wr(S). IfM is a (G,Wr)-module over S, a (G,M)-torsor is defined as in 4.17,
whereM is viewed as a (G,OWr(S))-Module.

If M is a (G,Wr)-module over S, Proposition 4.20 implies that the category of
(G,M)-torsors is equivalent to the category

YExt1(G,Wr(OS))−Mod(Wr(OS),M).

Definition 5.2. ((G,S)-cohomology)
Let S be a (G,Fp)-scheme, and let r ∈ N∗ ∪ {∞}.
LetM be a (G,Wr)-Module over S.
For n ≥ 0, we set

Hn((G,S),M) := YExtn(G,Wr(OS))−Mod(Wr(OS),M).

In particular, H1((G,S),M) is the abelian group formed by isomorphism classes
of (G,M)-torsors over S.



22

Definition 5.3 (Lifting (G,Wr)-bundles).
LetMr be a (G,Wr)-bundle over S. Pick an integer s ≥ r.
A lifting ofMr to p

s-torsion, is the data of a (G,Ws)-bundleMs over S, together
with an isomorphism of (G,Wr)-bundles

Ms ⊗Ws
Wr

∼
−→Mr.

If specifying an isomorphism is not necessary, we simply say thatMr lifts toMs.
We say thatMr lifts completely ifMr admits a compatible system of liftings, i.e.
for every s > r, a (G,Ws)-bundleMs is given, together with isomorphisms

Ms+1 ⊗Ws+1
Ws

∼
−→Ms.

5.1. Scheme of sections of an extension of (G,Wr)-bundles.

Given an (Fp, G)-scheme S, Proposition 4.24 can be generalized to the context of
(G,Wr)-bundles over S, as follows.

Definition 5.4. Let r ≥ 1 be an integer, and let

Er : 0 −→ Vr
ir−→ Er

πr−→Wr(OS) −→ 0

be an extension of (G,Wr)-bundles over S.
We consider the functor

Φr(= Φr(Vr)) : {(G,S)− Sch} −→ {G− Sets}
(t : T −→ S) 7−→ {σr : Wr(OT )→ t∗(Er), s.t. πr ◦ σr = IdWr(OT )}.

It is the functor of sections of πr.

Proposition 5.5. The functor Φr is representable, by a G-scheme

Sr(Er)
gr
−→ S,

the scheme of sections of Er. It is naturally presented as a composite

Sr(Er) = Xr
hr−→ Xr−1

hr−1
−→ . . .

h2−→ X1
g1
−→ S.

The morphism g1 is the G-scheme of sections of the mod p reduction

E1 : 0 −→ V1
i1−→ E1

π1−→ OS −→ 0,

as constructed in Proposition 4.24.

The morphism hi : Xi −→ Xi−1 is a (G,V
(i−1)
1 )-torsor.

Proof. The functor Φr is represented by the Greenberg transfer

RWr/W1
(S(Er) −→Wr(S)) −→ S.

Here S(Er) −→Wr(S) denotes the scheme of sections of Er, viewed as an extension
of G-vector bundles over Wr(S) (see Proposition 4.24). The rest of the statement
follows from Greenberg’s structure theorem (see [1]). It can be concretely presented
as follows. Over

X1 := S(E1) −→ S,

the extension E1 acquires a canonical section

σ1 ∈ H
0(X1, E1).

We want to lift σ1 to a section σ2 of the mod p2 reduction of Er, reading as

E2 : 0 −→ V2
i2−→ Er

π2−→W2(OS) −→ 0.



23

The space of such σ2’s is naturally a (G,V
(1)
1 )-torsor, which we denote by

h2 : X2 −→ X1.

Over X2, E2 acquires a canonical section σ2. Then, we iterate, lifting σ2 to σ3,
and so forth. �

5.2. Teichmüller lift of a line bundle. As shown in [8, §3], the multiplica-
tive section for Witt vectors provides a compatible system of liftings, for G-line
bundles over S. Its main properties are gathered in the next Proposition, proved
in loc. cit..

Proposition 5.6. Let S be a (G,Fp)-scheme. Let L be a G-line bundle over S.
For any r ≥ 1, there exists a canonical lift of L to a (G,Wr)-line bundle over S.

It is the r-th Teichmüller lift of L, denoted by Wr(L). Teichmüller lifts of L are
compatible, in the following sense.

1) We have W1(L) = L.
2) For all s ≥ r ≥ 1, we have a natural exact sequence (of G-WtF-Modules over
S)

0 −→ (Frobr)∗(Ws−r(L
⊗pr )) −→Ws(L)

πs,r,L

−→ Wr(L) −→ 0.

Furthermore, the surjection πs,r,L admits a canonical (non-linear, sheaf-theoretic,
G-equivariant) section- its Teichmüller section. We denote it by τs,r,L, or simply
by τL. It is obtained by twisting the “usual” Teichmüller section, by the Gm-torsor
associated to L.

6. Cyclotomic pairs and smooth profinite groups.

6.1. (n, e)-cyclotomic pairs. We set

Z/p∞Z := Zp.

We endow Zp-modules of finite-type with the p-adic topology.

Definition 6.1. Let G be a profinite group. Let e ∈ N
∗ ∪ {∞} be a number.

A (Z/peZ, G)-moduleM is a Z/peZ-module of finite type, endowed with a contin-
uous action of G. (In case e <∞, the action is thus naive.)

For an integer 1 ≤ f ≤ e and a (Z/peZ, G)-moduleM, we put

M/pf :=M⊗Zp
(Z/pfZ),

and we denote by
πe,f :M−→M/pf

the quotient map.

Definition 6.2. Let n ≥ 1 and e ∈ N
∗ ∪ {∞}. Let T be a (Z/pe+1

Z, G)-module,
free of rank one as a Z/pe+1

Z-module. We say that the pair (G, T ) is (n, e)-
cyclotomic if, for every open subgroup H ∈ G, the morphism

Hn(H, T ⊗n) −→ Hn(H, (T /p)⊗n),

induced by πe+1,1, is surjective. The integer e is then called the depth of the
cyclotomic pair.

Remark 6.3. By a limit argument, “open” may be replaced by “closed” in the
preceding definition.
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Remark 6.4. Let T be a (Z/pe+1
Z, G)-module, free of rank one as a Z/pe+1

Z-
module. Let G1 ⊂ G be an open subgroup of prime-to-p index. Then, the pair
(G, T ) is (n, e)-cyclotomic if, and only if, the pair (G1, T ) is (n, e)-cyclotomic, by
a usual restriction/corestriction argument.
In particular, we can take G1 to be the kernel of the multiplicative character

χ1 : G −→ F
×
p ,

giving the action of G on T /p. By doing so, we can reduce many problems to the
case where T /p ≃ Fp is equipped with the trivial action of G.

Remark 6.5. Let (G, T ) be an (n, e)-cyclotomic pair. Then, for every integer f ,
1 ≤ f < e+ 1, and for every open subgroup H ∈ G, the arrow

Hn(H, T ⊗n) −→ Hn(H, (T /pf )⊗n)

is surjective. The proof is by induction on f , using the exact sequences

0 −→ T /pf
×p
−→ T /pf+1 −→ T /p −→ 0.

If (G, T ) is a (n, e)-cyclotomic pair, then T is given by a continuous character

χ : G −→ (Z/pe+1
Z)×,

which is the analogue of the usual cyclotomic character in number theory. Pulling
this analogy further, we set, for any integer i ≥ 1,

Z/pe+1
Z (i) := T ⊗i

Zp ,

and for any Z/pe+1
Z-moduleM, we put

M(i) :=M⊗Zp
Z/pe+1

Z (i).

This is the notation for “cyclotomic twists”.

Example 6.6. Let F be a field of characteristic not p. Let G = Gal(Fsep/F ) be
the Galois group associated to a separable closure Fs/F . Let

µ := lim
←−
r

µpr

be the Tate module of roots of unity of p-primary order. It is a free Zp-module of
rank one, equipped with a continuous action of G. Kummer theory implies that the
pair (G,µ) is (1,∞)-cyclotomic. As explained in the introduction, the statement
of the Bloch-Kato conjecture is equivalent to (G,µ) being (n, 1)-cyclotomic, for
every n ≥ 1. Other fundamental examples of cyclotomic pairs are given in [5, §4].

We conclude this section with an instructive exercise.

Exercise 6.7. Assume that p = 2. The goal is to present a group-theoretic version
of the famous identity

(x) ∪ (x) = (−1) ∪ (x) ∈ H2(F,Z/2),

valid for every x ∈ F×, with F a field of characteristic not 2.
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(1) Let G be a profinite group. Let

χ : G −→ {1,−1}(≃ F2)

be a character of G. Denote by Z/4(χ) the group Z/4, on which G act via
χ. Let

E1 : 0 −→ Z/2 −→ E1 −→ Z/2 −→ 0

be an extension of (F2, G)-modules, with class e1 ∈ H
1(G,F2).

Assume that E1 lifts to an extension of (Z/4, G)-modules

E2 : 0 −→ Z/4(χ) −→ E2 −→ Z/4 −→ 0.

Show that the identity

e1 ∪ e1 = χ ∪ e1 ∈ H
2(G,F2)

holds.

(2) How does (1) generalize the famous identity above, to the context of
cyclotomic pairs?

(3) State and prove the analogue of the identity above when p is odd, for a
(1, 1)-cyclotomic pair (G,Z/p2(1)).

6.2. (n, e)-smooth profinite groups. We now proceed to state our new def-
inition of smooth profinite groups. We provide, in sections 11 and 12, several
equivalent definitions of smoothness, which will be used in the next parts of this
work.

Definition 6.8 (Smooth profinite group).
Let n ≥ 1 and e ∈ N

∗ ∪{∞}. A profinite group G is said to be (n, e)-smooth if the
following lifting property holds.
Let A be a perfect Fp-algebra equipped with a (naive) action of G. Let L1 be a
locally free A-module of rank one, equipped with a semi-linear (naive) action of G.
Let

c ∈ Hn(G,L1)

be a cohomology class. Then, there exists a lift of L1, to a (We+1(A), G)-module
Le+1[c], locally free of rank one as a We+1(A)-module (and depending on c), such
that c belongs to the image of the natural map

Hn(G,Le+1[c]) −→ Hn(G,L1).

The next proposition gives another definition of smoothness, in the case where the
depth e equals 1.

Proposition 6.9. A profinite group G is (1, 1)-smooth iff the following holds.
Let A be a perfect Fp-algebra equipped with a (naive) action of G. Let L1 be a
locally free A-module of rank one, equipped with a (naive) semi-linear action of G.
Let c ∈ Hn(G,L1) be a cohomology class. Introduce the natural exact sequence of
(W2(A), G)-modules

0 −→ Frob∗(L
⊗p
1 ) −→W2(L1) −→ L1 −→ 0;

see [8, §3].
Denote by

β : Hn(G,L1) −→ Hn+1(G,L⊗p
1 )



26

its associated Bockstein morphism. Then, there exists an extension of (G,A)-
modules

E : 0 −→ A −→ E −→ A −→ 0,

depending on c, with the following property. Consider the twisted extension

0 −→ L⊗p
1 −→ E ⊗A L

⊗p
1 −→ L⊗p

1 −→ 0.

Applying the adjunction X −→ Frob∗(Frob
∗(X)), we get an extension of (G,A)-

modules

E(L1) : 0 −→ Frob∗(L
⊗p
1 ) −→ E(L1) −→ L1 −→ 0.

Denote by β′ the Bockstein homomorphism associated to this extension.
Then, we have

β(c) = β′(c) ∈ Hn+1(G,L⊗p
1 ).

Proof. The general case being similar, we give the proof in the case n = 1.
Consider the natural extension

Nat2 : 0 −→ Frob∗(A) −→W2(A) −→ A −→ 0.

The Baer sum Nat2 − E is an extension of (G,W2(A))-modules

0 −→ Frob∗(A) −→W2(A)(E) −→ A −→ 0,

where W2(A)(E) is free of rank one as a W2(A)-module.
Applying .⊗W2(A) W2(L1) yields an extension

Nat2(E , L1) : 0 −→ Frob∗(L
⊗p
1 ) −→W2(L1)(E) −→ L1 −→ 0.

Its middle term is a lift of L1 to an invertible W2(A)-module equipped with a
semi-linear action of G. Note that all such lifts occur that way, for a unique E (see
[8], Proposition 4.3). The Bockstein of Nat2(E , L1) is

β′′ = β − β′,

as Bockstein commutes with the Baer sum of extensions. Hence, β′′(c) = 0, so
that c lifts to H1(G,W2(L1)(E)), proving the claim. �

7. The Laurent extension of a cyclotomic pair.

Let F be a field of characteristic zero, with absolute Galois group Γ. It is then
standard that the absolute Galois group of the field of Laurent power series F ((t))

is the semi-direct product Ẑ(1) ⋊ Γ. Extending this construction to cyclotomic
pairs is natural, as residues play an important role in several reductions of the
Bloch-Kato conjecture.

Definition 7.1. Let (G,Zp(1)) be a (1,∞)-cyclotomic pair. We put

G((t)) := Zp(1)⋊G.

We call G((t)) the Laurent extension of G, w.r.t. Zp(1). We can view Zp(1) as a
G((t))-module, via the natural surjection G((t)) −→ G. The formula

G((t)) −→ Zp(1)
(x, g) 7−→ x

defines a 1-cocycle, whose cohomology class we denote by

(t) ∈ H1(G((t)),Zp(1)).
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The next Proposition follows from [25, Theorem 3.11]. For completeness, we give
a proof.

Proposition 7.2. Let (G,Zp(1)) be a (1,∞)-cyclotomic pair. Then,
(G((t)),Zp(1)) is (1,∞)-cyclotomic as well.

Proof. Denote by π : G((t)) −→ G the natural surjection.
Let H ⊂ G((t)) be an open subgroup, and let c ∈ H1(H,Fp(1)) be a cohomology
class. We want to lift c to H1(H,Zp(1)). Replacing G by π(H), we can assume
that π(H) = G.
Put

H0 := H ∩ Zp(1) ⊂ Zp(1) ⊂ G((t)).

If H0 = 1, then π|H : H −→ G is an isomorphism, and the claim is obvious, using
that (G,Zp(1)) is a (1,∞)-cyclotomic pair.
Otherwise, we have H0 = pfZp(1) for some f ≥ 0. Consider the factor group

H/H0 ⊂ Z/pf (1)⋊G.

The arrow π induces an isomorphism H/H0
∼
−→ G, giving rise to a 1-cocycle

cg : G −→ Z/pf (1),

such that the map

G −→ H/H0

g 7−→ (cg, g)

is bijective. Since (G,Zp(1)) is (1,∞)-cyclotomic, cg lifts to a 1-cocycle

Cg : G −→ Zp(1),

giving rise to a section of π|H : H −→ G. Consequently, H is isomorphic to the

semi-direct product pfZp(1) ⋊ G ≃ Zp(1) ⋊ G. We are thus reduced to the case
H = G((t)). Then, consider the class

c0 := Res
Zp(1)

G((t))(c) ∈ H
1(Zp(1),Fp(1)) = Fp.

If c0 = 0, then c is inflated from H1(G,Fp(1)) via π, and its liftability follows. If
c0 6= 0, rescaling, we can assume c0 = 1 ∈ Fp. Replacing c by c− (t), we are sent
back to the case c0 = 0. �

Remark 7.3. The analogue of the preceding Proposition, in finite depth e ∈ N,
does not hold.

Proposition 7.4. (Residues)
Let (G,Zp(1)) be a (1,∞)-cyclotomic pair. Then, for a positive integer n, an
(Fp, G)-module M and an integer k, we have a natural exact sequence

0 −→ Hn(G,M(k)) −→ Hn(G((t)),M(k)) −→ Hn−1(G,M(k − 1)) −→ 0.

It is split by x 7→ x ∪ (t).

Proof. The proof is the same as for residues in Galois cohomology (see [16,
Corollary 6.8.8]). �
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8. Lifting (G,Wr(L)(1))-torsors.

8.1. Why cohomology with Wr(L)-coefficients? Let S be a (G,Fp)-
scheme, let L be a G-line bundle over S, and let r ≥ 1 be an integer. The
(G,Wr(L)(1))-torsors on S are suitable for many applications in algebraic and
arithmetic geometry, as follows.
Let X be a (smooth, geometrically integral) variety over a field F , of characteristic
6= p. Denote by G = π1(X) “the” étale fundamental group of X, and by Zp(1)
the usual Tate module. Then, the machinery provided by the groups

Hi((G,S),Wr(L)(j)),

for various (G,Fp)-schemes S and G-line bundles L over them, is thought of as

“Hi
et(X,Wr(L)(j))

′′

with L is a system of mod p coefficients of purely multiplicative nature, broadly
extending the notion of rank one Fp-local system on X. This analogy can be made
very accurate– especially if X is a K(π, 1).
Applying our point of view to algebraic geometry amounts to performing sub-
tle geometric operations on the level of the coefficients of the desired cohomology,
instead of doing them on the varietyX itself. These present similarities with Steen-
rod operations- except that Steenrod operations apply to cohomology groups, not
to coefficients themselves. As usual, these coefficients have to be (of p-primary)
torsion. This is fine, since torsion coefficients for cohomology theories are com-
monly accepted as the most relevant ones. The variety X then becomes almost
invisible, and only subsists via its algebraic fundamental group- which is indeed,
in many cases of interest, a smooth profinite group- see [5].

8.2. Lifting geometrically split extensions. In this section, n is a positive
integer, e ∈ N

∗ ∪ {∞} and S denotes a (G,Fp)-scheme. We assume that

(G,Z/p1+e(1))

is a (n, e)-cyclotomic pair.

Recall the notation for cyclotomic twists: if M is a (G,W1+e)-Module on S, we
denote by M(n) the sheaf

U 7−→M(U)(n).

It is a (G,We+1)-module, called the n-th cyclotomic twist of M .

The next Definitions are a prerequisite for stating the main Theorems of this
section. They are especially meaningful, when n = 1.

Definition 8.1 (Lifting cohomology). Let S be a (G,Fp)-scheme and L be a G-
linearized line bundle over S.
Let 1 ≤ r ≤ e be an integer and

cr ∈ H
n((G,S),Wr(L)(n))

be a cohomology class.

If s ∈ {r + 1, ..., e+ 1} is an integer and

cs ∈ H
n((G,S),Ws(L)(n))

is a cohomology class, we say that cs lifts cr, if cs is sent to cr by the map

Hn((G,S),Ws(L)(n)) −→ Hn((G,S),Wr(L)(n))
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induced by the natural reduction arrow

Ws(L)(n) −→Wr(L)(n),

between G-WtF-Modules on S.

Accordingly, we say that a (G,Wr(L)(1))-torsor lifts, if its cohomology class does.

Definition 8.2 (Strongly geometrically trivial classes). Let S be a (G,Fp)-scheme,
and let

E : 0 −→M0 −→M1
π
−→M2 −→ 0

be a short exact sequence of (G,Wr)-modules on S.
We say that E is geometrically trivial (or geometrically split), if π admits an OS-
linear (non-necessarily G-equivariant) section.

More generally, an n-extension of (G,Wr)-modules over S

0 −→M0
f0
−→M1

f1
−→ ...

fn−1
−→ Mn

fn
−→Mn+1 −→ 0

is strongly geometrically trivial if the following holds. Split off the extension, as a
cup product of short exact sequences

Ei : 0 −→ Ai−1 −→Mi −→ Ai −→ 0,

i = 1, . . . , n, given by the kernels and cokernels of the f ′is. Then, all the Ei’s are
geometrically trivial.

Accordingly, for a (G,Wr)-module M , we say that a (G,M)-torsor, or more gen-
erally a cohomology class c ∈ Hn((G,S),M), is strongly geometrically trivial if
it can be represented by a strongly geometrically trivial n-extension of (G,Wr)-
modules

0 −→M =M0
f0
−→M1

f1
−→ ...

fn−1
−→ Mn

fn
−→Wr(OS) −→ 0.

Strongly geometrically trivial classes form a subgroup

Hn
sgt((G,S),M) ⊂ Hn((G,S),M).

Remark 8.3. For n = 1, we have

H1
sgt((G,S),M) = Ker(H1((G,S),M) −→ H1(S,M)).

For n ≥ 2, we have an inclusion

Hn
sgt((G,S),M) ⊂ Ker(Hn((G,S),M) −→ Hn(S,M)),

which is, in general, far from being an equality.

Lemma 8.4. Let S be an affine (G,Fp)-scheme. Let M be a (G,Wr)-module on
S. Then, all cohomology classes are strongly geometrically trivial: we have

Hn
sgt((G,S),M) = Hn((G,S),M).

Proof. Adapting the process of [9, Lemma 5.1], we can represent a given coho-
mology class c ∈ Hn((G,S),M) by an n-extension of (G,Wr)-modules on S

C : 0 −→M−→M1
f1
−→ ...

fn−1
−→ Mn

fn
−→Wr(OS) −→ 0,

where M2, . . . ,Mn are GWr-bundles. Such an extension is strongly geometrically
split. Indeed, over an affine base, short exact sequences of quasi-coherent modules,
having a vector bundle as cokernel, are split. �
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Proposition 8.5. Let S be a (G,Fp)-scheme. Let M be a (G,Wr)-bundle on S.
For all n ≥ 1, there is a natural isomorphism

γ : Hn(G,H0(S,M))
∼
−→ Hn

sgt((G,S),M),

built through a natural algorithm given below.

Proof. Start with a class c ∈ Hn(G,H0(S,M)). Using [9, Lemma 5.1], represent
it by an n-extension of (Z/pr, G)-modules

C : 0 −→ H0(S,M)−→E1
g1
−→ ...

gn−1
−→ En

gn
−→ Z/pr −→ 0,

where E2, E3, . . . , En are free as Z/pr-modules. It is then straighforward to check,
by descending induction on i, that Ker(gi) is also free as a Z/pr-module, for
i = 2, . . . , n.

Applying ·⊗Z/prWr(OS) to C thus preserves its exactness, yielding an n-extension
of GWr-modules on S

CS : 0 −→ H0(S,M)⊗Wr(OS)−→M1
f1
−→ ...

fn−1
−→ Mn

fn
−→Wr(OS) −→ 0,

where Mi := Ei ⊗Wr(OS). Note that M2, . . . ,Mn are GWr-bundles. Denote by

α : H0(S,M)⊗Wr(OS) −→M

the canonical arrow, given by restricting global sections. Form the pushforward

E := α∗(CS) : 0 −→M−→M ′
1

f1
−→M2

f2
−→ ...

fn−1
−→ Mn

fn
−→Wr(OS) −→ 0;

it is an n-extension of GWr-modules on S. Set γ(c) to be the class of E in
Hn
sgt((G,S),M).

To get an arrow in the reverse direction, start with e ∈ Hn
sgt((G,S),M), repre-

sented by a strongly geometrically trivial n-extension of GWr-modules on S

E : 0 −→M−→M1
f1
−→M2

f2
−→ ...

fn−1
−→ Mn

fn
−→Wr(OS) −→ 0.

Taking global sections yields an n-extension of (Z/pr, G)-modules

H0(S, E) : 0 −→ H0(S,M)−→H0(S,M1)
g1
−→ ...

gn−1
−→ H0(S,Mn)

gn
−→ H0(S,Wr(OS)) −→ 0,

which we pullback by the arrow

Z/pr −→ H0(S,Wr(OS))
1 7−→ 1

to get an n-extension of (Z/pr, G)-modules

C : 0 −→ H0(S,M)−→ · · · −→Z/pr −→ 0.

Set γ′(e) to be the class of C in Hn(G,H0(S,M)). One then checks that the arrow

γ′ : Hn
sgt((G,S),M) −→ Hn(G,H0(S,M))

is the inverse of γ.

�

Remark 8.6. In Definition 8.2, assume that M is a (G,Wr)-bundle. Using (the
proof of) Proposition 8.5, every element of Hn

sgt((G,S),M) can be represented by
a strongly geometrically trivial n-extension of (G,Wr)-bundles

0 −→M =M0
f0
−→M1

f1
−→ ...

fn−1
−→ Mn

fn
−→Wr(OS) −→ 0.



31

9. Lifting (G,M)-torsors.

In this section, we state and prove the first lifting theorem of this arti-
cle, to be thought of as a generalization of classical Kummer theory, for
H1(Gal(Fsep/F ), µpr ), to the broader context of torsors for (G,Wr)-line bundles,
over a (G,Fp)-scheme S. It applies to arbitrary depth e.

Theorem A. Let (G,Z/p1+e(1)) be a (n, e)-cyclotomic pair, relatively to some
integer n ∈ N

∗ and e ∈ N
∗ ∪ {∞}.

Pick an integer 1 ≤ r ≤ e. Let S be a (G,Fp)-scheme and L be a G-linearized line
bundle over S. Consider a strongly geometrically trivial class

cr ∈ H
n
sgt((G,S),Wr(L)(n)).

Then, there is an integer m ≥ 0 such that the Frobenius pullback c
(m)
r of cr lifts to

a strongly geometrically trivial class, via

Hn
sgt((G,S),W1+e(L

(m))(n)) −→ Hn
sgt((G,S),Wr(L

(m))(n)).

In particular, if S is a perfect affine scheme, the natural arrow

Hn((G,S),W1+e(L)(n)) −→ Hn((G,S),Wr(L)(n))

is onto. Therefore, G is (n, e)-smooth.

Remark 9.1. By the very definition of a cyclotomic pair, Theorem A also clearly
holds if we replace G by an open (or even closed) subgroup H ⊂ G. Its proof
actually invokes a tremendous amount of such subgroups.

Remark 9.2. For proving Theorem A, without loss of generality, we can assume
that Fp(1) ≃ Fp has the trivial G-action. Indeed, the action of G on Fp(1) occurs
through a multiplicative character

ξ : G −→ F
×
p

whose kernel G0 has index dividing p − 1, hence prime-to-p. Invoking the usual
restriction-corestriction argument, it is then free to replace G by G0.

9.1. Permutation modules and factorizing Frobenius. In this section, and
only in this section, we will encounter infinite dimensional Fp-vector spaces, en-
dowed with a naive action of G– for instance, (Fp, G)-algebras, which are of finite-
type as Fp-algebras. We thus state the following definition.

Definition 9.3.
If G is a profinite group, an [Fp, G]-module is an Fp-vector space, equipped with a
naive Fp-linear action of G.

Remark 9.4. For G finite, an [Fp, G]-module is simply a module over the group
algebra Fp[G].

The goal of this section is to provide Theorem 9.7, a remarkable algebraic device
and the key ingredient in the proof of Theorem A.

Lemma 9.5. Let A be an (Fp, G)-algebra, reduced and of finite-type as an Fp-
algebra. Set B =: AG.

Then, the following assertions hold.

i) The Fp-algebra B is of finite-type, and A is finite, as a B-module.
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ii) There exists a finite G-set X, and an element f ∈ B, which is not a zero
divisor in A, with the following properties:
a) The algebra Af/Bf is finite étale.
b) There exists G-equivariant homomorphisms of B-modules

φ : A −→ BX , and ψ : BX −→ A,

such that

ψ ◦ φ = fId and φ ◦ ψ = fId.

iii) The extension of [Fp, G]-modules

(E1) : 0 −→ A
×f
−→ A

π
−→ A/f −→ 0

is split by pullback by the natural quotient map q : A/f2 −→ A/f.

Proof. Point i) is classical. Let us prove ii). Denote by H ⊂ G the kernel of the
action of G on A; it is an open subgroup.

Assume first that A is a domain. Denote by L (resp. K) the field of fractions of A
(resp. of B). By Artin’s Lemma, the extension L/K is Galois, with Galois group
G/H. Put X := G/H. Then, by the normal basis theorem, there exists a G-

equivariant isomorphism of K-vector spaces L
∼
−→ KX . The existence of f ∈ B,

enjoying the properties required in a) and b), readily follows. This argument
instantly extends to the case where A is a finite product of domains, after noting
that the group G naturally permutes the factors of the finite product in question
(which correspond to the primitive idempotents of A).

Let us deal now with the general case: denote by P1, . . . , Ps the generic points of
Spec(A). Put

Ki := APi
;

it is a reduced Artinian ring, hence a field. The canonical map

ι : A −→
s
∏

i=1

Ki

is injective.
For each index i = 1, . . . , s, there exists an element

ai ∈ (∩j 6=iPj)− Pi.

Equivalently, the element ai is nonzero in Ki, but vanishes in all Kj ’s, for j 6= i.
Put

a := a1 + . . .+ as.

We then have
a2i − aai = 0 ∈ A

for all i; indeed, these elements vanish in all Kj ’s. The element a ∈ A is not a
zero divisor, hence so is

b := NG/H(a)



=
∏

g∈G/H

g · a



 ∈ B.

Furthermore, the elements

ei :=
ai
a
∈ Ab

are primitive idempotents, decomposing Ab into a finite product of domains. We
are thus reduced to the previous case.
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To prove iii), consider first the commutative diagram of [Fp, G]-modules

(E2) : 0 // A
×f2

//

φ

��

A //

φ

��

A/f2 //

φ/f2

��

0

(F2) : 0 // BX
×f2

//

ψ

��

BX //

ψ

��

(B/f2)X //

ψ/f2

��

0

(E2) : 0 // A
×f2

// A // A/f2 // 0.

The middle exact sequence F2 is split, since B −→ B/f2 splits as an Fp-linear
map. Since φ ◦ ψ = fId, it follows that

fE2 = 0 ∈ Ext1[Fp,G](A/f
2, A).

The diagram

(E1) : 0 // A
×f

// A //

×f

��

A/f //

×f

��

0

(E2) : 0 // A
×f2

// A // A/f2 // 0

shows that q∗(E1) = fE2. This completes the proof. �

Definition 9.6 (Permutation modules). An [Fp, G]-module is said to be a permu-
tation module if it has an Fp-basis (possibly infinite) which is permuted by G.
In other words, P is permutation, if it is isomorphic to an [Fp, G]-module of the
shape

F
(X)
p ,

where X is a G-set (the action of G being naive).

We say that a morphism of [Fp, G]-modules

f :M −→ N

factors through a permutation module if there is a permutation module P and a
factorization

P
g2

%%❏
❏❏

❏❏
❏

M

g1
99ssssss

f
// N

Such morphisms form a subgroup of Hom[Fp,G](M,N).

Arguably, the next theorem maximizes the product (simplicity × depth), among
all results of this article.

Theorem 9.7. Let A be an (Fp, G)-algebra, of finite-type as an Fp-algebra. Then,
there exists an integer m ≥ 0 such that, as a morphism of [Fp, G]-modules,

FrobmA : A −→ A

factors through a permutation module.
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Proof. Let i ≥ 0 be such that the nilradical N of A satisfies N pi = 0. Then FrobiA
canonically factors through A −→ Ared . We can thus assume that A is reduced,
and proceed by induction on the (Krull) dimension of A. We use the notation and
the results of Lemma 9.5. By induction, there exists an integer m′ ≥ 0, working
for A/f . By point iii) of Lemma 9.5, there exist a morphism of [Fp, G]-modules
s : A/f2 −→ A, such that π ◦ s = q. Denote by φ : A/f −→ A/f2 the canonical
map, sending a (mod f) to ap (mod f2). Put

F1 := s ◦ φ ◦ Frobm
′

A/f ◦ π : A −→ A;

it is a morphism of [Fp, G]-modules, factoring through a permutation module (be-

cause Frobm
′

A/f does). Then, the difference Frobm
′+1−F1 takes values in the ideal

fA ⊂ A. Hence, there exists a morphism of [Fp, G]-modules

F2 : A −→ A,

such that

Frobm
′+1

A = F1 + fF2.

By point ii) of Lemma 9.5, the morphism “ multiplication by f ”: A −→ A factors
through a permutation module- hence so does fF2. Finally, we thus see that
m := m′ + 1 does the job. �

Exercise 9.8. Adapt the proof of Theorem 9.7, to show the following more precise
statement, under the same assumptions. Consider the product

P(A) :=
∏

x∈Max(A)

k(x),

taken over all closed points x ∈ Spec(A), with residue field the finite field k(x).
Show that it is a permutation [Fp, G]-module, and that there exists an integer
m ≥ 0, such that

FrobmA : A −→ A
a 7−→ ap

m

factors through the natural map A −→ P(A), as a morphism of [Fp, G]-modules.

Question 9.9. (Does Theorem 9.7 hold for modules?)
Let M be an A[G]-module, which is finite locally free an an A-module. Is there
an integer m ≥ 0 such that

FrobmM : M −→ M (m)

x 7−→ 1⊗ x

factors through the natural map M −→ P(A) ⊗A M, as a morphism of [Fp, G]-
modules? In general, the answer is most likely “no”.

9.2. Proof of Theorem A, for S affine and L = OS.

In order to lighten notations, we write the proof of Theorem A for n = 1, the
general case being the same.

We first assume that S = Spec(A) and L = OS . Note that in this case, any
(G,Wr(L)(1))-torsor is strongly geometrically trivial by Lemma 8.4. By Propo-
sition 8.5, (G,Wr(L)(1))-torsors are then classified by H1(G,Wr(A)(1))- in the
usual setting of the cohomology of a profinite group G, with values in a discrete G-
module. We are then concerned with showing that after some suitable Frobenius
pullback, all such classes admit a compatible system of liftings.
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To prove the Theorem, it is straightforward to reduce to the case where A is
an Fp-algebra of finite-type. To understand why, consider a cohomology class c,
represented by a cocycle

zg ∈ Z
1(G,Wr(A)(1)),

which factors through an open subgroup of G. It thus only takes finitely many
values, each of which can be represented as a finite sum of Teichmüller representa-
tives of elements of A. The G-orbit of each of these elements is also finite. We may
then indeed replace A by the (G,Fp)-algebra generated by this finite G-invariant
collection of elements of A.

In the current setting, Theorem A is then a consequence of the following Proposi-
tion. Note that its content is more precise: the growth of the power of Frobenius
needed to lift classes in H1(G,Wr(A)(1)) is actually linear in r.

Proposition 9.10. Let (G,Z/p1+e(1)) be a (1, e)-cyclotomic pair with e ∈ N
∗ ∪

{∞}. Let A be a (G,Fp)-algebra, of finite-type over Fp. Then there is a non-
negative integer m(A) with the following property.

Let r ∈ {1, . . . , e} be an integer and c ∈ H1(G,Wr(A)(1)) be a cohomology class.

Then (Frobm(A)r)∗(c) lifts to H1(G,We+1(A)(1)).

Proof. By Theorem 9.7 there exists m = m(A) ≥ 0 and a factorization

Frobm : A
f
−→ F

(X)
p

g
−→ A,

for some G-set X. We are going to show that this m satisfies the conclusion
of the Proposition. We first deal with the case r = 1, showing that classes in
the image of (the map induced on H1(G, ·) by the cyclotomic twist of) g lift
to H1(G,We+1(A)(1)). The G-set X is a disjoint union of cosets G/Hi, where
the Hi’s are open subgroups of G. It suffices to treat the case of a single orbit
G/H. Using Shapiro’s Lemma, we can then replace G by H, reducing to the case
X = {∗}. Put

a := g([∗]) ∈ A.

For all i ≥ 1, denote by

ai+1 := τi+1(a) ∈Wi+1(A)

the Teichmüller representative of a.

Let 0 ≤ i ≤ e be an integer. We have a commutative diagram

Z/pi+1
Z //

��

. . . // Z/p2Z //

��

Z/pZ

��
Wi+1(A) // . . . // W2(A) // A,

where the horizontal maps are the natural surjections, and the i-th vertical map
sends 1 ∈ Z/pi+1

Z to ai+1. After twisting this diagram by Z/p1+e(1), by definition
of (1, e)-smoothness, all arrows in the upper line induce surjections on H1(K, ·),
for any open subgroup K of G. Thus, Im(g∗) ⊂ H1(G,A(1)) indeed consists of
classes, that lift as required.

The proof of the general case is by induction on r. Assuming the result known for
r, let

c ∈ H1(G,Wr+1(A)(1))
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be a cohomology class. Denote by b its reduction to a class in H1(G,Wr(A)(1)).
By induction, we know that br := (Frobrm)∗(b) admits a lifting

(b1+e) ∈ H
1(G,W1+e(A)(1)).

Denote by (br+1) ∈ H
1(G,W1+r(A)(1)) the reduction of b1+e. Set

c′ := (Frobrm)∗(c)− br+1.

Via the maps induced in cohomology from the exact sequence

0 −→ A(1)
ir−→Wr+1(A)(1) −→Wr(A)(1) −→ 0,

c′ reduces to 0 in H1(G,Wr(A)(1)), hence comes from a class b′ ∈ H1(G,A(1)).
By the n = 1 case, we get that (Frobm)∗(b′) lifts to H1(G,W1+e(A)(1)) . Hence,
(Frobm)∗(c′) lifts as well. Finally, we see that

(Frob(r+1)m)∗(c) = (Frobm)∗(br+1) + (Frobm)∗(c′)

lifts as stated- as a sum of classes sharing this property. �

9.3. The general case. We now prove Theorem A, for S and L arbitrary.
By assumption, there exists a (not necessarily G-equivariant) trivialization

F : P
∼
−→Wr(L)(1)

of the Wr(L)(1)-torsor P over S. Remembering that the automorphism group of
the trivial Wr(L)(1)-torsor is H

0(S,Wr(L)(1)), we see that the assignment

z : G −→ H0(S,Wr(L)(1))
g 7−→ zg := F−1 ◦ g ◦ F ◦ g−1

is a 1-cocycle. The (G,Wr(L)(1))-torsor P can be recovered as the twist of the
trivial (G,Wr(L)(1))-torsor by this cocycle. Denote by

c ∈ H1(G,H0(S,Wr(L)(1)))

the cohomology class of z.
Lifting P as required is then equivalent to lifting c to

c1+e ∈ H
1(G,H0(S,W1+e(L)(1))).

Theorem 9 thus boils down to the following Proposition.

Proposition 9.11. Let e ∈ N∗ ∪ {∞}. Let (G,Z/p1+e(1)) be a (1, e)-cyclotomic
pair. Let S be a (G,Fp)-scheme. Pick an integer 1 ≤ r ≤ e.

Let

c ∈ H1(G,H0(S,Wr(L))(1))

be a cohomology class. Then, there exists an integer m ≥ 0, such that the class

(Frobm)∗(c) ∈ H1(G,H0(S,Wr(L
⊗pm))(1))

lifts to

c1+e ∈ H
1(G,H0(S,W1+e(L

⊗pm))(1)).
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Proof. By Proposition 5.6, we have a commutative diagram, with exact rows

0 // H0(S,W2+i(L
⊗pr )) //

��

H0(S,Wr+2+i(L)) //

��

H0(S,Wr+1+i(L)) //

��

0

0 // H0(S,W1+i(L
⊗pr )) //

��

H0(S,Wr+1+i(L)) //

��

H0(S,Wr+i(L)) //

��

0

...

��

...

��

...

��
0 // H0(S,L⊗pr )

i // H0(S,Wr+1(L))
π // H0(S,Wr(L)) // 0,

where Frobenius pushforwards are dismissed for clarity.

We work in the cyclotomic twist of this diagram, to which we apply H1(G, .), and
mimic the proof of Proposition 9.10. By induction on r, we assume the result
known for a given r ≥ 1, and for all L. Let

c ∈ H1(G,H0(S,Wr+1(L))(1))

be a cohomology class. Then, there exists m1 ≥ 1 such that

π∗((Frob
m1)∗(c)) ∈ H1(G,H0(S,Wr(L

⊗pm1
))(1))

admits a compatible system of liftings (bi)r≤i≤e+1. Replacing L by L⊗pm1
, we can

assume that m1 = 1. Replacing c by c − br+1, we then reduce to the case where
π∗(c) = 0. Hence, there exists

a ∈ H1(G,H0(S,L⊗pr (1)))

such that i∗(a) = c. If we can show that (a high enough Frobenius twist of) a lifts
to

H1(G,H0(S,We+1−r(L
⊗pr )))

(with respect to the line bundle L⊗pr ), then we are done, by commutativity of the
diagram above.

Thus, only the case r = 1 remains to be considered. Put

A :=
⊕

i∈Z

H0(S,L⊗i);

the (Fp, G)-algebra of regular functions on the Gm-torsor associated to L. As
usual, the class c ∈ H1(G,H0(S,L)(1)) is defined by a cocycle taking only finitely
many values. Let A′ ⊂ A be the sub-(Fp, G)-algebra generated by these values;
it is an Fp-algebra of finite-type. Casting Theorem 9.7 again, we get an integer
m ≥ 0 and a factorization

Frobm : A′ f
−→ F

(X)
p

g
−→ A′,

where X is a G-set. Consider the composite

φ : F(X)
p

g
−→ A′ ⊂

−→ A
prm−→ H0(S,L⊗pm),

where prm is the natural projection. We are now reduced to showing that classes
in the image of

φ(1)∗ : H1(G,F(X)
p (1)) −→ H1(G,H0(S,L⊗pm(1)))
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lift to H1(G,H0(S,W1+e(L)
⊗pm(1))).

Note that the stabilizers of elements of X are open subgroups of G. By definition
of a cyclotomic pair, and using Shapiro’s Lemma, we can thus replace G by each
of these stabilizers. In short, we can assume that X = {∗} is a one-element set.
Put

a := prm(g([∗])) ∈ H0(S,L⊗pm).

For all s ≥ 1, denote by

as := τs(a) ∈ H
0(S,Wr(L

⊗pm))

the Teichmüller lift of a = a1. We conclude by a chase in the diagram

(Z/pe+1
Z)(1)

1 7→a1+e

��

// (Z/pZ)(1)

1 7→a

��

H0(S,We+1(L
⊗pm)(1)) // H0(S,L⊗pm(1)),

to which we apply the functorH1(G, ·)– remembering the definition of a cyclotomic
pair. �

10. A variation for Theorem A, in infinite depth.

In this section, we develop a refinement of Theorem A. It is not used in the next
two papers of this series. Readers willing to go straight to the proofs of our The-
orems B, C, and D are thus advised to skip it.
Looking at Theorem A, one may wonder whether the “strongly geometrically triv-
ial” assumption could be removed, to get a broader lifting result. For n = 1,
the following Theorem goes towards this direction, in an optimal way. It asserts
that, if (G,Zp(1)) is a (1,∞)-cyclotomic pair and Pr is a (G,Wr(L)(1))-torsor, a
(necessary and) sufficient condition for Pr to lift to a (G,W(L)(1))-torsor, is to
admit a G-invariant lift (dismissing the action of G, see Remark 2.12). Note that
we don’t have a similar statement in finite depth e.

Theorem 10.1. Let (G,Zp(1)) be a (1,∞)-cyclotomic pair. Let S be a perfect
(G,Fp)-scheme and let L be a G-linearized line bundle over S.
Pick an integer r ≥ 1 and consider a (G,Wr(L)(1))-torsor Pr over S.
Denote by P r the Wr(L)(1)-torsor given by Pr, forgetting the action of G.

Assume that P r lifts to a W(L)(1)-torsor P , whose class in H1(S,W(L)(1)) is
G-invariant.

Then, P can be equipped with the structure of a (G,W(L)(1))-torsor, lifting the
(G,Wr(L)(1))-torsor Pr.

Proof. Denote by GS ⊂ G the kernel of the action of G on S and put

s := vp(|G/GS |).

Recall the natural exact sequence

0 −→ Frobr∗(W(L⊗pr )) −→W(L) −→Wr(L) −→ 0.

It has a natural non-linear section- its Teichmüller section. We thus get an exact
sequence of G-modules

0 −→ H0(S,Frobr∗(W(L⊗pr )(1))) −→ H0(S,W(L)(1))
πr−→ H0(S,Wr(L)(1)) −→ 0.
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There exists a natural obstruction

Obs ∈ H2(G,H0(S,W(L⊗pr )(1))),

whose vanishing is equivalent to endowing P with the structure of a (G,W(L)(1))-
torsor P , lifting Pr. To build Obs, pick isomorphisms of W(L)(1)-torsors over S,

φg : P
∼
−→ g.P ,

one for each g ∈ G. Consider their reduction, to isomorphisms ofWr(L)(1)-torsors
over S,

φg,r : P r
∼
−→ g.P r.

Denote by

cang,r : P r
∼
−→ g.P r

the canonical isomorphisms, giving the semi-linear action of G on Pr. Then,

δg,r := φ−1
g,r ◦ cang,r

belongs to the automorphism group of P r, which is H0(S,Wr(L)(1)). We can lift
δg,r through πr, to

δg ∈ H
0(S,W(L)(1)) = AutS(P ).

Replacing φg by φg ◦ δg, we are reduced to φg,r = cang,r. Then, set

cg,h := φ−1
g ◦ (g.φ

−1
h ) ◦ φgh ∈ H

0(S,W(L)(1)) = AutS(P ).

By what precedes, πr(cg,h) = 0, so that cg,h is a 2-cocycle, living in

Z2(G,H0(S,W(L⊗pr )(1))).

Set Obs to be its cohomology class.

If S is affine, then Obs is simply the obstruction to lifting the geometrically
trivial torsor Pr. It thus vanishes by Theorem 9.

Suppose now that G acts trivially on S. Let (Ui) be a finite cover of S, by affine
open subschemes. The preceding discussion, the image of Obs by the (arrow
induced by the) injection

0 −→ H0(S,W(L⊗pr )(1)) −→
⊕

H0(Ui,W(L⊗pr )(1))

vanishes. Using Lemma 10.2, we see that Obs vanishes.

We no longer assume that G acts trivially on S. By restriction-corestriction (from
G to GS), we get that psObs vanishes. Indeed, GS acts trivially on S.
Assume first r ≥ s, so that prObs = 0.
Consider the (twist by (1) of the) natural commutative diagram of G-Wtf-Modules
on S with exact rows

D : 0 // Frobr∗(W(L⊗pr )) //

f :=Frobr
∗(ad(Id

W(L⊗pr+s
)
))

��

W(L) //

ad(Id
W(L⊗pr )

)

��

Wr(L) //

ad(Id
Wr(L⊗pr )

)

��

0

0 // Frob2r∗ (W(L⊗p2r ))
i // Frobr∗(W(L⊗pr )) // Frobr∗(Wr(L

⊗pr )) // 0,

where we write ad for adjunction, between Frob∗ and Frob∗. We have

i ◦ f = ×pr.
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Twisting it by (1) and taking global sections, we get an analoguous diagram
C := H0(S,D(1)), where each G-Wtf-Module M is replaced by H0(S,M(1)). By
Theorem A, the arrow

H1(G,H0(S,W(L⊗pr )(1))) −→ H1(G,H0(S,Wr(L
⊗pr )(1)))

is surjective. Chasing in the diagram induced in cohomology by C, we get

f∗(Obs) = 0 ∈ H2(G,H0(S,W(L⊗p2r )(1))).

Since S is perfect, Obs itself vanishes, and we are done.
Assume now r < s. Put t := s− r.
Consider the natural commutative diagram of G-Wtf-Modules on S, with exact
rows,

D′ : 0 // Frobr+t∗ (W(L⊗pr+t

)) // Frobt∗(W(L⊗pt)) //

��

Frobt∗(Wr(L
⊗pt)) //

��

0

0 // Frobs∗(W(L⊗ps)) // W(L) // Ws(L) // 0.

Twisting by (1) and taking global sections yields a similar diagram, denoted by
C′ := H0(S,D′(1)). Since S is perfect, it suffices to show that (Frobt)∗(P ) can be

equipped with the structure of a (G,W(L⊗pt)(1))-torsor, lifting (Frobt)∗(Pr). By
chasing in the diagram induced in cohomology by C′, we are reduced to the case
r = s (cohomology of the lower line), which was dealt with above. �

Lemma 10.2. Let S be a Fp-scheme, endowed with the trivial action of G, and let
L be a G-line bundle over S. Denote by GL the kernel of the action of G on L.

Let (Ui)i=1,...,N be a finite cover of S, by affine open subschemes. Let r ≥ 1 be an
integer. Consider the exact sequence

R : 0 −→ H0(S,Wr(L))
ρ
−→

N
⊕

i=1

H0(Ui,Wr(L)) −→ Br −→ 0,

where Br is defined as the cokernel of ρ. The following holds.

(1) If the index of GL in G is prime-to-p (which holds for instance if S is
reduced), then the pushforward of R by the natural injection

Frobr−1 : H0(S,Wr(L)) −→ H0(S,Frobr−1
∗ (Wr(L

⊗pr−1

)))

splits, as an extension of (Z/prZ)[G]-modules.
(2) In general, denote by prL the exponent of the p-primary component of the

finite abelian group G/GL ⊂ Gm(S).
Then, (Frobr+rL−1)∗(R) splits, as an extension of (Z/prZ)[G]-modules.

(3) Assume now that S is perfect. Then, the natural exact sequence of Zp[G]-
modules

0 −→ H0(S,W(L)(1))
ρ
−→

N
⊕

i=1

H0(Ui,W(L)(1)) −→ B(1) −→ 0

splits.

Proof. Note that, if items (1) and (2) hold true, then so do the similar properties,
replacing R by the cyclotomic twist R(1).
Item (3) follows from (1), by passing to the limit. We thus content ourselves with
proving (1) and (2).
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Since the group of automorphisms of the line bundle L is Gm(S), and since Frobe-
nius additively kills p-nilpotent elements (and hence multiplicatively kills p-th
roots of unity), we see that GL⊗prL has index prime-to-p in G. Replacing L by

L⊗prL , we see that (2) follows from (1), which we now prove.
By the usual “restriction-corestriction” argument, we can assume that G = GL
acts trivially on L. We then have to show that (Frobr−1)∗(R) splits, as a mor-
phism of (Z/prZ)-modules. To do so, it suffices to check the following property.
For every s ∈ H0(S,Wr(L)), and every integer 1 ≤ j ≤ r−1, if (si) := ρ(s) is also

divisible by pj , in the group
⊕N

i=1H
0(Ui,Wr(L)), then Frobr−1(s) is divisible by

pj in the group H0(S,Frobr−1
∗ (Wr(L

⊗pr−1

))).
We now prove this. Write si = pjti, for ti ∈ H

0(Ui,Wr(L)). Note that multipli-
cation by pj

Wr(L) −→ Wr(L)
x 7−→ pjx

factors as the composite of the two natural morphisms (of WtF-Modules over S)

Wr(L)
aj
−→ (Frob∗)

j(Wr−j(L
⊗pj ))

ir−j,r

−→ Wr(L),

where aj is adjoint to the reduction

(Frobj)∗(Wr(L)) = Wr(L
⊗pj ) −→Wr−j(L

⊗pj ),

and where ir−j,r is the natural injection.

Put ui := (aj)Ui
(ti), viewed as elements of H0(Ui,Wr−j(L

⊗pj )). Since ir−j,r
is injective, the ui glue, to a global section u ∈ H0(S,Wr−j(L

⊗pj )). Through
the Teichmüller section [8, Section 3.1], u possesses a natural lift to an element

ũ ∈ H0(S,Wr(L
⊗pj )). Observing that the composite

(Frob∗)
j(Wr(L

⊗pj )) −→ (Frob∗)
j(Wr−j(L

⊗pj ))
ir−j,r

−→ Wr(L) −→ (Frob∗)
j(Wr(L

⊗pj ))

is multiplication by pj , we see that the elements Frobj(s) and pj ũ coincide when
restricted to each Ui. They hence coincide.
A fortiori, we get Frobr−1(s) = pjFrobr−1−j(ũ)– as was to be shown. �

11. (n, 1)-smoothness: an equivalent definition.

Theorems B, C, and D deal with (n, 1)-smoothness. This flexible notion, involving
algebraic geometry in characteristic p, is less elementary than (n, 1)-cyclotomic
pairs. Nonetheless, it turns out to be equivalent to a much simpler notion, thought
of as “a profinite group G, with a moving cyclotomic character”. We call these
cyclothymic profinite groups. We warn the reader, not to take this denomination
too seriously. Indeed, in the sequel, we will stick to the name “(n, 1)-smooth”,
and use the property below in proofs only, especially for the second statement of
Theorem D.

Definition 11.1. (Cyclothymic profinite group.)
Let n ≥ 1, e ∈ N

∗ ∪ {∞} and let G be a profinite group.
We say that G is (n, e)-cyclothymic if the following holds.
Let L be an (Fp, G)-module, of dimension one as an Fp-vector space.
Consider a finite collection

H1, . . . , HN ⊂ G



42

of open subgroups of G.
For each i = 1, . . . , N , let

ci ∈ H
n(Hi, L)

be a cohomology class. Write C := (c1, . . . , cN ).
Then, there exists a lift of L, to a (Z/p1+e, G)-module L1+e[C], free of rank one
as a Z/p1+e-module, such that, for each i = 1, . . . , N , the class ci lifts through

Hn(Hi, L1+e[C]) −→ Hn(Hi, L).

The integer e is called the depth of the cyclothymic group G.

Remark 11.2. The point, in this definition, is that L1+e[C] depends on C.

Remark 11.3. In this definition, we can assume without loss of generality that
L = Fp has the trivial action of G. Indeed, let GL ⊂ G be the kernel of the action
on L. Its index divides p − 1, which is prime-to-p. We are then free to replace
Hi by Hi ∩ GL– using a restriction-corestriction argument. As a consequence, if
(G,Z/p1+e(1)) is an (n, e)-cyclotomic pair, then the profinite group G is (n, e)-
cyclothymic. Indeed, as explained above, we can assume w.l.o.g. that L = Fp(1) =
Fp, and set

L1+e[C] := Z/p1+e(n).

Before investigating relations between cyclotomic pairs, cyclothymic groups and
smooth groups, we state the following variant of Theorem A.

Theorem 11.4 (Cyclothymic version of Theorem A).
Pick n ∈ N and e ∈ N

∗ ∪ {∞}. Let G be a (n, e)-cyclothymic profinite group.
Let S be a (G,Fp)-scheme, and L be a G-linearized line bundle over S. Consider
a strongly geometrically trivial class

c ∈ Hn((G,S), L).

Then, there exists m ≥ 0, and a lift of L(m) = L⊗pm to a (G,W1+e)-line bundle

over S, which we denote by L
[m]
1+e[c], such that c(m) lifts, to a strongly geometrically

trivial class, via the natural arrow

Hn
sgt((G,S), L

[m]
1+e[c]) −→ Hn

sgt((G,S), L
⊗pm).

In particular, taking S to be a perfect affine scheme, we get that G is (n, e)-smooth.

Proof. The proof is the same as for Theorem A. To understand why, the key is
that, in the proof of Theorem A for r = 1, it suffices to lift a finite number
N of classes ci ∈ H1(Hi,Fp), where Hi ⊂ G are open subgroups. These Hi’s
occur as the stabilizers of elements of the G-set X, given by Theorem 9.7. The
coefficients module used to lift the ci’s is of little importance–provided it is a
(Z/p1+e, G)-module, free of rank one as a Z/p1+e-module. For this purpose, setting
C := (c1, . . . , cN ), the module L1+e[C] of Definition 11.1 does the job– instead of
Z/p1+e(n) in the cyclotomic case.

�

We now can get to an essential point of our work, allowing us, in the sequel, to
take on Definition 11.1 as an alternative way to tackle (1, 1)-smoothness.
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Theorem 11.5. Pick n ≥ 1 and e ∈ N
∗ ∪ {∞}. Let G be a profinite group.

If G is (n, e)-cyclothymic, then it is (n, e)-smooth.
The group G is (n, 1)-smooth if and only if it is (n, 1)-cyclothymic.

Proof. The first implication is contained in Theorem 11.4.
We prove the converse implication, when e = 1. We deal with the case n = 1, the
general case being identical. Let H1, . . . , Hk ⊂ G be open subgroups, and let

χ = (χ1, ..., χk) ∈
k
∏

i=1

H1(Hi,Fp)

be cohomology classes (characters). Introduce

A := Fp[Xi,c],

the polynomial algebra on d =
∑k
i=1 |G/Hi| variables, indexed by i = 1, . . . , k

and c ∈ G/Hi. For each fixed i, the group G naturally permutes the variables
Xi,c, c ∈ G/Hi, allowing to view A as an (Fp, G)-algebra.

Using Shapiro’s Lemma, the χi’s give rise to 1-cocycles

ξi : G −→
⊕

c∈G/Hi

FpXi,c

depending, up to a coboundary, on the choice of a system of representatives of the
factor set G/Hi. We then form the 1-cocycle

ξ :=
k

∑

i=1

ξi : G −→ A.

As G is (1, 1)-smooth, there is an integer m and a lift of the (A,G)-module A, to
a (W2(A), G)-module

W2(A)(ξ
(m)),

free of rank one as a W2(A)-module, such that ξ(m) lifts to H1(G,W2(A)(ξ
(m))).

Consider the extension of (W2(A), G)-modules

E : 0 −→ A −→W2(A)(ξ
(m))

π
−→ A −→ 0.

Let i = 1, . . . k be an integer. Let Xα ∈ A be a pure monomial, in the variables
Xi,c. The inclusion

ια : FpX
α −→ A,

is then naturally split by the projection

ǫα : A −→ FpX
α.

Setting Hα ⊂ G to be the stabilizer of α, it is clear that these arrows are Hα-
equivariant.
If Xβ ∈ A is another pure monomial, we can form the extension of Z/p2-modules

Fα,β := (ǫβ)∗(ι
∗
α(E)) : 0 −→ FpX

β −→ Fα,β −→ FpX
α −→ 0.

We are going to describe its middle term Fα,β . To do so, consider the commutative
diagram of Z/p2-modules
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ι∗0(E) : 0
// A //

Xpα.

��

E0
//

τ2(X
α).

��

Fp
//

Xα.

��

0

ι∗α(E) : 0
// A // Eα // FpX

α // 0,

where τ2(.) ∈W2(A) denotes the multiplicative representative. We infer a natural
isomorphism of extensions Z/p2-modules

Fα,β ≃ (ǫβ(X
pα.))∗(ι

∗
0(E)).

The arrow ǫβ(X
pα.) vanishes if pα does not divide β. In that case, we deduce

that Fα,β has a canonical splitting. In particular, it is a trivial extension of
(Fp, Hα ∩Hβ)-modules.
If β = pα, the arrow ǫβ(X

pα.) factors through ǫ0, yielding a canonical isomorphism

Fα,pα ≃ F0,0.

As a Z/p2-module, F0,0 is free of rank one. We put

Z/p2[ξ] := F0,0.

If β 6= pα and pα divides β, the extension Fα,β is an extension of (Fp, Hα ∩Hβ)-
modules, which may be non-trivial.
For i = 1, . . . , k, denote by

ǫi : A −→
⊕

c∈G/Hi

FpX
pm+1

i,c

the projection, i.e. the sum of all arrows ǫ
Xpm+1

i,c

. Similarly, consider

ιi :
⊕

c∈G/Hi

FpX
pm

i,c −→ A.

The arrows ǫi and αi are G-equivariant. Form the extension of (Z/p2, G)-modules

Ei,j := (ǫj)∗(ι
∗
i (E)) : 0 −→

⊕

c∈G/Hj

FpX
pm+1

j,c −→ Ei,j −→
⊕

c∈G/Hi

FpX
pm

i,c −→ 0.

If i 6= j, from what precedes, we get that Ei,j has a (canonical, henceG-equivariant)

splitting. Indeed, noXpm

i,c divides aXpm+1

j,c′ . Similarly, Ei,i is canonically isomorphic
to

F
G/Hi

0,0 : 0 −→ F
G/Hi
p −→ Z/p2[ξ]G/Hi −→ F

G/Hi
p −→ 0.

Since ξ(m) lifts via (the map induced on H1(G, .) by) the surjection π of E , we
deduce that it also lifts via the surjection of the extension of (Z/p2, G)-modules

E ′ :=
⊕

i,j

Ei,j ,

reading as

E ′ : 0 −→
⊕

j=1,...,k; c∈G/Hj

FpX
pm+1

j,c −→ E′ −→
⊕

i=1,...,k; c∈G/Hi

FpX
pm

i,c −→ 0.

We have shown before that

E ′ =
⊕

i

Ei,i
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is “diagonal”. We thus get that each ξ
(m)
i lifts via (the surjection of)

Ei,i = F
G/Hi

0,0 .

Equivalently, using Shapiro’s Lemma, we conclude that each χi lifts to
H1(Hi,Z/p

2[ξ]). �

Here is a recap of some connections made in this paper.

(G,Z/p1+e(1)) is a (n, e)-cyclotomic pair

(Theorem A)
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(Remark 11.3)
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G is (n, e)-cyclothymic

(Theorem 11.4)
*2
G is (n, e)-smooth

if e=1 (Theorem 11.5)

jr

Appendix: variations on (n, 1)-smoothness

In this appendix, we provide some equivalent definitions of smoothness, which will
be used in the next two articles of this series. First, we observe that the perfectness
assumption on A, appearing in the definition of (n, e)-smoothness (Definition 6.8),
can be removed if e <∞, at the cost of introducing Frobenius twists. This formally
follows from the existence of the perfection

Aperf := lim
−→
n

An,

where An = A for all n, and the transition morphisms are Frob, for any Fp-algebra
A, from the isomorphisms

lim
−→
n

W1+e(An)
∼
−→W1+e(A

perf )

for e <∞, and from the commutation between cohomology and direct limits. We
thus get another equivalent definition, for smooth profinite groups of finite depth.

Definition 11.6. Let n ≥ 1 and e ∈ N. A profinite group G is (n, e)-smooth iff
the following holds.

Let A be an (Fp, G)-algebra and let L1 be a locally free A-module of rank one,
equipped with a (naive) semi-linear action of G. Let

c ∈ Hn(G,L1)

be a cohomology class. Then, there exists an integer m ≥ 0 with the following
property.

There exists a lift of L
(m)
1 , to a (We+1(A), G)-module L

[m]
e+1[c], invertible as a

We+1(A)-module (and depending on c), such that Frobm(c) belongs to the image
of the natural map

Hn(G,L
[m]
e+1[c]) −→ Hn(G,L

(m)
1 ).

Note that for torsors, there is a very simple reformulation of the definition of
smoothness in finite depth, in terms of liftability of one-dimensional G-affine spaces
(see section 4).
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Definition 11.7 ((1, e)-smooth profinite group, another equivalent definition).
Let e ≥ 1 be an integer. A smooth profinite group G is (1, e)-smooth iff the
following lifting property holds.
Let A be a perfect (Fp, G)-algebra and let X1 be a G-affine space over A, such that
−→
X1 is an invertible A-module.

Then, X1 admits a lift to a G-affine space X1+e over W1+e(A), such that
−−−→
X1+e

is an invertible W1+e(A)-module.

We move on to useful precisions for our main concern: smooth profinite groups of
depth 1.

Proposition 11.8. If e = 1, we can add in Definition 6.8 the extra requirement
that L1 is free of rank one, as an A-module. Hence, L2[c] is automatically free, as
a W2(A)-module.

Proof. We use the definition of (n, 1)-smoothness given by Proposition 6.9. For
simplicity, we assume that n = 1; the proof for general n is the same. Assume the
lifting property holds whenever L1 is free.
Let L1 be arbitrary, c ∈ H1(G,L1) be a cohomology class and put

B :=
⊕

k∈Z

L⊗k
1 .

This is an (Fp, G)-algebra, and Spec(B) −→ Spec(A) is the Gm-torsor associated
to the invertible module L1. The B-module L1⊗AB is free of rank one- it is even
equipped with a canonical trivialization. By assumption, there exists m ≥ 0, and
an extension of (G,B)-modules

F : 0 −→ B −→ F −→ B −→ 0,

such that

β(c) = β′(c) ∈ H2(G,L1 ⊗A B).

Here, β′ stands for the Bockstein associated to the extension of (G,B)-modules

F(L1) : 0 −→ Frob∗(L
(1)
1 ⊗A B) −→ F (L1) −→ L1 ⊗A B −→ 0.

Now, the extension F , considered as an extension of (G,A)-modules, reads as

0 −→
⊕

k∈Z

L⊗k
1 −→ F −→

⊕

k∈Z

L⊗k
1 −→ 0,

and F(L1) reads as

0 −→ Frob∗(
⊕

k∈Z

L
⊗(p+k)
1 ) −→ F (L1) −→

⊕

k∈Z

L
⊗(1+k)
1 −→ 0.

We can project everything (by pushforward on the left and pullback on the right)
on the direct summands corresponding to k = 0. By doing so, we respectively get
extensions of (G,A)-modules

E : 0 −→ A −→ E −→ A −→ 0,

and

E(L1) : 0 −→ Frob∗(L
(1)
1 ) −→ E(L1) −→ L1 −→ 0.

These satisfy the requirement of Definition 11.6, as the reader may check. �

We can now provide an equivalent Definition of (1, 1)-smoothness, in the classical
tongue of embedding problems.
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Definition 11.9. ((1, 1)-smooth profinite group, equivalent Definition)
Denote by S ⊂ GL2 one of the following two algebraic subgroups: the Borel sub-
group B2, consisting of invertible matrices

(

∗ ∗
0 ∗

)

,

or its subgroup AutAff(A
1) = Ga ⋊Gm ⊂ B2, consisting of invertible matrices

(

1 ∗
0 ∗

)

.

A profinite group G is (1, 1)-smooth iff the following lifting property holds.
Let A be a perfect (Fp, G)-algebra. Then, the natural map

H1(G,S(W2(A))) −→ H1(G,S(A))

is onto.

A word is perhaps needed to explain why this definition is equivalent to Definition
6.8- where we can assume that the A-module L1 is free of rank one by Proposition
11.8. We do this for S = B2- the less obvious case. Notice that the datum of
a cohomology class b ∈ H1(G,B2(A)) is equivalent to an (isomorphy class of)
extension of (G,A)-modules

E1 : 0 −→ D1 −→ E1 −→ D′
1 −→ 0,

where D1 and D′
1 are free of rank one as A-modules. The class of the extension

F1 := E1 ⊗A (D′
1)

−1 : 0 −→ D1 ⊗A (D′
1)

−1 −→ F1 := E1 ⊗A (D′
1)

−1 −→ A −→ 0

is an element of H1(G,L1), where

L1 := D1 ⊗A (D′
1)

−1.

Lifting b as requested, amounts to lifting E1 to an extension of (G,W2(A))-modules

E2 : 0 −→ D2 −→ E2 −→ D′
2 −→ 0,

where D2 and D′
2 are free of rank one as W2(A)-modules. This is equivalent to

lifting F1 to an extension

F2 : 0 −→ L2 −→ F2 −→W2(A) −→ 0,

where the (G,W2(A))-module L2(= D2 ⊗W2(A) (D
′
2)

−1), free of rank one as a
W2(A)-module, of course depends on b. This liftability is equivalent to that of
Definition 6.8.

Remark 11.10. A profinite group is (1, 1)-smooth if and only if its pro-p-Sylow
subgroups are (1, 1)-smooth.

In the definition of a (n, e)-cyclotomic profinite group, the lifting property is re-
quired for all open subgroups H ⊂ G. This is no longer needed in the definition
of a (1, 1)-smooth profinite group, as we now show.

Lemma 11.11. Let G be a (1, 1)-smooth profinite group. Then, every closed sub-
group H ⊂ G is (1, 1)-smooth as well.
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Proof. By a standard limit argument, we can assume that H is open in G. We use
Definition 11.9. Let A be an (Fp, H)-algebra. Consider the induced (Fp, G)-algebra

IndGH(A) := MapsH(G,A),

consisting of (left) H-equivariant maps G −→ A, with ring structure induced by
that of the target A. It is endowed with the natural G-action, given by the formula
(g.f)(x) := f(xg). We have

Wr(Ind
G
H(A)) = IndGH(Wr(A)),

since the formation of Witt vectors commutes to finite products. Thus, we have

B2(W2(Ind
G
H(A))) = IndGH(B2(W2(A))).

Shapiro’s Lemma thus yields a natural bijection

H1(G,B2(W2(Ind
G
H(A)))) ≃ H1(H,B2(W2(A))),

which we use to conclude that the arrow of Definition 11.9 is surjective for the
pair (H,A) iff it is for the pair (G, IndGH(A)). �

11.1. Lifting geometrically split torsors, in the (1, 1)-smooth case.

The following proposition extends the lifting property defining (1, 1)-smoothness,
to geometrically split extensions over an arbitrary G-scheme S. This result will
be handy in [12].

Proposition 11.12. Assume that G is (1, 1)-smooth.
Let S be a perfect (G,Fp)-scheme. Consider a geometrically split extension of
G-linearized vector bundles over S,

E1 : 0 −→ L1 −→ E1
q
−→ OS −→ 0,

where L1 is a line bundle. Then, there exists a lift of L1, to a (G,W2)-line bundle
L2 over S, such that E1 lifts to a geometrically split extension of (G,W2)-vector
bundles over S,

E2 : 0 −→ L2 −→ E2 −→W2(OS) −→ 0.

Proof. Since E1 is geometrically split, we can pick s ∈ H0(S,E1), with q(s) = 1.
The formula

G −→ H0(S,L1)
g 7−→ g.s− s

determines a cohomology class e1 ∈ H
1(G,H0(S,L1)). The fact that E1 lifts to a

geometrically split E2 is then equivalent to lifting e1 to

e2 ∈ H
1(G,H0(S,L2)).

Put
A := H0(S,OS)

and
B :=

⊕

n∈N

H0(S,L⊗n
1 );

these are (Fp, G)-algebras. Note that B is not perfect. Consider e1 as an element
f1 ∈ H1(G,B). Using the definition of (1, 1)-smoothness given in 6.9, there exists
m ≥ 0, and an extension of (G,B)-modules

F : 0 −→ B −→ F −→ B −→ 0,

corresponding by adjunction to

ǫB : 0 −→ Frob∗(B) −→ F ′ −→ B −→ 0,



49

enjoying the following property. Consider the natural extension of (G,W2(B))-
modules

Nat2(B) : 0 −→ Frob∗(B) −→W2(B) −→ B −→ 0.

Denote by β(Nat2(B)) and β(ǫB) the respective Bockstein arrows. Form the Baer
sum

Nat2(B)− ǫB : 0 −→ Frob∗(B) −→ B2 −→ B −→ 0;

then B2 is a lift of B, to a (G,W2(B))-module, free of rank one as a W2(B)-

module. Then, f
(m)
1 lifts via

H1(G,B2) −→ H1(G,B).

Equivalently,

β(Nat2(B))(f
(m)
1 ) = β(ǫB)(f

(m)
1 ) ∈ H2(G,B).

Proceeding as in the proof of Proposition 11.8, we write F as

F : 0 −→
⊕

n∈N

H0(S,L⊗n
1 ) −→ F −→

⊕

n∈N

H0(S,L⊗n
1 ) −→ 0.

Projecting on n = 0 factors gives an extension of (G,A)-modules

0 −→ A −→ E0 −→ A −→ 0,

which we view as a geometrically split extension of G-vector bundles over S

E : 0 −→ OS −→ E −→ OS −→ 0.

Twisting it by L
(m+1)
1 , we get a geometrically split extension of G-vector bundles

over S

E(L
(m+1)
1 ) : 0 −→ L

(m+1)
1 −→ E ⊗ L

(m+1)
1 −→ L

(m+1)
1 −→ 0,

corresponding by adjunction to

ǫ(L
(m)
1 ) : 0 −→ Frob∗(L

(m+1)
1 ) −→ E′ −→ L

(m)
1 −→ 0.

Taking global sections, we get an extension of (G,A)-modules

H0(ǫ(L
(m)
1 )) : 0 −→ Frob∗(H

0(S,L
(m+1)
1 )) −→ H0(S,E′) −→ H0(S,L

(m)
1 ) −→ 0.

Consider the natural extension of (G,W2)-modules over S

Nat2(L
(m)
1 ) : 0 −→ Frob∗(L

(m+1)
1 ) −→W2(L1)

(m) −→ L
(m)
1 −→ 0.

Taking global sections yields a natural extension of (G,W2(A))-modules

H0(Nat2(L
(m)
1 )) : 0 −→ Frob∗(H

0(S,L
(m+1)
1 )) −→ H0(S,W2(L1)

(m)) −→ H0(S,L
(m)
1 ) −→ 0,

where the surjectivity of the last arrow follows from the existence of the Te-
ichmüller section.

Denote by β(H0(ǫ(L
(m)
1 ))) and β(H0(Nat2(L

(m)
1 ))) the Bockstein arrows. From

β(Nat2(B))(f
(m)
1 ) = β(ǫB)(f

(m)
1 ),

we get

(∗) β(H0(ǫ(L
(m)
1 )))(e

(m)
1 ) = β(H0(Nat2(L

(m)
1 )))(e

(m)
1 ).

Consider the Baer sum

Nat2(L
(m)
1 )− ǫ(L

(m)
1 ) : 0 −→ Frob∗(L

(m+1)
1 ) −→ L

[m]
2

π
−→ L

(m)
1 −→ 0,

whose middle term L
[m]
2 is a lift of L

(m)
1 , to a (G,W2)-line bundle over S.

Equality (∗) above says that e
(m)
1 lifts, via

π∗ : H1(G,H0(S,L
[m]
2 )) −→ H1(G,H0(S,L

(m)
1 )).
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Since S is perfect, we can undo the Frobenius twist, and we are done. �
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Index of notation and denomination

(Z/peZ, G)-module [I, Def 6.1] G-Witt-Frobenius Module [I, Def 5.1]
[Fp, G]-module [I, Def 9.3] Hn((G,S),M) [I, Def 5.2]
A[G]f −module [II, §3.3] IndGH induction on H-schemes [II, Def 3.5]

A(V ) affine space of vector bundles [II, §5.1] Kummer type
Baer sum of extensions [I, §4,4] exact sequences [III, Def 3.3]
Cyclothymic profinite group [I, Def 11.1] group schemes [III, Def 3.5]
Cyclotomic closure [II, §20] Laurent extension [I, Def 7.1]

Cyclotomic pair [I, Def 6.2] Le+1[c] [I, Def 6.8]
Cyclotomic twist Naive action [I, §2]

for modules [I, §6] O(a1, ..., ad) [II, §9]

for (G,Wr)-modules [I, Def 8.1] Permutation
extnn(1, B) [II, §3.9] module [I, Def 9.6]
Ext

n
G,r(B,A) n-extensions of GWr-modules [II, §3.8] (G,Wr)-bundle [II, Def 6.1]

ExtnG,r(B,A) [II, 3.8] Permutation embedded complete flag [II, Def 7.3]

Filtered n-extensions [III, §4.1] Pullback of extensions [II, §3.8]
Flag scheme [II Def 9.2] Pushforward of extensions [II, §3.8]
Frobenius ResGH restriction for G-schemes [II, Def 3.4]

for Witt vectors [I, §3] RWr/W1
(Greenberg transfer) [II, §2.2]

pullback of WtF-modules [I, §3] Smooth closure of profinite group [II, §20]
pullback of (G,M)-torsors [I, §8] Smooth profinite group [I, Def 6.8, §11]

G((t)) (Laurent extension) [I, Def 7.1] Splitting scheme
Geometrically trivial extensions [II, §3.9] for torsors for G-vector bundles [I, Prop 4.21]
(G,M)-torsor for torsors for (G,Wr)-bundles [I, Prop 5.5]

M being a G-group [I, Def 4.4] Split unipotent group scheme [III Def 3.1]
M being a (G,OS)-module [I, Def 4.17] S-polynomial functor [II, Def 10.2]

(G,OS)-module (G-linearized OS-module) [I, Def 2.7] Strongly geometrically trivial
Good filtration [II, Def 4.1] cohomology class [I, Def 8.2]

(G,S)-cohomology [I, Def 5.2] torsor [I, Def 8.2]
(G,S)-scheme [I, Def 2.2] Symmetric functor [II, Def 10.9]
Greenberg transfer Teichmüller

for schemes [II, §2.2] section for Witt vectors [I, §3]

for groups [III, §2] lift for line bundles [I, Prop 5.7]
(G,Wr)-Module [I, Def 5.1] V1 ⊂ .. ⊂ Vn (tautological filtration) [II, §3.5]
(G,Wr)-affine space [I, Def 5.1] Ver (Verschiebung for Witt vectors) [I, §3]

(G,Wr)-bundle [I, Def 5.1] Well-filtered morphism [II, Def 4.1]
G-affine space Witt-Frobenius module [I, Def 3.3]

over a ring [I, Def 4.15] Wr(A) (truncated Witt vectors) [I, §3]
over a G-scheme [I, Def 4.16] Wr-bundle [I, Def 3.3]

G-invariant OS-module [I, Rem 2.11] Wr(OS) [I, Def 3.1]
Glueing of extensions [II, Def 12.1] Wr(S) (schemes of Witt vectors of S) [I, §3]
G-object [I, §2] YExt

n
C
(A,B) (Yoneda n-extensions) [I, §4.1]

G-scheme [I, Def 2.2] YExtn
C
(A,B) (linked Yoneda n-extensions) [I, §4.7]

G-sheaf [I, Def 2.6]
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