
Smooth profinite groups, II: the Uplifting Theorem

Mathieu Florence

Abstract. Let p be a prime. In this paper, we investigate the existence of liftings
of mod p representations of a profinite group, to mod p2 representations. As a
concrete application of general results, we get the following. Let F be a field, with
separable closure Fs, and let d ≥ 1 an integer. Then, every Galois representation

ρ1 : Gal(Fs/F ) −→ GLd(Z/p)

lifts to
ρ2 : Gal(Fs/F ) −→ GLd(Z/p

2).

This is a vast improvement on previously known results- see the Introduction for
details. To achieve it, we work in the framework of cyclotomic pairs and of smooth
profinite groups, developped in [6], and prove a much deeper result. Namely,
complete flags of mod p semi-linear representations of a (1, 1)-smooth profinite
group lift, step by step, modulo p2. This is Theorem 14.1, which we refer to as
the Uplifting Theorem. It solves our initial lifting question, in an optimal way. It
can be viewed as a non-commutative generalisation of mod p2 Kummer theory-
beyond the usual case of Galois groups of fields, and to higher dimensions.
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1. Introduction.

Let G be a profinite group. Let p be a prime. In this paper, we deal with the
following task.

(T): Axiomatize properties of G, ensuring the existence of liftings of its mod p rep-
resentations (equipped with a complete filtration), to their mod p2 counterparts.
As a concrete result, we obtain:

Theorem. (Theorem 14.2).
Let F be a field, with separable closure Fs/F . Let d ≥ 1 be an integer.
Denote by G one of the following groups: GLd, or its Borel subgroup Bd.
Then, the natural map

Hom(Gal(Fs/F ),G(Z/p2)) −→ Hom(Gal(Fs/F ),G(Z/p))

is surjective. Here Hom(., .) stands for continuous arrows of profinite groups.
Restatement for G = GLd: mod p Galois representations of F lift mod p2.

Remarks 1.1.

• For d = 1, the statement follows from the existence of the Teichmüller
(multiplicative) section F×

p −→ (Z/p2)×, given by (p−1)-th roots of unity.
• For d = 2, the statement goes back to Serre. In the literature, its first
occurrence is in [20], Theorem 1- stated under the extra assumption that
F = L is a number field, but provided with a proof that actually works
for all fields.
• When d = 2 and F = Q, and under mild assumptions, mod p Galois
representations with coefficients in a finite field k lift to representations
over W(k), by [26].
• The recent texts [5] and [21] contain lifting results in dimensions d = 3
and d = 4, under extra assumptions.
• When F is a p-adic local field, mod p Galois representations of F actually
lift to representations over Zp. This is proved in the recent work [10].
• For d ≥ 3 arbitrary, the statement is brand new. Note that the case ofGLd

follows from that of Bd, by a classical restriction/corestriction argument.
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• Denote by Ud ⊂ Bd the group of strictly upper triangular matrices. When
p is odd, we construct in section 15 a field F , containing C, such that the
arrow

Hom(Gal(Fs/F ),U3(Z/p
2)) −→ Hom(Gal(Fs/F ),U3(Fp))

is not surjective. In other words, in the case of fields, the generic mod p
Heisenberg representation does not lift mod p2.

The most evolved result of this paper is Theorem 14.1 -“The Uplifting Theorem”.
It is much more general than the previous Theorem, and completes task (T ).
Roughly speaking, it states that complete flags of mod p semi-linear representa-
tions of a (1, 1)-smooth profinite group lift, step by step, modulo p2. To get the
liftability of Galois representations from the Uplifting Theorem, one then has to
apply most of the major results of [6].

Our initial motivation, for considering (T), is the following question.

(Q): Is there a proof of the (surjectivity part of the) Norm Residue Isomorphism
Theorem of Rost, Suslin, Voevodsky and Weibel, that just uses Kummer theory?

We will not establish here the link between (T) and (Q). This is done in [7], where
we apply Theorem 14.1 to provide a positive answer to (Q) (see [7, Theorem 5.1]
for a precise statement).
A common feature of (T) and (Q) is the need for a refined axiomatization of
Kummer theory, with coefficients in µp1+e . Here e ∈ N≥1 ∪ {∞} is a number,
called depth. When e =∞, it is understood that

µp∞ = lim
←−

µpr ,

the usual Tate module.
Fundations of this refined axiomatization are laid in the recent work [6]. To do so,
three new notions are introduced:

(1) (n, e)-cyclotomic pairs,
(2) (n, e)-cyclothymic profinite groups,
(3) (n, e)-smooth profinite groups.

From now on, in the present paper, we focus on the case n = e = 1.

The first notion then applies to a pair (G,Z/p2(1)), consisting of a profinite group
G, and a free Z/p2-module of rank one equipped with a continuous action of G.
Note that, up to isomorphism, Z/p2(1) is simply given by a continuous character

G −→ (Z/p2)×,

playing the role of the usual cyclotomic character. The two other notions are
much more flexible: they just depends on p, and on a profinite group G. An
important fact is that they are equivalent: a (1, 1)-cyclothymic profinite group is
the same thing as a (1, 1)-smooth profinite group ([6], Theorem 11.4). Precisions
are provided in section 8.

We list the main tools used to prove the Uplifting Theorem (Theorem 14.1).

• The framework of cyclotomic pairs, and of smooth profinite groups, as
introduced in [6].
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• G-linearized Witt vector bundles, over a G-scheme S of characteristic p,
and complete flags of these. See [8], [6] and section 3.5 for definitions.
• Extensions of vector bundles over flag schemes of vector bundles, and their
splitting schemes- see section 5.3. They will be used to create liftings of
embedded Witt line bundles, as explained in section 11.2.
• Good filtrations, on quasi-coherent modules over a scheme. Their purpose
is to facilitate dévissage arguments, to prove vanishing results- see section
4.

To understand these tools, and how they are used, familiarity with [8] and [6] is
advisable.

Section 13 is completely independent. It is an attempt to investigate subtleties of
splitting schemes of tautological extensions of vector bundles. We hope that it is
useful for the future.

Section 14 contains the statement of the main result: Theorem 14.1. We provide
its proof in section 16.

A geometric application is given in section 17: locally for the Zariski topology,
complete flags of Fp-étale local systems lift to complete flags of Z/p2-étale local
systems.

Section 18 treats the case of Galois representations- the Theorem in this Intro-
duction.

In the Appendix, we introduce the notions of smooth closure and of cyclo-
tomic closure. They apply, respectively, to a profinite group G, and to a pair
(G,Z/p2(1)). From an arithmetic point of view, they are avatars of the (Galois
group of the) separable closure of a field– with one major difference: they are
perfectly functorial. From a geometric point of view, they can be thought of as
“resolution of singularities” of G and of (G,Z/p2(1)), respectively. It is worth
remembering that the smooth closure makes the Uplifting Theorem 14.1 usable,
to study modular (mod p) representations of arbitrary profinite groups. We will
not venture to do so in this paper.

2. Notation, conventions and fundamental concepts.

The notation A := E means that A is defined as the expression E.
The letter p denotes a prime number.
Oddly enough, the parity of p plays no role. Even better: p can be arbitrary! ;)
The letter G denotes a profinite group. The reader will be notified, when assump-
tions are made on G- e.g. being finite, being a pro-p-group, or being (1, 1)-smooth.
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2.1. Witt vectors, lifting Frobenius and lifting line bundles.
For an integer r ≥ 1, we denote by Wr the p-typical Witt vectors of length r, seen
as scheme of commutative rings, defined over Z. To begin with, it is sufficient
to know that Wr is an endofunctor of the category of commutative rings, such
that Wr(Fp) = Z/prZ. By glueing, it extends to an endofunctor of the category
of schemes. If S is a scheme, there are closed immersions Wr(S) −→Wr+1(S),
which are nilpotent if S has characteristic p. For details on this contruction (and
much more), we refer to [2].
The functor Wr enjoys two elementary crucial features, which will be ceaselessly
exploited in the sequel.

(1) Let S be a scheme of characteristic p. As would any endomorphism of
S, the (absolute) Frobenius Frob : S −→ S lifts to an endomorphism
Wr(S) −→Wr(S). It is the (absolute) Frobenius of Wr(S), still denoted
by Frob.

(2) Let S be a scheme, and let L be a line bundle over S. Then, for ev-
ery r ≥ 2, L functorially extends (lifts) to a line bundle over Wr(S)- its
Teichmüller lift. We denote it by Wr(L). An introduction to the Te-
ichmüller lift of line bundles can be found in [8]. This is a fundamental
elementary construction, obtained by applying the formalism of torsors,
to the Teichmüller section

W
×
1 = Gm −→W

×
r .

2.2. Greenberg transfer.
Let S be a scheme of characteristic p. Let r ≥ 2 be an integer (in this paper, r = 2
almost everywhere). We shall need the Greenberg transfer RWr/W1

.
It is a functor, from the category of Wr(S)-schemes, to that of S-schemes.
It is comparable to Weil restriction of scalars, transposed to the p-adic context.
Let T −→ Wr(S) be a scheme, over Wr(S). Let X −→ S be a scheme over S.
Then, on the level of functors of points, we have a functorial bijection

RWr/W1
(T )(X) ≃ T (Wr(X)).

We will use Greenberg’s structure theorem, in specific situations where we provide
concrete constructions. For details on the general setting, see [17], or [1] for a
recent revisit.

3. G-equivariant constructions.

In this section, we provide definitions of algebro-geometric objects, and of their
G-equivariant counterparts. Notation-wise, if T is a type of algebro-geometric
objects (e.g. a scheme, a vector bundle over a scheme, or a Wr-bundle over a
scheme), we often denote by GT the “G-equivariant” version of T . It consists of
objects of type T , endowed with the extra datum of an action of G. We may ask
that this action satisfies some technical assumption. Let’s get to details.
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3.1. G-actions.
All actions of the profinite group G are continuous, in the following strong sense: a
given action (on some algebro-geometric structure) occurs through a finite quotient
G0 := G/G0, with G0 a normal open subgroup of G. In other words, when we
consider a G-action a, we always assume that its kernel Ker(a) ⊂ G is open.

3.2. G-schemes.
Following [6], all schemes are quasi-compact.
In practice, all schemes S needed to prove the main result of this paper (Theorem
14.1) occur as

(∗) : S
f2
−→ S2

f1
−→ S1,

where S1 is affine, f1 is projective and f2 is affine.
A G-scheme is a scheme S equipped with an action of G, such that S has a
covering by G-invariant open affines. This condition is guaranteed if, for instance,
S is quasi-projective over a field, or more generally if every finite set of points
of S is contained in a common open affine. This is the case for schemes (∗) as above.

3.3. (G,S)-modules.
By (Fp, G)-module, we mean a finite dimensional Fp-vector space equipped with
an action of G. Assuming G finite, this is a finite module over the group algebra
Fp[G]. In general, let A be a commutative ring equipped with an action of a finite
group G. We denote by A[G] the corresponding skew group algebra. It is the free
A-module with basis eg, g ∈ G, with multiplication given by the formula

(aeg).(beh) = ag(b)egh.

If G acts trivially on A, it is the usual group algebra. By “A[G]f -module”, we
mean an A[G]-module, which is finite locally free as an A-module.
More generally, if S is a G-scheme, we can consider the category of quasi-coherent
OS-modules, equipped with a semi-linear action ofG. These will be called (G,OS)-
modules, or (G,S)-modules. A (G,S)-module, which is finite locally free as an
OS-module, will be called a G-vector bundle over S, or (G,S)-bundle.

3.4. GWr-bundles.
Let r ≥ 1 be an integer. A (G,OWr(S))-module is then the same thing as a
(G,Wr(OS))-module- see [6, §5]. It is called a GWr-module over S. If it is locally
free as a Wr(OS)-module, it will be called a G-linearized Witt vector bundle of
height r over S, or simply GWr-bundle over S.
If G is finite, and if S = Spec(A) is an affine (Fp, G)-scheme, a GWr-bundle over
S is the same thing as a Wr(A)[G]f -module.

3.5. Flags of (Witt) vector bundles.

The notation Vi,r stands for a Wr-bundle of dimension i, over an Fp-scheme S.
For a given Wr-bundle Vi,r, and for an integer 1 ≤ s ≤ r, we denote by

Vi,s := Vi,r ⊗Wr
Ws

its reduction to a Ws-bundle. If

∇r : 0 = V0,r ⊂ V1,r ⊂ . . . ⊂ Vd,r
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is a complete flag of Wr-bundles (see Section 9), we use the notation

Li,r := Vi,r/Vi−1,r

for the Wr-line bundles forming its graded pieces.
When used, the notation Li stands for Li,1. For relative integers a1, . . . , ad, set

O(a1, a2, . . . , ad) := L⊗a1

1,1 ⊗OS
L⊗a2

2,1 ⊗OS
. . .⊗OS

L⊗ad

d,1 ;

these are usual line bundles over S. This notation extends as follows. If M is a
quasi-coherent S-module, set

M(a1, a2, . . . , ad) := M ⊗OS
O(a1, a2, . . . , ad).

Suppose that

S = Fl(V1)
F
−→ T

is a complete flag scheme (see section 9.2) where V1 is a vector bundle over a scheme
T . We then use curly letters Vi,1 to denote the i-th piece of the tautological flag

∇gen,1 : 0 = V0,1 ⊂ V1,1 ⊂ . . . ⊂ Vd,1 := F ∗(V1),

over S. Denote by

Li,1 = Vi,1/Vi−1,1

its graded pieces; these are line bundles.
We will also consider the G-equivariant versions of these objects.

3.6. The notation ∗,+,++,−,−−.
In this text, we use the notation ∗ for a relative integer, or more generally an
object, whose name it is superfluous to mention. For instance, on the complete
flag scheme of a 4-dimensional vector bundle, O(a, ∗, b, ∗) stands for a line bundle
of the shape O(a, x, b, y), where the relative integers x, y do not matter. Similarly,
the notation + (resp. ++, −, −−) stands for a non-negative (resp. positive, non-
positive, negative) integer. For instance, O(∗,++,−,−−) denotes a line bundle
of the shape O(a1, a2, a3, a4), when it suffices to retain the informations a2 > 0,
a3 ≤ 0 and a4 < 0. The notation ∗ obviously extends to other contexts. For
instance,

0 −→ A −→ ∗ −→ ∗ −→ B −→ 0

denotes a 2-extension of B by A (in an abelian category), whose middle terms
need not be specified.

3.7. Frobenius functoriality.
Let V = Vr be a Wr-bundle, over an Fp-scheme S. Let m ≥ 1 be an integer.
Denote by

Frobm : S −→ S

the m-th iterate of the (absolute) Frobenius morphism of S.
Write (Frobm)∗(V ), or preferably V (m), for the pullback of V , with respect to
Frobm. It is a Wr-bundle.
Write (Frobm)∗(V ) for the pushforward of V , with respect to Frobm. It is a
quasi-coherent Wr(OS)-module. If r = 1 and if S is regular, then

Frob : S −→ S

is finite and flat, so that (Frobm)∗(V ) is still a vector bundle. However, in the
present text, there is no need to worry about such issues.
Assume that s > r is an integer, and that Ws is a lift of V (m), to a Ws-bundle.
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There may not exist a lift Vs of V to an Ws-bundle, such that Ws ≃ V
(m)
s .

That being said, it is convenient to denote the lift Ws by V
[m]
s , and to put

V [m+n]
s := W (n)

s ,

for all n ≥ 0. In other words, the notation V
[m]
s stands for a lift of V

(m)
r , which

does not need to occur as the Frobenius twist of a lift of Vr.
Here again, notation may apply to G-equivariant objects.

3.8. Extensions and operations on them.
Let A, B be GWr-modules, over an (Fp, G)-scheme S.
We denote by Ext

n
G,r(S,B,A), or simply by Ext

n
G,r(B,A) if the dependence on S

is clear, the category of n-extensions of GWr-modules over S. Such an extension
is denoted as

E : 0 −→ A −→ ∗ −→ . . . −→ ∗ −→ B −→ 0.

We shall always assume that E is schematic, i.e. that it arises from an extension
E of schemes in GWr-modules over S– as described in [6], 4.3, item (3). It will
always be clear, from which E the extension E arises. In fact, we could have
worked with schemes in GWr-modules, instead of GWr-modules. We chose not
to do so, as it would have resulted in introducing unnecessarily mesmerizing new
objects. Our only motivation, for restricting to schematic E ’s, is to allow changing
the base by arbitrary morphisms of (Fp, G)-schemes– see below.
The extension E is said to be trivial, if it is trivial in the Yoneda (or, equivalently,
derived category) setting- see, for instance, [6] or [9]. Equivalence classes of n-
extensions are denoted by ExtnG,r(S,B,A), or simply by ExtnG,r(B,A) if generating
no confusion. We use the notation

Hn
G,r(S,A) := ExtnG,r(S,Wr(OS), A),

or simply Hn
G,r(A). This group does in fact not depend on r, as it is given by

cohomology of G-equivariant sheaves of abelian groups on S. To see why, use the
local-to-global spectral sequence (see section 3.10) to reduce to the case G = 1. It
then follows from the fact that, for s ≥ r, Wr(S) and Ws(S) agree as topological
spaces. Thus, we will denote Hn

G,r(A) simply by Hn
G(A).

Remarks 3.1.

(1) When G = 1, what precedes boils down to cohomology groups Extn(., .)
and Hn(.), for quasi-coherent Wr(S)-modules.

(2) When S = Spec(Fp) and r = 1, what precedes boils down to cohomology
of G, with coefficients in pr-torsion discrete G-modules: ExtnG(., .) and
Hn(G, .).

(3) Let s > r be an integer. Regarding A and B as GWs-modules over S, we
can consider ExtnG,s(B,A). There is a natural arrow

ExtnG,r(B,A) −→ ExtnG,s(B,A).

It fails to be surjective in general. It is injective when n = 1, but it can
fail to be injective when n ≥ 2.

(4) Assume that A and B are GWr-bundles, and that S is quasi-projective
over a field (or more generally, over an affine scheme). Then, each class
c ∈ ExtnG,r(B,A) is represented by a Yoneda extension

E : 0 −→ A −→ ∗ −→ . . . −→ ∗ −→ B −→ 0,
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where the ∗’s are GWr-bundles as well. Equivalently, using dimension
shifting, there exists an extension of GWr-bundles

0 −→ A
ι
−→ A′ −→ A′′ −→ 0,

such that

ι∗(c) = 0 ∈ ExtnG,r(B,A′).

If G = 1, this is a classical result, using an ample invertible sheaf on
S. The case G arbitrary is then an exercise, using induction from open
subgroups of G, and Shapiro’s lemma.

Extensions are subject to four functorial operations, which we briefly recall. For
a more detailled exposition, see [6], section 4.1. Let

E : 0 −→ A −→ ∗ −→ . . . −→ ∗ −→ B −→ 0

be an n-extension of GWr-modules over S.

• Pushforward. If f : A −→ A′ is an arrow in {GWr −Mod}, the pushfor-
ward

f∗(E) : 0 −→ A′ −→ ∗ −→ . . . −→ ∗ −→ B −→ 0

is defined in the usual fashion.
• Pullback. If g : B′ −→ B is an arrow in {GWr −Mod}, the pullback

g∗(E) : 0 −→ A −→ ∗ −→ . . . −→ ∗ −→ B′ −→ 0

is defined in the usual fashion.
• Change of the base. Let F : S′ −→ S be a morphism of G-schemes.
Following [6], 4.3, item (3), using that E is schematic, we can form the
change of the base

F ∗(E) : 0 −→ F ∗(A) −→ ∗ −→ . . . −→ ∗ −→ F ∗(B) −→ 0.

It is an object of Ext
n
G,r(S

′, F ∗(B), F ∗(A)). Note that, if E is an extension
of GWr-bundles, and the schematic structure considered is the natural
one, then F ∗(E) is the usual change of the base, for extensions of vector
bundles.
We sometimes use the terminology “pullback” also for “change of the
base”.
• Baer sum. If

E1 : 0 −→ A −→ ∗ −→ . . . −→ ∗ −→ B −→ 0

and

E2 : 0 −→ A −→ ∗ −→ . . . −→ ∗ −→ B −→ 0

are two extensions (objects of Ext
n
G,r(B,A)), we can form their Baer sum

E1 + E2 : 0 −→ A −→ ∗ −→ . . . −→ ∗ −→ B −→ 0.

Note that pushforwards and pullbacks commute, in the sense that there is a natural
isomorphism

f∗(g
∗(E))

∼
−→ g∗(f∗(E)).

Similarly, pushforward, pullback and change of the base commute to Baer sum.
Slightly abusing notation, for

F ∈ ExtnG,r(Frob
∗(B),Frob∗(A)),

we use f∗(F) to denote Frob(f)∗(F); similarly for pullbacks.
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3.9. Geometric triviality. Let A and B be GWr-bundles over S.
Say that A is geometrically trivial iff A ≃ Wr(OS)

d is trivial as a Wr-bundle.
Accordingly, a 1-extension of GWr-bundles is geometrically split (or trivial) if it
splits, as an extension of Wr-bundles. For n ≥ 1, define

extnr (A,B) := Ker(ExtnG,r(A,B) −→ Extnr (A,B)),

and
hn(A) := Ker(Hn

G(A) −→ Hn(A)).

Elements of the group extnr (A,B) will be called geometrically trivial cohomology
classes. For n ≥ 2, note that this notion is much weaker, than that of strongly
geometrically trivial n-extensions, introduced in [6]. In the present text, we shall
only need geometrically trivial cohomology classes, in degrees n = 1 and n = 2.
In general, “something geometrically trivial over S” means ”something over S,
equipped with an action of G, which becomes trivial when the action of G is
forgotten”.

Remark 3.2. This definition is inspired by classical ones. For instance, in the
theory of Chow groups of (projective homogeneous) varieties X over a field F , the
groups

chn(X) := Ker(CHn(X) −→ CHn(X))

are a major topic of investigation. So does the algebraic Brauer group

Bra(X) := Ker(Br(X) −→ Br(X)).

Here X stands for the fiber product X ×F F , where F/F is an algebraic closure
of F .

3.10. The “local-to-global” spectral sequence. Let S be an (Fp, G)-
scheme. Let A,B be GWr-modules over S. There is the usual local-to-global
spectral sequence

Hi(G,Extjr(A,B))⇒ Exti+j
G,r(A,B).

We shall exclusively use it in low degree, to compute the obstruction to lifting
extensions of GWr-bundles. It then has a tangible interpretation, as follows. Let

Er : 0 −→ Vr −→ ∗ −→Wr −→ 0

be an extension of GWr-bundles over S. Let Vr+1 (resp. Wr+1) be a given lift of
Vr (resp. Wr) to a GWr+1-bundle. We would like to lift Er, to an extension of
GWr+1-bundles

Er+1 : 0 −→ Vr+1 −→ ∗ −→Wr+1 −→ 0.

The obstruction to do so is a class

c ∈ Ext2G,1(W
(r)
1 , V

(r)
1 ).

It belongs to ext21(W
(r)
1 , V

(r)
1 ) if, and only if, Er lifts to an extension of Wr+1-

bundles (dismissing the action of G). If this is the case, the edge map

ext21(W
(r)
1 , V

(r)
1 ) −→ H1(G,Ext11(W

(r)
1 , V

(r)
1 ))

kills c, if and only if Er lifts to an extension of Wr+1-bundles

Fr+1 : 0 −→ Vr+1 −→ ∗ −→Wr+1 −→ 0,

whose cohomology class is G-invariant. More accurately, for all g ∈ G, there
should exist an isomorphism

φg : g∗(Fr+1) ≃ Fr+1,
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lifting the isomorphism g∗(Er) ≃ Er arising from the G-structure on Er. If this is
the case, the obstruction to endowing Fr+1 with a semi-linear action of G, and
thus turning it into an extension of GWr-bundles, belongs to

H2(G,Hom(W
(r)
1 , V

(r)
1 )).

It vanishes if and only if the φg’s can be chosen to satisfy the usual compatibility
(cocycle) condition. Writing down computational details is an instructive exercise.

Remark 3.3. What precedes is a technical variation on a simple theme. Consider
some algebro-geometric strucure V , over a G-base S. To G-linearize V (“to
make it G-equivariant”), a necessary condition is that V be G-invariant, up to
isomorphism. If this holds, one may then proceed to search for a G-structure on
V . Note that, if G is a free profinite group (e.g. G = Ẑ), there is no difference
between “G-invariant” and “G-linearizable”. Thus, we get the equivalence of the
following assertions.

(1) The structure V is G-invariant.

(2) For every homomorphism φ : Ẑ −→ G, the structure V is Ẑ-linearizable
via φ.

3.11. Recollections on induction and restriction.

Definition 3.4 (Restriction). Let H ⊂ G be an open subgroup. Let S be a G-

scheme. We denote by ResGH(S) the scheme S, viewed as an H-scheme.

When this creates no confusion, we may denote the H-scheme ResGH(S) simply by
S.

Definition 3.5 (Induction). Let H ⊂ G be an open subgroup. Let S be an H-
scheme. We define the induced G-scheme

IndGH(S) := HomH(G,S)

as follows. On the level of functors of points, it consists of functions

f : G −→ S

such that

f(hg) = hf(g),

for all h ∈ H and g ∈ G. Its G-scheme structure is given by

(x.f)(g) = f(gx),

for x, g ∈ G and f ∈ IndGH(S).
Induction is functorial in the H-scheme S.
The functor IndGH is right adjoint to the forgetful functor

ResGH : {G− Sch} −→ {H − Sch}.

If S is a G-scheme, we denote by

∆ : S −→ IndGH(ResGH(S)),

s 7→ (g 7→ gs).

the adjunction morphism.
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Definition 3.6 (Induction, relative version).
Let S be a G-scheme. Let H ⊂ G be an open subgroup.
Let

f : T −→ ResGH(S)

be an H-scheme, over ResGH(S).

We define IndGH(T, f), a G-scheme over S, as the fibered product

IndGH(T, f)

��

// S

∆

��

IndGH(T )
IndG

H(f)
// IndGH(ResGH(S)).

We shall denote it simply by

IndGH(f) −→ S,

if there is no risk of confusing it with the arrow IndGH(f).

The functor

IndGH : {H − Sch/S} −→ {G− Sch/S}

is right adjoint to the forgetful functor

ResGH : {G− Sch/S} −→ {H − Sch/S}.

Remark 3.7. Denote by n the index of H in G. Choosing a system

{g1, . . . , gn} ⊂ G

of representatives of cosets in H\G yields a (noncanonical) isomorphism

IndGH(T ) ≃ T ×Z T ×Z . . .×Z T
︸ ︷︷ ︸

n times

.

Similarly, we get an isomorphism

IndGH(f) ≃ T ×f T ×f . . .×f T
︸ ︷︷ ︸

n times

.

In case f is the restriction of a (G,S)-scheme T −→ S, there is a canonical
isomorphism

IndGH(f) ≃ TG/H ,

where the right-hand side denotes a product of copies of T , fibered over S, and
indexed by the set G/H.

3.12. Cohomological detox. This paper follows the guideline “effectiveness of
a proof matters as much as its result”. It is consistent with minimizing the use
of cohomological devices of degree ≥ 2. I do, however, respect these- for without
knowing them, I would not have written a single line of this text.
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4. Good filtrations.

Filtrations are a main tool in this text. They are, in many cases, just geometric
filtrations: they need not respect G-actions.
Filtrations encountered in this text are natural. They enjoy nice properties, which
facilitate dévissage arguments. They will be refered to as good filtrations.
We give a motivated definition.
Let F : S −→ T be a morphism of schemes. Let M be a quasi-coherent S-module.
As usual in algebraic geometry, and for various reasons, we will need to show the
vanishing of RiF∗(M). In the current context, derived functors are taken with
respect to the Zariski topology, and i = 0 or 1. The price to pay, for working in
such a delightfully light cohomological setting, is that the moduleM is often messy.
Rather than being a low-dimensional object (e.g. a line bundle), it will often be a
direct limit of complicated vector bundles. Such modules M typically arise when
considering compositions of splitting schemes of torsors under vector bundles. The
reader may take a glimpse at section 16, where this is particularly obvious. For
proving the required vanishing of RiF∗(M), we use dévissage arguments, relatively
to filtrations of the following shape.

Definition 4.1. (Good filtrations, well-filtered morphisms)
Let S be a scheme, and let M be a quasi-coherent S-module.
A good filtration on M is the data of

• A well-ordered set J . In practice, J is often a subset of Nn, with the usual
lexicographic order. In all cases, we use 0 to denote its least element.
• An increasing filtration (Mj)j∈J of M , by quasi-coherent sub-modules,
whose graded pieces

Fj := Mj/
∑

i<j

Mi

are vector bundles, for all j ∈ J . In practice, they are often line bundles.

Let g : S′ −→ S be an affine morphism. Let (Mj)j∈J be a good filtration of the
quasi-coherent S-module g∗(OS′), with first step

M0 = OS ⊂ g∗(OS′).

We then say that g is well-filtered, w.r.t. the good filtration (Mj)j∈J .

By dévissage on the good filtration, to prove the vanishing of RiF∗(M), it suffices
to prove that of RiF∗(Fj), for all j ∈ J . This follows from the fact that J is
well-ordered. Details are left to the reader.

We now list a few tools, of which we shall make an intensive use. We then conclude
with examples of good filtrations.

4.1. Tensor product of good filtrations.
Let M,M ′ be quasi-coherent modules over a scheme S, respectively equipped with
good filtrations (Mj)j∈J and (M ′

j′)j′∈J ′ . Put

Mj,j′ :=
∑

(i,i′)≤(j,j′)

Mi ⊗M ′
i′ .
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Then, (Mj,j′)(j,j′)∈J×J ′ is a good filtration of M ⊗M ′, for the lexicographic order
on J × J ′. Its graded pieces are the vector bundles

Fj,j′ := (Fj ⊗ Fj′)(j,j′)∈J×J ′ .

This extends to tensor products of three or more good filtrations of quasi-coherent
modules. Note that the tensor product of good filtrations depends on a chosen
order of the factors.

4.2. Composition of well-filtered morphisms.
Let

g1 : S2 −→ S1

and

g2 : S3 −→ S2

be affine morphisms of schemes.
For i = 1, 2, assume that gi is well-filtered w.r.t. the filtration (Mi,ji)ji∈Ji

, whose
graded pieces we denote by Fi,ji .
Put

J := J2 × J1,

equipped with the lexicographic order:
for j = (j2, j1) and j′ = (j′2, j

′
1), we have j < j′ iff j2 < j′2 or (j2 = j′2 and j1 < j′1).

Consider the composite

g := g1 ◦ g2 : S3 −→ S1.

We would like g to be well-filtered in a natural way, using J to label the steps of
the filtration. To ensure the existence of such a filtration, we assume the existence
of the following extra data.

(D): For all j2 ∈ J2, a vector bundle V1,j2 on S1 is given, together with an isomor-
phism

φj2 : g∗1(V1,j2)
∼
−→ F2,j2 .

We have V1,0 = OS1
, and φ0 = Id.

Thus, the graded pieces of the filtration (M2,j2)j2∈J2
, which are vector bundles over

S2, should be defined over S1. In general, this holds (trivially) only for F2,0 = OS2
.

Note that it is important, in (D), to specify the isomorphisms φj2 .
For j = (j2, j1) ∈ J , put

Fj := V1,j2 ⊗OS1
F1,j1 .

Via φj2 , using the projection formula, the quasi-coherent S1-module

(g1)∗(F2,j2) ≃ V1,j2 ⊗ (g1)∗(OS2
)

is then naturally well-filtered, w.r.t. the filtration

(Φj2,j1)j1∈J1
:= (V1,j2 ⊗M1,j1)j1∈J1

,

having (Fj2,j1)j1∈J1
as graded pieces.

For j = (j2, j1) ∈ J , we then denote by

Mj ⊂ (g1)∗(M2,j2) ⊂ g∗(OS3
)

the inverse image of Φj2,j1 , under the quotient

(g1)∗(M2,j2) −→ (g1)∗(F2,j2).
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Lemma 4.2. The data of (Mj)j∈J is a good filtration of g∗(OS3
), with M0 = OS1

.

Proof. Exercise. �

Whenever two composable well-filtered morphisms g1 and g2 are given, together
with the data (D), we will thus consider g := g1 ◦ g2 as a well-filtered morphism,
in the way described above.
This construction clearly extends to compositions of three or more well-filtered
morphisms.

Remark 4.3. Assume that T −→ S1 and g1 : S2 −→ S1 are two well-filtered
(affine) morphisms. Denote by g2 the projection

S3 := S2 ×S1
T −→ S2;

it is naturally a well-filtered morphism. The preceding construction then applies,
and can be recovered from that of the tensor product of good filtrations.

4.3. Classical results in coherent sheaf cohomology. Let V be a vector
bundle over a scheme S. Let F : Fl(V ) −→ S be the structure morphism of its
complete flag scheme. Let L be a line bundle over Fl(V ).
Proposition 9.4 then gives a simple condition for the vanishing of F∗(L). With
the help of Proposition 9.5, it can be used to actually compute R1F∗(L).

4.4. Examples of good filtrations.

Example 4.4. (A typical good filtration, on symmetric powers.)
Let S be an Fp-scheme. Let V be a vector bundle over S, of rank d ≥ 3. Denote
by F : Fl(V ) −→ S its complete flag scheme, and by

∇gen : 0 ⊂ V1 ⊂ . . . ⊂ Vd = F ∗(V )

its tautological complete flag. Pick a positive integer n. Consider the vector bundle
(over Fl(V ))

W := Symn(Vd)

Then, W has a natural good filtration (Mj)j∈J . Here

J := {(a1, . . . , ad) ∈ Nd,
∑

ai = n}

is endowed with the lexicographic order,

M(a1,...,ad) := Span(v1 . . . vd, vi ∈ Vbi , (b1, . . . , bd) ≤ (a1, . . . , ad)).

We have F(a1,...,ad) = O(a1, . . . , ad).

Example 4.5. Splitting schemes are archetypes of well-filtered affine morphisms.
Splitting schemes of extensions of vector bundles are introduced later, in Proposi-
tion 5.1, where we emphasize that they are well-filtered morphisms. Using section
4.2, it is even true that splitting schemes of extensions of Wr-bundles are well-
filtered- see Proposition 5.2.
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5. GWr-affine spaces and splitting schemes.

5.1. Affine spaces of vector bundles.
Let S be a scheme, and let V be a vector bundle over S. We denote by

A(V ) := Spec(Sym(V ∨)) −→ S

the affine space of V . Its functor of points is given by

A(V )(T ) = H0(T, V ⊗OS
OT ),

for every T −→ S.
Clearly, if V is a G-vector bundle over a G-scheme S, then A(V ) is a (G,S)-scheme.
It is also the scheme in GW1-modules over S, naturally attached to V .

5.2. GWr-affine spaces.
Let S be a (G,Fp)-scheme. We can reinterpret G-equivariant torsors under GWr-
vector bundles over S, as G-affine spaces over S. This point of view is analoguous
to a well-known fact in real geometry, taught to our second-year students. Namely,
a set with a simply transitive action of Rn is a real affine space, in the sense of
barycentric geometry. The general notion of a G-affine space over S is discussed
in [6], from which we follow conventions. In particular, a G-affine space X over
Wr(S) will be called a GWr-affine space over S. In this text, we will always

assume that
−→
X , the GWr-module of translations of X, is a GWr-bundle.

5.3. Affine spaces, as splitting schemes of extensions of vector bun-
dles. The following notion was introduced in [6, §4], to which we refer for details.

Definition 5.1. Let V be a G-vector bundle over a G-scheme S. Let X be a
(G,V )-torsor over S- that is to say, a G-affine space directed by V .
Then, X is represented by a G-scheme, affine over S.

If X corresponds to an extension (of G-vector bundles over S)

E : 0 −→ V
i
−→ E

π
−→ OS −→ 0,

then this (G,S)-scheme is the scheme of sections of π, which we denote by

g : S(E) −→ S.

It is a G-affine subspace of A(E), having A(V ) as its space of translations.
As such, it is the Spec of the (G,S)-algebra

lim
−→

(Symn(E∨)),

where the limit is taken with respect to the injections of the exact sequences

0 −→ Symn(E∨)
×π∨

−→ Symn+1(E∨)
Symn+1(i∨)
−→ Symn+1(V ∨) −→ 0,

which are the symmetric powers of the dual extension

E∨ : 0 −→ OS
π∨

−→ E∨ i∨
−→ V ∨ −→ 0.

This description yields a natural (G-equivariant) filtration on the quasi-coherent
OS-module g∗(OS(E)), by the sub-vector bundles Symn(E∨). It is indexed by the
well-ordered set N. Its n-th graded piece is the vector bundle Symn(V ∨). It is a
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good filtration, in the sense of section 4. Hence, splitting schemes are well-filtered
in a natural way.

Let S be an (Fp, G)-scheme.
The Greenberg transfer allows to consider splitting schemes of extensions of GWr-
bundles over S, as (G,S)-schemes. How to do so is explained in the next Propo-
sition, borrowed from [6, Proposition 5.5], to which we refer for a proof.

Proposition 5.2. Let

Er : 0 −→ Vr −→ Er −→Wr(OS) −→ 0

be an extension of GWr-bundles, over an (Fp, G)-scheme S. For 1 ≤ i ≤ r, denote
by

Ei : 0 −→ Vi −→ Ei −→Wi(OS) −→ 0

its reduction, to an extension of GWi-bundles over S.
Viewing Er as an extension of vector bundles over Wr(S), denote by

Sr(Er) −→Wr(S)

its splitting scheme. Form its Greenberg transfer

gr : S(Er) := RWr/W1
(Sr(Er)) −→ S.

We also refer to gr as the splitting scheme of Er. It is naturally presented as a
composite

S(Er) = Xr
hr−→ Xr−1

hr−1

−→ . . .
h2−→ X1

g1
−→ S.

The morphism g1 is the splitting scheme of E1.
The hi’s are defined inductively, as follows. Denote by

0 −→ Frobi∗(V
(i)
r−i)

ji
−→ Vr

ρi
−→ Vi −→ 0

the natural extension of GWr-modules on S, where ρi is the reduction arrow.
Over Xi, there exists a natural extension of GWr−i- bundles

Fi,r−i : 0 −→ V
(i)
r−i −→ ∗ −→Wr−i(OS) −→ 0,

such that Er, over Xi, becomes canonically isomorphic to (ji)∗(Fi,r−i).
Define the arrow hi+1 : Xi+1 −→ Xi as the splitting scheme

S(Fi,1) −→ Xi

of the mod p reduction of Fi,r−i,

Fi,1 : 0 −→ V
(i)
1 −→ ∗ −→ OS −→ 0.

The arrow gr is well-filtered in a natural (G-equivariant) way, indexed by
(ar, . . . , a1) ∈ Nr, well-ordered by the lexicographic order. The graded pieces asso-
ciated to the filtration of (gr)∗(OS(Er)) are the vector bundles

Syma1(V ∨
1 )⊗ Syma2(V

(1)∨
1 )⊗ . . .⊗ Symar (V

(r−1)∨
1 ).

This follows from Proposition 5.1, combined to the composition process 4.2.
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6. Permutation embedded flags of GWr-bundles.

6.1. Permutation GWr- bundles.

Definition 6.1. Let S be an (Fp, G)-scheme. Let X be a finite G-set. To fix
ideas, we write the G-action on S on the left, and the G-action on X on the right.
Let (Lx)x∈X be a collection of line bundles over S, together with isomorphisms of
line bundles over S

φx,g : Lxg
∼
−→ (g.)∗(Lx),

one for each g ∈ G and x ∈ X, satisfying the cocycle condition

φx,gh = (h.)∗(φx,g) ◦ φxg,h.

We then say that the GWr-bundle (over S)
⊕

x∈X

Wr(Lx)

is a permutation GWr-bundle, with (Lx)x∈X as a basis.
A GWr-bundle, which is isomorphic to a permutation GWr-bundle relative to
some basis, will simply be called a permutation GWr-bundle.
In other words, a permutation GWr-bundle is a direct sum of GWr-bundles which
are induced, from finitely many open subgroups Hi ⊂ G, from line HiWr-bundles.

Clearly, Teichmüller lifts of G-line bundles over S are permutation GWr-bundles.
Morphisms between permutation GWr-bundles always lift, as follows.

Lemma 6.2. Let S be an (Fp, G)-scheme.

1) Let Vr be a permutation GWr-bundle over S. Then, Vr admits a system of
compatible liftings, to permutation GWs-bundle over S, s ≥ r.
2) Let Vr,Wr be two permutation GWr-bundles over S. Consider a G-equivariant
arrow

fr : Vr −→Wr.

Then, fr admits a system of compatible liftings, to G-equivariant arrows

fs : Vs −→Ws,

for all s ≥ r.

Proof. The case r = 1 follows from functoriality of the Teichmüller lift of line
bundles over S, L 7→Wr(L). The general case is by induction on r. �

7. Embedded complete flags.

In this section, we introduce key tools, for proving the Uplifting Theorem.

Let r ≥ 1 be an integer. Let S be an Fp-scheme. The following concept is essential.

Definition 7.1. (Complete flags of Wr-bundles.)
A complete flag of Wr-bundles over S, of rank d ≥ 1, is the data of a filtration of
Wr-bundles over S

∇ = ∇d,r : 0 = V0,r ⊂ V1,r ⊂ . . . ⊂ Vd,r,
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whose graded pieces Li,r = Vi,r/Vi−1,r are Wr-line bundles.
If S is an (Fp, G)-scheme, a G-linearized complete flag of Wr-bundles over S is
called a complete flag of GWr-bundles.

In order to make our future lifting problems representable by schemes, we need an
“embedded” version of these complete flags.

Definition 7.2. (Embedded complete flag of Wr-bundles.)
An embedded complete flag of Wr-bundles over S is the data of a complete flag of
Wr-bundles over S

∇ = ∇d,r : 0 = V0,r ⊂ V1,r ⊂ . . . ⊂ Vd,r,

together with an embedding of Wr-bundles over S

Vd,r ⊂ VD,r,

where VD,r is a Wr-bundle over S, of rank D ≥ d.
By “embedding”, it is understood that VD,r/Vd,r is a Wr-bundle.

Definition 7.3. (Permutation embedded complete flag of GWr-bundles.)
Let S be an (Fp, G)-scheme. A permutation embedded complete flag of GWr-
bundles over S is the data of a complete flag of GWr-bundles over S

∇ = ∇d,r : 0 = V0,r ⊂ V1,r ⊂ . . . ⊂ Vd,r,

together with an embedding of GWr-bundles over S

Vd,r ⊂ VD,r,

where VD,r is a permutation GWr-bundle over S.

7.1. Operations on embedded complete flags. Let

∇ = ∇d,r : 0 = V0,r ⊂ V1,r ⊂ . . . ⊂ Vd,r ⊂ VD,r

be an embedded complete flag of Wr-bundles, over an Fp-scheme S.

7.1.1. Truncation. For any 1 ≤ d′ ≤ d, the truncation

td′(∇) := 0 = V0,r ⊂ V1,r ⊂ . . . ⊂ Vd′,r ⊂ VD,r

is an embedded complete flag of Wr-bundles, of rank d′.

7.1.2. Reduction. For any 1 ≤ r′ ≤ r, the reduction

ρr′(∇) := 0 = V0,r′ ⊂ V1,r′ ⊂ . . . ⊂ Vd,r′ ⊂ VD,r′

is an embedded complete flag of Wr′ -bundles, of rank d.
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8. Recollections on cyclotomic pairs and on smooth profinite
groups.

The notions of cyclotomic pair and of smooth profinite group used here are intro-
duced in [6]. They depend on a pair of integers (n, e), where n ≥ 1 is the degree
of the cohomology groups involved, and where e ≥ 1 is the depth. In the present
work, we retain from [6] just what we need. In particular, we focus on the case
n = e = 1, as mentionned in the Introduction.

Definition 8.1. ((1, 1)-smooth profinite group; see [6, Definition 6.7])
A profinite group G is said to be (1, 1)-smooth if the following lifting property holds.
Let A be a perfect Fp-algebra equipped with an action of G (factoring through an
open subgroup). Let L1 be a locally free A-module of rank one, equipped with a
semi-linear action of G. Let c ∈ H1(G,L1) be a cohomology class. Then, there
exists a lift of L1, to a (W2(A), G)-module L2[c], locally free of rank one as a
W2(A)-module (and depending on c), such that c belongs to the image of the
natural map

H1(G,L2[c]) −→ H1(G,L1).

As explained in [6, §11], (1, 1)-smoothness is equivalent to a simple fact: the
liftability of one-dimensional mod p G-affine spaces, to mod p2 G-affine spaces.

Definition 8.2. ((1, 1)-cyclotomic pair; see [6, §6])
Let G be a profinite group, and let Z/p2(1) be a free Z/p2-module of rank one,
equipped with a continuous action of G. We say that the pair (G,Z/p2(1)) is
(1, 1)-cyclotomic if the following lifting property holds.
For all open subgroups H ⊂ G, the natural map

H1(H,Z/p2(1)) −→ H1(H,Z/p(1))

is surjective.

We shall need the following result.

Theorem 8.3. (see [6], Theorem A)
Let (G,Z/p2(1)) be a (1, 1)-cyclotomic pair. Let A be a perfect (Fp, G)-algebra.
Let L1 be an invertible A-module, equipped with a semi-linear action of G. Then,
for all open subgroups H ⊂ G, the natural map

H1(H,W2(L1)(1)) −→ H1(H,L1(1))

is surjective. In particular, G is (1, 1)-smooth.

9. Flag schemes and their cohomology.

Definition 9.1 (Subbundles).
Let S be a scheme. Let V be a vector bundle over S. A sub-vector bundle W ⊂ V
(or subbundle) is a coherent sub-S-module W ⊂ V , such that V/W is a vector
bundle.
(Hence, W is automatically a vector bundle.)
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Definition 9.2 (Flag schemes).
Let S be a scheme. Let V be a vector bundle over S, of rank D ≥ 1. Let

1 ≤ n1 < . . . < ns ≤ D

be a strictly increasing sequence of integers. We denote by

F (= Fn1,...,ns
) : Fl(n1, . . . , ns, V ) −→ X

the scheme of flags of subbundles of V , of dimensions n1, . . . , ns. Its universal

property is the following : for any morphism T
t
−→ S, the set Fl(n1, . . . , ns, V )(T )

consists of flags of subbundles over T

(0 = Z0 ⊂ Z1 ⊂ . . . ⊂ Zs ⊂ ZD := t∗(V )),

with dim(Zi) = ni for all i = 1, . . . , s.
We use the notation

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vs ⊂ VD = F ∗(V )

for the tautological filtration (flag) on the vector bundle F ∗(V ).

We denote the flag scheme Fl(1, 2, . . . , d, V ), for d ∈ {1, . . . , D}, by

F (= Fd,V ) : Fl(d, V ) −→ S.

If d = D, we denote Fl(d, V ) simply by Fl(V ); it is the scheme of complete flags
of the vector bundle V . We then denote by

Li := Vi/Vi−1

the associated quotient line bundles, for i = 1, . . . , D.
Following the notation introduced earlier, for an arbitrary sequence of relative in-
tegers a1, . . . , aD, we put

O(a1, . . . , aD) := L⊗a1

1 ⊗ . . .⊗ L⊗aD

d ;

it is a line bundle on Fl(V ).

Remark 9.3. The scheme Fl(V ) can be naturally constructed as a composite of
projective bundles; see [14, §3.2].

The following Proposition will serve us well.

Proposition 9.4. Denote by F : Fl(V ) −→ S the scheme of complete flags of a
vector bundle V over S, of rank D.
Let a = (a1, . . . , aD) ∈ ZD be a sequence of D relative integers.
If a is not an increasing sequence, then

F∗(O(a1, . . . , aD)) = 0.

Proof. See [3, Proposition 1.4.5]. �

Let F : Fl(V ) −→ S be the complete flag scheme of a vector bundle over S, of
rank D. It is an exercise to show that the tautological flag

∇gen : 0 = V0 ⊂ V1 ⊂ . . . ⊂ VD−1 ⊂ VD = F ∗(V )

is not split. More precisely, for all integers 1 ≤ m < n ≤ D the natural extension

Nat : 0 −→ Vm −→ Vn −→ Vn/Vm −→ 0

is not split. If S has characteristic p, neither are its Frobenius pullbacks Nat(r).
In the sequel, we will need to split (part of) this tautological flag, using splitting
schemes.
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We now recall fairly classical cohomological material, focusing on cohomology
groups of degree ≤ 1.

Proposition 9.5. (Cohomology of Pd−1-bundles).
Let V be a vector bundle of rank d ≥ 2, over a scheme S. Denote by

F : P(V ) −→ S

its projective bundle, and by O(1) its twisting sheaf. Let n > 0 be an integer.

1) We have F∗(O(−n)) = 0.
2) If d ≥ 3, we have R1F∗(O(−n)) = 0.
3) If d = 2, we have R1F∗(O(−1)) = 0, and

R1F∗(O(−n)) = Γn−2(V ∨)⊗Det(V )∨

for n ≥ 2, where Γ∗ denotes divided powers, dual to symmetric powers Sym∗.

The same computations hold over the complete flag scheme Fl(V ), instead of
the projective bundle P(V ). Just replace O(−n) by O(0, . . . , 0,−n), or dually
O(n, 0, . . . , 0).
When d = 2, we get from 3) a natural good filtration for the vector bundle
F ∗(R1F∗(O(n, 0))), having as graded pieces line bundles of the shape O(n1, n2),
with n1, n2 positive, and n1 + n2 = n.

Proof. Stacks project ([31] 30.8) does it well. �

10. S-polynomial functors.

The purpose of this section is to give a meaning to “a polynomial functor” applied
to a vector bundle V over a scheme. We do this adopting the trendy language
of stacks. This section is rather informal, and intended to be inspiring. Note
that the only polynomial functors used later in this text are symmetric functors-
defined at the end of this section.

Denote by S a scheme, not necessarily of characteristic p.

Definition 10.1. We define VectS to be the category whose objects are pairs

(T
f
−→ S, V )

where f is a morphism of schemes, and where V is a vector bundle over T (of
arbitrary constant rank). Morphisms

(T
f
−→ S, V ) −→ (T ′ f ′

−→ S, V ′)

exist if and only if f = f ′, in which case they are morphisms of OT -Modules
V −→ V ′.

The category VectS is fibered over SchS, through the forgetful functor and pull-
backs of vector bundles, giving rise to the stack of vector bundles over S (with
respect, say, to the fpqc topology).

The next Definition, for polynomial functors, mimics that of polynomial laws (see
[27]), in a categorical context.
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Definition 10.2. (S-polynomial functors.)
Let n be a positive integer. An S-polynomial functor, homogeneous of degree n ≥ 0,
is an endofunctor Φ of the stack VectS, together with the data, for every

(T
f
−→ S, V ) ∈ VectS

and every line bundle L over T , of a functorial isomorphism

φf,V,L : Φ(L⊗ V )
∼
−→ L⊗n ⊗ Φ(V )

of vector bundles over T .

Remark 10.3. If S = Spec(k) with k a field, the preceding Definition is most likely
equivalent to the usual definition of a polynomial functor- see, for instance, [13].

Examples 10.4. The n-th symmetric power

V 7→ Symn(V )

and n-th exterior power

V 7→ Λn(V )

both define S-polynomial functors, homogeneous of degree n.

The n-th divided power

V 7→ Γn(V ) := Symn(V ∨)∨

also defines such a functor. (Warning: this formula for divided powers applies to
vector bundles only.)

If S has characteristic p, the r-th Frobenius pullback

V 7→ V (r) = (Frobr)∗(V )

defines an S-polynomial functor, homogeneous of degree pr.

Remark 10.5. Note that Γn, Symn and Λn are Z-polynomial functors: they are
defined over S = Spec(Z).

Definition 10.6. Let Φ be an S-polynomial functor, homogeneous of degree n.
Then, the association

V 7→ Φ(V ∨)∨

defines another polynomial functor Φ∨, dual to Φ.

We shall say that Φ is self-dual if Φ and Φ∨ are isomorphic.

Exercise 10.7. Exterior powers Λn are self-dual over any base. Symmetric powers
Symn are self-dual over S if and only n! is everywhere invertible on S.

Remark 10.8. (Frobenius and Verschiebung.)
Let S be a scheme of characteristic p. Let V be a vector bundle over S. There is
a natural Frobenius arrow

FrobV : Frob∗(V ) −→ Symp(V ),

v ⊗ 1 7→ vp,

identifying Frob∗(V ) to a subbundle of Symp(V ). It is an isomorphism if, and only
if, V is a line bundle. It gives rise to a natural transformation of Fp-polynomial
functors

Frob∗(.)
Frob
−→ Symp(.).
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The Verschiebung occurs as its dual:

Γp(.)
Ver
−→ Frob∗(.).

Applied to V , it is given by the formula

Γp(V )
Ver
−→ Frob∗(V ),

[v]p 7→ v ⊗ 1.

Note that Frob and Ver actually apply to all quasi-coherent modules, not just to
vector bundles.

10.1. Symmetric functors. These are the polynomial functors that we shall
use in practice.

Definition 10.9. (Symmetric functors.)
A symmetric functor over Fp is an Fp-polynomial functor of the shape

Φ : V 7→
n⊗

i=1

Symai(V (ri)),

where n, the ai’s and the ri’s are non-negative integers, with aip
ri > 0 for all i.

It is thus homogeneous, of degree
∑n

i=1 aip
ri .

It is called pure if n = 1. If n ≥ 2, it is said to be composite.

11. Lifting extensions of Wr-bundles...

In this section, we investigate how to lift extensions of Wr-bundles. For simplicity,
we restrict to extensions with kernel a line bundle- which is all we shall need later.
The general case can be dealt with along the same lines.
This question is of crucial importance in the proof of the Uplifting Theorem 14.1.
It is clearly equivalent to the problem of lifting line subbundles of Witt vector
bundles- and to its dual counterpart, lifting quotient line bundles of Witt vector
bundles.

Let S be a scheme over Fp, let L be a line bundle over S, let r ≥ 1 be an
integer, and let

Er : 0 −→ Lr
ir−→ Vr

πr−→ Qr −→ 0

be an exact sequence of Wr-bundles over S. Let s ≥ 1 be an integer. Let Vr+s be
a given lift of Vr, to a Wr+s-bundle on S. We want to perform a change of the
base

Sr+s −→ S,

which solves the moduli problem of lifting Er, to an extension of Wr+s-bundles

Er+s : 0 −→ Lr+s
ir+s
−→ Vr+s

πr+s
−→ Qr+s −→ 0.

Note that, if we can lift ir to a homomorphism of Wr+s-bundles

ir+s : Lr+s −→ Vr+s,

this lift is then automatically an embedding. Indeed, by Nakayama’s lemma, its
dual arrow i∨r+s : V ∨

r+s −→ L∨
r+s is surjective. Then, simply set Qr+s to be the

cokernel of ir+s.
There are two ways to deal with our lifting problem: either Lr+s is prescribed in
advance, or it is not. We now get to details.
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11.1. ...prescribing the lift of their kernel... In this section, we prescribe
the Wr+s-bundle Lr+s. In other terms, we are given the data of Er, Lr+s and
Vr+s, and our goal is to define the morphism Sr+s −→ S, which parametrizes
liftings Er+s of Er. For instance, if Lr is the Teichmüller lift of its mod p reduction
(Lr = Wr(L1)), we can require Lr+s = Wr+s(L1).
Consider the natural exact sequence of Wr+s-modules over S

Fr+s : 0 −→ Frobr∗((Frob
r)∗(Vs ⊗ L−1

s )) −→ Vr+s ⊗ L−1
r+s

ρ
−→ Vr ⊗ L−1

r −→ 0,

where

Vs := Vr ⊗Wr
Ws

denotes the reduction of Vr to a Ws-bundle on S, and where ρ is given by reduc-
tion. The arrow ir is given by a global section

sr ∈ H0(S, Vr ⊗ L−1
r ) = HomWr(OS)−Mod(Wr(OS), Vr ⊗ L−1

r ).

Lifting it to ir+s : Lr+s −→ Vr+s amounts to lifting sr, via ρ, to a global section

sr+s ∈ H0(S, Vr+s ⊗ L−1
r+s) = HomWr+s(OS)−Mod(Wr+s(OS), Vr+s ⊗ L−1

r+s).

The space of such liftings is naturally equipped with the structure of a torsor,
under the Ws-bundle (Vs ⊗ L−1

s )(r). Using adjunction between Frob∗ and Frob∗,
it is given by the extension s∗r(Fr+s), corresponding to an extension of Ws-bundles
over S

Gr+s : 0 −→ (Frobr)∗(Vs ⊗ L−1
s ) −→ ∗ −→ OS −→ 0.

Denote by

Sr+s(= Sr+s(ir, Vr+s, Lr+s)) := S(Gr+s)
g
−→ S

its splitting scheme; see 5.2. Over Sr+s, Gr+s acquires a canonical section, giving
rise to a lifting ir+s of ir. The affine morphism

g : Sr+s −→ S

is then, indeed, the universal change of the base, parametrizing the desired liftings
of Er.
We have just proved a useful representability statement, as follows.

Definition 11.1. Let 0 −→ Lr
ir−→ Vr −→ Qr −→ 0 be an extension of Wr-

bundles over an Fp-scheme S. Assume given a lift Vr+s(resp. Lr+s) of Vr(resp.
Lr) to a Wr+s-bundle over S. Consider the functor

ΨEr,Vr+s,Lr+s
: Sch/S −→ Sets

(T
t
−→ S) 7−→ {Er+s}

,

from the category of S-schemes to that of sets, defined as follows. It sends t to the
set of liftings of t∗(Er) to an extension

Er+s : 0 −→ t∗(Lr+s) −→ t∗(Vr+s) −→ ∗ −→ 0

of Wr+s-bundles over T .

Proposition 11.2. The functor ΨEr,Vr+s,Lr+s
is represented by the affine mor-

phism g : Sr+s −→ S constructed above.

Proof. As we have seen above, over a given T
t
−→ S, the data of a lifting of

t∗(Er) is equivalent to that of a lifting of t∗(ir) : t
∗(Lr) −→ t∗(Vr); that is to say,

to a splitting of the extension t∗(s∗r(Fr+s)). The claim follows from the universal
property of splitting schemes. �
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Remark 11.3. Assume that s = 1. Then, by Proposition 5.1, the affine morphism
g is well-filtered, in a natural way. The graded pieces of the associated good
filtration of g∗(OSr+1

)/OS are of the shape

Symn((Frobr)∗(V ∨
1 ⊗ L1)) = Symn((Frobr)∗(V ∨

1 ))⊗ Lnpr

1 .

Hence, setting a := npr,

Φa(.) := Symn(Frobr(.))

is a pure symmetric functor, homogenenous of degree a ≥ 1, which describes these
graded pieces.
The situation for s arbitrary is similar, replacing Φa by a composite symmetric
functor, and using Proposition 5.2.

11.2. ...or without constraint. In this section, we describe the space of lift-
ings Er+s of Er, without prescribing Lr+s in advance. This space is the fiber of
the reduction morphism

RWr+s/W1
(PWr+s(S)(V

∨
r+s)) −→ RWr/W1

(PWr(S)(V
∨
r )),

over the S-point given by ir. Recall that RWr/W1
denotes Greenberg’s functor,

from the category of Wr(S)-schemes to that of S-schemes. This fiber can be
described using Greenberg’s Structure Theorem- see, for instance, [1]. We give a
self-contained exposition, in our particular context.
Assume first that S is affine, in which case :

• all extensions of Wr-bundles over S are split, and
• every Wr-line bundle over S is (non-canonically) isomorphic to the Te-
ichmüller lift of its mod p reduction.

Both assertions follows from the vanishing of coherent cohomology over S. Actu-
ally, the second one just uses H1(S,OS) = 0.
Our moduli problem can then be reformulated as follows.
Fix an isomorphism Lr ≃ Wr(L1). Let Vr+s be a given lift of Vr, to a Wr+s-
bundle on S. Parametrize equivalence classes of liftings of

Wr(L1)
ir−→ Vr,

to

ir+s : Wr+s(L1)
ir+s
−→ Vr+s,

where two liftings ir+s and i′r+s are identified if there exists an automorphism

σ ∈ Ker(Aut(Wr+s(L1) −→ Aut(Wr(L1)) = Ker(W×
r+s −→W

×
r ),

such that

i′r+s = ir+s ◦ σ.

Remark 11.4. The expression

Ker(W×
r+s −→W

×
r )

defines a linear algebraic group over Z. Its mod p reduction is a split unipotent
linear algebraic group over Fp. If p 6= 2, or if r ≥ 2, it is isomorphic to (Ws,+),
via the p-adic logarithm. See [8, Remark 2.4].
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Keeping the notation of the previous paragraph, these equivalence classes form
a torsor under the vector bundle (Qs ⊗ L∨

s )
(r). Concretely, it is given by the

extension of Ws-bundles (πs)∗(Gr+s) = (πs)∗(s
∗
r(Fr+s)), reading as

Gr+s : 0 −→ (Qs ⊗ L∨
s )

(r) −→ ∗ −→Ws(OS) −→ 0.

This extension is canonical: it does not depend on the choice of the isomorphism
Lr

∼
−→Wr(L1). By glueing, it is defined over an arbitrary S. Denote by

S
′
r+s(= S

′
r+s(ir, Vr+s)) := S(Gr+s)

g′

−→ S

its splitting scheme. We have proved the following useful representability state-
ment.

Definition 11.5. Let

Er : 0 −→ Lr
ir−→ Vr −→ Qr −→ 0

be an extension of Wr-bundles over an Fp-scheme S. Assume given a lift Vr+s of
Vr to a Wr+s-bundle over S. Consider the functor

ΦEr,Vr+s
: Sch/S −→ Sets

(T
t
−→ S) 7−→ {Er+s},

from the category of S-schemes to that of sets, defined as follows. It sends t to the
set of liftings of t∗(Er) to an extension

Er+s : 0 −→ ∗ −→ t∗(Vr+s) −→ ∗ −→ 0

of Wr+s-bundles over T .

Proposition 11.6. The functor ΦEr,Vr+s
is represented by the affine morphism

g′ : S′
r+s −→ S constructed above.

Remark 11.7. In the present situation, the analogue of Remark 11.3 goes as fol-
lows. The morphism g′ is well-filtered in a natural way. The graded pieces of the
associated good filtration of g′∗(OS′

r+1
)/OS are of the shape

Φ′
a((V1/L1)

∨ ⊗ L1),

where a ≥ 1 is an integer, and where Φ′
a is a symmetric functor, homogenenous of

degree a, which is pure if s = 1.

Exercise 11.8. Give a precise meaning to the following motto:
“Splitting creates functions which are dual to those created for lifting.”
Of course, splitting is a much stronger operation than lifting!

11.3. The equivariant case. Assume now that S is an (Fp, G)-scheme, that
Er is an exact sequence of GWr-bundles over S, and that Vr+s is a GWr+s-
bundle over S. In the situation of subsection 11.1, assume also that Lr+s is a
GWr+s-line bundle over S. By functoriality of the constructions above, we get
the following. The schemes Sr+s and S

′
r+s are (Fp, G)-schemes in a natural way,

for which the arrows g and g′ are G-equivariant. Furthermore, their G-equivariant
sections correspond to liftings Er+s of Er, that are extensions of GWr+s-bundles.



29

12. Glueing extensions of GW2-bundles.

Let S be an (Fp, G)-scheme. Let M2 be a GW2-bundle over S. Denote by

M1 = ρ(M2)

its mod p reduction, where ρ stands for reduction. Recall that we have an exact
sequence of GW2-modules over S

0 −→ Frob∗(M
(1)
1 )

j
−→M2

ρ
−→M1 −→ 0.

In the rest of the proof, to simplify notation, we will not write Frobenius pushfor-
wards. By section 3.8, we know that

ExtiG,2(S,W2(OS), ∗) = Hi
G(S, ∗),

for all i ≥ 0, and for all GW2-modules ∗.
Assume given two extensions of GW2-bundles over S,

Ed,2 : 0 −→ Vd−1,2
id,2
−→ Vd,2

qd,2
−→ Ld,2 −→ 0

and

Pd+1,2 : 0 −→ Ld,2 −→ Pd,d+1,2 −→ Ld+1,2 −→ 0,

where Vi,2 (resp. Li,2, Pd,d+1,2) is of dimension i (resp. 1, 2).

Definition 12.1. (Glueing)
A glueing of Ed,2 and Pd+1,2 is a pair (Ed+1,2, φ2), consisting of an extension of
GW2-bundles over S

Ed+1,2 : 0 −→ Vd,2
id+1,2

−→ Vd+1,2
qd+1,2

−→ Ld+1,2 −→ 0,

and an isomorphism of extensions of GW2-bundles over S

φ2 : (qd,2)∗(Ed+1,2)
∼
−→ Pd+1,2.

Isomorphisms of glueings are defined in the obvious way.
This definition clearly extends, to glueing extensions of GWr-bundles over S for
any r ≥ 1.

We know that the obstruction to glueing Ed,2 and Pd+1,2 is the cup-product

C2 := Ed,2 ∪ Pd+1,2 : 0 −→ Vd−1,2 −→ Vd,2 −→ Pd,d+1,2 −→ Ld+1,2 −→ 0.

It is a 2-extension of GW2-bundles over S, whose class

c2 ∈ Ext2G,2(S,Ld+1,2, Vd−1,2) = H2
G(S,L

∨
d+1,2 ⊗ Vd−1,2)

vanishes if, and only if, our two extensions can be glued.

Definition 12.2. (Lifting a glueing)
Let (Ed+1,1, φ1) be a glueing of Ed,1 := ρ(Ed,2) and Pd+1,1 := ρ(Pd+1,2), as exten-
sions of GW1-bundles.
A lifting of the glueing (Ed+1,1, φ1), is the data of a glueing (Ed+1,2, φ2) of Ed,2 and
Pd+1,2, together with an isomorphism

ρ(Ed+1,2, φ2)
∼
−→ (Ed+1,1, φ1),

as glueings of Ed,1 and Pd+1,1.
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In the remaining part of this section, we are going to show that the obstruction to
lifting a glueing, is a 2-extension of G-bundles

C1 : 0 −→ V
(1)
d−1,1 −→ ∗ −→ ∗ −→ L

(1)
d+1,2 −→ 0,

whose class

c1 ∈ Ext2G,1(S,L
(1)
d+1,1, V

(1)
d−1,1) = H2

G(S, (L
∨
d+1,1 ⊗ Vd−1,1)

(1))

satisfies
c2 = j∗(c1) ∈ H2

G(S,L
∨
d+1,2 ⊗ Vd−1,2).

To simplify, we first assume that Ld+1,2 = W2(OS) is trivial.
Consider the natural surjection of GW2-modules

Vd,1 ⊕ Ld,2
q
−→ Ld,1 −→ 0,

given by
q(v, l) := qd,1(v)− ρ(l).

It fits into an extension of GW2-modules

Q : 0 −→ N
ι
−→ Vd,1 ⊕ Ld,2

q
−→ Ld,1 −→ 0,

whose kernel N is presented as

N : 0 −→ V
(1)
d−1,1 −→ Vd,2

s
−→ N −→ 0,

where
s(v) := (ρ(v), qd,2(v)) ∈ N ⊂ Vd,1 ⊕ Ld,2,

and where the injection is given by the natural inclusions

V
(1)
d−1,1 ⊂ V

(1)
d,1 ⊂ Vd,2.

Consider the Baer sum

F := (ρ∗(Ed+1,1) + Pd+1,2) : 0 −→ Vd,1 ⊕ Ld,2 −→ ∗ −→ Ld+1,2 −→ 0,

where ρ : Ld+1,2 −→ Ld+1,1 is the reduction. It is an extension of GW2-modules.
Since Ld+1,2 = W2(OS), we can associate to F the G-affine space of its sections.
It is a (G,S)-torsor X, under the GW2-module Vd,1 ⊕ Ld,2 (see [6], section 4-
especially Lemma 4.12). We now work with (G,S)-torsors, instead of extensions.
The data of the patching (Ed+1,1, φ1) yields a natural trivialization of q∗(X), which
is a (G,S)-torsor under Ld,1. Using the extension Q, we get a (G,S)-torsor Y ,

under N , together with a natural isomorphism X
∼
−→ ι∗(Y ). Lifting the glueing

(Ed+1,1, φ1) is then equivalent to lifting Y , to a (G,S)-torsor under Vd,2 via s.
Using the connecting map associated to N , the obstruction to this liftability is an
element

c1 ∈ H2
G(S, V

(1)
d−1,1).

An important fact is that

c2 = j∗(c1) ∈ H2
G(S, Vd−1,2).

Thus, we have constructed a natural reduction of c2, to a mod p cohomology class
c1. If S is quasi-projective over a field, by Remark 4 of 3.1, c1 is represented by
an extension of G-bundles over S

C1 : 0 −→ V
(1)
d−1,1 −→ ∗ −→ ∗ −→ OS −→ 0.

In the general case, where Ld+1,2 is not assumed to be trivial, we apply

.⊗ L∨
d+1,2,
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tensor product of GW2-modules. For instance, we get

Ed+1,2 ⊗ L∨
d+1,2 : 0 −→ Vd,2 ⊗ L∨

d+1,2 −→ Vd+1,2 ⊗ L∨
d+1,2 −→W2(OS) −→ 0.

Replacing all GW2-modules M by M ⊗L∨
d+1,2, we are sent back to the case where

Ld+1,2 = W2(OS). We thus get an element

c1 ∈ H2
G(S, (Vd−1,1 ⊗ L∨

d+1,1)
(1)),

such that

c2 = j∗(c1) ∈ H2
G(S, Vd−1,2 ⊗ L∨

d+1,2).

If S is quasi-projective over a field, by Remark 4 of 3.1, c1 is represented by an
extension of G-bundles over S

C1 : 0 −→ V
(1)
d−1,1 −→ ∗ −→ ∗ −→ L

(1)
d+1,1 −→ 0.

13. Computations of extensions, over complete flag schemes.

This section contains results of interest, among which the unicity of the tautolog-
ical section.
None of them are used in the proof of the Uplifting Theorem, so that this section
is logically independent from the main objective of this paper. We advise the
reader to skip it, hoping it is useful for future considerations.

13.1. Unicity of the tautological section. Let’s start with a “toy
example”-just to use a bandied around expression;)
Let V be a vector bundle of rank 3, over a base scheme S. Consider its complete
flag scheme f : F := Fl(V ) −→ S. Denote by

Nat1,2 : 0 −→ L1 −→ V2
π
−→ L2 −→ 0

the tautological extension, of vector bundles on F. Denote by

g : S1,2 := S(Nat1,2) −→ F

its splitting scheme, and by s := f ◦ g the structure morphism of the S-scheme
S1,2. Over S1,2, the extension Nat1,2 acquires a canonical (tautological) section

σ : L2 −→ V2. View it as an element of H0(S1,2,L
⊗−1
2 ⊗ V2). It is reasonable

to expect that σ is the only section of Nat1,2, over S1,2. This is indeed the case,
thanks to the next Lemma.

Lemma 13.1. The following is true.
1) The natural inclusion

OS −→ s∗(OS1,2
)

is an isomorphism.
2) For all n ≥ 1, we have

s∗(O(n,−n, 0)) = 0.

3) The natural arrow

OS −→ s∗(L
⊗−1
2 ⊗ V2),

1 7→ σ

is an isomorphism.
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Proof. By Proposition 5.1, we know that the quasi-coherent OF-module
g∗(OS1,2

)/OF has a good filtration by the subbundles Syma(V2) ⊗ L
⊗−a
1 , with

O(−a, a, 0) as associated graded pieces, a ≥ 1. These have f∗(.) = 0, by
Proposition 9.4. Since OS = f∗(OF), Claim 1) follows. We prove 2), by
dévissage using the preceding good filtration. We have to check the vanishing of
f∗(Sym

a(V2)(n− a,−n, 0)), for all a ≥ 0. If a ≤ n, then n− a > −n, and we can
apply Proposition 9.4 and the projection formula. For a > n, proceed as follows.
Consider the natural extension Syma(Nat1,2)(n − a, n, 0). It is an extension of
vector bundles over F, reading as

0 −→ Syma−1(V2)(n− a+ 1,−n, 0) −→ Syma(V2)(n− a,−n, 0) −→ O(n− a,−n+ a, 0) −→ 0.

Since −n+a > 0, we have s∗(O(n−a,−n+a, 0)) = 0 by Proposition 9.4. Applying
s∗ to this exact sequence, we conclude by induction on a.
We prove the third part. Let f be a section of s∗(L

⊗−1
2 ⊗V2). The composite π ◦f

is a section of s∗(L
⊗−1
2 ⊗L2) = OS (use 1)). Thus, there exists λ ∈ OS , such that

π ◦ (f − λσ)=0. In other words, f − λσ belongs to s∗(O(1,−1, 0)) = 0 (use 2)). �
We can adapt this Lemma to a more general setting, as follows.

Proposition 13.2. Let V be a vector bundle of rank D ≥ 4, over a base scheme
S of characteristic p. Let 1 ≤ d ≤ D− 2 be an integer. Consider its complete flag
scheme

F : F := Fl(V ) −→ S.

Denote by
t : Sd := S(Nat) −→ F

the splitting scheme of the natural extension

Nat : 0 −→ Vd −→ Vd+1 −→ Ld+1 −→ 0,

over F.
Let r ≥ 0 and m ≥ 1 be integers. For i = 1, . . . ,m, denote by

σi : Ld+1 −→ Vd+1,

the m tautological sections of Nat, over the m-fold product tm : Sm
d −→ F. They

arise as pullbacks of the tautological section, by the m projections S
m
d −→ Sd.

Then, the natural arrow

g : Om
S −→ (F ◦ tm)∗(L

∨(r)
d+1 ⊗ V

(r)
d+1),

ei 7→ σ
(r)
i ,

is an isomorphism.

Proof. We have a natural arrow

h : Om−1
S −→ (F ◦ tm)∗(L

∨(r)
d+1 ⊗ V

(r)
d ),

ei 7→ σ
(r)
i − σ(r)

m ,

i = 1, . . . ,m − 1. We first study h. By proposition 5.1, we know that t∗(OSd
)

has a natural good filtration, by vector bundles of the shape Syma(V∨
d+1 ⊗Ld+1),

with graded pieces Syma(V∨
d ⊗ Ld+1), a ≥ 0. Thus, tm∗ (OSm

d
) has a natural good

filtration, by vector bundles of the shape Φ(V∨
d+1⊗Ld+1), where Φ is a composite

symmetric functor. Consider the inclusion (of the component of total degree pr of
this good filtration)

Wpr :=
∑

deg(Φ)=pr

Φ(V∨
d+1 ⊗ Ld+1) ⊂ tm∗ (OSm

d
).
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We claim that it induces an isomorphism

ι′ : F∗(Wpr ⊗ L
∨(r)
d+1 ⊗ V

(r)
d )

∼
−→ F∗(t

m
∗ (OSm

d
)⊗ L

∨(r)
d+1 ⊗ V

(r)
d ) = tm∗ (L

∨(r)
d+1 ⊗ V

(r)
d ).

To see this, it suffices to show that

F∗(Ψ(V∨
d ⊗ Ld+1)⊗ L

∨(r)
d+1 ⊗ V

(r)
d ) = F∗(Ψ(V∨

d )⊗ V
(r)
d ⊗ La−pr

d+1 )

vanishes, for all symmetric functors Ψ, of degree a > pr. To do so, consider the
factorization

F : Fl(V )
F1−→ Fl(1, . . . , d, V )

F2−→ S.

By Proposition 9.5, since d + 1 < D − 1, we know that (F1)∗(L
a−pr

d+1 ) vanishes.
Conclude using the projection formula.
We infer that the inclusion Wpr ⊂ tm∗ (OSm

d
) also yields an isomorphism

ι : F∗(Wpr ⊗L
∨(r)
d+1 ⊗ V

(r)
d+1)

∼
−→ F∗(t

m
∗ (OSm

d
)⊗L

∨(r)
d+1 ⊗ V

(r)
d+1) = tm∗ (L

∨(r)
d+1 ⊗ V

(r)
d+1).

Indeed, the tautological sections σ
(r)
i obviously lie in the image of ι, and we can

then use the fact that ι′ is an isomorphism to conclude.

It remains to show that the natural arrow

g : Om
S −→ F∗(Wpr ⊗ L

∨(r)
d+1 ⊗ V

(r)
d+1),

ei 7→ σ
(r)
i

is an isomorphism. To do this, we use the natural good filtration of Wpr , with
graded pieces vector bundles of the shape Ψ(V∨

d ⊗Ld+1), where Ψ is a symmetric
functor, of degree a ≤ pr. Note that Ψ(.) can be written as

⊗m
i=1 Sym

ai(.), where
a1 + . . .+ am = a. If a < pr, then

F∗(Ψ(V∨
d ⊗ Ld+1)⊗ L

∨(r)
d+1 ⊗ V

(r)
d+1) = F∗(Ψ(V∨

d )⊗ L
a−pr

d+1 ⊗ V
(r)
d+1) = 0.

This is clear if a = 0 (i.e Ψ = 1). If a ≥ 1, consider the natural exact sequence

0 −→ Ψ(V∨
d )⊗L

a−pr

d+1 ⊗V
(r)
d −→ Ψ(V∨

d )⊗L
a−pr

d+1 ⊗V
(r)
d+1 −→ Ψ(V∨

d )⊗L
a
d+1 −→ 0.

Its cokernel has a natural good filtration, with graded pieces degree zero line bun-
dles of the shape O(−b1, . . . ,−bd, a, 0, . . . , 0), where the non-negative integers bi
satisfy b1 + . . . + bd = a. These have have F∗(.) = 0 thanks to Proposition 9.4.

We are thus reduced to show the vanishing of F∗(Ψ(V∨
d ) ⊗ L

a−pr

d+1 ⊗ V
(r)
d ). The

vector bundle Ψ(V∨
d ) ⊗ L

a−pr

d+1 ⊗ V
(r)
d has a natural good filtration, with graded

pieces degree zero line bundles of the shape O(c1, . . . , cd, a − pr, 0, . . . , 0), where
the relative integers ci satisfy c1 + . . . + cd = pr − a > 0. Thanks to Proposition
9.4, again, these have F∗(.) = 0. Conclude by dévissage.

If a = pr, then F∗(Ψ(V∨
d )⊗ V

(r)
d+1) = F∗(Ψ(V∨

d )⊗ V
(r)
d ). If Ψ is composite (mean-

ing that at least two of the ai’s are positive), we can apply Lemma 13.3, to get

F∗(Ψ(V∨
d ) ⊗ V

(r)
d ) = 0. It now remains to consider the graded pieces where Ψ is

pure, i.e. Ψ(.) = Sympr

(.). There are m such graded pieces, corresponding to the
“trivial” partitions, where one ai equals p

r, and all other vanish. Applying Lemma

13.3 again, we get F∗(Ψ(V∨
d )⊗ V

(r)
d ) = OS , for each of these graded pieces. Each

of these m copies of OS corresponds to a direct factor of the source of g- showing
that g is, indeed, an isomorphism. �
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13.2. A result for Ext0. Let r ≥ 1 be an integer. For a vector bundle W on an
Fp-scheme S, the r-th iterate of the Frobenius

FrobrW : W (r) −→ Sympr

(W ),

w ⊗ 1 7→ wpr

is an injective homomorphism from W (r) to a pure symmetric functor, applied to
W . The next Lemma states that, for tautological subquotient bundles, every such
homomorphism is collinear to FrobrW . It also stipulates that there is no non-zero
homomorphism from W (r), to a composite symmetric functor of degree pr, applied
to W .

Lemma 13.3. Let V be a vector bundle of rank d, over an Fp-scheme S. Denote
by

F : Fl(V ) −→ S

its complete flag scheme. Let m,n be two integers, with 0 ≤ m < n − 1 ≤ d − 2.
Put

W := Vn/Vm;

it is a vector bundle defined over Fl(V ). Let r ≥ 0 be an integer. Then, the
following is true.
1) One has

F∗(W
(r)∨ ⊗ Sympr

(W)) = OS ,

with generator given by the Frobenius

Frobr :W(r) −→ Sympr

(W).

1) Let s ≥ 2 be an integer. Let a1, . . . , as be positive integers, adding up to pr.
Then, one has

H0(Fl(V ),W(r)∨ ⊗ Syma1(W)⊗ . . . Symas(W)) = 0.

Proof. Let’s prove 1). Consider the natural exact sequence

0 −→W(r)∨⊗W(r) −→W(r)∨⊗Sympr

(W) −→W(r)∨⊗(Sympr

(W)/W(r)) −→ 0.

Its kernel is End(W)(r), which has F∗(.) = OS , with generator given by the iden-
tity. Checking this fact is left to the reader, as an exercise. Its cokernel has a natu-
ral good filtration, inherited from that ofW, with successive quotients degree zero
line bundles of the shape O(0, . . . , 0, am+1, . . . , an, 0, . . . , 0). Here (am+1, . . . , an)
is a non-zero sequence of relative integers, adding up to zero. According to Propo-
sition 9.4, these line bundles have F∗(.) = 0 (this uses n ≤ d − 1). By dévissage,
the cokernel in question has F∗(.) = 0 as well. The claim is proved.
Let’s deal with 2). Using the projection formula, we see that

H0(Fl(V ),W(r)∨ ⊗ Syma1(W)⊗ . . .⊗ Symas(W)) =

H0(Fl(V ),W(r)∨ ⊗ Syma1(W)⊗ . . .⊗ Symas−1(W)⊗ L⊗as
n ).

Using the natural good filtration ofW(r)∨, by dévissage, we reduce to showing the
vanishing of

H0(Fl(V ), Syma1(W)⊗ . . .⊗ Symas−1(W)⊗ L⊗as
n ⊗ L⊗−pr

i ),

for i = m+1, . . . , n. The case i = n is straightfoward, using the projection formula
and Proposition 9.4, because 0 > as−p

r. Note that this uses dim(W) = n−m ≥ 2.
We now deal with the case m + 1 ≤ i ≤ n − 1. The vector bundle Syma1(W) ⊗
. . .⊗Symas−1(W) has a natural good filtration, with graded pieces line bundles of
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the shape O(0, . . . , 0, bm+1, . . . , bn, 0, . . . , 0), where bm+1 + . . .+ bn = a− as, and
0 ≤ bj ≤ a− as for all j. Thus, the vector bundle

Syma1(W)⊗ . . .⊗ Symas−1(W)⊗ L
⊗(−pr)
i ⊗ L⊗as

n

has a natural good filtration, with graded pieces line bundles of the shape

O(0, . . . , 0, bm+1, . . . , bi−1, bi − pr, bi+1 . . . , bn + as, 0, . . . , 0)

where bi − pr < 0. The sequence

(0, . . . , 0, bm+1, . . . , bi−1, bi − pr, bi+1 . . . , bn + as, 0, . . . , 0)

is not increasing: it ends by zero, its terms add up to zero, and one of its terms is
non-zero. We conclude by dévissage, using Proposition 9.4.

�

13.3. A result for Ext1.

Lemma 13.4. Let V be a vector bundle of rank 3, over an Fp-scheme S. Denote
by

F : Fl(V )
f1
−→ P(V ) = Fl(2, V )

f2=f
−→ S

its complete flag scheme. Recall that we denote by

0 ⊂ V1 ⊂ V2 ⊂ V3 = F ∗(V )

the tautological complete flag, over Fl(V ).
Let b ≥ 0 be an integer. The following is true.

1) There exists a canonical isomorphism of OP(V )-modules

Γ2b(V2)⊗Det−b(V2)
∼
−→ R1(f1)∗(O(b+ 1,−b− 1, 0)).

2) If b+ 1 is not a p-th power, we have

f∗(Γ
2b(V2)⊗Det−b(V2)) = 0.

3) Assume that b = ps − 1. Then, there exists a canonical isomorphism

f∗(Γ
2b(V2)⊗Det−b(V2)) ≃ OS .

Proof. Point 1) is a reformulation of point 3) of Proposition 9.5, applied to the
2-dimensional vector bundle V2 over P(V ), and to n = 2b + 2. Note that f1 is a
P1-bundle (the projective bundle of V2).
It remains to prove 2) and 3).

The vector bundle Γ2b(V2)⊗Det−b(V2) has a good filtration by subbundles, with
quotients line bundles of the shape O(i,−i, 0), i = −b,−b + 1 . . . , b − 1, b. These
have F∗(.) = 0, except for i = 0. By dévissage, we get a canonical embedding

α : f∗(Γ
2b(V2)⊗Det−b(V2)) −→ OS ,

which is a first step towards proving 2) and 3).
Assertions 2) and 3) can be checked Zariski-locally on S, using a gluing argument
for 3). We thus reduce to the case where V = O3

S is trivial. If desired, we can
further reduce to S = Spec(A), with A an Fp-algebra of finite-type. Consider the
structure morphism g : S −→ Spec(Fp). If we can prove the statements when
S = Spec(Fp), then we can pull everything back through g by proper base change,
and get the same statements over S.
Next, we give a proof that 2) holds, working for S = Spec(k), with k any field of
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characteristic p.

The exact sequence of vector bundles

0 −→ L1 −→ V2
π
−→ L2 −→ 0

induces a natural surjection

Γ2b(V2) −→ Γb(V2)(0, b, 0),

[v]2b 7→ [v]b ⊗ π(v)b.

Twisting it by Det−b(V2) = O(−b,−b, 0), we get a surjection of vector bundles
over Fl(V )

φ : Γ2b(V2)⊗Det−b(V2) −→ Γb(V2)(−b, 0, 0),

Denote by Kb its kernel; it is a vector bundle of rank b over P(V ). It has a natu-
ral good filtration by subbundles, having as successive quotients the line bundles
O(i,−i, 0), for i = 1, . . . , b. These have F∗(.) = 0, so that F∗(Kb) = 0 by dévissage.
Taking F∗(φ) thus yields an injection

ι : f∗(Γ
2b(V2)⊗Det−b(V2)) −→ f∗(Γ

b(V2)⊗ Symb(V2)⊗Det−b(V2)),

given on sections by the formula

[v]2b ⊗ δ−b 7→ [v]b ⊗ vb ⊗ δ−b.

Using a good filtration argument analogous to those used before, we prove that
the k-vector space f∗(Γ

b(V2)⊗Symb(V2)⊗Det−b(V2)) has dimension at most one.
Consider the perfect duality pairing

∆ =< ., . >: Γb(V2)× Symb(V2) −→ Detb(V2),

< [v]b, w1w2 . . . wb >= (v ∧ w1)(v ∧ w2) . . .⊗ (v ∧ wb).

It gives a non-zero vector inside f∗(Γ
b(V2)⊗Symb(V2)⊗Det−b(V2)), which we still

denote by ∆. The vector space f∗(Γ
b(V2) ⊗ Symb(V2) ⊗ Det−b(V2)) is therefore

one-dimensional, directed by ∆. Arguing by contradiction, assume that the k-
vector space f∗(Γ

2b(V2) ⊗ Det−b(V2)) is one dimensional too, with generator u.
By what precedes, ι(u) would then be a non-zero multiple of ∆. Rescaling, we can
assume ι(u) = ∆. Considering a fiber V2 of V2, at a k-rational point of P(V ), we
would then get the following. There exists

u =

r∑

1

ai[ui]2b ∈ Γ2b
k (V2),

where ai ∈ k, and ui ∈ V , such that the perfect duality pairing

< ., . >: Γb
k(V2)× Symb

k(V2) −→ Detb(V2)

is expressed as

< [v]b, w1w2 . . . wb >=

r∑

1

ai(v ∧ ui)
b(w1 ∧ ui)(w2 ∧ ui) . . . (wb ∧ ui).

Write the base-p expansion

b = a0 + a1p+ . . .+ asp
s.

One see that the expression on the right factors, in the first variable v, through
the natural surjective k-linear map

θ : Γb(V2) −→
s⊗

0

Γai(V
(i)
2 ),
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[v]b 7→ [v]a0
⊗ [v(1)]a1

⊗ . . .⊗ [v(s)]as
.

Indeed, this factorisation is given by

(., .) :

s⊗

i=0

Γai(V
(i)
2 )× Symb

k(V2) −→ Detb(V2),

([v0]a0
[v1]a1p . . . [vs]asps , w1w2 . . . wb) :=

r∑

1

ai(v0 ∧ ui)
a0(v1 ∧ ui)

a1p . . . (vs ∧ ui)
asp

s

(w1 ∧ ui)(w2 ∧ ui) . . . (wb ∧ ui).

Since < ., . > is perfect, the surjection θ has to be an isomorphism. Equating
dimensions of the source and target of θ yields

b+ 1 = (a0 + 1)(a1 + 1) . . . (as + 1),

implying ai = p− 1 for all i, so that b = ps − 1.
Let’s just sketch the proof of statement 3), which is much easier because it is
constructive. Consider the extension

0 −→ L
(s)
1 −→ V

(s)
2 −→ L

(s)
2 −→ 0,

of vector bundles over Fl(V ), defined as the s-th Frobenius pullback of the tauto-
logical sequence. Its class yields an injection of OP(V )-modules

OP(V ) −→ R1(f1)∗(O(p
s,−ps, 0))

∼
−→ Γ2b(V2)⊗Det−b(V2),

where we have used the isomorphism of point 1) of our Lemma. Applying f∗, we
get an injection of OS-modules

β : f∗(OP(V ))
∼
−→ OS −→ f∗(Γ

2b(V2)⊗Det−b(V2)),

which is then checked to be the inverse of α. �

Remark 13.5. Using the projection formula, Lemma 13.4 can be generalized to
vector bundles of arbitrary rank D ≥ 3. In particular, we get the following result.
Let V be a vector bundle of rank D ≥ 3, over an Fp-scheme S. Denote by

F : Fl(V ) −→ S

its complete flag scheme. Let 1 ≤ d ≤ D − 1 be an integer. Let a ≥ 0 be an
integer.

• If a is not a p-th power, then R1F∗(L
a
d ⊗ L

−a
d+1) = 0.

• If a = ps is a p-th power, then R1F∗(L
ps

d ⊗ L
−ps

d+1) = OS , with canonical
generator given by (the s-th Frobenius twist of) the natural extension

Natd,d+1 : 0 −→ Ld −→ Vd+1/Vd−1 −→ Ld+1 −→ 0.

14. Statement of the Uplifting Theorem.

Let S be an (Fp, G)-scheme. Let L be a G-line bundle over S. Recall that L lifts
to a GW2-bundle over S; namely, its Teichmüller lift W2(L).
We come to the main result of this paper. It extends the preceding fact to higher
dimensions- under appropriate assumptions.
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Theorem 14.1. (The Uplifting Theorem)
Let G be a (1, 1)-smooth profinite group. Let S be a perfect affine (Fp, G)-scheme.
Let

∇d+1,1 : 0 ⊂ V1,1 ⊂ V2,1 ⊂ . . . ⊂ Vd+1,1

be a complete flag of G-vector bundles, of dimension d+ 1 ≥ 2 over S.
Assume given a lift of the truncation

∇d,1 := τd(∇d+1,1) : 0 ⊂ V1,1 ⊂ V2,1 ⊂ . . . ⊂ Vd,1,

to a complete flag of GW2- bundles over S

∇d,2 : 0 ⊂ V1,2 ⊂ V2,2 ⊂ . . . ⊂ Vd,2.

Then, ∇d,2 can be extended, to a lift

∇d+1,2 : 0 ⊂ V1,2 ⊂ V2,2 ⊂ . . . ⊂ Vd,2 ⊂ Vd+1,2

of ∇d+1,1, to a complete flag of GW2- bundles over S.

We get the following result as a consequence of the Uplifting Theorem.

Theorem 14.2. (The Uplifting Theorem, weak form)
Let G be a (1, 1)-smooth profinite group. Let S be a perfect affine (Fp, G)-scheme.
Let

∇1 : 0 ⊂ V1,1 ⊂ V2,1 ⊂ . . . ⊂ Vd,1

be a complete flag of G-vector bundles over S, of dimension d ≥ 1.
Then, ∇1 admits a lift, to a complete flag ∇2 of GW2- bundles over S.

Here is an equivalent reformulation, in the tongue of embedding problems.
Let A be a perfect (Fp, G)-algebra. Let d ≥ 1 be an integer. Denote by Bd ⊂ GLd

the Borel subgroup of upper triangular matrices.
Then, the natural arrow

H1(G,Bd(W2(A))) −→ H1(G,Bd(A)),

induced by reduction, is surjective.

Proof. Induction on d, using Theorem 14.1. �

Remark 14.3. Note that the statement of the Uplifting Theorem does not provide
information about the graded pieces Li,2 of ∇2.
Assume that G is (1, 1)-cyclotomic, relative to a cyclotomic module Z/p2(1). It is
then (1, 1)-smooth by [6, Theorem A]. The Uplifting Theorem thus applies to G.
It is then normal to wonder whether we can prescribe

Li,2 = W2(Li,1)(−i).

The answer is negative in general- see the next section.

Remark 14.4. We can ask whether the Uplifting Theorem extends to depth e ≥ 2.
This could be the subject of future investigation. For many possible applications
though, the degree of generality allowed by the Uplifting Theorem, in depth e = 1,
is arguably sufficient. This belief is materialized in [7], where the Uplifting Theo-
rem is applied, to provide a self-contained proof of the Norm Residue Isomorphism
Theorem.
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15. Non-liftability of the generic Heisenberg representation.

In the second part of the statement of Theorem 14.2, it is natural to ask whether
Bd can be replaced by its unipotent radical Ud.
In other words, under the assumptions of this Theorem, is the natural arrow

H1(G,Ud(W2(A))) −→ H1(G,Ud(A))

surjective?
A positive answer would be an improvement, as surjectivity for coefficients in Ud

implies surjectivity for coefficients in Bd (exercise for the reader).

In this section, we provide a negative answer to the question above. Precisely, for
p odd, we give an example of a field F , containing C, such that

H1(Gal(Fs/F ),U3(Z/p
2)) −→ H1(Gal(Fs/F ),U3(Fp))

is not surjective, using a result of Karpenko as the key ingredient. In other words:
in general, mod p Heisenberg representations fail to lift mod p2.

Remarks 15.1.

• When p = 2, one can show that the preceding arrow is surjective, for
any field F . However, replacing F2 with the finite field F4, and Z/4 with
W2(F4), surjectivity again fails, in general.
• In the recent work [21], it is proved that the preceding arrow is surjective
for p odd, when F is a global field or a non-archimedean local field, under
the presence of p2-th roots of unity. Note that the proof provided for F
local, in fact extends to the case of fields F , containing p2-th roots of unity,
and such that the Fp-vector space H2(F,Fp) is one-dimensional.

Start with a field F , containing the function field in two variables C(x, y). Set G
to be its absolute Galois group. It is (1, 1)-smooth by [6, Theorem A]. For each

n ≥ 1, use e
2πi
n ∈ F to identify µn to Z/n, as finite G-modules.

Using Kummer theory, we have two classes

(x)p, (y)p ∈ H1(F, µp),

respectively associated to extensions of (Fp, G)-modules

Ex : 0 −→ Fp = µp −→ Ex −→ Fp −→ 0

and

Ey : 0 −→ Fp = µp −→ Ey −→ Fp −→ 0.

These give rise to arrows

ρx : G −→ U2(Fp) = Fp

and

ρy : G −→ U2(Fp) = Fp.
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Definition 15.2. Assume there exists a complete flag of (Fp, G)-modules

∇1 : 0 ⊂ V1,1 ⊂ V2,1 ⊂ V3,1,

such that the truncated extension of (Fp, G)-modules

0 −→ V1,1 −→ V2,1 −→ V2,1/V1,1 −→ 0

is isomorphic to Ex, and such that the quotient extension

0 −→ V2,1/V1,1 −→ V3,1/V1,1 −→ V3,1/V2,1 −→ 0

is isomorphic to Ey.
We then say that Ex and Ey glue, to the complete flag ∇1.

The extensions Ex and Ey glue to a ∇1 as above, if and only if the cup-product

a = (x)p ∪ (y)p ∈ H2(F, µ⊗2
p ) = H2(F, µp) = Br(F )[p]

vanishes.
Assume that this is the case, and let ∇1 be such a gluing. Using the same con-
struction as above, for mod p2 coefficients, we get the following.
The complete flag ∇1 lifts to a complete flag of (Z/p2, G)-bundles

∇2 : 0 ⊂ V1,2 ⊂ V2,2 ⊂ V3,2,

with trivial graded pieces
Li,2 = Z/p2,

if and only if (x)p and (y)p respectively lift to classes

(X)p2 , (Y )p2 ∈ H1(F, µp2),

such that

(X)p2 ∪ (Y )p2 = 0 ∈ H2(F, µ⊗2
p2 ) = H2(F, µp2) = Br(K)[p2].

We now show that the field F can be chosen, so that this liftability property fails.
Equivalently:

• The extensions Ex and Ey glue, to a ∇1 as above.
• The flag ∇1 does not admit a lift to a flag of GW2 bundles ∇2, with trivial
graded pieces.

We can then conclude, that the class of ∇1 in H1(Gal(Fs/F ),U3(Fp)) cannot be
lifted via

H1(Gal(Fs/F ),U3(Z/p
2)) −→ H1(Gal(Fs/F ),U3(Fp)),

completing the goal of this section.
Start with the generic symbol algebra

A = (x, y)p2 ,

over the field C(x, y). It is a division algebra of degree p2. Consider the Severi-
Brauer variety SB(A⊗p), and define F to be its function field. By [19], Theorem
2.1, the F -algebra A⊗C(x,y) F is an indecomposable division algebra of degree p2

and exponent p. Assume that (x)p and (y)p lift to classes

(X)p2 , (Y )p2 ∈ H1(F, µp2),

such that (X)p2 ∪ (Y )p2 = 0. Write

(X)p2 = (x)p2 − p(u)p2

and
(Y )p2 = (y)p2 − p(v)p2 ,



41

for u, v ∈ F×. Expanding the equality (X)p2 ∪ (Y )p2 = 0, we get

[A] = (u)p ∪ (y)p + (x)p ∪ (v)p ∈ Br(F ).

In other words, A decomposes as a tensor product of two symbol algebras of degree
p over F - a contradiction.

16. Proof of the Uplifting Theorem.

Remark 16.1. In this proof, we could have worked over perfect Fp-schemes (e.g.
the perfection of flag schemes and of splitting schemes). This would have made
the proof slightly more readable, by dismissing some Frobenius twists. Meanwhile,
it would also have made it less explicit, and would have concealed the possibility
of measuring the growth of these Frobenius twists- a goal that I will not pursue.

Let

∇d+1,1 : 0 ⊂ V1,1 ⊂ V2,1 ⊂ . . . ⊂ Vd+1,1

be a complete flag of G-vector bundles, of arbitrary dimension d + 1 ≥ 2, over
S = Spec(A). We think of it as “a complete flag of semi-linear representations of
G over A”. Assume given a lift of the truncation

∇d,1 : 0 ⊂ V1,1 ⊂ V2,1 ⊂ . . . ⊂ Vd,1,

to a complete flag of GW2-bundles

∇d,2 : 0 ⊂ V1,2 ⊂ V2,2 ⊂ . . . ⊂ Vd,2.

Replacing ∇d,2 by

∇′
d,2 := ∇d,2 ⊗ L−1

1,2 ⊗W2(L1,2),

which is another lift of ∇d,1, we are free to assume V1,2 = W2(L1,2).

Denote by

G0 ⊂ G

the kernel of the action of G on S, on Vd+1,1 and on Vd,2. Put

G0 := G/G0.

All G-actions, so far, come from G0-actions.
Choose an embedding of A[G0]-modules

Vd+1,1 −→ VD,1 := A[G0]n,

with

D := n|G0| ≥ d+ 2.

Note that the existence of such an embedding is equivalent to its dual counterpart:
writing V ∨

d+1,1 as a quotient of a free A[G0]-module, whose rank can be chosen to
be arbitrarily large. Set

VD,2 := W2(A)[G
0]n.

For r = 1, 2, note that VD,r, seen as a GWr-bundle over S, is permutation. We
can now view ∇d+1,1 as a permutation embedded flag of GW1-bundles

∇d+1,1 : 0 ⊂ V1,1 ⊂ V2,1 ⊂ . . . ⊂ Vd+1,1 ⊂ VD,1.

Because VD,1 is a projective A[G0]-module, the embedding

Vd,1 −→ VD,1
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lifts, to an embedding of GW2-bundles

Vd,2 −→ VD,2,

yielding an embedded flag of GW2-bundles

0 ⊂ V1,2 ⊂ V2,2 ⊂ . . . ⊂ Vd,2 ⊂ VD,2,

which we still denote by ∇d,2.

Lemma 16.2. We can, and will, assume that V1,2 ⊂ VD,2 is the Teichmüller lift
τ2(i1,D,1) of the natural inclusion

(i1,D,1 : V1,1 −→ VD,1) ∈ H0(G,V ∨
1,1 ⊗ VD,1),

provided by Lemma 6.2.

Proof. Denote by

i1,D,2 : V1,2 −→ VD,2 ∈ H0(G,V ∨
1,2 ⊗ VD,2)

the inclusion appearing in ∇d,2. The difference τ2(i1,D,1)− i1,D,2 has trivial mod
p reduction. Using the natural extension of GW2-modules

0 −→ (V ∨
1,1 ⊗ VD,1)

(1) j
−→ V ∨

1,2 ⊗ VD,2
ρ
−→ V ∨

1,1 ⊗ VD,1 −→ 0,

it is hence given by an element

ǫ1,D,1 ∈ H0(G0, (V ∨
1,1 ⊗ VD,1)

(1)).

Since VD,1 is a projective A[G0]-module, and since V1,1 is locally free as an A-

module, (V ∨
1,1 ⊗ VD,1)

(1) is a projective A[G0]-module. Thus, the extension of

A[G0]-modules

0 −→ ((Vd,1/V1,1)
∨ ⊗ VD,1)

(1) −→ (V ∨
d,1 ⊗ VD,1)

(1) −→ (V ∨
1,1 ⊗ VD,1)

(1) −→ 0

splits, so that ǫ1,D,1 extends (lifts) to an element

ǫd,D,1 ∈ H0(G0, (V ∨
d,1 ⊗ VD,1)

(1)) ⊂ H0(G0, (V ∨
d,2 ⊗ VD,2)).

The claim follows, replacing the inclusions

ij,D,2 : Vj,2 −→ VD,2

by
ij,D,2 + (ǫd,D,1)|Vj,2

.

�

Put V1 := VD,1. Introduce the flag scheme

F : F := Fl(1, . . . , d+ 1, V1) −→ S.

Denote by

∇gen,d+1,1 : 0 ⊂ V1,1 ⊂ . . . ⊂ Vd,1 ⊂ Vd+1,1 ⊂ VD,1 := F ∗(V1)

the tautological flag. The data of ∇d+1,1, embedded in VD,1, naturally corresponds
to a G-equivariant arrow s : S −→ F (a G-equivariant section of F ), together with
an isomorphism of G-flags embedded in VD,1,

∇d+1,1 ≃ s∗(∇gen,d+1).

We are now going to perform successive changes of the base, from F to suitable
G-schemes. These parametrize liftings (resp. splittings) of some relevant exten-
sions of vector bundles. Let’s get to details.
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Denote by
∇gen,d,1 : 0 ⊂ V1,1 ⊂ V2,1 ⊂ . . . ⊂ Vd,1 ⊂ VD,1

the truncation of ∇gen,d+1,1.

16.1. Step 1: Geometric splitting of Natd,d+1,1.

Over F, we have a natural extension of G-bundles

Natd,d+1,1 : 0 −→ Ld,1 −→ Vd+1,1/Vd−1,1 −→ Ld+1,1 −→ 0.

We produce a G-equivariant change of the base

T : T −→ F

such that, over T, the extension Natd,d+1,1 splits, as an extension of G0-bundles.
To do so, simply set

T := Ind
(G,F)−Sch
(G0,F)−Sch(S(Natd,d+1,1)) = S(Natd,d+1,1)

G0

−→ Ld+1,

where the product is fibered over F.

Lemma 16.3. The following holds.

(1) The G-equivariant sections of T −→ Ld+1 parametrize splittings of the
extension of (G0,W1)-bundles Natd,d+1,1. In particular, over T, the ex-
tension of (G0,W1)-bundles Natd,d+1,1 splits.

(2) The quasi-coherent OF-Module T∗(OT) has a natural good filtration, with
graded pieces vector bundles of the shape

L⊗−b
d,1 ⊗ L

⊗b
d+1,1,

for b ≥ 0.
(3) Over S, the natural extension of (G0,W1)-bundles

0 −→ Ld,1 −→ Vd+1,1/Vd−1,1 −→ Ld+1,1 −→ 0

splits. The data of such a splitting determines a G-equivariant point

s1 : S −→ T,

lifting s (formula: T ◦ s1 = s).
In short: s naturally lifts through T , in a G-equivariant fashion.

Proof. Point 1) follows from the universal property of induction, given in 3.11.
Point 2) follows from Proposition 5.1. Since G0 acts trivially on everything, 3)
holds simply because S is affine. �

16.2. Step 2: Equivariant lifting of Natd,d+1,1.
Over T, the extension of G-vector bundles

Natd,d+1,1 : 0 −→ Ld,1 −→ Vd+1,1/Vd−1,1 −→ Ld+1,1 −→ 0

is geometrically split. Since the profinite group G is (1, 1)-smooth, we can apply

Proposition 11.12 of [6]. There exists m ≥ 0, and a lift of L
(m)
d+1,1, to a line

GW2-bundle L
[m]
d+1,2 over T, such that Nat

(m)
d,d+1,1 lifts, to a (geometrically split)

extension of GW2-bundles over T

Nat
[m]
d,d+1,2 : 0 −→ L

(m)
d,2 −→ V

[m]
d,d+1,2 −→ L

[m]
d+1,2 −→ 0.

Note that the GW2-line bundle L
[m]
d+1,2 need not be isomorphic to W2(L

(m)
d+1,1).



44

16.3. Step 3: Equivariant lifting of ∇gen,1,d.
We now produce an equivariant lifting of ∇gen,1,d, over T. We use induction,
following the process described in section 11.2.
Using Lemma 6.2, we get that the arrow

i1,D,1 : V1,1 −→ VD,1,

between permutation GW1-bundles over T, has a natural lift to

i1,D,2 := τ2(i1,D,1) : V1,2 := W2(L1,1) −→ VD,2,

which is an embedding. To lift the partial G-flag

∇gen,2,1 : V1,1 ⊂ V2,1 ⊂ VD,1,

a change of the base is needed. Using i1,D,2, this problem is equivalent to lifting
the G-arrow

L2,1 −→ VD,1/V1,1,

to a G-arrow
L2,2 −→ VD,2/V1,2,

where L2,2 is some lift of L2,1, which we do not prescribe. By section 11.2, we
know that the space of such liftings naturally bears the structure of an extension
of G-vector bundles over T

E2,D : 0 −→ (VD,1/V2,1)
(1) −→ ∗ −→ L

(1)
2,1 −→ 0.

Put
L2 := S(E2,D) −→ T.

Over L2, the partial G-flag

∇gen,2,1 : V1,1 ⊂ V2,1 ⊂ VD,1

then acquires a natural lift, to a flag of GW2-bundles

∇gen,2,2 : V1,2 ⊂ V2,2 ⊂ VD,2,

which extends
∇gen,1,2 : 0 ⊂ V1,2 ⊂ VD,2.

Iterating this process generates a sequence of G-arrows

L : Ld −→ . . . −→ L3 −→ L2 −→ L1 = T,

with the following properties.

(1) The arrow Li+1 −→ Li is the splitting scheme of an extension of G-vector
bundles over Li

Ei+1,D : 0 −→ (VD,1/Vi+1,1)
(1) −→ ∗ −→ L

(1)
i+1,1 −→ 0.

(2) Over Ld, the embedded flag ∇gen,d,1 lifts to a flag of GW2-bundles

∇gen,d,2 : 0 ⊂ V1,2 ⊂ V2,2 ⊂ . . . ⊂ Vd,2 ⊂ VD,2 := F ∗(V2).

(3) The arrow L is well-filtered in a natural way. The corresponding filtration
of L∗(OLd

) is indexed by (ad, . . . , a2) ∈ Nd−1, ordered lexicographically.
Its graded pieces are vector bundles of the shape

d⊗

i=2

Φai
((VD,1/Vi,1)

∨ ⊗ Li,1),

where
Φai

(.) := Symbi(Frob(.))
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is a pure symmetric functor, homogenenous of degree ai = pbi. To see
why, apply Remark 11.7 to all splitting schemes Li+1 −→ Li, using the
composition process of Section 4.2. Note that the only graded piece of
degree a :=

∑
ai = 0 corresponds to OT ⊂ L∗(OLd

).
(4) The G-arrow L parametrizes liftings of the embedded flag ∇gen,d,1, to a

flag of W2-bundles embedded in VD,2, under the constraint

i1,D,2 := τ2(i1,D,1).

In particular, the data of ∇d,2 naturally corresponds to a G-point

s2 : S −→ Ld,

lifting s1. Formula: L ◦ s2 = s1.
In short: s1 naturally lifts through L, in a G-equivariant fashion.

16.4. Step 4: geometric lifting of Ld+1,1 −→ VD,1/Vd,1.

We begin with shrinking G0: we now denote by G0 ⊂ G the intersection of the

kernels of the actions of G on S, on Vd+1,1, on Vd,2 and on L
[m]
d+1,2.

In this fourth step, we produce a G-equivariant change of the base

Ld+1 −→ Ld

such that, over Ld+1, the m-th Frobenius twist of the embedding

Ld+1,1 −→ VD,1/Vd,1

lifts to an embedding

L
[m]
d+1,2 −→ V

(m)
D,2 /V

(m)
d,2 ,

enjoying the following properties.

(1) The lifting is an arrow of (G0,W2)-bundles (not of (G,W2)-bundles).

(2) The GW2-line bundle L
[m]
d+1,2 is that introduced in Step 2.

To achieve this, we use the process of section 11.2, together with induction from
G0. More precisely, the space of liftings of

L
(m)
d+1,1 −→ V

(m)
D,1 /V

(m)
d,1

to an embedding of W2-bundles

L
[m]
d+1,2 −→ V

(m)
D,2 /V

(m)
d,2

is governed by a natural extension of vector bundles over Ld

Ed+1,D : 0 −→ (VD,1/Vd,1)
(m+1) −→ ∗ −→ L

(m+1)
d+1,1 −→ 0.

Rather than passing to its splitting scheme, we pass to its splitting scheme induced
from G0: we set

λ : Ld+1 := IndGG0
(S(Ed+1,D)) = S(Ed+1,D)G

0

−→ Ld

(induction and fiber products taken over Ld).
By the universal property of induction, we get that, over Ld+1, the embedding

L
(m)
d+1,1 −→ V

(m)
D,1 /V

(m)
d,1

indeed lifts, to an embedding of G0W2-bundles

L
[m]
d+1,2 −→ V

(m)
D,2 /V

(m)
d,2 .
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Denote by

V
[m]
d+1,2 ⊂ V

(m)
D,2

the inverse image of L
[m]
d+1,2 ⊂ V

(m)
D,2 /V

(m)
d,2 , under the quotient arrow

V
(m)
D,2 −→ V

(m)
D,2 /V

(m)
d,2 .

To sum up, the following holds.

(1) Over Ld+1, the m-th Frobenius twist of the tautological embedded flag

∇gen,d+1,1 : 0 ⊂ V1,1 ⊂ V2,1 ⊂ . . . ⊂ Vd+1,1 ⊂ VD,1

acquires a lift to a flag

∇
[m]
gen,d+1,2 := 0 ⊂ V

(m)
1,2 ⊂ V

(m)
2,2 ⊂ . . . ⊂ V

(m)
d,2 ⊂ V

[m]
d+1,2 ⊂ V

(m)
D,2 := F ∗(V

(m)
2 ),

where:
a) The embeddings Vi,2 ⊂ VD,2, for i = 1, . . . , d, are the embeddings of
GW2-bundles built in Step 3.

b) The embedding V
[m]
d+1,2 ⊂ V

(m)
D,2 is an embedding of G0W2-bundles.

c) As a G0W2-line bundle, the graded piece V
[m]
d+1,2/V

(m)
d,2 is isomorphic to

L
[m]
d+1,2, built in Step 2.

(2) The quasi-coherent OLd
-Module λ∗(OLd+1

) has a natural good filtration,
with graded pieces vector bundles of the shape

Φad+1
((VD,1/Vd,1)

∨ ⊗ Ld+1,1),

where Φad+1
(.) is a composite symmetric functor, homogenenous of degree

ad+1 ≥ 0. Note that, here again, the only graded piece of degree ad+1 = 0
corresponds to OLd

⊂ λ∗(OLd+1
).

(3) The set of G-equivariant sections of λ parametrizes liftings of the G0-
equivariant embedding

L
(m)
d+1,1 −→ V

(m)
D,1 /V

(m)
d,1 ,

to a G0-equivariant embedding

L
[m]
d+1,2 −→ V

(m)
D,2 /V

(m)
d,2 .

Over S, the embedding

L
(m)
d+1,1 −→ V

(m)
D,1 /V

(m)
d,1

lifts to an embedding of G0W2-bundles

L
[m]
d+1,2 := s∗1(L

[m]
d+1,2) −→ V

(m)
D,2 /V

(m)
d,2 .

Since G0 acts trivially on S, L
[m]
d+1,2 and V

(m)
D,2 /V

(m)
d,2 , this simply follows

from the vanishing of coherent cohomology, over an affine base. The choice
of such a lifting naturally determines a G- point

s3 : S −→ Ld+1,

lifting s2. Formula: λ ◦ s3 = s2.
In short: s2 naturally lifts through λ, in a G-equivariant fashion.
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16.5. Step 5: a good filtration. Denote by

θ := T ◦ L ◦ λ : Ld+1 −→ Ld −→ T −→ F

the composite of the G-arrows built in Steps 1,3 and 4.
Using the composition process of section 4.2, the combination of the filtrations
numbered (2) in Step 1, (3) in Step 3 and (2) in Step 4 yields the following.
The arrow θ is well-filtered, in a natural way. The associated filtration of
θ∗(OOLd+1

) is indexed by

(ad+1, . . . , a2, b) ∈ Nd+1,

ordered lexicographically. Its graded pieces are vector bundles of the shape

(
d⊗

i=2

Φai
((VD,1/Vi,1)

∨ ⊗ Li,1))⊗ Φad+1
((VD,1/Vd,1)

∨ ⊗ Ld+1,1)⊗ L
⊗−b
d,1 ⊗ L

⊗b
d+1,1,

where Φai
(.) is a symmetric functor, homogenenous of degree ai.

Such a vector bundle itself possesses a natural good filtration by sub-vector bun-
dles, having as graded pieces degree zero line bundles, of the shape

O(0,+, ∗, . . . , ∗,−, . . . ,−).

Reading from the left, the first − symbol occurs as the (d+ 2)-th entry.

16.6. Step 6: a glueing problem.
Over Ld+1, we want to glue the extensions of GW2-bundles

Nat
(m)
d,2 : 0 −→ V

(m)
d−1,2 −→ V

[m]
d,2 −→ L

(m)
d,2 −→ 0

and

Nat
[m]
d,d+1,2 : 0 −→ L

(m)
d,2 −→ V

(m)
d+1,2/V

(m)
d−1,2 −→ L

(m)
d+1,2 −→ 0.

Clearly, this can be done modulo p, using the extension of G-bundles

Nat
(m)
d+1,1 : 0 −→ V

(m)
d,1 −→ V

[m]
d+1,1 −→ L

(m)
d+1,1 −→ 0.

Thanks to the process described in Section 12, we get a natural class

c ∈ Ext2G,1(Ld+1,L
(m+1)
d+1,1 ,V

(m+1)
d−1,1 ),

with the following property.

The vanishing of c is equivalent to the existence of a glueing of Nat
(m)
d,2 and

Nat
[m]
d,d+1,2 over Ld+1, lifting that given by Nat

(m)
d+1,1.

The class c is geometrically trivial: we have

c ∈ ext2G,1(Ld+1,L
(m+1)
d+1,1 ,V

(m+1)
d−1,1 ).

To understand why, note that the extension of G0W2-bundles

0 −→ V
(m)
d,2 −→ V

[m]
d+1,2 −→ L

[m]
d+1,2 −→ 0,

extracted from the flag ∇
[m]
gen,d+1,2 of Step 4, yields the sought-for glueing– as

extensions of G0W2-bundles. Thus, the restriction

ResG0

G (c) ∈ Ext2G0,1(Ld+1,L
(m+1)
d+1,1 ,V

(m+1)
d−1,1 )

dies, proving the claim.
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16.7. Step 7: Computations in Ext groups.
To proceed further, our next task is to compute the group

ext2G,1(Ld+1,L
(m+1)
d+1,1 ,V

(m+1)
d−1,1 ).

This is done in Lemma 16.8. The reader may take its statement for granted, and
proceed to Step 8.
Consider the exact sequence of G-vector bundles

Nat : 0 −→ Vd−1,1 −→ VD,1 −→ VD,1/Vd−1,1 −→ 0.

In cohomology, it induces connecting arrows

ExtiG,1(Ld+1,L
(m+1)
d+1,1 , (VD,1/Vd−1,1)

(m+1)) −→ Exti+1
G,1(Ld+1,L

(m+1)
d+1,1 ,V

(m+1)
d−1,1 ),

and

extiG,1(Ld+1,L
(m+1)
d+1,1 , (VD,1/Vd−1,1)

(m+1)) −→ exti+1
Ld+1

(L
(m+1)
d+1,1 ,V

(m+1)
d−1,1 ),

for all i ≥ 0.

Lemma 16.4. The arrow

ext1G,1(Ld+1,L
(m+1)
d+1,1 , (VD,1/Vd−1,1)

(m+1)) −→ ext2G,1(Ld+1,L
(m+1)
d+1,1 ,V

(m+1)
d−1,1 )

is an isomorphism.

Proof. Chasing in the diagrams induced by Nat(m+1) for Exti(L
(m+1)
d+1,1 , .)’s, it

suffices to show that the three groups

ext2G,1(Ld+1,L
(m+1)
d+1,1 ,V

(m+1)
D,1 ),Ext1G,1(Ld+1,L

(m+1)
d+1,1 ,V

(m+1)
D,1 )

and
Ext1G,1(Ld+1,L

(m+1)
d+1,1 ,V

(m+1)
D,1 )

vanish. Using the local-to-global spectral sequence, we reduce to proving the
vanishing of the groups

Exti1(Ld+1,L
(m+1)
d+1,1 ,V

(m+1)
D,1 ),

for i = 0, 1. Recall that VD,1 = F ∗(V1), where F : F −→ S is the structure
morphism. Since S is affine, using the projection formula, we further reduce to
proving that the (Zariski) cohomology groups

Hi(Ld+1,L
−pm+1

d+1,1 ) = Exti1(Ld+1,L
(m+1)
d+1,1 ,OLd+1

) = Hi(F, θ∗(OLd+1
)⊗ L−pm+1

d+1,1 )

vanish for i = 0, 1. Using the (double) good filtration of Step 5, we see that the

quasi-coherent OF-module θ∗(OLd+1
)⊗L−pm+1

d+1,1 has a good filtration, with graded

pieces line bundles of total degree −pm+1 < 0, and of the shape

O(0,+, ∗, . . . , ∗,−, . . . ,−).

These have RiF∗(.) = 0, for i = 0, 1. Checking this is an exercise, using Proposi-
tions 9.4 and 9.5. Conclude by dévissage.

�

Lemma 16.5. Consider the affine morphism L ◦ λ : Ld+1 −→ T.
The natural arrows

(L ◦ λ)∗ : Ext01(T,L
(m+1)
d+1,1 , (Vd+1,1/Vd−1,1)

(m+1)) −→ Ext01(Ld+1,L
(m+1)
d+1,1 , (Vd+1,1/Vd−1,1)

(m+1))

and

(L ◦ λ)∗ : Ext01(T,L
(m+1)
d+1,1 , (VD,1/Vd−1,1)

(m+1)) −→ Ext01(Ld+1,L
(m+1)
d+1,1 , (VD,1/Vd−1,1)

(m+1))

are isomorphisms.
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Proof. We give the proof for the second arrow. The proof for the first one is
similar.
Recall that, for vector bundles A and B over F, we have

Ext01(T, A,B) = F∗(T∗(A
∨ ⊗B))

and
Ext01(Ld+1, A,B) = F∗(θ∗(A

∨ ⊗B)).

Using the exact sequence (of quasi-coherent modules over F)

0 −→ T∗(OT) −→ θ∗(OLd+1
) −→ θ∗(OLd+1

)/T∗(OT) −→ 0,

we see that it suffices to show

F∗(L
−pm+1

d+1,1 ⊗ (VD,1/Vd−1,1)
(m+1) ⊗ (θ∗(OLd+1

)/T∗(OT))) = 0.

Using the good filtration of θ∗(OLd+1
) given in Step 5, we get a good filtration

of the quasi-coherent OF-module θ∗(OLd+1
)/T∗(OT). Its graded pieces are vector

bundles of the shape

W := (
d⊗

i=2

Φai
((VD,1/Vi,1)

∨⊗Li,1))⊗Φad+1
((VD,1/Vd,1)

∨⊗Ld+1,1)⊗L
⊗−b
d,1 ⊗L

⊗b
d+1,1.

Here b ≥ 0 is any integer, and the Φai
(.)’s are symmetric functors, homogenenous

of degrees ai ≥ 0, with at least one non-zero ai. By dévissage, it suffices to prove
the vanishing of

F∗(L
−pm+1

d+1,1 ⊗ (VD,1/Vd−1,1)
(m+1) ⊗W).

To do so, thanks to the projection formula, we may replace

F : Fl(1, . . . , d+ 1, V1) −→ S

by the complete flag scheme

F : Fl(V1) −→ S,

which we do, in three steps.

(1) At least one of the numbers a1, . . . , ad−1 does not vanish. Then, the nat-
ural good filtration on W has graded pieces consisting of degree zero line
bundles of the shape

L := O(c1, . . . , cd−1, . . . , cD),

where the relative numbers c1, . . . , cd−1 do not all vanish, and where the
first non-zero of these, reading from the left, is positive. Using the natural

good filtration of L−pm+1

d+1,1 ⊗ (VD,1/Vd−1,1)
(m+1), we get that

L−pm+1

d+1,1 ⊗ (VD,1/Vd−1,1)
(m+1) ⊗W

possesses the same kind of good filtration. For all of its graded pieces
L, we have F∗(L) = 0 by Proposition 9.4. Conclude by (double) dévissage.

It remains to treat the case a1 = . . . = ad−1 = 0. Hence, ad and ad+1

do not both vanish, and we have

W = Φ((VD,1/Vd,1)
∨)⊗ Lad−b

d,1 ⊗ L
b+ad+1

d+1,1 ,

where
Φ := Φad

⊗ Φad+1

is a symmetric functor, of degree ad + ad+1 ≥ 1.
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(2) We have b+ ad+1 − pm+1 > 0. Introduce the factorization

F : F = Fl(V1)
F1−→ Fl(1, . . . , d, V1)

F2−→ F.

Write

L−pm+1

d+1,1 ⊗ (VD,1/Vd−1,1)
(m+1) ⊗W = L

b+ad+1−pm+1

d+1,1 ⊗ Y,

where Y is a vector bundle, defined over Fl(1, . . . , d, V1). Since d + 1 ≤
D − 1, using the projection formula and proposition 9.4, we get

(F1)∗(L
−pm+1

d+1,1 ⊗ (VD,1/Vd−1,1)
(m+1) ⊗W) = (F1)∗(L

b+ad+1−pm+1

d+1,1 )⊗ Y

= 0⊗ Y = 0.

Hence

F∗(L
−pm+1

d+1,1 ⊗ (VD,1/Vd−1,1)
(m+1) ⊗W) = 0,

and we conclude by dévissage.
(3) We have b + ad+1 − pm+1 ≤ 0. The vector bundle Φ((VD,1/Vd,1)

∨) has a
good filtration, with graded pieces line bundles of the shape

O(0, . . . , 0,−, . . . ,−),

where the first of the − symbols occurs as the (d+1)-th entry, and one of
them at least is −−. By dévissage, it suffices to prove the vanishing of

F∗((VD,1/Vd−1,1)
(m+1)(0, . . . , 0, ad − b,−,−, . . . ,−)),

where one at least of the symbols − is −−. If ad−b ≥ 0, then the sequence
(ad − b,−,−, . . . ,−) is not increasing. Using the factorization

F : F = Fl(V1)
F3−→ Fl(1, . . . , d− 1, V1)

F4−→ F,

we conclude using Proposition 9.4. If ad − b < 0, we have to show

F∗((VD,1/Vd−1,1)
(m+1)(0, . . . , 0,−−,−, . . . ,−)) = 0,

where the first of the − symbols occurs as the (d+1)-th entry, and one of
them, at least, is −−. The vector bundle (VD,1/Vd−1,1)

(m+1) is equipped
with its natural good filtration, having as graded pieces the line bundles

Lpm+1

i,1 , for d ≤ i ≤ D. Thus, the vector bundle

(VD,1/Vd−1,1)
(m+1)(0, . . . , 0,−−,−, . . . ,−)

has a natural good filtration, with graded pieces (degree zero) line bundles,
of the shape

O(0, . . . , 0, ∗, . . . , ∗),

where one at least of the symbols ∗ is negative. These have F∗(.) = 0, by
Proposition 9.4. Conclude by dévissage.

�

Consider the natural extension, of vector bundles over F,

Nat : 0 −→ Vd+1,1/Vd−1,1 −→ VD,1/Vd−1,1 −→ VD,1/Vd+1,1 −→ 0.

Lemma 16.6. The inclusion

Ext01(T,L
(m+1)
d+1,1 , (Vd+1,1/Vd−1,1)

(m+1)) −→ Ext01(T,L
(m+1)
d+1,1 , (VD,1/Vd−1,1)

(m+1)),

induced by Nat, is an isomorphism.
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Proof. Consider the good filtration described in point 2) of Lemma 16.3. Using
the exact sequence Nat, and arguing as in the proof of Lemma 16.5 -whose proof
is actually much more delicate- we reduce to showing

F∗(L
−pm+1

d+1,1 ⊗ (VD,1/Vd+1,1)
(m+1) ⊗ L−b

d,1 ⊗ L
b
d+1,1) = 0,

for all b ≥ 0. The vector bundle

L−pm+1

d+1,1 ⊗ (VD,1/Vd+1,1)
(m+1) ⊗ L−b

d,1 ⊗ L
b
d+1,1

has a natural good filtration, with degree zero line bundles of the shape

O(0, . . . , 0,−b, b− pm+1, ∗, . . . , ∗)

as graded pieces– where all but one symbols ∗ vanish. The non-zero ∗ equals pm+1.
Such line bundles have F∗(.) = 0 by Proposition 9.4. Conclude by dévissage. �

Lemma 16.7. The natural map

ext1G,1(Ld+1,L
(m+1)
d+1,1 , (Vd+1,1/Vd−1,1)

(m+1)) −→ ext1G,1(Ld+1,L
(m+1)
d+1,1 , (VD,1/Vd−1,1)

(m+1)),

induced by the inclusion Vd+1,1/Vd−1,1 −→ VD,1/Vd−1,1, is an isomorphism.

Proof. We have

ext1G,1(Ld+1, ., .) = H1(G,Ext01(Ld+1, ., .)).

Thus, it suffices to show that the natural injective arrow

Ext01(Ld+1,L
(m+1)
d+1,1 , (Vd+1,1/Vd−1,1)

(m+1)) −→ Ext01(Ld+1,L
(m+1)
d+1,1 , (VD,1/Vd−1,1)

(m+1))

is an isomorphism. This follows from Lemmas 16.5 and 16.6. �

Lemma 16.8. The natural arrow

β : ext1G,1(Ld+1,L
(m+1)
d+1,1 , (Vd+1,1/Vd−1,1)

(m+1)) −→ ext2G,1(Ld+1,L
(m+1)
d+1,1 ,V

(m+1)
d−1,1 )

is an isomorphism.

Proof. Combine Lemmas 16.4 and 16.7.

�

16.8. Step 8: an adjustment.

Recall the class

c ∈ ext2Ld+1
(L

(m+1)
d+1,1 ,V

(m+1)
d−1,1 ),

obtained in Step 6. Thanks to Lemma 16.8, there exists

ǫ ∈ ext1Ld+1
(L

(m+1)
d+1,1 , (Vd+1,1/Vd−1,1)

(m+1)),

such that

β(ǫ) = c.

Consider the natural extension of GW1-bundles defined over F,

0 −→ L−1
d+1,1 ⊗ Ld,1 −→ L

−1
d+1,1 ⊗ (Vd+1,1/Vd−1,1)

π
−→ OF −→ 0.

Form the pushforward

π∗(ǫ) ∈ ext1Ld+1
(OLd+1

,OLd+1
) = h1

Ld+1
(OLd+1

).
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Recall that the space of lifts of L
(m)
d+1,1, to a GW2-bundle over Ld+1, is pointed by

W2(L
(m)
d+1,1), and is equivalent to the space of (G,OLd+1

)-torsors (see [8], Propo-

sition 4.3). This gives a meaning to

L
′[m]
d+1,2 := L

[m]
d+1,2 − π∗(ǫ).

Note that L
[m]
d+1,2 and L

′[m]
d+1,2, as lifts of L

(m)
d+1,1, are geometrically isomorphic. The

extension ǫ then gives rise to an extension of GW2-bundles over Ld+1

Nat
[m]
d,d+1,2 − j∗(ǫ) : 0 −→ L

(m)
d,2 −→ V

′[m]
d,d+1,2 −→ L

′[m]
d+1,2 −→ 0,

denoted by Nat
′[m]
d,d+1,2. We can now perform the same constructions as in Step 6,

replacing L
[m]
d+1,2 by L

′[m]
d+1,2, and Nat

[m]
d,d+1,2 by Nat

′[m]
d,d+1,2. Glueing it with Nat

(m)
d,2 ,

in a way that lifts Nat
(m)
d+1,1, is then obstructed by a class

c′ ∈ ext2Ld+1
(L

(m+1)
d+1,1 ,V

(m+1)
d−1,1 ),

with

c′ = c− β(ǫ) = 0.

The extensions Nat
′[m]
d,d+1,2 and Nat

(m)
d,2 thus glue, in a way that lifts Nat

(m)
d+1,1, to

an extension of GW2-bundles

0 −→ V
(m)
d,2 −→ V

′[m]
d+1,2 −→ L

′[m]
d+1,2 −→ 0,

over Ld+1.

16.9. Step 9: done! We have a complete flag of GW2-bundles over Ld+1,

∇
[m]
gen,d+1,2 : 0 ⊂ V

(m)
1,2 ⊂ . . . ⊂ V

(m)
d,2 ⊂ V

′[m]
d+1,2.

It lifts ∇
(m)
gen,d+1,1, in a way that extends ∇

(m)
gen,d,2.

Note that it is not embedded in V
(m)
D,2 .

Specializing via s3, we get that

∇
[m]
d+1,2 := (s3)

∗(∇
[m]
gen,d+1,2),

a complete flag of GW2-bundles over S, lifts ∇
(m)
d+1,1, in a way that extends ∇

(m)
d,2 .

Since S is perfect, ∇d+1,1 itself lifts, in a way that extends ∇d,2.

The following Corollary generalizes [5, Theorem 6.1], in depth 1.

Corollary 16.9. (Lifting representations of (1, 1)-smooth profinite groups.)
Let G be a (1, 1)-smooth profinite group. Let k be a perfect field of characteristic
p. Let

ρ1 : G −→ GLd(k)

be a continuous mod p representation of G, of arbitrary dimension d. Then, ρ1
lifts to a representation

ρ2 : G −→ GLd(W2(k)).

Proof. Write Vd,1 = kd, seen as a (k,G)-module via ρ1. Consider the extension
with abelian kernel

0 −→ Md(k) −→ GLd(W2(k)) −→ GLd(k) −→ 1.
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the induced action of GLd(k) on the matrix algebra Md(k) is given by

g.M = Frob(g)MFrob(g)−1,

where

Frob : GLd −→ GLd

is the Frobenius of GLd. Using [30], Chapter 5, proposition 41, we get a class

c ∈ H2(G,End(Vd,1)
(1)),

obstructing the existence of ρ2. By the usual inflation-restriction argument, to
show that it vanishes, it suffices to show that its restriction toH2(Gp,End(Vd,1)

(1))
vanishes, where Gp ⊂ G is a pro-p-Sylow subgroup. By [5], Lemma 11.10, Gp is
(1, 1)-smooth as well. In other words, we can assume that G = Gp is a pro-p-group.
Then, Vd,1 possesses a complete G-invariant flag

∇1 : 0 ⊂ V1,1 ⊂ . . . ⊂ Vd,1.

We can then apply the Uplifting Theorem to this flag, with S = Spec(k). It lifts
to a complete flag of GW2-bundles

∇2 : 0 ⊂ V1,2 ⊂ . . . ⊂ Vd,2

In particular, Vd,1 lifts modulo p2. Equivalently, ρ1 lifts to ρ2, as desired. �

Exercise 16.10. In the preceding Corollary, remove the perfectness assumption on
k, using a Frobenius-splitting argument.
Give a constructive proof, using Section 3 of [5].

17. Lifting Fp-étale local systems, to Z/p2-étale local systems...

17.1. ...for a semi-local scheme.
Let X be a connected scheme, where p is invertible. Denote by

G := π1(X)

the étale fundamental group of X. If X is semi-local, it is known by [5], that the
pair (G,Zp(1)) is (1,∞)-cyclotomic. Therefore, G is (1, 1)-smooth by Theorem A
of [6].
Applying the Uplifting Theorem and its corollary, it follows that (completely fil-
tered) Fp-étale local systems on X admit Zariski-local liftings, to (completely
filtered) Z/p2-étale local systems on X.
Equivalently, for all d ≥ 1, the arrows

Hom(π1(X),Bd(Z/p
2)) −→ Hom(π1(X),Bd(Fp))

and

Hom(π1(X),GLd(Z/p
2)) −→ Hom(π1(X),GLd(Fp))

are surjective.
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17.2. ...for a smooth curve, over an algebraically closed field.
Let C be a smooth connected curve (not necessarily proper), over an algebraically
closed field F . Denote by

G := π1(C)

its étale fundamental group. By [5], Proposition 4.11, combined to Theorem A
of [6], we know that G is (1, 1)-smooth. Thus, (completely filtered) Fp-étale local
systems on C lift to (completely filtered) Z/p2-étale local systems on C.
Equivalently, for all d ≥ 1, the arrows

Hom(π1(C),Bd(Z/p
2)) −→ Hom(π1(X),Bd(Fp))

and

Hom(π1(C),GLd(Z/p
2)) −→ Hom(π1(X),GLd(Fp))

are surjective.

Exercise 17.1. (Lifting local systems on curves: an elementary approach)
Assume that C is a smooth projective curve C over F = C. Set G := π1(C).
Let

ρ1 : G −→ GLd(Fp)

be a mod p local system on C. We have seen that ρ1 lifts to

ρ2 : G −→ GLd(Z/p
2).

Show that ρ1 actually lifts to

ρ∞ : G −→ GLd(Zp),

using the description of G by generators and relations.
In genus g = 1, you have to prove the following. Let a, b ∈ GLd(Fp) be two com-
muting invertible matrices. Then, a and b lift, to commuting invertible matrices
A,B ∈ GLd(Zp).
In genus g ≥ 2, I do not have a solution.

18. Lifting mod p Galois representations.

Let F be a field. Then, Spec(F ) is a semi-local scheme, so that section 17.1 applies.
Translating into the tongue of Galois representations, we get the following.

Theorem 18.1. Let

ρ1 : Gal(Fs/F ) −→ GLd(Fp)

be a continuous Galois representation of G, of arbitrary dimension d.
Then, ρ1 lifts to

ρ2 : Gal(Fs/F ) −→ GLd(Z/p
2).

Similarly, let

ρ1 : Gal(Fs/F ) −→ Bd(Fp)

be a continuous triangular Galois representation of G, of arbitrary dimension d.
Then, ρ1 lifts to

ρ2 : Gal(Fs/F ) −→ Bd(Z/p
2).

Liftability of Galois representations can be formulated in an elementary and joyful
fashion, accessible to anyone familiar with group theory:)



55

Theorem 18.2. (Reformulation of the first part of Theorem 18.1).
Let F be a field. Let E1/F be a Galois extension of F , whose Galois group

Γ1 := Gal(E1/F )

is a subgroup of a matrix group GLd(Fp).
Then, there exists a field extension E2/E1, enjoying the following properties.

• The extension E2/F is Galois, and its group

Γ2 := Gal(E2/F )

is a subgroup of GLd(Z/p
2).

• The natural surjection Γ2 −→ Γ1, given by Galois correspondence, is in-
duced by the mod p reduction GLd(Z/p

2) −→ GLd(Fp).

19. What’s next?

The Uplifting Theorem is an extremely fruitful statement. It has many possible
applications, especially in algebraic geometry and in modular representation the-
ory. One of these already materialized in [7]: The Smoothness Theorem, providing
a new proof the Norm Residue Isomorphism Theorem of Rost, Suslin, Voevodsky
and Weibel.
The Uplifting Theorem can also be transposed to other contexts.

20. Appendix: cyclotomic closure and smooth closure.

Let G be a profinite group.
Consider a discrete G-module Z/p2(1), which is free of rank one as a Z/p2-module.
We do not assume that the pair (G,Z/p2(1)) is (1, 1)-cyclotomic.
Then, there is a canonical cyclotomic closure

Σ(G,Z/p2(1)) −→ G.

It is a surjective homomorphism of profinite groups, whose source is (1, 1)-
cyclotomic w.r.t. to Z/p2(1). It can be thought of as a “resolution of singularities”
of G, w.r.t. to Z/p2(1). It is an important construction, applying to all profinite
groups. It can be transposed to other contexts. How to use it is kept for future
considerations.

Definition 20.1. Consider the set of pairs (H, ch), where H ⊂ G is an open
subgroup, and where ch : H −→ Z/p(1) is a 1-cocycle. Using Shapiro’s Lemma,
we have a tautological 1-cocycle

CG : G −→
∏

(H,ch)

(Z/p)(1)G/H .

Form the (set-theoretic) fibered product

σ(G,Z/p2(1)) //

��

G

CG

��
∏

(H,ch)
(Z/p2)(1)G/H //

∏

(H,ch)
(Z/p)(1)G/H ;

it is naturally a profinite group. Formula for the group law:

(g, x)(g′, x′) := (gg′, x+ g.x′),
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for g ∈ G and x ∈
∏

(H,ch)
(Z/p2)(1)G/H .

One can iterate this process.
Set

Σ(G,Z/p2(1)) := lim
←−
i

σi(G,Z/p2(1)).

It is the inverse limit of the system

. . . −→ σ(σ(G,Z/p2(1)),Z/p2(1)) −→ σ(G,Z/p2(1)) −→ G.

Proposition 20.2. The pair

(Σ(G,Z/p2(1)),Z/p2(1))

is (1, 1)-cyclotomic. The natural morphism

Σ(G,Z/p2(1)) −→ G

is surjective. It is versal in the category of all continuous morphisms G′ −→ G,
whose source G′ is (1, 1)-cyclotomic w.r.t. Z/p2(1). In other words, for every such
morphism G′ −→ G, there exists a (non unique) morphism G′ −→ Σ(G,Z/p2(1)),
such that the triangle

G′

��
%%▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

Σ(G,Z/p2(1)) // G

commutes.

Proof. We check that Σ(G,Z/p2(1)) is (1, 1)-cyclotomic w.r.t. Z/p2(1). Denote
by Gi the kernel of the natural quotient

qi : Σ(G,Z/p2(1)) −→ σi(G,Z/p2(1)).

Let H ⊂ Σ(G,Z/p2(1)) be an open subgroup. Let ch : H −→ Z/p(1) be a 1-
cocycle. Pick i such that Gi ⊂ H, and such that ch factors through H −→ H/Gi.
Denote by Hi ⊂ σi(G,Z/p2(1)) the image of H under qi. Then ch gives rise to a
1-cocycle xh : Hi −→ Z/p(1). By definition of σ(.,Z/p2(1)), the composite cocycle

Hi+1 −→ Hi
xh−→ Z/p(1)

lifts to a 1-cocycle x̃h : Hi+1 −→ Z/p2(1). Thus, ch itself lifts to c̃h : H −→
Z/p2(1). The fact that Σ(G,Z/p2(1)) −→ G is surjective is obvious. That it is
versal follows from the definition of a (1, 1)-cyclotomic pair. �

20.1. The smooth closure. The cyclotomic closure has a “smooth” version,
which depends only on G and p.

Definition 20.3. For a finite G-set X, put

GX := GX
a ⋊Gm,

where the semi-direct product is given by the diagonal action

λ.(tx)x∈X = (λtx)x∈X .

It is an affine algebraic group, defined over Z. Recall that G{∗} is the group of

automorphisms of the one-dimensional affine space A1.
Consider the set of pairs (X, c), where X is a finite G-set, and where
c : G −→ GX(Fp) is a 1-cocycle.
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We have a tautological 1-cocycle

CG : G −→
∏

(X,c)

GX(Fp).

Form the (set-theoretic) fibered product

σ(G) //

��

G

CG

��∏

(X,c) GX(Z/p2)
ρ

//
∏

(X,c) GX(Fp),

where ρ is induced by the reductions GX(Z/p2) −→ GX(Fp).
It is naturally a profinite group. Iterating this process, set

Σ(G) := lim
←−
i

σi(G).

Proposition 20.4. The profinite group Σ(G) is (1, 1)-smooth. The natural mor-
phism Σ(G) −→ G is surjective. It is versal in the category of all continuous
morphisms G′ −→ G, whose source G′ is (1, 1)-smooth. In other words, for every
such morphism G′ −→ G, there exists a (non unique) morphism G′ −→ Σ(G),
such that the triangle

G′

�� !!❉
❉

❉

❉

❉

❉

❉

❉

❉

Σ(G) // G

commutes.

Proof. Adapt the proof of Proposition 20.1. �

Remark 20.5. Using the smooth closure, Theorem 14.1 can be applied to study
modular representations of arbitrary (pro)-finite groups.
This is a worthwhile topic of investigation.

Exercise 20.6. Compute the smooth closure of Z/p. Good luck!
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Index of notation and denomination

(Z/peZ, G)-module [I, Def 6.1] G-Witt-Frobenius Module [I, Def 5.1]
[Fp, G]-module [I, Def 9.3] Hn((G,S),M) [I, Def 5.2]
A[G]f −module [II, §3.3] IndGH induction on H-schemes [II, Def 3.5]

A(V ) affine space of vector bundles [II, §5.1] Kummer type
Baer sum of extensions [I, §4,4] exact sequences [III, Def 3.3]
Cyclothymic profinite group [I, Def 11.1] group schemes [III, Def 3.5]
Cyclotomic closure [II, §20] Laurent extension [I, Def 7.1]

Cyclotomic pair [I, Def 6.2] Le+1[c] [I, Def 6.8]
Cyclotomic twist Naive action [I, §2]

for modules [I, §6] O(a1, ..., ad) [II, §9]

for (G,Wr)-modules [I, Def 8.1] Permutation
extnn(1, B) [II, §3.9] module [I, Def 9.6]
Ext

n
G,r(B,A) n-extensions of GWr-modules [II, §3.8] (G,Wr)-bundle [II, Def 6.1]

ExtnG,r(B,A) [II, 3.8] Permutation embedded complete flag [II, Def 7.3]

Filtered n-extensions [III, §4.1] Pullback of extensions [II, §3.8]
Flag scheme [II Def 9.2] Pushforward of extensions [II, §3.8]
Frobenius ResGH restriction for G-schemes [II, Def 3.4]

for Witt vectors [I, §3] RWr/W1
(Greenberg transfer) [II, §2.2]

pullback of WtF-modules [I, §3] Smooth closure of profinite group [II, §20]
pullback of (G,M)-torsors [I, §8] Smooth profinite group [I, Def 6.8, §11]

G((t)) (Laurent extension) [I, Def 7.1] Splitting scheme
Geometrically trivial extensions [II, §3.9] for torsors for G-vector bundles [I, Prop 4.21]
(G,M)-torsor for torsors for (G,Wr)-bundles [I, Prop 5.5]

M being a G-group [I, Def 4.4] Split unipotent group scheme [III Def 3.1]
M being a (G,OS)-module [I, Def 4.17] S-polynomial functor [II, Def 10.2]

(G,OS)-module (G-linearized OS-module) [I, Def 2.7] Strongly geometrically trivial
Good filtration [II, Def 4.1] cohomology class [I, Def 8.2]

(G,S)-cohomology [I, Def 5.2] torsor [I, Def 8.2]
(G,S)-scheme [I, Def 2.2] Symmetric functor [II, Def 10.9]
Greenberg transfer Teichmüller

for schemes [II, §2.2] section for Witt vectors [I, §3]

for groups [III, §2] lift for line bundles [I, Prop 5.7]
(G,Wr)-Module [I, Def 5.1] V1 ⊂ .. ⊂ Vn (tautological filtration) [II, §3.5]
(G,Wr)-affine space [I, Def 5.1] Ver (Verschiebung for Witt vectors) [I, §3]

(G,Wr)-bundle [I, Def 5.1] Well-filtered morphism [II, Def 4.1]
G-affine space Witt-Frobenius module [I, Def 3.3]

over a ring [I, Def 4.15] Wr(A) (truncated Witt vectors) [I, §3]
over a G-scheme [I, Def 4.16] Wr-bundle [I, Def 3.3]

G-invariant OS-module [I, Rem 2.11] Wr(OS) [I, Def 3.1]
Glueing of extensions [II, Def 12.1] Wr(S) (schemes of Witt vectors of S) [I, §3]
G-object [I, §2] YExt

n
C
(A,B) (Yoneda n-extensions) [I, §4.1]

G-scheme [I, Def 2.2] YExtn
C
(A,B) (linked Yoneda n-extensions) [I, §4.7]

G-sheaf [I, Def 2.6]



59

Bibliography
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