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Abstract. Let p be a prime. The goal of this article is to prove the Smooth-
ness Theorem 5.1, which notably asserts that a (1,∞)-cyclotomic pair is (n, 1)-
cyclotomic, for all n ≥ 1. In the particular case of Galois cohomology, the Smooth-
ness Theorem provides a new proof of the Norm Residue Isomorphism Theorem.
Using the formalism of smooth profinite groups, this proof presents it as a conse-
quence of Kummer theory for fields.
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1. Introduction.

Let G be a profinite group and p be a prime. Five years ago, we began working
on a mathematical project rooted in the following belief.

(B): The (surjectivity part of the) Norm Residue Isomorphism Theorem is a
consequence of Kummer theory for fields.

Recall that the Norm Residue Isomorphism Theorem, also known as the Bloch-
Kato Conjecture, was proved by Rost, Suslin, Voevodsky and Weibel, by applying
motivic cohomology to norm varieties [18].

With the two previous articles of this series in hand, we can now show that belief
(B) is correct, even beyond Galois cohomology: it is accurate in the broader context
of (1,∞)-cyclotomic pairs.

We build on these ealier works to achieve its proof: applying the Uplifting
Theorem [12, Theorem 14.1], we provide lifting statements for mod p cohomology
of a smooth profinite group. Notably, we show with the Filtered Lifting Theorem
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(Theorem 4.5) that, given a (1, 1)-smooth profinite group G and a perfect (Fp, G)-
algebra A, filtered exact sequences of G-bundles over A lift to their analogues
over W2(A). A key ingredient here is a process developped in [9], to parametrize
higher cohomology groups Hn(G, .) with abelian coefficients, by cohomology sets
H1(G, .) with non-abelian coefficients.

We can then derive from the Filtered Lifting Theorem our Smoothness Theorem
(Theorem 5.1). It states that (1, 1)-smooth profinite groups are (n, 1)-smooth and
that if (G,Zp(1)) is a (1,∞)-cyclotomic pair, it is (n, 1)-cyclotomic, for any n ≥ 1.

Denote byG = Gal(Fs/F ) “the” absolute Galois group of a field F of characteristic
not p. Let Zp(1) stand for its Tate module of p-primary roots of unity. Recall
that the pair (G,Zp(1)) is (1,∞)-cyclotomic, so that G is (1,∞)-smooth (see
[5]). The Smoothness Theorem then implies the sought-for proof of the Norm
Residue Isomorphism Theorem, using the equivalent formulation of the Bloch-
Kato conjecture given by Merkurjev for p = 2 [22] and for arbitrary p by Gille
[15].

Note that we provide in [5, §3] wide classes of smooth profinite groups, arising
from geometry. For instance, étale fundamental groups of semilocal Z[ 1p ]-schemes,

of affine Fp-schemes and of smooth curves over algebraically closed fields fit into
(1,∞)-cyclotomic pairs. The Smoothness Theorem therefore broadens the coho-
mological content of the Norm Residue Isomorphism Theorem to these groups.

2. Notation and conventions.

In this text, we assume familiarity with the following notions, developped in
the first two articles of this series: (1, e)-cyclotomic pairs, (1, e)-smooth profi-
nite groups, (G,Wr)-bundles and their complete flags, over an (G,Fp)-scheme S.
Here, Wr stands for p-typical truncated Witt vectors of length r. We focus on the
case r = 2, with a high degree of generality. We keep notation and conventions of
[6] and [12]. In particular, actions of profinite groups on algebro-geometric struc-
tures where p2 = 0 are naive, i.e. factor through open normal subgroups. Note
also that, in the present text, all schemes are affine.

Let Bn ⊂ GLn be the Borel subgroup of upper triangular matrices, and let Un be
its unipotent radical. These are linear algebraic groups, defined over Z. Through-
out, the letter G denotes a profinite group, which will often be assumed to be,
at least, (1, 1)-smooth (relatively to p). By definition, this means that for every
perfect (Fp, G)-algebra A, the natural arrow

H1(G,B2(W2(A))) −→ H1(G,B2(A))

is surjective (see [6, Definition 11.9]). Our starting point is the Uplifting Theorem
[12, Theorem 14.1].

2.1. Greenberg transfer of linear algebraic groups.

Let A be a commutative Fp-algebra and G be a smooth affine group scheme over

W2(A). We denote by G/A its reduction, to a smooth group scheme over A.
There is an exact sequence of A-group schemes

E(G) : 1 −→ Lie(G)(1) −→ RW2/W1
(G)

ρG
−→ G −→ 1,
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where RW2/W1
stands for the Greenberg transfer, from (affine) W2(A)-schemes

to A-schemes (see [1]). Keeping in mind the functorial bijection, between functors
of points,

RW2/W1
(G)(R)

∼
−→ G(W2(R)),

valid for every (commutative) A-algebra R, the arrow ρG is given by the reduction

G(W2(R)) −→ G(R) = G(R).

3. Extensions of Kummer type.

Definition 3.1. (Split unipotent group scheme)
Let S be a scheme and U/S be a smooth group scheme of dimension m.
Proceeding by induction on m, we say that U/S is split unipotent, if either U = 1,
or m ≥ 1, and there exists a central extension (of smooth group schemes over S)

1 −→ U1 ≃ Ga −→ U −→ U1 −→ 1,

such that U1 is split unipotent.

Remark 3.2. If S = Spec(k), with k a field, then a smooth connected linear k-
group U is split unipotent if, and only if, U can be embedded (over k) in Un, for
some n ≥ 1.

Definition 3.3. (Exact sequences of Kummer type)
Let

E : 1 −→ U −→ L2
π

−→ L1 −→ 1

be an extension of linear algebraic groups over Fp, whose kernel U is split unipo-
tent. We say that E is of Kummer type, or simply that π is of Kummer type, if
the following lifting property holds.
For every (1, 1)-smooth profinite group G and for every perfect (Fp, G)-algebra A,
the natural map

h1(π) : H1(G,L2(A)) −→ H1(G,L1(A)),

induced by π, is surjective.

Example 3.4. The fundamental example of an extension of Kummer type is given as
follows. Consider the Borel subgroup B2 ⊂ GL2, over Z/p

2. Form the associated
extension, of linear algebraic groups over Fp,

E(B2) : 1 −→ Lie(B2)
(1) −→ RW2/W1

(B2)
π

−→ B2 −→ 1.

Then, h1(π) reads as

H1(G,B2(W2(A))) −→ H1(G,B2(A)),

which is surjective, for any (1, 1)-smooth profinite group G and any perfect (Fp, G)-
algebra A, by the very definition of (1, 1)-smoothness (see [6, §11]).
Equivalently, instead of B2, one can use Ga⋊Gm, the automorphism group scheme
of the one-dimensional affine space A1.

Of course, we could allow arbitrary extensions of linear algebraic groups over
Fp in the preceding definition, but we stick to those with split unipotent ker-
nel to ensure the pleasant properties of Lemma 3.7. In practice, the extensions
of Kummer type considered in this paper often have a commutative kernel U ≃ Gna .

The following definition is now natural.
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Definition 3.5. (Group scheme of Kummer type)
Let G be a smooth affine group scheme over Z/p2. We say that G is of Kummer
type, or simply Kummer, if the extension of linear algebraic groups over Fp,

1 −→ Lie(G)(1) −→ RW2/W1
(G) −→ G −→ 1

is of Kummer type.

Exercise 3.6. Assume that p = 2 and denote by B a Borel subgroup of SL2. Show
that B is not Kummer.

The following elementary useful Lemma states that being an exact sequence of
Kummer type is preserved under pullbacks and pushforwards of extensions. Note
that pushforwards of extensions of (non-commutative) algebraic groups do not
exist in general; their formation requires a few assumptions, which we recall below.
For details on the yoga of extensions of algebraic groups, see [11].

Lemma 3.7. Let

E : 1 −→ U −→ L2 −→ L1 −→ 1

be an extension of linear algebraic groups over Fp, with split unipotent kernel.
Let π : L′

1 −→ L1 be a homomorphism of linear algebraic groups over Fp. One can
form the pullback extension

π∗(E) : 1 −→ U −→ L2 ×L1
L′

1 −→ L′

1 −→ 1.

Then, if E is of Kummer type, π∗(E) is of Kummer type, as well.

Assume that π is a surjection with split unipotent kernel, which is of Kummer
type. Then, if π∗(E) is of Kummer type, E is of Kummer type as well.

Assume now that U is commutative. It is then naturally endowed with an algebraic
action of L1, by group automorphisms.

Let V be another commutative split unipotent linear algebraic group over Fp, en-
dowed with an algebraic action of L1, by group automorphisms. Let ι : U −→ V
be an L1-equivariant homomorphism of linear algebraic groups over Fp.
One can form the pushforward extension

ι∗(E) : 1 −→ V −→ ι∗(L2)
π

−→ L1 −→ 1.

Here

ι∗(L2) := (V ⋊ L2)/U,

where the semi-direct product is taken w.r.t. the natural action of L2 on V , via
L2 −→ L1, and where U is diagonally embedded in V ⋊L2, as a normal subgroup.
Then, if E is of Kummer type, ι∗(E) is of Kummer type as well.

Proof. This is an elementary diagram chase, left to the reader. �

3.1. An equivalent formulation of the Uplifting Theorem.

The Uplifting Theorem ([12], 14.1 and 14.2) clearly implies that the algebraic group
Bn is Kummer, for all n ≥ 2. We are going to be more precise, and translate its
step-by-step formulation in terms of extensions of Kummer type.

Let

∇0
n : V0 ⊂ V1 ⊂ . . . ⊂ Vn
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be a complete flag of free Z/p2-modules, whose graded pieces are denoted by
Li = Vi/Vi−1. These are free Z/p2-modules of rank one.
Denote by

∇0
n−1 := τn−1(∇

0
n) : V0 ⊂ V1 ⊂ . . . ⊂ Vn−1

the truncation.

Denote by Aut(∇0
n) the group scheme (over Z/p2) of linear automorphisms of

Vn, respecting the flag ∇0
n. It is isomorphic to Bn and we have a natural exact

sequence of group schemes over Z/p2 (actually defined over Z)

1 −→ Kn −→ Aut(∇0
n)

π
−→ Aut(∇0

n−1) −→ 1,

where Kn is defined as the kernel of π. It is is a disguise of the sequence

1 −→ Gn−1
a ⋊Gm −→ Bn

π
−→ Bn−1 −→ 1,

where Gn−1
a ⋊Gm stands for the normal subgroup




1 0 · · · 0 ∗

0 1
. . .

... ∗
...

. . .
. . . 0 ∗

0 · · · 0 1 ∗
0 · · · · · · 0 ∗∗




⊂ Bn,

where the ∗’s belong to Ga, and where ∗∗ lies in Gm.

Applying the Greenberg transfer, we may consider this exact sequence as an exact
sequence of linear algebraic groups over Fp, reading as

1 −→ RW2/W1
(Kn) −→ RW2/W1

(Aut(∇0
n)) −→ RW2/W1

(Aut(∇0
n−1)) −→ 1.

Form the exact sequence

1 −→ Lie(Kn)
(1) −→ RW2/W1

(Aut(∇0
n)) −→ Aut∗,n(∆

0
n) −→ 1,

fitting into a commutative diagram

1 // Lie(Kn)
(1) //

��

RW2/W1
(Aut(∇0

n))
ρ

// Aut∗,n(∆
0
n)

��

// 1

1 // RW2/W1
(Kn) // RW2/W1

(Aut(∇0
n))

// RW2/W1
(Aut(∇0

n−1))
// 1.

Note that this diagram serves as the definition of Aut∗,n(∆
0
n).

Given a (1, 1)-smooth profinite group G and a perfect (Fp, G)-algebra A, the map

H1(G,RW2/W1
(Aut(∇0

n))(A)) = H1(G,Aut(∇0
n)(W2(A)))

h1(ρ)
−→ H1(G,Aut∗,n(∆

0
n)(A))

induced by ρ is surjective. Indeed, an element c ∈ H1(G,Aut∗,n(∆
0
n)(A)) is the

(isomorphism class of) a complete flag of (G,W1)-bundles over A,

∇n,1 : 0 =W0,1 ⊂W1,1 ⊂ . . . ⊂Wn,1,

together with a lift of the truncation ∇n−1,1 := τn−1(∇n,1), to a complete flag of
(G,W2)-bundles over A,

∇n−1,2 : 0 =W0,2 ⊂W1,2 ⊂ . . . ⊂Wn−1,2.
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The Uplifting Theorem ensures that such a lift can be extended to a complete lift

∇n,2 : 0 =W0,2 ⊂W1,2 ⊂ . . . ⊂Wn−1,2 ⊂Wn,2

of ∇n,1.

As a consequence, the class c lifts, via h1(ρ), to the set

H1(G,Aut(∇0
n)(W2(A)))

of isomorphism classes of n-dimensional complete flags of (G,W2)-bundles over
A– whose graded pieces, regarded (without the action of G) as invertible W2(A)-
modules , are trivial.
We have proved the following.

Theorem 3.8. (Uplifting Theorem, equivalent reformulation)
The extension of linear algebraic groups over Fp,

Kn : 1 −→ Lie(Kn)
(1) −→ RW2/W1

(Aut(∇0
n)) −→ Aut∗,n(∆

0
n) −→ 1,

also known as

1 −→ Gna −→ RW2/W1
(Bn)

π
−→ B∗,n −→ 1,

is of Kummer type.

Remark 3.9. The normal subgroup Gna ⊂ RW2/W1
(Bn) that appears in the pre-

vious statement, is

Lie(Gn−1
a ⋊Gm)(1) ⊂ RW2/W1

(Gn−1
a ⋊Gm) ⊂ RW2/W1

(Bn);

see the discussion above.

As a direct consequence of Theorem 3.8 and Lemma 3.7, we can construct a wide
class of extensions of Kummer type, as follows.

Lemma 3.10. Let K be the smallest class of extensions of linear algebraic groups
over Fp

E : 1 −→ U −→ L2
π

−→ L1 −→ 1,

or equivalently of surjections π : L2 −→ L1, with split unipotent kernel, such that:

(1) The class K contains the extensions

1 −→ Gna −→ RW2/W1
(Bn)

π
−→ B∗,n −→ 1

of Theorem 3.8, for all n ≥ 2.

(2) The class K is closed under arbitrary pullbacks, by homomorphisms
L′
1 −→ L1;

(3) If π1 : L2 −→ L1 and π2 : L3 −→ L2 belong to K, so does π1 ◦ π2.

(4) If π1 : L2 −→ L1 and π2 : L3 −→ L2 are such that π1 ◦ π2 belongs to K,
so does π1.

Then, K consists of extensions of Kummer type.
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4. Lifting filtered extensions.

Our objective in this section, is the Filtered Lifting Theorem (Theorem 4.5). Its
proof uses the point of view and some techniques of [9]- refined with the extra
data of complete filtrations.

4.1. Filtered extensions.

Definition 4.1. (Filtered exact sequences, a.k.a. filtered n-extensions)
Let R be a commutative ring. A (completely) filtered extension of R-modules is an
extension of locally free R-modules of finite rank

0 −→ A −→ E −→ B −→ 0,

together with a complete filtration

0 = E0 ⊂ E1 ⊂ . . . ⊂ Erk(E) = E,

whose graded pieces Ei/Ei−1 are invertible R-modules, and such that A = Ei for
some 0 ≤ i ≤ rk(E).

Two filtered extension of R-modules

0 −→ A −→ E −→ B −→ 0

and

0 −→ B −→ F −→ C −→ 0

are said to be compatible, if the filtration of B, induced by the given filtration on
E, equals that induced by the given filtration on F .

A filtered exact sequence of R-modules is an exact sequence, of locally free R-
modules of finite rank

E : 0 −→ E0 −→ . . . −→ En+1 −→ 0,

together with a system of two-by-two compatible filtrations (Ej,i), on the induced
short exact sequences

0 −→ Aj −→ Ej −→ Aj+1 −→ 0,

j = 1, . . . , n.

Assume that R is equipped with an action of the profinite group G. Then, a filtered
exact sequence of (R,G)-modules is a filtered exact sequence of R-modules

E : 0 −→ E0 −→ . . . −→ En+1 −→ 0,

equipped with a semi-linear action of G (see [6]). In other words, each Ei is
endowed with a semi-linear action of G, compatible with the arrows in E, and
respecting the given filtrations (Ej,i).

A filtered exact sequence E as above will also be called a filtered n-extension.
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4.2. The automorphism group scheme of a filtered exact sequence.

Definition 4.2. (Automorphism group schemes of filtered n-extensions)
For n ≥ 1, consider a filtered n-extension of Z-modules

E : 0 −→ E0 −→ E1 −→ . . . −→ En+1 −→ 0,

with given filtration (Ej,i) on Ej. We denote by

Ei : 0 −→ Ai −→ Ei −→ Ai+1 −→ 0,

i = 1, . . . , n the associated (filtered) short exact sequences and set

ei = dimZEi

and

ai = dimZAi.

Denote by Φ(e0, . . . , en+1) the group of automorphisms of the extension E, respect-
ing the given filtrations. It naturally bears the structure of a solvable group scheme,
over Z. Up to isomorphism, it only depends on e0, . . . , en+1. On the level of the
functor of points, an element of Φ(e0, . . . , en+1) is the data of automorphisms
φ0, . . . , φn+1, respecting the filtrations, and fitting into a commutative diagram

0 // E0
//

φ0

��

E1
//

φ1

��

. . . // En //

φn

��

En+1
//

φn+1

��

0

0 // E0
// E1

// . . . // En // En+1
// 0.

We have a natural exact sequence of smooth solvable Z-group schemes

1 −→ Ψ(e0, . . . , en+1) −→ BN −→ Φ(e0, . . . , en+1) −→ 1.

Here

N = e1 + e3 + . . .+ en−1 + en+1

if n is even, or

N = e1 + e3 + . . .+ en−2 + en

if n is odd. The normal subgroup Ψ(e0, . . . , en+1) consists of invertible matrices
of the shape
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1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0
0

0

0

0

0 0

0

0

0

00

*

e1

a1

a3

a2

a4

a3

an

an−1
an+1

en

Denoting by
0 = F0 ⊂ F1 ⊂ . . . ⊂ FN = ZN

a complete flag on the Z-module ZN , these matrices are the filtered automorphisms,
that act trivially on the subquotients

Fa1+a2+...+ai+1
/Fa1+a2+...+ai−1

,

for i = 1, . . . , n. Note that Φ(e0, . . . , en+1) also occurs as the subgroup of
Be1+e2+...+en , consisting of block matrices of the shape
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0

0

M1 U1

0 M2

M2 U2

0 M3

Mn−1 Un−1

0 Mn

Mn Un

0 Mn+1

where Mi ∈ Bai corresponds to Ai ⊂ Ei, and Ui = G
aiai+1

a .

Proposition 4.3. We keep the notation of the preceding Definition. Then, the
mod p2 reduction of Φ(e0, . . . , en+1) is a Kummer group scheme, over Z/p2.

Proof. Put s := e1+e2+ . . .+en and t = s+(s−1)+(s−2)+ . . .+(s−en+1+1).
Set

Bs,en+1
:= Ker(Bs −→ Bs−en+1

);

it consists of matrices of the shape



1 0 · · · 0 ∗ · · · ∗

0 1
. . .

... ∗ · · · ∗
...

. . .
. . . 0 ∗ · · · ∗

... · · ·
. . . 1 ∗ · · · ∗

0 · · · · · · 0 ∗∗
. . . ∗

... · · · · · ·
... 0

. . . ∗
0 · · · · · · 0 0 · · · ∗∗




⊂ Bs.

Notation is ∗ ∈ Ga, ∗∗ ∈ Gm, and there are en+1 = an+1 columns containing ∗’s.
Using the embedding Φ(e0, . . . , en+1) −→ Bs given in Definition 4.2, we get a
commutative diagram of extensions of linear algebraic groups over Fp,

E : 0 // Lie(Un ⋊Mn+1)
(1) //

ι

��

RW2/W1
(Φ(e0, . . . , en+1))

φ
//

��

Φ′(e0, . . . , en+1) //

��

0

F : 0 // Lie(Bs,en+1
)(1) // RW2/W1

(Bs)
ψ

// B
′
s,en+1

// 0,
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which serves as the definition of Φ′(e0, . . . , en+1) and of B′
s,en+1

.

Here Φ(e0, . . . , en+1), Bs and Bs,en+1
are considered over Z/p2. We have

Gt−en+1(s−en)
a ≃ Lie(Un ⋊Mn+1)

(1) ⊂ RW2/W1
(Un ⋊Mn+1),

and
Gta ≃ Lie(Bs,en+1

)(1) ⊂ RW2/W1
(Bs,en+1

).

By induction using Theorem 3.8, we know that ψ, or equivalently the extension
F , is of Kummer type. Hence, the extension ι∗(E) is of Kummer type as well by
Lemma 3.10. Now, as a morphism of Fp-representations of Φ′(e0, . . . , en+1), the
injection ι has a natural retraction ρ. Indeed, the source of ι has a complement in
Lie(Bs,en+1

)(1), given by block matrices of the shape
(

0 ∗
0 0

)
⊂ Bs,

where ∗ is a matrix with (s− en) rows and en+1 columns. Thus, E = ρ∗(ι∗(E)) is
of Kummer type as well. Equivalently, φ is of Kummer type. We conclude that
Φ(e0, . . . , en+1) is Kummer, by induction on n.

�

Remembering the definition of a surjection of Kummer type, Proposition 4.3
translates as follows, in the langage of G-linearized extensions.

Proposition 4.4. (Proposition 4.3, equivalent formulation).
Let G be a (1, 1)-smooth profinite group. Let A be a perfect (Fp, G)-algebra. Let

E : 0 −→ E0 −→ E1 −→ . . . −→ En −→ En+1 −→ 0

be a filtered n-extension of (G,W1)-bundles over A. Assume that all graded pieces,
of the given filtration on each Ei, are trivial (i.e. isomorphic to A), as invertible
A-modules.
Then, E lifts to a filtered n-extension of (G,W2)-bundles over A

E2 : 0 −→ E0,2 −→ E1,2 −→ . . . −→ En,2 −→ En+1,2 −→ 0,

such that all graded pieces, of the given filtration on each Ei,2, are trivial (i.e.
isomorphic to W2(A)), as invertible W2(A)-modules.

From the proof of Proposition 4.3, we even get the stronger result, that the lifting of
the n-extension E can be obtained step-by-step, lifting its arrows one after another
(starting from E0 −→ E1).
Our goal in the next Section, is to remove the assumption that all graded pieces
are trivial, as invertible A-modules.

4.3. The Filtered Lifting Theorem.

We can now state one of our main theorems.

Theorem 4.5. (Filtered Lifting Theorem)
Let G be a (1, 1)-smooth profinite group. Let A be a perfect (Fp, G)-algebra. Let
n ≥ 1 be an integer, and let

E : 0 −→ E0 −→ E1 −→ . . . −→ En −→ En+1 −→ 0

be a filtered exact sequence of (G,W1)-bundles over A.
Then, E admits a lift, to a filtered exact sequence of (G,W2)-bundles over A.
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Proof. Denote by Lj,i := Ej,i/Ej,i−1 the graded pieces of the filtrations on E ;
these are invertible A-modules. As a filtered exact sequence of A-modules, E is
isomorphic to the (split) exact sequence

F : 0 −→ F0 −→ F1 −→ . . . −→ Fn −→ Fn+1 −→ 0,

where

Fj :=
⊕

i

Lj,i.

Here the arrow Fj −→ Fj+1 is given by projecting on the (direct sum of) the
graded pieces which are common to Fj and Fj+1. With the notation of Definition
4.1, these are the graded pieces of Aj+1. Clearly, F naturally lifts to a (split)
filtered exact sequence of W2(A)-modules

F ′ : 0 −→ F ′

0 −→ F ′

1 −→ . . . −→ F ′

n −→ F ′

n+1 −→ 0,

where

F ′

j :=
⊕

i

W2(Lj,i).

Denote by B the automorphism W2(A)-group scheme of F ′. It is defined as in
4.2, except that we work over W2(A) instead of working over Z.

Now, the G-structure on E is given by a continuous 1-cocycle

ρ1 : G −→ B(A).

Lifting E as desired is equivalent to lifting ρ1 to a continuous 1-cocycle

ρ2 : G −→ B(W2(A)),

which is also equivalent to the vanishing of a class

Obs2 ∈ H2(G,Lie(B)(1)),

where B is the reduction of B, to an A-group scheme.

We now show that for any i, j, we can assume that Li,j = A. Setting

Rj,i =
⊕

n∈Z

L⊗n
i,j and R :=

⊗

i,j

Ri,j ,

we see that as the natural arrow A −→ R is a split monomorphism of (G,A)-
modules, the class Obs2 vanishes if and only if

Obs2 ⊗A R ∈ H2(G,Lie(B)(1) ⊗A R)

vanishes.

Consequently, the existence of a lift of E ⊗A R to a filtered exact sequence
of (W2(R), G)-modules ensures that E lifts to a filtered exact sequence of
(W2(A), G)-modules. We can thus base change from A to R. As the R-modules
Lj,i ⊗A R are free of rank one, our reduction step is done.

Under the assumption that all Li,j ’s are freeA-modules of rank one, E is isomorphic
(as a filtered exact sequence of A-modules) to the base-change via Z −→ A of a
split filtered exact sequence of Z-modules, which we denote by EZ.

Denote by BZ = Φ(e0, . . . , en+1) the automorphism Z-group scheme of EZ- see
Definition 4.2. Its mod p2 reduction B is Kummer, by Proposition 4.3. Note that
we have F ′ = EZ ⊗Z W2(A) and B = BZ ×Z W2(A). We conclude that ρ1 indeed
lifts, to a continuous 1-cocycle

ρ2 : G −→ BZ(W2(A)) = B(W2(A)).
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Twisting EZ ⊗Z W2(A) by ρ2, we get the desired lift of E . �

5. The Smoothness Theorem.

In this section, we consider a classical problem: lifting the mod p cohomology of
a profinite group. Solving by the affirmative part of the Smoothness Conjecture
14.25 of [4], in depth e = 1, we achieve it in the framework of (1, 1)-smooth
profinite groups, and give a consequence for cyclotomic pairs.

Theorem 5.1. (The Smoothness Theorem)
Let n ≥ 1 be an integer.
Let G be a (1, 1)-smooth profinite group. Then, G is (n, 1)-smooth.
Let (G,Zp(1)) be a (1,∞)-cyclotomic pair. Then, it is (n, 1)-cyclotomic.

Proof. By the standard restriction-corestriction argument, we first reduce to
the case where G is a pro-p-group. We start off with the first assertion: let
c1 ∈ Hn(G,L1) = Extn(A,G)(A,L1) be a cohomology class, where L1 is a (G,A)-
module, invertible as an A-module.

Let

E(c1) : 0 −→ L1 −→ E1 −→ . . . −→ En −→ A −→ 0

be an exact sequence of (G,W1)-bundles over A, whose Yoneda cohomology class
equals c1. We now show that since G is a pro-p-group, we can assume that E(c1)
is filtered, in such a way that the graded pieces of all Ei’s are free of rank one, as
A-modules. Pick an open subgroup G1 ⊂ G, such that Res(c1) = 0 ∈ Hn(G1, L1)
and consider the exact sequence

0 −→ L1
i1−→ L

G/G1

1 −→ Q2 −→ 0.

Using Shapiro’s lemma, we see that (i1)∗(c1) = 0. Hence, c1 is the Bockstein of a
class c1,n−1 ∈ Hn−1(G,Q2). Again, there exists an open subgroup G2 ⊂ G, such
that (i2)∗(c1,n−1) = 0, where

0 −→ Q2
i2−→ Q

G/G2

2 −→ Q3 −→ 0.

Continuing this process, we build an extension of (G,W1)-bundles over A,

E(c1) : 0 −→ L1 −→ E1 := L
G/G1

1 −→ . . . −→ En−1 := Q
G/Gn−1

n−1 −→ En −→ A −→ 0,

representing c1. We claim that this E(c1) can be completely filtered, as asserted.
To see this, note first that by construction, E(c1) is the pullback of the extension

E(G1, . . . , Gn) : 0 −→ L1 −→ L
G/G1

1 −→ . . . −→ Q
G/Gn−1

n−1 −→ Q
G/Gn
n −→ Qn+1 −→ 0,

by an element of H0(G,Qn+1) = Hom(A,G)(A,Qn+1).

The extension E(G1, . . . , Gn) only depends on the data of L1 and on the subgroups
G1, . . . , Gn. It does not depend on c1. Actually, it is canonically isomorphic to

E0(G1, . . . , Gn)⊗Fp
L1,

where

E0(G1, . . . , Gn) : 0 −→ Fp −→ FG/G1

p −→ . . . −→ Q
G/Gn

0,n −→ Q0,n+1 −→ 0

is the corresponding extension of (Fp, G)-modules, with respect to G1, . . . , Gn (i.e.
the particular case where A = Fp and L1 = Fp).
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Since G is a pro-p-group, E0(G1, . . . , Gn) can be completely filtered. The proof
is by induction, using the standard fact that a non-zero (Fp, G)-module has a
non-zero G-invariant element. It follows that E(G1, . . . , Gn) supports a complete
filtration as well, whose graded pieces are isomorphic to L1- hence free of rank one
as A-modules. Consequently, E(c1) supports the same kind of filtration.

Casting Theorem 4.5, this filtered exact sequence then lifts to a filtered exact
sequence of (G,W2)-bundles over A,

F : 0 −→ F0 −→ F1 −→ . . . −→ Fn −→ Fn+1 −→ 0.

Replacing F by F ⊗ F−1
n+1, we can assume that Fn+1 = W2(A), without loss of

generality. Set L2(c1) := F0, and take c2 ∈ Hn(G,L2(c1)) to be the Yoneda class
of the n-extension

F : 0 −→ L2(c1) −→ F1 −→ . . . −→ Fn −→ W2(A) −→ 0.

Then, c2 lifts c1, and we are done: the profinite group G is (n, 1)-smooth.

We now move on to the second assertion. Let (G,Zp(1)) be a (1,∞)-cyclotomic
pair. Given a cohomology class c1 ∈ Hn(G,Fp(n)), we need to show that c2 lifts
to a class c2 ∈ Hn(G,Z/p2(n)). Let

Γ := G((t1))((t2)) . . . ((tn+1))

be the (n + 1)-th iterated Laurent extension of G (see [6, Definition 7.1]). The
pair (Γ,Zp(1)) is (1,∞)-cyclotomic, by [6, Proposition 7.2]. For i = 1, . . . , n + 1,
set

xi = (t1) ∪ (t2) ∪ . . . ∪ (̂ti) ∪ . . . ∪ (tn+1) ∈ Hn(Γ,Fp(n)),

where (̂ti) means that (ti) is omitted.

As the pair (Γ,Zp(1)) are (1,∞)-cyclotomic, the profinite group Γ is (1,∞)-
smooth, by [6, Theorem A]. The first statement of this theorem ensures then
that Γ is (n, 1)-smooth.

Let C := (c1, x1, . . . , xn+1), where c1 is viewed here as a class in Hn(Γ,Fp(n)).
The profinite group Γ is (n, 1)-cyclothymic ([6, Theorem 11.4]). By definition, this
means there exists a lift of Fp(n) to Z/p2[C], a free Z/p2-module with an action of
Γ, such that the classes c1, x1, . . . , xn+1 all lift to Hn(Γ,Z/p2[C]). We are going
to show that

Z/p2[C] ≃ Z/p2(n).

This will conclude the proof, for then c1 lifts to Hn(G,Z/p2(n)), using the canoni-
cal section of the surjection Γ −→ G. Consider Z/p2[C] and Z/p2(n) as extensions

E(C) : 0 −→ Fp(n) −→ Z/p2[C] −→ Fp(n) −→ 0

and

E(n) : 0 −→ Fp(n) −→ Z/p2(n) −→ Fp(n) −→ 0.

Form their Baer difference

∆(n) := E(C)− E(n) : 0 −→ Fp(n) −→ δ(n) −→ Fp(n) −→ 0;

it is an extension of (Fp,Γ)-modules. Untwisting, it can also be viewed as an
extension

∆ : 0 −→ Fp −→ δ −→ Fp −→ 0,

i.e. an element of H1(Γ,Fp).
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The Theorem boils down to showing that ∆ splits. As all the ti’s lift to
H1(Γ,Z/p2(1)), the cohomology classes xi’s lift to Hn(Γ,Z/p2(n)). The xi’s lift
to both Hn(Γ,Z/p2(n)) and Hn(Γ,Z/p2[C]), from which we infer that

∆ ∪ xi = 0 ∈ Hn+1(Γ,Fp(n)),

for all i = 1, ..., n+ 1.

Write Γ0 = G and
Γi = G((t1)) . . . ((ti)),

so that Γ = Γn+1 = Γn((tn+1)). Recall that by [6, Proposition 7.4], we have for
any i ∈ {1, ..., n+ 1}, for any m ≥ 1 and any integer k, a short exact sequence

0 −→ Hm(Γi−1,Fp(k)) −→ Hm(Γi,Fp(k))
Resi−→ Hm−1(Γi−1,Fp(k − 1)) −→ 0.

To lighten notation, we denote by Resi the residue maps: the values of m and k
will be clear in the context.

Taking residue with respect to tn+1, we get

Resn+1(∆ ∪ xn+1) = Resn+1(∆) ∪ xn+1 = 0 ∈ Hn(Γn,Fp(n− 1)).

Here
Resn+1(∆) ∈ H0(G,Fp(−1)),

and xn+1 ∈ Hn(Γn,Fp(n)) is non-zero, therefore Resn+1(∆) = 0. In other words,
∆ is inflated via Γ −→ Γn: it comes from an extension of (Fp,Γn)-modules

∆n : 0 −→ Fp −→ δn −→ Fp −→ 0.

Applying

Resn ◦ Resn+1 : Hn+1(Γ,Fp(n)) −→ Hn−1(Γ,Fp(n− 2))

to the equality ∆ ∪ xn = 0, we get

Resn(∆n) ∪ (t1) ∪ . . . (tn−1) ∈ Hn−1(Γ,Fp(n− 2)),

whence Resn(∆n) = 0 ∈ H0(G,Fp(−1)). Consequently, ∆n is inflated from an
extension of (Fp,Γn−1)-modules

∆n−1 : 0 −→ Fp −→ δn−1 −→ Fp −→ 0.

Continuing this process, we eventually see that ∆ is “constant”: it is inflated from
an extension of (Fp, G)-modules

∆0 : 0 −→ Fp −→ δ0 −→ Fp −→ 0.

Now we see that
∆0 = Res1 ◦ . . . ◦ Resn(∆ ∪ xn+1) = 0.

The class ∆ is therefore trivial as well, which concludes the proof. �

Exercise 5.2.
In the last part of the proof of Theorem 5.1, we actually show the following result.

(R): Let (G,Z/p2(1)) be a (1,∞)-cyclotomic pair. Assume that G is (n, 1)-smooth.
Then, (G,Z/p2(1)) is (n, 1)-cyclotomic.

We then use (R), to deduce the second assertion of the Theorem from the first.

Our objective is to provide another way to prove (R).
With minor changes, we keep notation introduced in the proof of Theorem 5.1.
Let

c1 ∈ Hn(G,Fp(n))
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be a cohomology class. We want to lift it to Hn(G,Z/p2(n)).

1) Denote by
Γn := G((t1))((t2)) . . . ((tn))

the n-th iterated Laurent extension of G. Set

x := (t1) ∪ . . . ∪ (tn) ∈ Hn(Γn,Fp(n)).

By assumption, there exists a lift of Fp(n) to a (Z/p2, G)-module Z/p2[c1, x], free
of rank one as a Z/p2-module, such that both c1 and x lift to Hn(G,Z/p2[c1, x]).
Consider the exact sequence

E(c1, x) : 0 −→ Fp(n) −→ Z/p2[c1, x] −→ Fp(n) −→ 0.

Set

∆(n) := E(c1, x, n)− E(n) : 0 −→ Fp(n) −→ δ(n) −→ Fp(n) −→ 0.

We are going to show that ∆(n) splits, or equivalenty, that

∆ := ∆(n)⊗Fp
Fp(−n)

splits.

2) Assume that the G-action on Fp(1) is non-trivial- which is possible only if p 6= 2.
Show that inflation

H1(G,Fp) −→ H1(Γn,Fp)

is an iso. Conclude.
3) Assume that p is odd, and that the G-action on Fp(1) is trivial. Put

G′ := F×

p ×G.

Denote by Zp(1)
′ the group Zp(1), on which G′ acts as follows. Its first factor F×

p

acts via the Teichmüller character F×
p −→ Z×

p , and its second factor G acts in the
given way. Show that (G′,Zp(1)

′) is a (1,∞)-cyclotomic pair as well. Conclude
using question 2.

4) Explain how one can adapt the previous procedure for p = 2, by extending
scalars to the finite field F4, and working with F4 instead of F2.

Remark 5.3. The preceding Exercise sheds light on the following crucial property.
A group of order 2 has trivial automorphism group, whereas if G is a group of
(possibly infinite) order ≥ 3, we have a strict inclusion

H0(Aut(G), G) ( G.

Checking this is a nice exercise.
Working with F4 coefficients, instead of F2 coefficients, thus puts the prime p = 2
on an equal footing vis-à-vis all odd primes. Note that we presented a proof of
Theorem 5.1, that is the same for every p.

Corollary 5.4. (The Norm Residue Isomorphism Theorem).
Let F be a field of characteristic not p, with separable closure Fs.
1) For all n ≥ 1, the natural homomorphism

Hn(Gal(Fs/F ), µ
⊗n
p2 ) −→ Hn(Gal(Fs/F ), µ

⊗n
p )

is onto. Equivalently, the connecting homomorphism

Hn(Gal(Fs/F ), µ
⊗n
p ) −→ Hn+1(Gal(Fs/F ), µ

⊗n
p ),

arising from the twisted Kummer sequence

0 −→ µ⊗n
p −→ µ⊗n

p2 −→ µ⊗n
p −→ 0,
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vanishes.
2) The Norm Residue Isomorphism Theorem holds: the Galois symbol

KM
n (F )/p −→ Hn(Gal(Fs/F ), µ

⊗n
p )

is an isomorphism.

Proof. Remember that (Gal(Fs/F ),Zp(1)) is a (1,∞)-cyclotomic pair, where
Zp(1) is the Tate module given by roots of unity of p-primary order, by usual
Kummer theory- see, for instance, [4]. The first statement is then given by the
second part of the Smoothness Theorem.

We give references for proving 1) ⇒ 2). When p = 2 (Milnor’s Conjecture), this
is precisely the job done in [22]. When p is arbitrary, use [15, Theorem 0.2]. Note
that both papers are short and self-contained. �

Remark 5.5. In the preceding Corollary, the proof of 1), that we provide in this
series of three papers, puts all primes on an equal footing. In particular, the parity
of p plays no rôle.

6. The Symbols Conjecture

To conclude, we state a conjecture which sharpens the Smoothness Theorem.

Conjecture. 6.1. (The Symbols Conjecture)
Let G be a (1, 1)-smooth pro-p group.
Then, the cohomology algebra

H∗(G,Fp) :=
⊕

n∈N

Hn(G,Fp)

is generated in degree one.

Remark 6.2. Applied to absolute Galois groups, the Symbols Conjecture im-
plies, without using any further result, the (surjectivity part of the) Norm
Residue Isomorphism Theorem for p-special fields- hence for all fields by a re-
striction/corestriction argument.

The Symbols Conjecture may be weakened, by demanding that cohomology classes
in Hn(G,Fp) be quasi-symbols instead of symbols; that is, sums of corestrictions
of symbols, w.r.t. open subgroups of G. We do, however, believe that it holds
as stated, and that it can be proved by an explicit application of the Uplifting
Theorem, providing bounds for symbol length.
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Index of notation and denomination

(Z/peZ, G)-module [I, Def 6.1] G-Witt-Frobenius Module [I, Def 5.1]
[Fp, G]-module [I, Def 9.3] Hn((G,S),M) [I, Def 5.2]
A[G]f −module [II, §3.3] IndGH induction on H-schemes [II, Def 3.5]

A(V ) affine space of vector bundles [II, §5.1] Kummer type
Baer sum of extensions [I, §4,4] exact sequences [III, Def 3.3]
Cyclothymic profinite group [I, Def 11.1] group schemes [III, Def 3.5]
Cyclotomic closure [II, §20] Laurent extension [I, Def 7.1]

Cyclotomic pair [I, Def 6.2] Le+1[c] [I, Def 6.8]
Cyclotomic twist Naive action [I, §2]

for modules [I, §6] O(a1, ..., ad) [II, §9]

for (G,Wr)-modules [I, Def 8.1] Permutation
extnn(1, B) [II, §3.9] module [I, Def 9.6]
Ext

n
G,r(B,A) n-extensions of GWr-modules [II, §3.8] (G,Wr)-bundle [II, Def 6.1]

ExtnG,r(B,A) [II, 3.8] Permutation embedded complete flag [II, Def 7.3]

Filtered n-extensions [III, §4.1] Pullback of extensions [II, §3.8]
Flag scheme [II Def 9.2] Pushforward of extensions [II, §3.8]
Frobenius ResGH restriction for G-schemes [II, Def 3.4]

for Witt vectors [I, §3] RWr/W1
(Greenberg transfer) [II, §2.2]

pullback of WtF-modules [I, §3] Smooth closure of profinite group [II, §20]
pullback of (G,M)-torsors [I, §8] Smooth profinite group [I, Def 6.8, §11]

G((t)) (Laurent extension) [I, Def 7.1] Splitting scheme
Geometrically trivial extensions [II, §3.9] for torsors for G-vector bundles [I, Prop 4.21]
(G,M)-torsor for torsors for (G,Wr)-bundles [I, Prop 5.5]

M being a G-group [I, Def 4.4] Split unipotent group scheme [III Def 3.1]
M being a (G,OS)-module [I, Def 4.17] S-polynomial functor [II, Def 10.2]

(G,OS)-module (G-linearized OS-module) [I, Def 2.7] Strongly geometrically trivial
Good filtration [II, Def 4.1] cohomology class [I, Def 8.2]

(G,S)-cohomology [I, Def 5.2] torsor [I, Def 8.2]
(G,S)-scheme [I, Def 2.2] Symmetric functor [II, Def 10.9]
Greenberg transfer Teichmüller

for schemes [II, §2.2] section for Witt vectors [I, §3]

for groups [III, §2] lift for line bundles [I, Prop 5.7]
(G,Wr)-Module [I, Def 5.1] V1 ⊂ .. ⊂ Vn (tautological filtration) [II, §3.5]
(G,Wr)-affine space [I, Def 5.1] Ver (Verschiebung for Witt vectors) [I, §3]

(G,Wr)-bundle [I, Def 5.1] Well-filtered morphism [II, Def 4.1]
G-affine space Witt-Frobenius module [I, Def 3.3]

over a ring [I, Def 4.15] Wr(A) (truncated Witt vectors) [I, §3]
over a G-scheme [I, Def 4.16] Wr-bundle [I, Def 3.3]

G-invariant OS-module [I, Rem 2.11] Wr(OS) [I, Def 3.1]
Glueing of extensions [II, Def 12.1] Wr(S) (schemes of Witt vectors of S) [I, §3]
G-object [I, §2] YExt

n
C
(A,B) (Yoneda n-extensions) [I, §4.1]

G-scheme [I, Def 2.2] YExtn
C
(A,B) (linked Yoneda n-extensions) [I, §4.7]

G-sheaf [I, Def 2.6]
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Sup. (3) 80, 213-348, 1963.

[28] J.-P. Serre, Corps locaux, Hermann, Paris, 1968.

[29] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, Symposium de
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