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1. Notation

1.1. Symmetric groups. Let n be a positive integer. In the symmetric group
Sn, we use the standard notation for cycles. For instance, (12) denotes the
transposition exchanging 1 and 2, whereas (123) denotes the 3-cycle sending 1 to
2, 2 to 3 and 3 to 1.

1.2. Endomorphisms. Let (S,⊗, 1) be a symmetric monoidal category (often de-
noted by S in short), and let E be an object of S. For any positive integer n,
the symmetric group Sn acts naturally on E⊗

n

. For instance, (12) stands for the
canonical exchange involution on E⊗E. Let f be an endomorphism of E⊗E. We
shall denote by f1 the endomorphism IdE ⊗ f of E ⊗E ⊗E. Similarly, we denote
by f2 the endomorphism (12)◦f1 ◦(12) of E⊗E⊗E, and by f3 the endomorphism
f ⊗ IdE . This notation obviously extends to the case of an endomorphism g of
E⊗

n

. It induces n+ 1 endomorphisms gi of E⊗
n+1

. For instance, gn+1 = g⊗ IdE .
We denote by f12 the endomorphism f ⊗ IdE⊗E of E ⊗ E ⊗ E ⊗ E. Simarly, we
have endomorphisms fij of E ⊗E ⊗E ⊗E, for each pair of integers i and j with
1 ≤ i < j ≤ 4.
An endomorphism h of E will be called constant if it comes from an endomorphism
of 1, i.e. if there exists an endomorphism k of 1 such that f = k ⊗ IdE , via the
natural isomorphism 1⊗ E ' E.

1.3. Projective spaces. Let k be a field, and V a finite-dimensional k-vector
space. We denote by Pk(V ) the projective space of lines in V .

2. Why descent theory is a linear theory

In this section, we review some facts about Grothendieck’s descent theory and
show that, in a sense to be made precise, this theory is linear. We then explain
the main motivation of this paper.

Let us briefly recall what descent theory is, in its most simple form. The exposition
that follows is not the exact context in which descent theory is generally stated.
Meanwhile, it is very close, and the interested reader may check that it implies
descent theory for nonzero ring homomorphisms k −→ B, where k is a field.
Let k be a field. Let V denote the category of k-vector spaces. Fix a nonzero
A ∈ V. Consider the functor

V −→ V,

X 7→ A⊗X.
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We want to find a condition for a vector space B to be in the essential image of
this functor. Imagine that B = A⊗X, for an X ∈ V. Then A⊗B = A⊗A⊗X
is endowed with a canonical map sX , the switch, defined by

φ(a1 ⊗ a2 ⊗ x) = (a2 ⊗ a1 ⊗ x).

Now, the space A ⊗ A ⊗ B is naturally endowed with two automorphisms: the
switch sB (exchanging the A factors), and the map (sX)1 = IdA ⊗ sX . Of course,
this last map depends on the decomposition B = A⊗X, whereas sB does not. We
instantly compute that sB ◦ (sX)1 has order three, which amounts to say, since
sX and sB are involutions, that (sX)1sB = sB(sX)1sB(sX)1; in other words, that
(sX)1sB = (sX)2(sX)1. Now define a category VA as follows.
Objects of VA are couples (B,φ), where B is a vector space, and φ is an automor-
phism of A⊗B such that the relation

φ1sB = φ2φ1

holds (both sides being automorphisms of A⊗A⊗B).
A morphism (B,φ) −→ (B′, φ′) is a linear map f : B −→ B′, such that φ′ ◦ (IdA⊗
f) = (IdA ⊗ f) ◦ φ.
We have an obvious functor

Ψ : V −→ VA,

A 7→ (A⊗X, sX).

The basic result in descent theory (which contains its main ideas) is that Ψ is an
equivalence of categories. This can also be viewed as a generalization of Morita
equivalence, since we do not assume A to be finite-dimensional.

In view of this brief exposition, it appears that descent theory is a categorical way
of solving the equation

B = A⊗X

by endowing B with a descent data, which turns out to be always effective. It is
in this sense that descent theory is linear. The main purpose of this paper is to
develop a bilinear descent theory. More precisely, we shall consider the equation

B ' X ⊗ Y,

with ’unknowns’ X and Y , and study which descent data is needed on B in order
to solve it. It turns out that, in the category of pointed k-vector spaces over some
field (and more generally in pointed symmetric monoidal categories), the descent
data that occur are always effective. However, in the category of k-vector spaces,
descent data are not always effective. The obstruction to this is the Brauer group
of k. Our construction will be used to give a new simple definition of the Brauer
group of any symmetric monoidal category. It need not be equal to the Brauer
group definied by Vitale in [Vit].

3. Preliminary I: pointed symmetric monoidal categories

Definition 3.1. Let S be a symmetric monoidal category. We build another sym-
metric monoidal category, the pointed symmetric monoidal category P(S) associ-
ated to S, as follows. An object of P(S) is a morphism 1 −→ X in S, admitting
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a retraction (which is not specified in the data). A morphism from 1 −→ X to
1 −→ X ′ is an arrow X −→ X ′ in S, such that the obvious diagram

1 // X

��
1 // X ′

commutes. The tensor product of 1
f−→ X and 1

f ′−→ X defined to be 1
f⊗f ′−→ X⊗X ′.

The commutativity constraint (1
f⊗f ′−→ X ⊗X ′) ' (1

f ′⊗f−→ X ′ ⊗X) is given by that
of S.

It is readily checked that P(S) is indeed a symmetric monoidal category.
Note that we have an obvious (strong monoidal) forgetful functor

FS : P(S) −→ S.

Definition 3.2. Let S be a symmetric monoidal category. If the functor FS is an
equivalence of categories, we say that S is a pointed symmetric monoidal category.

Proposition 3.3. Let S be a symmetric monoidal category. Then P(S) is a
pointed symmetric monoidal category. The category S itself is pointed if and only
if the following holds: a unit of S is an initial object, and every object of S admits
at least one morphism to a unit.

Proof. Left to the reader. �
The next lemma will be used in the proof of theorem 6.1.

Lemma 3.4. Let S be a pointed symmetric monoidal category with equalizers, such
that, for every object X of S, the functor .⊗X preserves equalizers. Let A, B, A′,
B′ be objects of S. Let fi : A −→ B and f ′i : A′ −→ B′, i = 1, 2, be morphisms.
Denote by X (resp X ′) the equalizer of f1 and f2 (resp. f ′1 and f ′2). Assume the
canonical morphism iX : X −→ A (resp. iX′ : X ′ −→ A′) admits a retraction rX
(resp. rX′). Let Z be an object of S, and g : Z −→ A⊗A′ be a morphism. Then g

factors through X⊗X ′ iX⊗iX′−→ A⊗A′ if and only if the following two equalities hold:

i) (f1 ⊗ IdA′) ◦ g = (f2 ⊗ IdA′) ◦ g
ii) (IdA ◦ f ′1) ◦ g = (IdA ◦ f ′2) ◦ g.

Proof. By the hypothesis of the lemma, i) means that g factors through the

morphism X ⊗ A′
iX⊗IdA′−→ A ⊗ A′. Because rX is a retraction of iX , this means

that g equals the composite

Z
g−→ A⊗A′

rX⊗IdA′−→ X ⊗A′
iX⊗IdA′−→ A⊗A′.

Condition ii) implies the similar statement for X ′. Put h = (rX ⊗ rX′) ◦ g. We
compute:

Z
h−→ X ⊗X ′ iX⊗iX′−→ A⊗A′

= Z
g−→ A⊗A′

(iX◦rX)⊗IdA′−→ A⊗A′
IdX⊗(iX′◦rX′ )−→ A⊗A′ = g.

�
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4. Preliminary II: some group theory

In this section, W is a free group on one generator w ∈ W . Let G be a group,
and X ⊂ G be subset. Imagine we want to measure what elements of X have in
common. On way to do this is to look at relations simultaneously satisfied by all
elements of X. Let us be more precise.

Definition 4.1. Let G ∗W be the amalgamated sum of G and W . The group of
relations of X in G is the group

R(X,G) := ∩x∈XKerfx ⊂ G ∗W,

where for x ∈ X, fx : G ∗W −→ G is the homomorphism which is the identity on
G and which sends w to x.
We shall denote by S(X,G) the quotient (G ∗W )/R(X,G). We call it the smash
group of X (in G). It comes equipped with a canonical element τX , which is the
class of w ∈ (G ∗W ) modulo R(X,G). We call it the smash of X.

Examples 4.2. When X = ∅, we have S(X,G) = {e}.
When X is a one element set, S(X,G) is canonically isomorphic to G.
When G is abelian, S(X,G) is canonically isomorphic to G × (Z/nZ), where n
is the smallest positive integer such that the n’th powers of elements of X all
coincide, or zero if no such integer exists.

4.1. Smashing in symmetric groups. Let n > 2 be an integer, and Sn be the
symmetric group on n letters, with the usual notation (cf. section 1).

Lemma 4.3. The homomorphism

fId × f(12) : Sn ∗W −→ Sn × Sn

(notation as in Definition 4.1) induces by passing to the quotient an isomorphism

S({Id, (12)}, Sn) ' Sn × Sn.

Proof. We have to show that fId×f(12) is surjective. Let 1 ≤ i ≤ n be an integers.
We have (fId×f(12))((2i)w(2i)) = (Id, (1i)). Since the transpositions (1i) generate
Sn, and since fId is obviously surjective, this shows the claim.

�

Proposition 4.4. The subgroup R({Id, (12)}, S3) ⊂ S3 ∗ W is generated
(as a normal subgroup of S3 ∗ W ) by the elements w2,w(12)w(12) and
w(13)w(13)w(23)w(23).

Proof. We will now show that, modulo H, every element of S3 ∗W is of the form
awb or wawb, for a, b ∈ S3. Since there are at most 18 expressions of each kind
(remember that (12) and w commute modulo H), and since S({Id, (12)}, S3) '
S3×S3 is of cardinality 36, this proves that H = R({Id, (12)}, S3). Let x ∈ S3∗W .
Modulo H, x can be written as a1wa2w...ar, with ai ∈ S3. If r = 1, x = wIdwa1

modulo H. If r = 2, there is nothing to prove. Assume r ≥ 3. Modulo H, w
commutes with (12). Hence, one easily sees that we can assume ai = Id, (13)
or (23) for i = 1...r − 1. For {a, b} = {(13), (23)}, note that we have awaw =
wbwb and awbw = wawb modulo H. Using this, we can assume a1 = Id, and
thus that r ≥ 4. But the same relations then yield wa2wa3 = bwcw for some
b,c ∈ {(13), (23)}. Hence x = wa2wa3wa4 . . . ar = bwcwwa4 . . . ar = bwca4 . . . ar

modulo H, so that induction applies. �
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5. The category of potential decompositions

Let (S,⊗, 1) be a symmetric monoidal category. Let X,Y be two objects of S.
Put E = X ⊗ Y . In the spirit of Grothendieck’s descent theory, we want to find
some intrinsic data on E which arises from the decomposition of E as the tensor
product of X and Y . This is done as follows. Denote by sX the automorphism of

E ⊗ E = X ⊗ Y ⊗X ⊗ Y

given by
x⊗ y ⊗ x′ ⊗ y′ 7→ x′ ⊗ y ⊗ x⊗ y′.

Put t := (sX)3, an automorphism of E ⊗ E ⊗ E.
Loosely speaking, t is equal to (12) on the X-part of E⊗E⊗E, and to the identity
on the Y -part of E ⊗ E ⊗ E. We thus see -and this is essential- that all words in
R({Id, (1, 2)}, S3) (cf. definition 4.1) are equal to the identity when evaluated at
t. Thanks to proposition 4.4, it suffices to keep the three relations

t2 = Id,

(12)t = t(12)

and
(13)t(13)t = t(23)t(23).

We are thus led to defining a new category attached to S.

Definition 5.1. Let S be a symmetric monoidal category. We define a category
PDec(S) (the category of potential decomposition of objects of S) as follows.
An object of PDec(S) is a pair (E, φ), where E is an object of S and φ is an
element of Aut(E ⊗ E) such that the following equalities hold:
i) φ2 is a constant automorphism,
ii) φ ◦ (12)=(12) ◦ φ,
iii) φ1φ3 = φ3φ2 (as automorphisms of E ⊗ E ⊗ E).

A morphism from (E, φ) to (E′, φ′) is a morphism f : E −→ E′ such that (f ⊗
f) ◦ φ = φ′ ◦ (f ⊗ f), up to a constant automorphism.
The identity object 1PDec(S) is equal to (1 ' 1⊗ 1, s1).
The tensor product of (E, φ) and (E′, φ′) is equal to (E⊗E′, φ⊗φ′), via the natural
identification

(E ⊗ E)⊗ (E′ ⊗ E′) ' (E ⊗ E′)⊗ (E ⊗ E′),

(e1 ⊗ e2)⊗ (e′1 ⊗ e′2) 7→ (e1 ⊗ e′1)⊗ (e2 ⊗ e′2).

Remark 5.2. Let (E, φ̃) be an object of PDec(S). Let i, j, k be three integers such
that {i, j, k} = {1, 2, 3}. On E⊗E⊗E, we have the relations (jk)◦φj ◦ (jk) = φk.
We thus see that, in the definition of PDec(S), we can replace iii) by any of the
following relations:
φi ◦ φj=φj ◦ φk,
(jk) ◦ φj ◦ (jk) ◦ φj = φj ◦ (ij) ◦ φj ◦ (ij),
(jk) ◦ φj ◦ (ij) ◦ φj = φj ◦ (jk) ◦ φj ◦ (ij).
For instance, the relation φ1 ◦ φ3=φ3 ◦ φ2 is obtained by conjugating ii) by (23)
(taking into account that (23) and φ1 commute).

There is a functor
ΨS : S2 −→ PDec(S)

(X,Y ) 7→ (X ⊗ Y, sX).



6

In the spirit of Grothendieck’s descent theory, we can wonder whether ΨS is an
equivalence of categories.
There are several more or less obvious obstructions to this. We list four of them.

Obstruction 1. Let L be an invertible object of S such that the switch automor-
phism of L ⊗ L is the identity (this always happen, for instance, in the category
of finite locally free sheaves on a scheme). Let X and Y be objects of S. One
readily checks that ΨS(X ⊗ L, Y ) and ΨS(X,L ⊗ Y ) are canonically isomorphic
in PDec(S). Nevertheless, (X ⊗L, Y ) and (X,L⊗ Y ) are not isomorphic in S2 as
soon as L is not isomorphic to 1.
Obstruction 2. Let λ ∈ End(1). If λ 6= Id1, then the two arrows (λ, Id1) and
(Id1, λ) are different in S2 but their images under ΨS are the same.
Obstruction 3. We present it as an exercise for the reader. Take S to be the cate-
gory of finite free modules over the ring A = C[ε] (the C-algebra of dual numbers).
Take X, Y in S of rank 2, with basis x1, x2 and y1, y2, respectively. Show that
the formula 1 7→ ε(x1 ⊗ y1 + x2 ⊗ y2) defines a morphism (A, Id) −→ (X ⊗ Y, cY )
in PDec(S) and that this morphism does not lie in the image of ΨS .
Obstruction 4. Take S to be the category of finite-dimensional vector spaces
over a commutative field k. Let A be a central simple k-algebra. Assume first
that A = End(V ) ' V ⊗ V ∗ for some (finite-dimensional) vector space V . Then
(V ⊗ V ∗, sV ) is an object of PDec(S). Assume now that A is arbitrary. By a
descent argument, we can still define a canonical automorphism φA on A ⊗ A
(which agrees with the one we just defined if A is split), such that (A,φA) is an
object of PDec(S). We will show later that (A,φA) belongs to the essential image
of ΨS if and only if A is split.

The fourth one is crucial: it reflects the existence of a Brauer group of S, which
we will investigate later.

There is a first trivial case in which ΨS is an equivalence of categories: that of sets.

Proposition 5.3. Let S be the symmetric monoidal category of sets, with units
the singletons and tensor product structure the cartesian product. Then ΨS is an
equivalence of categories.

Proof. This is mainly an exercice, which contains nonetheless some of the ideas
of the proof of theorem 6.1. We present the proof here as a consequence of this
theorem. Let (E, φ) ∈ PDec(S). We first show that, for all e ∈ E, we have
φ(e, e) = (e, e). Take e ∈ E. Then there exists a ∈ E such that φ(e, e) =
(a, a), since φ and (12) commute. Write φ(e, a) = (b, c). Since φ1φ2(e, e, e) =
φ3φ1(e, e, e), we have (a, b, c) = (b, c, a), whence a = b = c. Thus, φ(e, a) = (a, a),
or equivalently, φ(a, a) = (e, a). Since φ and (12) commute, this implies e = a, qed.
Now take e ∈ E, and consider E to be pointed by e. In the symmetric monoidal
category S ′ of pointed sets, the map φ induces a map φ′ : (E×E, (e, e)) −→ (E×
E, (e, e)), hence an object ((E, e), φ′) of PDec(S ′). But since S ′ is pointed, theorem
6.1 applies: ((E, e), φ′) comes from a decomposition (E, e) ' (X,x) × (Y, y) of
(E, e) into a cartesian product of two pointed sets. A fortiori, φ comes from the
decomposition E ' X × Y . �
In the next section, we describe a very important case in which ΨS is an equivalence
of category: the case of pointed symmetric monoidal categories.
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6. Effectiveness of bilinear descent data in pointed symmetric
monoidal categories

Theorem 6.1. Let S be a pointed symmetric monoidal category with equalizers,
such that, for every object X of S, the functor . ⊗ X preserves equalizers. Then
ΨS is an equivalence of categories.

Proof. Denote by Y (resp. X) the equalizer of the two arrows E −→ E ⊗ E
given by uE ⊗ IdE and φ ◦ (uE ⊗ IdE) (resp. (12) ◦ φ ◦ (uE ⊗ IdE)). Denote by
iX : X −→ E and iY : Y −→ E the canonical inclusions.

Claim 1. The composite

1⊗ E ' E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
r⊗IdE−→ 1⊗ E ' E

(resp.

1⊗ E ' E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
IdE⊗r−→ E ⊗ 1 ' E)

factors through Y (resp. X).
Proof of Claim 1. We check the assertion for Y , the proof for X being similar.
Consider the composite

E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
r⊗IdE−→ E

uE⊗IdE−→ E ⊗ E
φ−→ E ⊗ E.

We have to show that it equals

E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
r⊗IdE−→ E

uE⊗IdE−→ E ⊗ E.

We compute:

E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
r⊗IdE−→ E

uE⊗IdE−→ E ⊗ E
φ−→ E ⊗ E

= E
uE⊗E⊗IdE−→ E ⊗ E ⊗ E

φ1−→ E ⊗ E ⊗ E
IdE⊗r⊗IdE−→ E ⊗ E

φ−→ E ⊗ E

= E
uE⊗E⊗IdE−→ E ⊗ E ⊗ E

φ1−→ E ⊗ E ⊗ E
φ2−→ E ⊗ E ⊗ E

IdE⊗r⊗IdE−→ E ⊗ E

= E
uE⊗E⊗IdE−→ E ⊗ E ⊗ E

φ3◦φ1−→ E ⊗ E ⊗ E
IdE⊗r⊗IdE−→ E ⊗ E

Since φ ◦ uE⊗E = uE⊗E because S is pointed, this composite equals

= E
uE⊗E⊗IdE−→ E ⊗ E ⊗ E

φ1−→ E ⊗ E ⊗ E
IdE⊗r⊗IdE−→ E ⊗ E

= E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
r⊗IdE−→ E

uE⊗IdE−→ E ⊗ E.

This finishes the proof of Claim 1. We thus have two arrows rX : E −→ X and rY :
E −→ Y , which are readily checked to be retractions of iX and iY , respectively.
It is readily checked that the association (E, φ) 7→ (X,Y ) is functorial. It thus
defines a functor

ΘS : PDec(S) −→ S2.

I claim that ΘS is a quasi-inverse of ΨS . Indeed, let (E, φ) ∈ PDec(S) and let
r : E −→ 1 be a morphism. Put (X,Y ) = ΘS(E, φ). Recall that we have at our
disposal the morphisms iX , rX , iY and rY .

Claim 2. The composite E uE⊗IdE−→ E ⊗ E
φ−→ E ⊗ E factors through iX ⊗ iY :

X ⊗ Y −→ E ⊗ E.
Proof of Claim 2. Thanks to lemma 3.4, it suffices to check the following two
properties.
i) The composite

E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
uE⊗IdE⊗E−→ E ⊗ E ⊗ E
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equals the composite

E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
uE⊗IdE⊗E−→ E ⊗ E ⊗ E

(12)◦φ3−→ E ⊗ E ⊗ E.

ii) The composite

E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
IdE⊗uE⊗IdE−→ E ⊗ E ⊗ E

equals the composite

E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
IdE⊗uE⊗IdE−→ E ⊗ E ⊗ E

φ1−→ E ⊗ E ⊗ E

We check i), ii) being similar. We compute:

E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
uE⊗IdE⊗E−→ E ⊗ E ⊗ E

(12)◦φ3−→ E ⊗ E ⊗ E

= E
uE⊗E⊗IdE−→ E ⊗ E ⊗ E

(12)◦φ3◦φ1−→ E ⊗ E ⊗ E

= E
uE⊗E⊗IdE−→ E ⊗ E ⊗ E

(12)◦φ2◦φ3−→ E ⊗ E ⊗ E

= E
uE⊗E⊗IdE−→ E ⊗ E ⊗ E

(12)◦φ2−→ E ⊗ E ⊗ E

(since φ ◦ uE⊗E = uE⊗E)

= E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
IdE⊗uE⊗IdE−→ E ⊗ E ⊗ E

(12)−→ E ⊗ E ⊗ E

= E
uE⊗IdE−→ E ⊗ E

φ−→ E ⊗ E
uE⊗IdE⊗IdE−→ E ⊗ E ⊗ E.

This finishes the proof of Claim 2.
We have thus built a map f : E −→ X ⊗ Y , functorial in (E, φ). We now show
that it is invertible by constructing its inverse explicitly. Let G be the composite
X ⊗ Y

iX⊗iY−→ E ⊗ E
φ−→ E ⊗ E. Put g = (r ⊗ IdE ◦G).

Claim 3. We have G = (uE ◦ IdE)g.
Proof of Claim 3. We compute

(uE ◦ IdE)g = X ⊗ Y
iX⊗iY−→ E ⊗ E

φ−→ E ⊗ E
r⊗IdE−→ E

uE⊗IdE−→ E ⊗ E

= X ⊗ Y
iX⊗iy−→ E ⊗ E

uE⊗IdE⊗E−→ E ⊗ E ⊗ E
φ1−→ E ⊗ E ⊗ E

IdE⊗r⊗IdE−→ E ⊗ E

= X ⊗ Y −→ E ⊗ E
uE⊗IdE⊗E−→ E⊗

3 φ3◦(12)−→ E⊗
3 φ1−→ E⊗

3 IdE⊗r⊗IdE−→ E ⊗ E

(by definition of X)

= X ⊗ Y −→ E ⊗ E
uE⊗IdE⊗E−→ E⊗

3 φ1◦φ3◦(12)−→ E⊗
3 IdE⊗r⊗IdE−→ E ⊗ E

= X ⊗ Y −→ E ⊗ E
IdE⊗uE⊗IdE−→ E⊗

3 φ1◦φ3−→ E⊗
3 IdE⊗r⊗IdE−→ E ⊗ E

= X ⊗ Y −→ E ⊗ E
IdE⊗uE⊗IdE−→ E⊗

3 φ2◦φ1−→ E⊗
3 IdE⊗r⊗IdE−→ E ⊗ E

= X ⊗ Y −→ E ⊗ E
IdE⊗uE⊗IdE−→ E⊗

3 φ2−→ E⊗
3 IdE⊗r⊗IdE−→ E ⊗ E

(by definition of Y )

= X ⊗ Y −→ E ⊗ E
φ−→ E ⊗ E

= G.

This finishes the proof of Claim 3.
In short, we have just proven that G factors through the (split mono) E uE⊗IdE−→
E ⊗ E. Hence in particular, g is independent of the choice of r.
Claim 4. The arrows f and g are mutual inverses.

Proof of Claim 4. We compute:

g ◦ f = E
uE⊗IdE−→ E ⊗ E

φ−→ X ⊗ Y −→ E ⊗ E
φ−→ E ⊗ E

r⊗IdE−→ E
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= E
uE⊗IdE−→ E ⊗ E

φ2

−→ E ⊗ E
r⊗IdE−→ E.

But we know that φ2 is a constant automorphism of E ⊗ E, hence the identity
since S is pointed. We thus infer that g ◦ f = IdE . The proof of f ◦ g = IdX⊗Y is
similar, and left to the reader. This finishes the proof of Claim 4.
We now have to show that f (and hence g) are indeed arrows in the category
PDec(S). In other words, we have to show that the square

E ⊗ E
f//

φ

��

X ⊗ Y ⊗X ⊗ Y

sX

��
E ⊗ E

f⊗f// X ⊗ Y ⊗X ⊗ Y

commutes. Let us call S this square.

Claim 5. The composite X ⊗ X
iX⊗iX−→ E ⊗ E

(12)−→ E ⊗ E equals
X ⊗ X

iX⊗iX−→ E ⊗ E
φ−→ E ⊗ E, and the composite Y ⊗ Y

iY ⊗iY−→ E ⊗ E

equals Y ⊗ Y
iY ⊗iY−→ E ⊗ E

φ−→ E ⊗ E.

Proof of Claim 5. We prove the first assertion, the second one being similar.
We compute:

X ⊗X
iX⊗iX−→ E ⊗ E

uE⊗E⊗IdE⊗E−→ E ⊗ E ⊗ E ⊗ E
φ34−→ E ⊗ E ⊗ E ⊗ E

= X ⊗X −→ E ⊗ E
uE⊗E⊗IdE⊗E−→ E ⊗ E ⊗ E ⊗ E

φ34φ24φ13(13)(24)−→ E ⊗ E ⊗ E ⊗ E

by definition of X. Using the computing rules on φ, we see that

φ34φ24φ13 = φ23φ34φ13 = φ23φ14φ34.

Hence the previous composite equals

X ⊗X −→ E ⊗ E
IdE⊗E⊗uE⊗E−→ E ⊗ E ⊗ E ⊗ E

φ23φ14φ34−→ E ⊗ E ⊗ E ⊗ E

= X ⊗X −→ E ⊗ E
IdE⊗E⊗uE⊗E−→ E ⊗ E ⊗ E ⊗ E

φ23φ14−→ E ⊗ E ⊗ E ⊗ E

(since φ ◦ uE⊗E = uE⊗E)

= X ⊗X −→ E ⊗ E
IdE⊗E⊗uE⊗E−→ E ⊗ E ⊗ E ⊗ E

(23)(14)−→ E ⊗ E ⊗ E ⊗ E

(by definition of X)

= X ⊗X −→ E ⊗ E
uE⊗E⊗IdE⊗E−→ E ⊗ E ⊗ E ⊗ E

(34)−→ E ⊗ E ⊗ E ⊗ E.

We thus have proven that

X ⊗X −→ E ⊗ E
uE⊗E⊗IdE⊗E−→ E ⊗ E ⊗ E ⊗ E

φ34−→ E ⊗ E ⊗ E ⊗ E

= X ⊗X −→ E ⊗ E
uE⊗E⊗IdE⊗E−→ E ⊗ E ⊗ E ⊗ E

(34)−→ E ⊗ E ⊗ E ⊗ E,

and the assertion follows by composing by r ⊗ r ⊗ IdE⊗E . This finishes the proof
of claim 5.

We now check that the square S commutes. Consider the map

E ⊗ E
φ−→ E ⊗ E

f⊗f−→ X ⊗ Y ⊗X ⊗ Y.
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Composing it with the canonical inclusion X ⊗ Y ⊗X ⊗ Y iX⊗iY ⊗iX⊗iY−→ E⊗
4
, and

using the definition of f , we get the map

E ⊗ E
uE⊗IdE⊗uE⊗IdE−→ E⊗

4 φ12φ34φ24−→ E⊗
4
.

On the other hand, we compute

E ⊗ E
f⊗f−→ X ⊗ Y ⊗X ⊗ Y

sX−→ X ⊗ Y ⊗X ⊗ Y
iX⊗iY ⊗iX⊗iY−→ E⊗

4

= E ⊗ E
uE⊗IdE⊗uE⊗IdE−→ E⊗

4 φ13φ34φ12−→ E⊗
4
.

using the definition of f and Claim 5 (concerning X). What thus remains to be
checked is the equality φ13φ34φ12 = φ12φ34φ24. This is done as follows:

φ34φ12φ24 = φ34φ14φ12 = φ13φ34φ12.

This finishes the proof of the construction of a natural isomorphism between
ΨS ◦ΘS and the identity functor of PDec(S).
It remains to produce, for (X,Y ) ∈ S2, a natural isomorphism between
ΘS(ΨS(X,Y )) = ΘS(X ⊗ Y, sX) and (X,Y ) (in the category S2). This is rather
formal. Put (X ′, Y ′) = ΘS(X ⊗ Y, sX). Then Y ′ is defined as the equalizer of the
arrows

X ⊗ Y
uX⊗Y ⊗IdX⊗Y−→ X ⊗ Y ⊗X ⊗ Y

and

X ⊗ Y
uX⊗Y ⊗IdX⊗Y−→ X ⊗ Y ⊗X ⊗ Y

sX−→ X ⊗ Y ⊗X ⊗ Y.

One readily checks that this equilizer is nothing but the arrow Y
uX⊗IdY−→ X ⊗

Y , hence a canonical isomorphism between Y and Y ′. Similarly, we produce a
canonical isomorphism between X and X ′. Everything is perfectly functorial, so
that we get a natural isomorphism between the functors ΘS ◦ΨS and the identity
functor of S2. �

Definition 6.2. Let S be a symmetric monoidal category. Let E be an object of
S. We define a category Dec′(E) as follows. An element of Dec′(E) is a pair

(X,Y ) of objects of S, together with an isomorphism E
f−→ X ⊗ Y . A morphism

(E
f−→ X ⊗ Y ) −→ (E

f ′−→ X ′ ⊗ Y ′)

is a pair of isomorphisms g : X −→ X ′ and h : Y −→ Y ′ such that (g⊗h)◦f = f ′.
Whenever the isomorphism classes of objects of Dec′(E) form a set, we denote it
by Dec(E).

Proposition 6.3. Let S be a symmetric monoidal category. Assume that ΨS is
an equivalence of categories. Then Dec(E) exists. More precisely, the association

Dec′(E) −→ PDec(E),

(E
f−→ X ⊗ Y ) 7→ (E, cY )

(where we identify E and X ⊗ Y via f) induces a bijection

Dec(E) ' PDec(E).

Proof. Everything is obvious, except perhaps that, if

(E
f−→ X ⊗ Y )

(g,h)−→ (E
f ′−→ X ′ ⊗ Y ′)
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is an (iso)morphism in Dec′(E), then (E, sX) = (E, sX′). In the diagram

E ⊗ E

Id

��

f⊗f// X ⊗ Y ⊗X ⊗ Y

g⊗h⊗g⊗h

��

sX // X ⊗ Y ⊗X ⊗ Y

g⊗h⊗g⊗h

��

f−1⊗f−1
// E ⊗ E

Id

��
E ⊗ E

f ′⊗f ′// X ′ ⊗ Y ′ ⊗X ′ ⊗ Y ′
sX′ // X ′ ⊗ Y ′ ⊗X ′ ⊗ Y ′

f ′−1⊗f ′−1

// E ⊗ E

,

the three small squares obviously commute, so that the big square commutes,
too. �

We now investigate some precise examples.

7. Algebras and Azumaya algebras

Let A be a commutative ring. Denote by Mod(A) the category of A-modules,
by Modf (A) the category of finite locally free A-modules, by P(A) the category
P(Mod(A)), and by ALG(A) the category whose objects are A-algebras R such
that the canonical map A −→ R is a split monomorphism of A-modules. All these
categories are symmetric monoidal for the tensor product of A-modules.
Recall that an Azumaya algebra over A is an A-algebra R which is finite and
locally free as an A-module, and such that the canonical map

R⊗A R −→ EndA(R),

r ⊗ r′ 7→ (x 7→ rxr′)
is an isomorphism. Denote by AZ(A) the symmetric monoidal category of Azu-
maya algebras over A. It is a full subcategory of ALG(A). Let E ∈ Modf (A).
Then one easily sees that the functor

B 7→ PDecB(E ⊗A B),
from the category of A-algebras to that of sets, is representable by an affine scheme
over Spec(A), which we denote by PDEC(E).

Proposition 7.1. The functors ΨALG(A) and ΨAZ(A) are equivalences of (sym-
metric monoidal) categories.

Proof. Let us first prove the statement for ΨALG(A). There is an obvious (strongly
monoidal) functor

F : ALG(A) −→ P(A),

R 7→ (R,A a7→a.1−→ R).

Thus, we have a functor PDec(F ) : PDec(ALG(A)) −→ PDec(P(A)), such that
the diagram

ALG(A)2 //

��

P(A)2

��
PDec(ALG(A)) // PDec(P(A))

commutes. Examining the definition of the quasi-inverse ΘP(A) of ΨP(A) built
in the proof of Theorem 6.1, we see that the composite ΘP(A) ◦ PDec(F ) fac-
torizes canonically through F 2. Indeed, let (R,φ) be in PDec(ALG(A)). Write
ΘP(A)(R, 1, φ) = ((X,x0), (Y, y0)). One immediately sees that X (resp. Y ) is
canonically an A-algebra with unit element x0 (resp. y0), as it is defined as an
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equalizer of two A-algebra morphisms. One readily checks that the canonical iso-
morphism X⊗Y −→ R is then an A-algebra isomorphism. This yields the asserted
factorization. In other words, we have built a functor ΘALG(A) which is a quasi-
inverse to ΨALG(A).
Now, let (R,φ) ∈ PDec(AZ(A)). Write ΘALG(A)(R,φ) = (S, T ). By construction,
S (resp. T ) is a direct factor of R as an A-module, hence is a finite and locally
free A-module. Since the A-algebra S ⊗ T is isomorphic to R, we see that S and
T are Azumaya algebras as well. This yields a quasi-inverse for ΨAZ(A).

�

Denote by SB(A) the category of Severi-Brauer schemes over Spec(A), with mor-
phisms being isomorphisms. It is well-known that this category is equivalent to
the (symmetric monoidal) category AZ ′(A) of Azumaya algebras over A, with
isomorphisms as morphisms. This endows SB(A) with a canonical structure of a
symmetric monoidal category.

Proposition 7.2. Let E ∈ Modf (A). For any (E, φ) ∈ PDec(E), there exists
Severi-Brauer schemes X and Y over Spec(A) and an isomorphism f : P(E) −→
X ⊗ Y , such that (P(E ⊗ E) = P(E) ⊗ P(E), sX) (where we identifiy P(E) and
X ⊗ Y via f) is equal to P(φ).

Proof. Put R = End(E); it is an Azumaya algebra. The data of (E, φ) ∈
PDec(E) gives rise to the data of (R,ψ) ∈ PDec(AZ(A)) the following way: ψ ∈
R ⊗ R = End(E ⊗ E) is given by conjugation by ψ. One readily checks that
this ψ indeed satisfies the required equations. Thanks to proposition 7.1, we get
Azumaya algebras S and T , plus an isomorphism R ' S ⊗ T , such that (R,ψ) =
(R, sS) ∈ PDec(AZ(A)). Thanks to the equivalence of categories between Severi-
Brauer schemes and Azumaya algebras, the assertion follows by taking X (resp.
Y ) to be the Severi-Brauer scheme corresponding to S (resp. T ). �

Remark 7.3. The previous proposition shows that, in the category Modf (A), al-
though a potential decomposition of a module E might not correspond to an
effective one, it always comes from a decomposition of P(E) as the tensor product
of two Severi-Brauer schemes.

Definition 7.4. Let E be an object of Modf (A), of constant dimension e. For any
pair of positive integers x and y such that xy = e, denote by PDecx,y(E) the subset
of PDec(E) defined as follows. By proposition 7.2, for any (E, φ) ∈ PDec(E),
there exists Severi-Brauer schemes X and Y over Spec(A) and an isomorphism
f : P(E) −→ X ⊗ Y which is mapped to (P(E),P(φ)) under ΨP(E). Then (E, φ)
belongs to PDecx,y(E) if and only if X (resp. Y ) has constant dimension x − 1
(resp. y − 1).

Definition 7.5. Let E ∈ Modf (A). Then one easily sees that the functor

B 7→ PDecB(E ⊗A B),
from the category of A-algebras to that of sets, is representable by an affine scheme
over Spec(A), which we denote by PDEC(E). For any pair of positive integers x
and y such that xy = e, we define an affine scheme PDECx,y(E) similarly.

Remark 7.6. If Spec(A) is connected, then PDEC(E) is the disjoint union of the
PDECx,y(E) , where x, y range through the positive integers such that xy = e.

Remark 7.7. There is a amusing corollary of what we have done so far. Let n > 0
be an integer, and let k be a field. Put E = kn, and Xn = PDEC(E); it is an
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affine variety over k, defined by rather simple equations ( i), ii), iii) of 5.1; one
may even prove in this context that i) is implied by ii) and iii) ). Remove from
Xn its 2 isolated points corresponding to the trivial decompositions E = 1 ⊗ E
and E = E ⊗ 1. We obtained a variety X ′

n, naturally attached to n, whose
connected components correspond exactly to the nontrivial decompositions of n
into a product of two positive integers. In particular, X ′

n is empty if and only
if n is prime. One may wonder whether, given a point of X ′

n, there exists a fast
algorithm for computing the corresponding decomposition.

For simplicity, assume now that A = k is a field. Let X0 and Y0 be finite-
dimensional nonzero k-vector spaces of dimensions x and y, respectively. We have
an exact sequence of algebraic k-groups

1 −→ Gm −→ GL(X0)×k GL(Y0) −→ GL(X0 ⊗ Y0),

where the first arrow is given by

x 7→ (x, x−1),

and the second by
(f, g) 7→ f ⊗ g.

Denote by G(X0, Y0) = GL(X0 ⊗ Y0)/((GL(X0) ⊗ GL(Y0))/Gm) the cokernel of
this exact sequence.

Proposition 7.8. The variety PDECx,y(X0, Y0) is canonically isomorphic to
G(X0, Y0).

Proof. Consider the morphism

F : GL(X0 ⊗ Y0) −→ PDEC(X0, Y0)

given, on the level of points in a k-algebra B by

f 7→ (f ⊗ f) ◦ sX0⊗kB ◦ (f−1 ⊗ f−1).

One immediately sees that this morphism factors through G(X0, Y0), yielding a
morphism

Φ : G(X0, Y0) −→ PDEC(X0, Y0).
I claim that Φ is an isomorphism. It suffices to exhibit its inverse. To that
purpose, let B be a k-algebra and s ∈ PDECx,y(X0 ⊗k Y0)(B). By proposition
7.2, there exists Severi-Brauer schemes X and Y over B, of constant dimension
x− 1 and y − 1, respectively, and an isomorphism (of projective schemes over B)
h : PB(X0 ⊗k Y0 ⊗k B) −→ X ⊗ Y , such that s = sx. Choose a faithfully flat B-
algebra C, and isomorphisms f : XC −→ P(X0⊗kC) (resp. g : YC −→ P(Y0⊗kC)).
Changing C if necessary, we may assume that the automorphism (f ⊗ g) ◦ h of
PC(X0 ⊗k Y0 ⊗k C) is induced by an automorphism r′ ∈ GL(X0 ⊗ Y0)(C). The
class of r′ in G(X0, Y0)(C) is independent of the choice of f and g, hence descends
(by classical faithfully flat descent theory) to an element r ∈ G(X0, Y0)(B). It is
readily checked that the associaton s 7→ r yield the inverse of F . �

Remark 7.9. The interested reader may notice the following fact. Let n, m be
two positive integers. The variety G(kn, km) is stably birational to the classifying
space of the k-group (GLn×k GLm)/Gm. One may then prove as an exercise that
the stable rationality of this classifying space is equivalent to that of PGLr, where
r is the gcd of n and m. Hence, stable rationality of every connected component
of PDEC(E) for every nonzero E is equivalent to stable rationality of PGLn for
every positive integer n.
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8. The Brauer group of a symmetric monoidal category

Let S be a symmetric monoidal category.

Lemma 8.1. Let (E, φ) be an object of PDec(S). The isomorphism φ : E ⊗E −→
E ⊗ E induces a canonical isomorphism

(E, (12) ◦ φ)⊗ (E, φ) −→ (E ⊗ E, sE)

in PDec(S).

Proof. We have to check that the diagram

E ⊗ E ⊗ E ⊗ E

φ24φ13(13)

��

φ34φ12 // E ⊗ E ⊗ E ⊗ E

(13)

��
E ⊗ E ⊗ E ⊗ E

φ34φ12 // E ⊗ E ⊗ E ⊗ E

commutes. We compute:

(13)φ34φ12 = φ14(13)φ12 = φ14φ23(13),

so that we have to show that

φ34φ12φ24φ13 = φ14φ23

. This is done as follows:

φ34φ12φ24φ13 = φ34φ24φ14φ13 = φ34φ24φ34φ14 = φ34φ34φ23φ14 = φ14φ23,

up to a constant automorphism.
�

Definition 8.2. Let S be a symmetric monoidal category.
i) An object of PDec(S) is called trivial if it is in the essential image of ΨS .
ii) Two objects E, E′ of PDec(S) are said to be stably isomorphic (we then write
E ∼ E′) if there exists trivial objects T and T ′ such that E ⊗ T is isomorphic (in
PDec(S)) to E′ ⊗ T ′.
iii) If the isomorphism classes of objects of PDec(S) modulo ∼ form a set, we
denote it by Br(S). It is a group with neutral element the class of (1 ⊗ 1, s1),
for the group structure induced by the tensor product in PDec(S). More precisely,
lemma 8.1 implies that the inverse of (E, φ) is (E, (12)φ). The group Br(S) is
called the Brauer group of S.

We now study some examples. Let A be a (commutative) base ring, and Mod′f (A)
be the symmetric monoidal category of locally free A-modules of finite and
everywhere nonzero rank.

Proposition 8.3. There is a canonical isomorphism between the usual Brauer-
Azumaya group Br(A) and Br(Mod′f (A)).

Proof. Let (E, φ) ∈ PDec(Mod′f (A)). By proposition 7.1, we have a canonical
decomposition End(E) ' R ⊗ T , where R and T are Azumaya algebras. One
readily checks that R does not depend on the choice of (E, φ) modulo ∼ up to
Brauer equivalence. Indeed, if (E, φ) = (X⊗Y, sX) is trivial, then the decomposi-
tion given by 7.1 is nothing but End(E) ' End(X)⊗End(Y ). We thus get a map
f : Br(Mod′f (A)) −→ Br(A), which is easily seen to be a group homomorphism. In
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the opposite direction, let R be an Azumaya algebra (over A). There exists a faith-
fully flat ring extension B/A, together with a free B-module M , and an isomor-
phism (of Azumaya algebras over B) R⊗AB ' EndB(M) = M⊗BM

∗. Denote by
s = sM the switch on the M -factors in R⊗AR⊗AB 'M⊗BM

∗⊗BM⊗BM
∗. We

see that s is independent of the choice of M and of the isomorphim '; hence it de-
scends (by faithfully flat descent theory) to an involution of R⊗AR, which we still
denote by s. The image of (R, s) in Br(Mod′f (A)) does not depend on the choice
of R modulo Brauer equivalence. We thus get a map g : Br(A) −→ Br(Mod′f (A)).
It is the inverse of f (verification left to the reader). �
We now concentrate on the case of a field k. Denote by Mod′(k) the symmetric
monoidal category of nonzero k-vector spaces.

Lemma 8.4. Let (E, φ) ∈ PDec(Mod′(k)). Then (E, φ) is trivial if and only if
there exists a nonzero e ∈ E such that φ(e, e) and (e, e) are collinear.

Proof. The ’if’ part is easy: if (E, φ) is isomorphic to (X⊗Y, sX), take a nonzero
x ∈ X (resp y ∈ Y ) and put e := x⊗ y. Assume there exists a nonzero e ∈ E such
that φ(e, e) and (e, e) are collinear. Up to scaling φ by a nonzero scalar (which
does not change the isomorphism class of (E, φ)), we may as well assume that
φ(e, e) = (e, e). Then ((E, e), φ) belongs to PDec(P(Mod′(k))), hence is trivial in
this category by theorem 5. A fortiori, (E, φ) is trivial in PDec(Mod′(k)). �

Lemma 8.5. Let (E, φ), (E′, φ′) ∈ PDec(Mod′(k)). Then (E, φ) and (E′, φ′) are
stably isomorphic if and only if there exists a nonzero morphism (E, φ) −→ (E′, φ′)
in PDec(Mod′(k)).

Proof. Assume given a nonzero f : (E, φ) −→ (E′, φ′). tensoring by (E, φ)op :=
(E, (12)φ), we get a nonzero g : T −→ (E, φ)op ⊗ (E′, φ′), where T = (X ⊗ Y, sX)
is a trivial object. Thus, there exists a nonzero x ∈ X (resp. y ∈ Y ) such that
e := g(x⊗y) ∈ E is nonzero. But φ(e, e) and (e, e) are collinear (easy verification),
so that by lemma 8.4, we infer that (E, φ)op ⊗ (E′, φ′) = S is trivial. Tensoring
by (E, φ), we get that T ⊗ (E′, φ′) = S ⊗ (E, φ), qed. The converse implication is
easy and left to the reader. �

Remark 8.6. Lemmas 8.4 and 8.5 imply that, in PDec(Mod′(k)), an object is
stably trivial if and only if it is trivial.

Proposition 8.7. The canonical homomorphism Br(k) = Br(Mod′f (k)) −→
Br(Mod′(k)) is an isomorphism.

Proof. Thanks to the previous remark, only surjectivity remains to be checked.
Take (E, φ) ∈ PDec(Mod′(k)). Thanks to lemma 8.5, it is enough to find a nonzero
finite-dimensional subspace F ⊂ E such that F ⊗ F ⊂ E ⊗E is stable by φ, since
the inclusion (F, φ|F ) −→ (E, φ) is then a nonzero homomorphism. Such an F
can be built as follows. Choose a nonzero e ∈ E, and put x := φ(e ⊗ e). It is
a symmetric vector in E ⊗ E, since φ and (12) commute. As such, there exists
a finite dimensional vector space F ⊂ E such that x belongs to F ⊗ F and F is
minimal for this property. The space F can be alternatively defined as follows.
First, we introduce some notation. Let 1 ≤ i ≤ n be positive integers. For f ∈ E∗,
denote by fi the linear map

E⊗
n

−→ E⊗
n−1

,

e1 ⊗ . . .⊗ en 7→ f(ei)e1 ⊗ . . .⊗ êi ⊗ . . .⊗ en.
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Then F is nothing but the image of the morphism

E∗ −→ E,

f 7→ f1(x).
I claim that F ⊗F is stable by φ. For f, f ∈ E∗, denote by Λ(f, f ′) the composite

E⊗
4 φ12φ34−→ E⊗

4 f1f ′3−→ E ⊗ E

. Then the Λ(f, f ′)(e ⊗ e ⊗ e ⊗ e), for f, f ′ ranging through E∗, span the space
F ⊗ F . Thus, it suffices to check that (φ ◦ Λ(f, f ′))(e⊗ e⊗ e⊗ e) always belongs
to F ⊗ F . We compute the composite φ ◦ Λ(f, f ′). It is readily seen to equal

E⊗
4 φ24φ12φ34−→ E⊗

4 f1f ′3
E ⊗E.

But
φ24φ12φ34 = φ12φ14φ34 = φ12φ13φ14 = φ13φ23φ14,

so that

(φ ◦ Λ(f, f ′))(e⊗ e⊗ e⊗ e) = (f1 ◦ f ′3 ◦ φ13 ◦ φ23 ◦ φ14)(e⊗ e⊗ e⊗ e).

Since (φ23φ14)(e⊗ e⊗ e⊗ e) belongs to F⊗
4
, its image by φ13 belongs to E⊗F ⊗

E ⊗ F , so that its image by f1 ◦ f ′3 ◦ φ13 belongs to F ⊗ F , qed.
�
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