TRIANGULAR GALOIS REPRESENTATIONS THAT DO NOT LIFT.

MATHIEU FLORENCE

ABSTRACT. Let p be an odd prime. This short note gives an example of a 3-dimensional triangular Galois representation

$$\rho_1: \operatorname{Gal}(\mathbb{Q}((T))) \longrightarrow \mathbf{B}_3(\mathbb{F}_p),$$

that does not lift to a representation

$$\rho_2: \operatorname{Gal}(\mathbb{Q}((T))) \longrightarrow \mathbf{B}_3(\mathbb{Z}/p^2).$$

This shows that Theorem 3.3 of the preprint [1] actually fails, as stated. Shortly after I released this note, Merkurjev and Scavia proposed a method to build more disruptive counter-examples; see [2]. The text of this note is, up to minor modifications, the original one (released 24/8/2024).

MATHIEU FLORENCE

Contents

1. The counter-example.	3
Bibliography	8

1. The counter-example.

Let p be an odd prime. Let F be a field of characteristic zero, whose algebraic closure is denoted by \overline{F}/F . Set

$$G^0 := \operatorname{Gal}(\overline{F}/F).$$

Recall the notation $\widehat{\mathbb{Z}}(1) := \varprojlim \mu_n$, for the Tate module of roots of unity. For a finite Galois module M and $n \geq 1$, set $M(1) := M \otimes_{\widehat{\mathbb{Z}}} \widehat{\mathbb{Z}}(1)$, M(n+1) = M(n)(1) and $M(-n) = \operatorname{Hom}(M(n), \mathbb{Q}/\mathbb{Z})$.

Henceforth, we pick F such that the natural map

$$H^1(F, \mathbb{Z}/p^2(2)) \longrightarrow H^1(F, \mathbb{Z}/p(2))$$

is not surjective.

Example 1.1. Assume that F is a number field or a local field of characteristic zero, containing the p-th roots of unity but not the p^2 -th roots of unity. Fix an isomorphism of trivial G^0 -modules $\mathbb{Z}/p(1) \simeq \mathbb{Z}/p$. Then, the assumption above holds. Indeed, the cyclotomic character mod p^2 is then a non-trivial homomorphism

$$\chi \in \text{Hom}(G^0, (1 + p\mathbb{Z}/p^2\mathbb{Z})^{\times}) = H^1(F, \mathbb{Z}/p) = H^1(F, \mathbb{Z}/p(1)) = F^{\times}/(F^{\times})^p.$$

The connecting homomorphism of the extension

$$0 \longrightarrow \mathbb{Z}/p(2) \longrightarrow \mathbb{Z}/p^2(2) \longrightarrow \mathbb{Z}/p(2) \longrightarrow 0$$

is then just given (up to sign) by the cup-product

$$F^{\times}/(F^{\times})^p = H^1(F, \mathbb{Z}/p(1)) \longrightarrow H^2(F, \mathbb{Z}/p(1)) = \operatorname{Br}(F)[p],$$

 $(x) \mapsto (x) \cup \chi.$

It is well-known that it is non-trivial, by class field theory. Refining this argument, one can prove that the non-surjectivity assumption also holds when $F = \mathbb{Q}$.

Reformulating in terms of extensions, there is an extension of (\mathbb{F}_p, G^0) -bundles

$$(\mathcal{E}^0): 0 \longrightarrow \mathbb{Z}/p(2) \longrightarrow E^0 \longrightarrow \mathbb{F}_p \longrightarrow 0,$$

that does not lift to an extension of $(\mathbb{Z}/p, G^0)$ -bundles of the shape

$$0 \longrightarrow \mathbb{Z}/p^2(2) \longrightarrow * \longrightarrow \mathbb{Z}/p^2 \longrightarrow 0.$$

Consider the extension of (\mathbb{F}_n, G^0) -bundles

$$0 \longrightarrow \mathbb{Z}/p(2) \bigoplus \mathbb{Z}/p(1) \longrightarrow V_3 \longrightarrow \mathbb{F}_p \longrightarrow 0,$$

given by the (Baer) sum of (\mathcal{E}^0) and the trivial extension

$$0 \longrightarrow \mathbb{Z}/p(1) \longrightarrow \mathbb{Z}/p(1) \bigoplus \mathbb{F}_p \longrightarrow \mathbb{F}_p \longrightarrow 0.$$

Setting $V_2 := \mathbb{Z}/p(2) \bigoplus \mathbb{Z}/p(1)$, this defines a complete flag

$$\nabla^0: V_1^0 \subset V_2^0 \subset V_3^0,$$

with graded pieces $L_1 = \mathbb{Z}/p(2)$, $L_2 = \mathbb{Z}/p(1)$ and $L_3 = \mathbb{F}_p$. Both 2-dimensional flags extracted from ∇ are split.

In the sequel, one works over the field of Laurent series F(T). Set

$$G := \operatorname{Gal}(\overline{F((T))}/F((T))) = \widehat{\mathbb{Z}}(1) \rtimes G^{0}.$$

By Kummer theory, there is an extension of (\mathbb{F}_p, G) -bundles (well-defined up to iso)

$$\mathcal{E}^T: 0 \longrightarrow \mathbb{Z}/p(1) \longrightarrow V_2^T \xrightarrow{t} \mathbb{F}_p \longrightarrow 0,$$

with class

$$(T) \in H^1(G, \mathbb{Z}/p(1)) = F((T))^{\times}/F((T))^{\times p}.$$

Observe that \mathcal{E}^T may be seen as a complete 2-dimensional flag of (\mathbb{F}_p, G^0) -bundles,

$$\nabla^T : 0 \subset \mathbb{Z}/p(1) \subset V_2^T$$
.

Definition 1.2. Let A be a commutative ring. If M is an A-module, denote by

$$\operatorname{Sym}^{2}(M) = \operatorname{Sym}_{A}^{2}(M) := (M \otimes_{A} M) / \langle x \otimes y - y \otimes x \rangle$$

its second symmetric power.

The 3-dimensional (\mathbb{F}_p, G) -bundle $\operatorname{Sym}^2(V_2^T)$ naturally fits into the extension

$$0 \longrightarrow V_2^T(1) \longrightarrow \operatorname{Sym}^2(V_2^T) \xrightarrow{\operatorname{Sym}^2(t)} \mathbb{F}_p \longrightarrow 0,$$

providing a natural complete flag

$$\mathbb{Z}/p(2) \subset V_2^T(1) \subset \operatorname{Sym}^2(V_2^T),$$

denoted by

$$\nabla^{T,2}: V_1^{T,2} \subset V_2^{T,2} \subset V_3^{T,2},$$

with graded pieces $L_1 = \mathbb{Z}/p(2)$, $L_2 = \mathbb{Z}/p(1)$ and $L_3 = \mathbb{F}_p$. The extension

$$0 \longrightarrow V_1^{T,2} \longrightarrow V_2^{T,2} \longrightarrow L_2^{T,2} \longrightarrow 0$$

is isomorphic to $\mathcal{E}^{T}(1)$. Since p is odd, one checks there is a commutative diagram

$$0 \longrightarrow V_2^T(1) \longrightarrow \operatorname{Sym}^2(V_2^T) \longrightarrow \mathbb{F}_p \longrightarrow 0$$

$$\downarrow^{t(1)} \qquad \qquad \downarrow^{2\operatorname{Id}}$$

$$\mathcal{E}^T: 0 \longrightarrow \mathbb{Z}/p(1) \longrightarrow V_2^T \longrightarrow \mathbb{F}_p \longrightarrow 0,$$

where the middle vertical arrow is given by $a \otimes b \mapsto t(a)b + t(b)a$. Therefore, the quotient extension

$$0 \longrightarrow L_2^{T,2} \longrightarrow V_3^{T,2}/V_1^{T,2} \longrightarrow L_3^{T,2} \longrightarrow 0$$

is isomorphic to $2\mathcal{E}^T$. [In short: up to twisting and rescaling, both 2-dimensional complete flags extracted from $\nabla^{T,2}$ are isomorphic to ∇^T .]

Remark 1.3. The construction that was just performed, actually exists mod p^2 . Indeed, start with the extension of $(\mathbb{Z}/p^2, G)$ -bundles

$$\mathcal{E}_2^T: 0 \longrightarrow \mathbb{Z}/p^2(1) \longrightarrow V_{2,2}^T \longrightarrow \mathbb{Z}/p^2 \longrightarrow 0,$$

whose class is

$$(T) \in H^1(G, \mathbb{Z}/p^2(1)) = F((T))^{\times}/F((T))^{\times p^2}.$$

In the same way, one builds a lift of $\nabla^{T,2}$, to a complete flag of $(\mathbb{Z}/p^2, G)$ -bundles

$$\nabla_2^{T,2}: V_{1,2}^{T,2} \subset V_{2,2}^{T,2} \subset V_{3,2}^{T,2} := \operatorname{Sym}_{\mathbb{Z}/p^2}(V_{2,2}^T),$$

with graded pieces $L_1 = \mathbb{Z}/p^2(2)$, $L_2 = \mathbb{Z}/p^2(1)$ and $L_3 = \mathbb{Z}/p^2$.

DEFINITION 1.4. Consider the extension (of linear algebraic Z-groups)

$$1 \longrightarrow \mathbf{U}_3 \longrightarrow \mathbf{B}_3 \longrightarrow \mathbf{T}_3 = \mathbf{G}_m^3 \longrightarrow 1.$$

It has a natural splitting, given by the split diagonal maximal torus $\mathbf{T}_3 \subset \mathbf{B}_3$. For any $\lambda = (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{Z}^3$, one can turn \mathbf{G}_a into (the affine space of) a one-dimensional representation of \mathbf{T}_3 , by the formula

$$(t_1, t_2, t_3).x = t_1^{\lambda_1} t_2^{\lambda_2} t_3^{\lambda_3} x.$$

As such, denote it by $G_a(\lambda)$. Let T_3 act on U_3 by conjugation. Consider the T_3 -equivariant embedding

$$\iota: \mathbf{G}_a(1,0,-1) \longrightarrow \mathbf{U}_3,$$

$$x \mapsto \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

identifying $G_a(1,0,-1)$ to the center of U_3 . Denote by

$$z \in Z^1(G^0, (\mathbb{F}_p^{\times})^3) = Z^1(G^0, \mathbf{T}_3(\mathbb{F}_p))$$

the 1-cocycle (a homomorphism) corresponding to the triple $(\mathbb{Z}/p(2), \mathbb{Z}/p(1), \mathbb{Z}/p)$. Taking \mathbb{F}_p -points of ι , then twisting by z, one gets an embedding of finite G^0 -groups

$$i: \mathbb{Z}/p(2) \hookrightarrow \mathbf{U}_3(\mathbb{F}_p)(2,1,0) := \mathbf{U}_3(\mathbb{F}_p)^z$$

identifying $\mathbb{Z}/p(2)$ to the center of $\mathbf{U}_3(\mathbb{F}_p)(2,1,0)$.

The same construction can be performed, with \mathbb{Z}/p^2 in place of \mathbb{F}_p .

LEMMA 1.5. The set $H^1(G, \mathbf{U}_3(\mathbb{F}_p)(2,1,0))$ parametrises complete 3-dimensional flags of (\mathbb{F}_p, G) -modules, with prescribed graded pieces $L_1 = \mathbb{Z}/p(2)$, $L_2 = \mathbb{Z}/p(1)$ and $L_3 = \mathbb{Z}/p$. The same holds mod p^2 , replacing \mathbb{F}_p by \mathbb{Z}/p^2 . Via this identification, $[\nabla^0] = i_*([\mathcal{E}^0])$.

Proof. Standard verification in Galois cohomology.

Definition 1.6. Let

$$\nabla: 0 = V_0 \subset V_1 \subset V_2 \subset V_3$$

be a flag of (\mathbb{F}_p, G) -modules as in the preceding Lemma. Denote by

$$\operatorname{End}_{-1}(\nabla) \subset \operatorname{End}(V_3)$$

the \mathbb{F}_p -subspace consisting of endomorphisms ϕ that shift degrees of the filtration by -1, i.e. such that $\phi(V_i) \subset V_{i-1}$ for $1 \leq i \leq 3$.

There is a natural extension of (\mathbb{F}_p, G) -modules

$$0 \longrightarrow \mathbb{Z}/p(2) \xrightarrow{j=j_{\nabla}} \operatorname{End}_{-1}(\nabla) \longrightarrow \mathbb{Z}/p(1) \bigoplus \mathbb{Z}/p(1) \longrightarrow 0.$$

It can be obtained by twisting the extension of \mathbb{F}_p -representations of \mathbf{B}_3 ,

$$0 \longrightarrow \mathbf{G}_a(1,0,-1) \xrightarrow{\operatorname{Lie}(\iota)} \operatorname{Lie}(\mathbf{U}_3) \longrightarrow \mathbf{G}_a(1,-1,0) \bigoplus \mathbf{G}_a(0,1,-1) \longrightarrow 0,$$

by the $\mathbf{B}_3(\mathbb{F}_p)$ -torsor corresponding to ∇ .

LEMMA 1.7. Pick $[\nabla] \in H^1(G, \mathbf{U}_3(\mathbb{F}_p)(2,1,0))$. Consider lifting it, to some

$$[\nabla_2] \in H^1(G, \mathbf{U}_3(\mathbb{Z}/p^2)(2, 1, 0)).$$

This lifting problem is obstructed by a natural class

$$\mathrm{Obs}_2(\nabla) \in H^2(G,\mathrm{End}_{-1}(\nabla)).$$

Similarly, for $a \in H^1(G, \mathbb{Z}/p(2))$, denote by $\mathrm{Obs}_2(a) \in H^1(G, \mathbb{Z}/p(2))$ the obstruction to lifting a to some $a_2 \in H^1(G, \mathbb{Z}/p^2(2))$. The following holds.

- (1) There is a canonical iso of (\mathbb{F}_p, G) -bundles $\operatorname{End}_{-1}(\nabla) \simeq \operatorname{End}_{-1}(\nabla + i_*(a))$.
- (2) In the group $H^2(G, \operatorname{End}_{-1}(\nabla))$, via the iso of item (1), one has

$$Obs_2(\nabla + i_*(a)) = Obs_2(\nabla) + j_*(Obs_2(a)).$$

PROOF. Verification to be added.

 \Box We are now ready to provide the desired counter-example.

It is the 3-dimensional complete flag of (\mathbb{F}_p, G) -bundles

$$\nabla: V_1 \subset V_2 \subset V_3$$
,

defined by the formula

$$\nabla := i_*(\mathcal{E}^0) + \nabla^{T,2}.$$

This sum makes sense, because $\operatorname{Im}(i)$ is central in $\mathbf{U}_3(\mathbb{F}_p)(2,1,0)$.

The flag ∇ corresponds to a representation

$$\rho_1: G \longrightarrow \mathbf{B}_3(\mathbb{F}_p).$$

Observe that ∇ is not isomorphic to $\nabla^{T,2}$. However, their 2-dimensional subflags and quotient flags all are all isomorphic to ∇^{T} , up to twisting and rescaling.

PROPOSITION 1.8. The flag ∇ does not lift to a complete flag of $(\mathbb{Z}/p^2, G)$ -bundles. Equivalently, ρ_1 does not lift to a (continuous) homomorphism

$$\rho_2: G \longrightarrow \mathbf{B}_3(\mathbb{Z}/p^2).$$

PROOF. Assume that such a lift exists. Denote it by

$$\nabla_2: V_{1,2} \subset V_{2,2} \subset V_{3,2},$$

and its graded pieces by $L_{1,2}, L_{2,2}$ and $L_{3,2}$. Write

$$L_{1,2} = \mathbb{Z}/p^2(2) + \epsilon_1,$$

$$L_{2,2} = \mathbb{Z}/p^2(1) + \epsilon_2$$

and

$$L_{3,2} = \mathbb{Z}/p^2 + \epsilon_3,$$

where the ϵ_i 's are homomorphisms

$$G \longrightarrow (\mathbb{F}_p, +) = (1 + p\mathbb{Z}/p^2\mathbb{Z})^{\times}.$$

Upon applying a global twist to the lifted flag, one may assume w.l.o.g. that $\epsilon_2 = 0$. There is the residue sequence at T in Galois cohomology, reading as

$$0 \longrightarrow H^1(F, \mathbb{F}_p) \longrightarrow H^1(F((T)), \mathbb{F}_p) \xrightarrow{\mathrm{res}} H^0(F, \mathbb{F}_p(-1)) \longrightarrow 0.$$

Since $\mathbb{Z}/p(1) \notin F$, G^0 acts non-trivially on $\mathbb{F}_p(-1)$, whence $H^0(F, \mathbb{F}_p(-1)) = 0$, so that $H^1(F, \mathbb{F}_p) = H^1(F((T)), \mathbb{F}_p)$. Recall the flag $\nabla_2^{T,2}$ from Remark 1.3. Observe that the extension

$$0 \longrightarrow L_1 \longrightarrow V_2 \longrightarrow L_2 \longrightarrow 0$$

has two lifts to an extension of $(\mathbb{Z}/p^2, G)$ -bundles. These are

$$0 \longrightarrow L_{1,2} \longrightarrow V_{2,2} \longrightarrow L_{2,2} \longrightarrow 0$$

and

$$0 \longrightarrow \mathbb{Z}/p^2(2) \longrightarrow V_{2,2}^{T,2} \longrightarrow \mathbb{Z}/p^2(1) \longrightarrow 0.$$

Comparing obstructions in Galois cohomology, one finds that

$$\epsilon_1 \cup (T) = 0 \in H^2(G, \mathbb{Z}/p(1)).$$

Since $\epsilon_1 \in H^1(G^0, \mathbb{F}_p)$, taking residue at T yields $\epsilon_1 = 0$. One proves that $\epsilon_3 = 0$ in a similar way. Thus, graded pieces of ∇_2 are the successive Tate twists $\mathbb{Z}/p^2(2), \mathbb{Z}/p^2(1)$ and \mathbb{Z}/p^2 . To conclude, we are going to applying Lemma 1.7, of which we adopt notation. As was just proved, one has $\mathrm{Obs}_2(\nabla) = 0$. Also, from the existence of $\nabla_2^{T,2}$ in Remark 1.3, one gets $\mathrm{Obs}_2(\nabla^{T,2}) = 0$. Thus, one has $j_*(\mathrm{Obs}_2(\mathcal{E}^0)) = 0$. To conclude, it remains to show that $\mathrm{Obs}_2(\mathcal{E}^0) = 0$, which will contradict the initial choice of \mathcal{E}^0 .

Observe that, in the current situation, the extension of (\mathbb{F}_p, G) -modules

$$0 \longrightarrow \mathbb{Z}/p(2) \xrightarrow{j} \operatorname{End}_{-1}(\nabla) \longrightarrow \mathbb{Z}/p(1) \bigoplus \mathbb{Z}/p(1) \longrightarrow 0$$

is the sum of two (non-zero scalar multiples of) copies of

$$\mathcal{E}^T(1): 0 \longrightarrow \mathbb{Z}/p(2) \longrightarrow V_2^T(1) \longrightarrow \mathbb{Z}/p(1) \longrightarrow 0.$$

Thus, its connecting homomorphism reads as

$$H^1(G, \mathbb{Z}/p(1) \bigoplus \mathbb{Z}/p(1)) \longrightarrow H^2(G, \mathbb{Z}/p(2)),$$

$$(u, v) \mapsto (\alpha u + \beta v) \cup (T),$$

for some $\alpha, \beta \in \mathbb{F}_n^{\times}$. The vanishing of $j_*(\mathrm{Obs}_2(\mathcal{E}^0))$ then implies that

$$\mathrm{Obs}_2(\mathcal{E}^0) = w \cup (T),$$

for some

$$w \in H^1(G, \mathbb{Z}/p(1)) = H^1(G^0, \mathbb{Z}/p(1)) \bigoplus \mathbb{F}_p(T).$$

Since p is odd, $(T) \cup (T) = 0$, so that one may assume w.l.o.g. $w \in H^1(G^0, \mathbb{Z}/p(1))$. Since $\mathrm{Obs}_2(\mathcal{E}^0)$ is unramified (= comes from F), taking residue at T yields w = 0, hence $\mathrm{Obs}_2(\mathcal{E}^0) = 0$. This concludes the proof.

1.1. A CONCRETE DESCRIPTION OF THE FLAG ∇ . To simplify, assume that F is a number field or a local field, containing the p-th roots of unity but not the p^2 -th roots of unity- see Example 1.1. Fix an isomorphism of G^0 -modules $\mathbb{Z}/p(1) \simeq \mathbb{F}_p$. The extension (\mathcal{E}^0) corresponds (up to iso) to a homomorphism

$$G^0 \longrightarrow \mathbf{B}_2(\mathbb{F}_p),$$

$$g \mapsto \begin{pmatrix} 1 & e^0(g) \\ 0 & 1 \end{pmatrix}.$$

The flag ∇^0 is then simply given by the homomorphism

$$G^0 \longrightarrow \mathbf{B}_3(\mathbb{F}_p),$$

$$g \mapsto \begin{pmatrix} 1 & 0 & e^0(g) \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Likewise, the extension (\mathcal{E}^T) corresponds to a group homomorphism of the shape

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$
,

where $G \xrightarrow{t} \mathbb{Z}/p$ is the additive character corresponding, via Kummer theory, to $(T) \in H^1(F((T)), \mathbb{Z}/p(1))$.

A computation then shows that the flag $\nabla^{T,2}$ is given by the homomorphism

$$\begin{pmatrix} 1 & t & t^2 \\ 0 & 1 & 2t \\ 0 & 0 & 1 \end{pmatrix}.$$

The flag ∇ of Proposition 1.8 is then provided by the formula

$$\begin{pmatrix} 1 & t & t^2 + e^0 \\ 0 & 1 & 2t \\ 0 & 0 & 1 \end{pmatrix},$$

where it is understood that e^0 should be precomposed with the natural surjection $G \longrightarrow G^0$. To conclude, we observe that the description above extends to the case where $\mathbb{Z}/p(1) \not\subset F$. In that case, denoting by $\chi: G^0 \longrightarrow \mathbb{F}_p^{\times}$ the p-th cyclotomic character, ∇ is then given by a homomorphism $G \longrightarrow \mathbf{B}_3(\mathbb{F}_p)$ of the shape

$$\begin{pmatrix} \chi^2 & \chi t & t^2 + e^0 \\ 0 & \chi & 2t \\ 0 & 0 & 1 \end{pmatrix}.$$

Here the maps $t:G\longrightarrow \mathbb{F}_p$ and $e^0:G^0\longrightarrow \mathbb{F}_p$ are no longer homomorphisms: they are 1-cocycles.

Remark 1.9. It is likely that the counter-example ρ_1 , does not lift to a representation $G \longrightarrow \mathbf{GL}_3(\mathbb{Z}/p^2)$. This would require an extra computation.

BIBLIOGRAPHY

- [1] M. FLORENCE, Smooth profinite groups, II: the Uplifting Theorem, preprint available on the author's webpage.
- [2] A. MERKURJEV, F. SCAVIA, Galois representations modulo p that do not lift modulo p², https://arxiv.org/abs/2410.12560

SORBONNE UNIVERSITÉ AND UNIVERSITÉ PARIS CITÉ, CNRS, IMJ-PRG, F-75005 PARIS, FRANCE. Email address: mathieu.florence@imj-prg.fr