TRIANGULAR GALOIS REPRESENTATIONS THAT DO NOT LIFT.

MATHIEU FLORENCE

ABSTRACT. Let p be an odd prime. This short note gives an example of a
3-dimensional triangular Galois representation

p1: Gal(Q((T))) — Ba(Fp),

that does not lift to a representation

pz2 : Gal(Q((T))) — Bs(Z/p?).
This shows that Theorem 3.3 of the preprint [1] actually fails, as stated.
Shortly after I released this note, Merkurjev and Scavia proposed a method to

build more disruptive counter-examples; see [2]. The text of this note is, up
to minor modifications, the original one (released 24/8/2024).
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1. THE COUNTER-EXAMPLE.

Let p be an odd prime. Let F' be a field of characteristic zero, whose algebraic
closure is denoted by F'/F. Set

G .= Gal(F/F).

Recall the notation 2(1) = I'&n,un, for the Tate module of roots of unity. For a

~

finite Galois module M and n > 1, set M (1) := M ®5 Z(1), M(n + 1) = M(n)(1)
and M(—n) = Hom(M(n),Q/Z).
Henceforth, we pick F' such that the natural map

HY(F,Z/p*(2)) — H'(F,Z/p(2))
is not surjective.

Ezample 1.1. Assume that F' is a number field or a local field of characteristic
zero, containing the p-th roots of unity but not the p?-th roots of unity. Fix
an isomorphism of trivial G°-modules Z/p(1) ~ Z/p. Then, the assumption above
holds. Indeed, the cyclotomic character mod p? is then a non-trivial homomorphism

X € Hom(G*, (1 +pZ/p*Z)*) = H'(F,Z[p) = H'(F,Z/p(1)) = F* /(F*)".
The connecting homomorphism of the extension
0 — Z/p(2) — Z/p*(2) — Z/p(2) — 0
is then just given (up to sign) by the cup-product
FXJ(F*) = H'(F,Z/p(1)) — H*(F,Z/p(1)) = Br(F)[p],
() — (x) Ux.

It is well-known that it is non-trivial, by class field theory. Refining this argument,
one can prove that the non-surjectivity assumption also holds when F' = Q.

Reformulating in terms of extensions, there is an extension of (F,, G°)-bundles
&% :0—2/p(2) — E° — T, — 0,
that does not lift to an extension of (Z/p, G°)-bundles of the shape
0 — Z/p*(2) — * — Z/p*> — 0.
Consider the extension of (F,, G°)-bundles
0— Z/p(2) P Z/p(1) — Vs — F, — 0,
given by the (Baer) sum of (£°) and the trivial extension
0 — Z/p(1) — Z/p(1) PF, — F, — 0.
Setting Vs := Z/p(2) @ Z/p(1), this defines a complete flag
vOivycvy cvy,
with graded pieces L1 = Z/p(2), Ly = Z/p(1) and Lz = F,. Both 2-dimensional

flags extracted from V are split.
In the sequel, one works over the field of Laurent series F'((T)). Set

G := Gal(F((T))/F((T))) = Z(1) » G .
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By Kummer theory, there is an extension of (F,, G)-bundles (well-defined up to iso)
ET0—Z/p(1) — Vi HF, — 0,
with class
(T) € HY(G,Z/p(1)) = F((T))* /F((T))**.
Observe that £7 may be seen as a complete 2-dimensional flag of (Fp, G°)-bundles,
vi.ocz/p(l)cVvy.
DEFINITION 1.2. Let A be a commutative ring. If M is an A-module, denote by
Sym?(M) = Sym4 (M) .= (M@, M)/ <zQy—yQx >

its second symmetric power.

The 3-dimensional (F,, G)-bundle Sym? (V) naturally fits into the extension

Sym?(t)

0 — V5" (1) — Sym*(15") Fy —0,

providing a natural complete flag
Z/p(2) € V5 (1) € Sym®(V5),
denoted by
vT2 . VlT,2 - VQT’z - V3T’2,
with graded pieces L1 = Z/p(2), Lo = Z/p(1) and L3 = F,,. The extension
0— V1T72 — V2T’2 — LQT’2 — 0

is isomorphic to £7(1). Since p is odd, one checks there is a commutative diagram

0 Vi (1) — Sym*(Vy") —=F, —=0
it(l) l lmd
ET:0——=17/p(1) Vi F, 0,

where the middle vertical arrow is given by a ® b — t(a)b + t(b)a. Therefore, the
quotient extension

0— LI — v vi? — 1% —o

is isomorphic to 267, [In short: up to twisting and rescaling, both 2-dimensional
complete flags extracted from V7°2 are isomorphic to V7]

Remark 1.3. The construction that was just performed, actually exists mod p?.
Indeed, start with the extension of (Z/p?, G)-bundles

£ 10— Z/p*(1) — Vi — Z/p* — 0,
whose class is
2
(T) € HY(G,Z/p*(1)) = F((T))* /F((T))*"".
In the same way, one builds a lift of V7*2 to a complete flag of (Z/p?, G)-bundles
Vy? i Vit C V' C Vys® o= Symg e (Vi)

with graded pieces L1 = Z/p*(2), Ly = Z/p*(1) and L3 = Z/p*.
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DEFINITION 1.4. Consider the extension (of linear algebraic Z-groups)
1— U3 — By — T3= G3—>1

It has a natural splitting, given by the split diagonal mazimal torus T3 C Bs.
For any A = (\1, X2, \3) € Z3, one can turn G, into (the affine space of) a one-
dimensional representation of T3, by the formula

(t1,to, t3).x =t 132 15% 2.

As such, denote it by Gg(\). Let T3 act on Uz by conjugation. Consider the
T3-equivariant embedding

L Gqa(1,0,-1) — Us,
1 0 «x
x— 0 1 0],

0 0 1

identifying G,(1,0,—1) to the center of Us. Denote by
2 € ZHG, (F))®) = Z1(G°, T5(Fy))
the 1-cocycle (a homomorphism) corresponding to the triple (Z/p(2),Z/p(1),Z/p).
Taking Fp-points of ¢, then twisting by z, one gets an embedding of finite G°-groups
i1 Z/p(2) = Us(F,)(2,1,0) := Us(Fp)*,

identifying Z/p(2) to the center of Us(F,)(2,1,0).
The same construction can be performed, with Z/p* in place of F,,.

LEMMA 1.5. The set H'(G,U3(F,)(2,1,0)) parametrises complete 3-dimensional
flags of (Fp, G)-modules, with prescribed graded pieces L1 = Z/p(2), Ly = Z/p(1)
and Ly = Z/p. The same holds mod p?, replacing F,, by Z/p*.

Via this identification, [V°] = i..([€°]).

PrOOF. Standard verification in Galois cohomology. (]

DEFINITION 1.6. Let
V:o=WwcCcWiclVhCcVs
be a flag of (Fp, G)-modules as in the preceding Lemma. Denote by
End_l(V) C End(V3)

the IF,,-subspace consisting of endomorphisms ¢ that shift degrees of the filtration by
—1, i.e. such that ¢(V;) C Vi_y for 1 <i < 3.
There is a natural extension of (Fp,, G)-modules

0 — Z/p(2) 2= End_1(V) — Z/p(1) VP z/p(1)
It can be obtained by twisting the extension of Fy-representations of Bs,
Lie(t)
0 — Gq(1,0,—1) = Lie(Us) — Ga(1,-1,0) ) G4(0,1,-1) — 0,

by the B3(F,)-torsor corresponding to V.
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LEMMA 1.7. Pick [V] € HY(G,U3(F,)(2,1,0)). Consider lifting it, to some
[Vo] € H (G, Us(Z/p?)(2,1,0)).
This lifting problem is obstructed by a natural class
Obsy(V) € H*(G,End_(V)).
Similarly, for a € H*(G,Z/p(2)), denote by Obss(a) € HY(G,Z/p(2)) the obstruc-
tion to lifting a to some ay € HY(G,Z/p?(2)). The following holds.
(1) There is a canonical iso of (Fp, G)-bundles End_1(V) ~ End_1(V +i.(a)).
(2) In the group H*(G,End_1(V)), via the iso of item (1), one has
Obsa(V +ix(a)) = Obsy(V) + j.(Obss(a)).
PROOF. Verification to be added.

[0 We are now ready to provide the desired counter-example.
It is the 3-dimensional complete flag of (I, G)-bundles

V:VicV,CVs,
defined by the formula
V=i (% + vT2
This sum makes sense, because Im(?) is central in Us(F,)(2,1,0).
The flag V corresponds to a representation

pP1: G — Bg(]Fp)
Observe that V is not isomorphic to V2. However, their 2-dimensional subflags
and quotient flags all are all isomorphic to V7, up to twisting and rescaling.
PROPOSITION 1.8. The flag V does not lift to a complete flag of (Z/p?, G)-bundles.
FEquivalently, p1 does not lift to a (continuous) homomorphism
P2 G — B3(Z/p2).
PRrROOF. Assume that such a lift exists. Denote it by
Va:Via C Voo C V3o,
and its graded pieces by L; 2, Lo and L3 . Write
Lio =7/p*(2) + €1,
L272 = Z/p2(1) + €2
and
L3y =Z/p* + e,
where the ¢;’s are homomorphisms
G — (Fp, +) = (L +pZ/p*Z)*.

Upon applying a global twist to the lifted flag, one may assume w.l.o.g. that e; = 0.
There is the residue sequence at T in Galois cohomology, reading as

res

0 — H'(F,F,) — HY(F((T)),F,) = H°(F,F,(—1)) — 0.
Since Z/p(1) ¢ F, G° acts non-trivially on F,(—1), whence H°(F,F,(—1)) = 0, so

that H'(F,F,) = H'(F((T)),F,). Recall the flag V2** from Remark 1.3.
Observe that the extension

0—L —Vo—Ly—0
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has two lifts to an extension of (Z/p?, G)-bundles. These are
0—Lig— Voo —Lao—0
and
0— Z/p*(2) — V55> — Z/p*(1) — 0.
Comparing obstructions in Galois cohomology, one finds that
e U(T)=0¢ H*(G,Z/p(1)).

Since ¢, € H'(G°,F,), taking residue at T yields ¢ = 0. One proves that
€3 = 0 in a similar way. Thus, graded pieces of V4 are the successive Tate twists
7./p*(2),Z/p*(1) and Z/p®. To conclude, we are going to applying Lemma 1.7, of
which we adopt notation. As was just proved, one has Obsy(V) = 0. Also, from
the existence of V3% in Remark 1.3, one gets Obsy(V72) = 0. Thus, one has
j«(Obsy(EY)) = 0. To conclude, it remains to show that Obss(£°) = 0, which will
contradict the initial choice of £°.

Observe that, in the current situation, the extension of (F,, G)-modules

0 — Z/p(2) %+ End_y(V) — Z/p(1) D Z/p(1)

is the sum of two (non-zero scalar multiples of) copies of

ET(1):0— Z/p(2) — V5" (1) — Z/p(1) — 0.
Thus, its connecting homomorphism reads as

NG, z/p(1) P Z/p(1)) — H*(G,Z/p(2)),
(u,v) = (au+ Bv) U (T),
for some o, f € F. The vanishing of j,(Obsz(E°)) then implies that
Obsy(£%) = w U (T),

for some

we H'Y(G,Z/p(1)) = H'(G°, Z/p(1)) D F,(T

Since p is odd, (T)U(T) = 0, so that one may assume w.l.o.g. w € Hl(GO, Z/p(1)).
Since Obsg(£°) is unramified (= comes from F), taking residue at T yields w = 0,
hence Obsy(EY) = 0. This concludes the proof. O

1.1. A CONCRETE DESCRIPTION OF THE FLAG V. To simplify, assume that F' is
a number field or a local field, containing the p-th roots of unity but not the p?-th
roots of unity- see Example 1.1. Fix an isomorphism of G%-modules Z/p(1) ~ F,.
The extension (£°) corresponds (up to iso) to a homomorphism

G? — By(F,),

(3 “0)

The flag V? is then simply given by the homomorphism
GO — BS(]FP)v
1 0 €%y
g— (0 1 0
0 0 1
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Likewise, the extension (£7) corresponds to a group homomorphism of the shape

6 1)

where G 5 Z/p is the additive character corresponding, via Kummer theory, to

(T) € HY(F((T)),Z/p(1))-
A computation then shows that the flag V"2 is given by the homomorphism

1t 2
0 1 2t
0 0 1
The flag V of Proposition 1.8 is then provided by the formula
1t t2+¢
0 1 2t ,
0 0 1

where it is understood that €® should be precomposed with the natural surjection
G — G°. To conclude, we observe that the description above extends to the case
where Z/p(1) ¢ F. In that case, denoting by x : G — F) the p-th cyclotomic
character, V is then given by a homomorphism G — B3(F,) of the shape

X2 Xt t2 4 ¢eY

0 x 2t

0 O 1
Here the maps ¢t : G — ), and G0 — F, are no longer homomorphisms:
they are 1-cocycles.

Remark 1.9. It is likely that the counter-example p1, does not lift to a representation
G — GL3(Z/p?). This would require an extra computation.
BIBLIOGRAPHY

[1] M. FLORENCE, Smooth profinite groups, II: the Uplifting Theorem, preprint available on the
author’s webpage.

[2] A. MERKURJEV, F. SCAVIA,Galois representations modulo p that do not lift modulo p?,
https://arxiv.org/abs/2410.12560

SORBONNE UNIVERSITE AND UNIVERSITE PARIS CITE, CNRS, IMJ-PRG, F-75005 PARIS, FRANCE.
Email address: mathieu.florence@imj-prg.fr



