ON HIGHER TRACE FORMS OF SEPARABLE ALGEBRAS

MATHIEU FLORENCE ¹

November 2006

Abstract.

Keywords and Phrases: Separable algebras, Galois cohomology, essential dimension.

INTRODUCTION, NOTATIONS

In this paper, we denote by k a commutative field, by k_s (resp. k) a separable (resp. algebraic) closure of k and by Γ_k the Galois group of k_s/k . The objects we study are separable k-algebras, that is to say, finite dimensional k-algebras A such that $A \otimes_k \overline{k}$ has zero Jacobson radical. Such algebras are products of simple k-algebras, i.e. of the form $\operatorname{End}_D(M)$, where D is a skew field, finite dimensional as a k-vector space, and M is a finite dimensional D-vector space. In [Re], it is proven that, if A/k is a central simple algebra, and if $r \geq 3$ is any integer, then the r-form

$$(a_1, \dots, a_r) \mapsto \operatorname{tr}(a_1 \dots a_r)$$

(tr being the reduced trace) carries a lot of information about the structure of A; in particular, it captures the essential dimension of A. Our aim is to give a cohomological explanation of this phenomenon, and to generalize Reichstein's result to any separable k-algebra.

Acknowledgements Contents

Introduction, notations	1
Acknowledgements	1
1. The group of automorphisms of a higher trace form	1
References	3

1. The group of automorphisms of a higher trace form

Let A/k be a separable k-algebra, and tr its reduced trace form. We denote by G the group of automorphisms of A; we view it as a linear algebraic group. The choice of an isomorphism $A \otimes_k k_s \simeq \prod_{i=1}^s \mathcal{M}_{n_i}^{e_i}(k_s)$ (where the n_i are all distinct integers) gives an isomorphism $G_{k_s} \simeq \prod_{i=1}^s \operatorname{PGL}_{n_i}^{e_i} \rtimes \mathfrak{S}_{e_i}$. In particular, G is smooth over k. Let $r \geq 3$ be any integer, and consider the r-form

$$F_r: (a_1, \dots, a_r) \mapsto \operatorname{tr}(a_1 \dots a_r).$$

We want to compute the linear algebraic group H_r consisting of invertible linear transformations of A which leave F_r invariant. Let $\mu_{r,A}$ be the (multiplicative)

 $^{^1{\}rm The}$ author gratefully acknowledges support from the Swiss National Science Fundation, grant no. 200020-109174/1 (project leader: E. Bayer-Fluckiger)

subgroup of $\operatorname{GL}_1(A)$ (the algebraic group of invertible elements of A) consisting of central elements x such that $x^r = 1$ (beware that $\mu_{r,A}$ is not smooth if $\operatorname{char}(k)$ divides r). The action of $\mu_{r,A}$ of A by translations obviously preserves F_r ; it follows that $\mu_{r,A} \rtimes G$ is a subgroup of H_r . The following proposition ensures this inclusion is an equality.

PROPOSITION 1.1. The natural inclusion $\mu_{r,A} \rtimes G \longrightarrow H_r$ is an isomorphism.

Proof. For simplicity, we work on the level of k-points of the algebraic groups considered, i.e., we show that $(\mu_{r,A} \rtimes G)(k) = H_r(k)$. The proof we give below also works if we replace k by any k-algebra B, and base-change A accordingly. Therefore, we will also have $(\mu_{r,A} \rtimes G)(B) = H_r(B)$, for any B, which is obviously enough to conclude that the closed embedding $\mu_{r,A} \rtimes G \longrightarrow H_r$ is in fact an isomorphism.

Let $f: A \longrightarrow A$ be a k-linear map belonging to $H_r(k)$. We first show that f(1) is central in A. Let x be any element of A. We have to show that f(1)f(x) = f(x)f(1). Pick $a \in A$ such that f(a) is invertible, and let y be any element of A. We compute:

$$\operatorname{tr}(f(1)f(x)f(a)^{r-3}f(y)) = \operatorname{tr}(x*1*a^{r-3}*y) = \operatorname{tr}(f(x)f(1)f(a)^{r-3}f(y)).$$

Since this must hold for every y, and since tr is non-degenerate, we conclude that $f(1)f(x)f(a)^{r-3} = f(x)f(1)f(a)^{r-3}$, whence the conclusion.

Then we show that, for all x_1, x_2 in A, $f(x_1x_2)f(1) = f(x_1)f(x_2)$. We proceed as before: it suffices to show that $f(x_1x_2)f(1)f(a)^{r-3} = f(x_1)f(x_2)f(a)^{r-3}$, or that $\operatorname{tr}(f(x_1x_2)f(1)f(a)^{r-3}f(y)) = \operatorname{tr}(f(x_1)f(x_2)f(a)^{r-3}f(y))$, for any y in A. But both sides equal $\operatorname{tr}(x_1x_2a^{r-3}y)$, whence the claim.

Next, we show that f(1) is invertible. This follows from $f(a)f(a) = f(a^2)f(1)$ (where a is, as before, an element of A such that f(a) is invertible).

Let g be the linear automorphism of A defined by $x \mapsto f(1)^{-1}x$. From what we have shown, it follows that $g \circ f$ is a k-algebra automorphism of A, hence preserves F_r . This implies that g also preserves F_r , which ensures that $f(1) \in \mu_{r,A}(k)$. This finishes the proof.

We are now able to prove the following:

THEOREM 1.2. Let $r \geq 3$ be an integer, k_0 a subfield of k, and A/k a separable algebra. We have

$$\mathrm{ed}_{k_0}(A) = \mathrm{ed}_{k_0}(F_r(A)),$$

where $F_r(A)$ is the r-trace form associated to A.

Proof. Let $B = \prod_{i=1}^{s} \mathcal{M}_{n_{i}}^{e_{i}}$ (all n_{i} distinct) be the split form of A. Let $G = \prod_{i=1}^{s} \operatorname{PGL}_{n_{i}}^{e_{i}} \rtimes \mathfrak{S}_{e_{i}}$ be the automorphism group of B. Let $a \in H^{1}(k, G)$ be the class of A, and $f \in H^{1}_{fppf}(k, \mu_{r,B} \rtimes G)$ that of $F_{r}(A)$. Assume there exists a subfield l of k, containing k_{0} , and a r-form \tilde{F} , defined over l, such that \tilde{F}_{k} is isomorphic to $F_{r}(A)$. Let \tilde{f} be the class of \tilde{F} in $H^{1}_{fppf}(l, \mu_{r,B} \rtimes G)$. By change of group using the canonical projection $\mu_{r,B} \rtimes G \longrightarrow G$, we obtain a class \tilde{a} in $H^{1}(l,G)$. Let \tilde{A} be a separable l-algebra which represents this class. It is then straightforward to check that $\tilde{A}_{k} \simeq A$. We have proved that $\operatorname{ed}_{k_{0}}(A) \leq \operatorname{ed}_{k_{0}}(F_{r}(A))$. The other inequality is obvious.

References

[Re] Z. REICHSTEIN.— Higher trace forms and essential dimension in central simple algebras, to appear in Archiv der Mathematik.

Mathieu Florence, Ecole Polytechnique Fédérale de Lausanne, FSB-MA, CH-1015 Lausanne, Switzerland.

E-mail address: mathieu.florence@gmail.com